Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/compiler-rt/lib/lsan/lsan_common.cpp
35233 views
1
//=-- lsan_common.cpp -----------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file is a part of LeakSanitizer.
10
// Implementation of common leak checking functionality.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "lsan_common.h"
15
16
#include "sanitizer_common/sanitizer_common.h"
17
#include "sanitizer_common/sanitizer_flag_parser.h"
18
#include "sanitizer_common/sanitizer_flags.h"
19
#include "sanitizer_common/sanitizer_placement_new.h"
20
#include "sanitizer_common/sanitizer_procmaps.h"
21
#include "sanitizer_common/sanitizer_report_decorator.h"
22
#include "sanitizer_common/sanitizer_stackdepot.h"
23
#include "sanitizer_common/sanitizer_stacktrace.h"
24
#include "sanitizer_common/sanitizer_suppressions.h"
25
#include "sanitizer_common/sanitizer_thread_registry.h"
26
#include "sanitizer_common/sanitizer_tls_get_addr.h"
27
28
#if CAN_SANITIZE_LEAKS
29
30
# if SANITIZER_APPLE
31
// https://github.com/apple-oss-distributions/objc4/blob/8701d5672d3fd3cd817aeb84db1077aafe1a1604/runtime/objc-runtime-new.h#L127
32
# if SANITIZER_IOS && !SANITIZER_IOSSIM
33
# define OBJC_DATA_MASK 0x0000007ffffffff8UL
34
# else
35
# define OBJC_DATA_MASK 0x00007ffffffffff8UL
36
# endif
37
# endif
38
39
namespace __lsan {
40
41
// This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
42
// also to protect the global list of root regions.
43
static Mutex global_mutex;
44
45
void LockGlobal() SANITIZER_ACQUIRE(global_mutex) { global_mutex.Lock(); }
46
void UnlockGlobal() SANITIZER_RELEASE(global_mutex) { global_mutex.Unlock(); }
47
48
Flags lsan_flags;
49
50
void DisableCounterUnderflow() {
51
if (common_flags()->detect_leaks) {
52
Report("Unmatched call to __lsan_enable().\n");
53
Die();
54
}
55
}
56
57
void Flags::SetDefaults() {
58
# define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
59
# include "lsan_flags.inc"
60
# undef LSAN_FLAG
61
}
62
63
void RegisterLsanFlags(FlagParser *parser, Flags *f) {
64
# define LSAN_FLAG(Type, Name, DefaultValue, Description) \
65
RegisterFlag(parser, #Name, Description, &f->Name);
66
# include "lsan_flags.inc"
67
# undef LSAN_FLAG
68
}
69
70
# define LOG_POINTERS(...) \
71
do { \
72
if (flags()->log_pointers) \
73
Report(__VA_ARGS__); \
74
} while (0)
75
76
# define LOG_THREADS(...) \
77
do { \
78
if (flags()->log_threads) \
79
Report(__VA_ARGS__); \
80
} while (0)
81
82
class LeakSuppressionContext {
83
bool parsed = false;
84
SuppressionContext context;
85
bool suppressed_stacks_sorted = true;
86
InternalMmapVector<u32> suppressed_stacks;
87
const LoadedModule *suppress_module = nullptr;
88
89
void LazyInit();
90
Suppression *GetSuppressionForAddr(uptr addr);
91
bool SuppressInvalid(const StackTrace &stack);
92
bool SuppressByRule(const StackTrace &stack, uptr hit_count, uptr total_size);
93
94
public:
95
LeakSuppressionContext(const char *supprression_types[],
96
int suppression_types_num)
97
: context(supprression_types, suppression_types_num) {}
98
99
bool Suppress(u32 stack_trace_id, uptr hit_count, uptr total_size);
100
101
const InternalMmapVector<u32> &GetSortedSuppressedStacks() {
102
if (!suppressed_stacks_sorted) {
103
suppressed_stacks_sorted = true;
104
SortAndDedup(suppressed_stacks);
105
}
106
return suppressed_stacks;
107
}
108
void PrintMatchedSuppressions();
109
};
110
111
alignas(64) static char suppression_placeholder[sizeof(LeakSuppressionContext)];
112
static LeakSuppressionContext *suppression_ctx = nullptr;
113
static const char kSuppressionLeak[] = "leak";
114
static const char *kSuppressionTypes[] = {kSuppressionLeak};
115
static const char kStdSuppressions[] =
116
# if SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
117
// For more details refer to the SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
118
// definition.
119
"leak:*pthread_exit*\n"
120
# endif // SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
121
# if SANITIZER_APPLE
122
// For Darwin and os_log/os_trace: https://reviews.llvm.org/D35173
123
"leak:*_os_trace*\n"
124
# endif
125
// TLS leak in some glibc versions, described in
126
// https://sourceware.org/bugzilla/show_bug.cgi?id=12650.
127
"leak:*tls_get_addr*\n";
128
129
void InitializeSuppressions() {
130
CHECK_EQ(nullptr, suppression_ctx);
131
suppression_ctx = new (suppression_placeholder)
132
LeakSuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
133
}
134
135
void LeakSuppressionContext::LazyInit() {
136
if (!parsed) {
137
parsed = true;
138
context.ParseFromFile(flags()->suppressions);
139
if (&__lsan_default_suppressions)
140
context.Parse(__lsan_default_suppressions());
141
context.Parse(kStdSuppressions);
142
if (flags()->use_tls && flags()->use_ld_allocations)
143
suppress_module = GetLinker();
144
}
145
}
146
147
Suppression *LeakSuppressionContext::GetSuppressionForAddr(uptr addr) {
148
Suppression *s = nullptr;
149
150
// Suppress by module name.
151
const char *module_name = Symbolizer::GetOrInit()->GetModuleNameForPc(addr);
152
if (!module_name)
153
module_name = "<unknown module>";
154
if (context.Match(module_name, kSuppressionLeak, &s))
155
return s;
156
157
// Suppress by file or function name.
158
SymbolizedStackHolder symbolized_stack(
159
Symbolizer::GetOrInit()->SymbolizePC(addr));
160
const SymbolizedStack *frames = symbolized_stack.get();
161
for (const SymbolizedStack *cur = frames; cur; cur = cur->next) {
162
if (context.Match(cur->info.function, kSuppressionLeak, &s) ||
163
context.Match(cur->info.file, kSuppressionLeak, &s)) {
164
break;
165
}
166
}
167
return s;
168
}
169
170
static uptr GetCallerPC(const StackTrace &stack) {
171
// The top frame is our malloc/calloc/etc. The next frame is the caller.
172
if (stack.size >= 2)
173
return stack.trace[1];
174
return 0;
175
}
176
177
# if SANITIZER_APPLE
178
// Several pointers in the Objective-C runtime (method cache and class_rw_t,
179
// for example) are tagged with additional bits we need to strip.
180
static inline void *TransformPointer(void *p) {
181
uptr ptr = reinterpret_cast<uptr>(p);
182
return reinterpret_cast<void *>(ptr & OBJC_DATA_MASK);
183
}
184
# endif
185
186
// On Linux, treats all chunks allocated from ld-linux.so as reachable, which
187
// covers dynamically allocated TLS blocks, internal dynamic loader's loaded
188
// modules accounting etc.
189
// Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
190
// They are allocated with a __libc_memalign() call in allocate_and_init()
191
// (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
192
// blocks, but we can make sure they come from our own allocator by intercepting
193
// __libc_memalign(). On top of that, there is no easy way to reach them. Their
194
// addresses are stored in a dynamically allocated array (the DTV) which is
195
// referenced from the static TLS. Unfortunately, we can't just rely on the DTV
196
// being reachable from the static TLS, and the dynamic TLS being reachable from
197
// the DTV. This is because the initial DTV is allocated before our interception
198
// mechanism kicks in, and thus we don't recognize it as allocated memory. We
199
// can't special-case it either, since we don't know its size.
200
// Our solution is to include in the root set all allocations made from
201
// ld-linux.so (which is where allocate_and_init() is implemented). This is
202
// guaranteed to include all dynamic TLS blocks (and possibly other allocations
203
// which we don't care about).
204
// On all other platforms, this simply checks to ensure that the caller pc is
205
// valid before reporting chunks as leaked.
206
bool LeakSuppressionContext::SuppressInvalid(const StackTrace &stack) {
207
uptr caller_pc = GetCallerPC(stack);
208
// If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
209
// it as reachable, as we can't properly report its allocation stack anyway.
210
return !caller_pc ||
211
(suppress_module && suppress_module->containsAddress(caller_pc));
212
}
213
214
bool LeakSuppressionContext::SuppressByRule(const StackTrace &stack,
215
uptr hit_count, uptr total_size) {
216
for (uptr i = 0; i < stack.size; i++) {
217
Suppression *s = GetSuppressionForAddr(
218
StackTrace::GetPreviousInstructionPc(stack.trace[i]));
219
if (s) {
220
s->weight += total_size;
221
atomic_fetch_add(&s->hit_count, hit_count, memory_order_relaxed);
222
return true;
223
}
224
}
225
return false;
226
}
227
228
bool LeakSuppressionContext::Suppress(u32 stack_trace_id, uptr hit_count,
229
uptr total_size) {
230
LazyInit();
231
StackTrace stack = StackDepotGet(stack_trace_id);
232
if (!SuppressInvalid(stack) && !SuppressByRule(stack, hit_count, total_size))
233
return false;
234
suppressed_stacks_sorted = false;
235
suppressed_stacks.push_back(stack_trace_id);
236
return true;
237
}
238
239
static LeakSuppressionContext *GetSuppressionContext() {
240
CHECK(suppression_ctx);
241
return suppression_ctx;
242
}
243
244
void InitCommonLsan() {
245
if (common_flags()->detect_leaks) {
246
// Initialization which can fail or print warnings should only be done if
247
// LSan is actually enabled.
248
InitializeSuppressions();
249
InitializePlatformSpecificModules();
250
}
251
}
252
253
class Decorator : public __sanitizer::SanitizerCommonDecorator {
254
public:
255
Decorator() : SanitizerCommonDecorator() {}
256
const char *Error() { return Red(); }
257
const char *Leak() { return Blue(); }
258
};
259
260
static inline bool MaybeUserPointer(uptr p) {
261
// Since our heap is located in mmap-ed memory, we can assume a sensible lower
262
// bound on heap addresses.
263
const uptr kMinAddress = 4 * 4096;
264
if (p < kMinAddress)
265
return false;
266
# if defined(__x86_64__)
267
// TODO: support LAM48 and 5 level page tables.
268
// LAM_U57 mask format
269
// * top byte: 0x81 because the format is: [0] [6-bit tag] [0]
270
// * top-1 byte: 0xff because it should be 0
271
// * top-2 byte: 0x80 because Linux uses 128 TB VMA ending at 0x7fffffffffff
272
constexpr uptr kLAM_U57Mask = 0x81ff80;
273
constexpr uptr kPointerMask = kLAM_U57Mask << 40;
274
return ((p & kPointerMask) == 0);
275
# elif defined(__mips64)
276
return ((p >> 40) == 0);
277
# elif defined(__aarch64__)
278
// TBI (Top Byte Ignore) feature of AArch64: bits [63:56] are ignored in
279
// address translation and can be used to store a tag.
280
constexpr uptr kPointerMask = 255ULL << 48;
281
// Accept up to 48 bit VMA.
282
return ((p & kPointerMask) == 0);
283
# elif defined(__loongarch_lp64)
284
// Allow 47-bit user-space VMA at current.
285
return ((p >> 47) == 0);
286
# else
287
return true;
288
# endif
289
}
290
291
// Scans the memory range, looking for byte patterns that point into allocator
292
// chunks. Marks those chunks with |tag| and adds them to |frontier|.
293
// There are two usage modes for this function: finding reachable chunks
294
// (|tag| = kReachable) and finding indirectly leaked chunks
295
// (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
296
// so |frontier| = 0.
297
void ScanRangeForPointers(uptr begin, uptr end, Frontier *frontier,
298
const char *region_type, ChunkTag tag) {
299
CHECK(tag == kReachable || tag == kIndirectlyLeaked);
300
const uptr alignment = flags()->pointer_alignment();
301
LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, (void *)begin,
302
(void *)end);
303
uptr pp = begin;
304
if (pp % alignment)
305
pp = pp + alignment - pp % alignment;
306
for (; pp + sizeof(void *) <= end; pp += alignment) {
307
void *p = *reinterpret_cast<void **>(pp);
308
# if SANITIZER_APPLE
309
p = TransformPointer(p);
310
# endif
311
if (!MaybeUserPointer(reinterpret_cast<uptr>(p)))
312
continue;
313
uptr chunk = PointsIntoChunk(p);
314
if (!chunk)
315
continue;
316
// Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
317
if (chunk == begin)
318
continue;
319
LsanMetadata m(chunk);
320
if (m.tag() == kReachable || m.tag() == kIgnored)
321
continue;
322
323
// Do this check relatively late so we can log only the interesting cases.
324
if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
325
LOG_POINTERS(
326
"%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
327
"%zu.\n",
328
(void *)pp, p, (void *)chunk, (void *)(chunk + m.requested_size()),
329
m.requested_size());
330
continue;
331
}
332
333
m.set_tag(tag);
334
LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n",
335
(void *)pp, p, (void *)chunk,
336
(void *)(chunk + m.requested_size()), m.requested_size());
337
if (frontier)
338
frontier->push_back(chunk);
339
}
340
}
341
342
// Scans a global range for pointers
343
void ScanGlobalRange(uptr begin, uptr end, Frontier *frontier) {
344
uptr allocator_begin = 0, allocator_end = 0;
345
GetAllocatorGlobalRange(&allocator_begin, &allocator_end);
346
if (begin <= allocator_begin && allocator_begin < end) {
347
CHECK_LE(allocator_begin, allocator_end);
348
CHECK_LE(allocator_end, end);
349
if (begin < allocator_begin)
350
ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL",
351
kReachable);
352
if (allocator_end < end)
353
ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL", kReachable);
354
} else {
355
ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable);
356
}
357
}
358
359
void ScanExtraStackRanges(const InternalMmapVector<Range> &ranges,
360
Frontier *frontier) {
361
for (uptr i = 0; i < ranges.size(); i++) {
362
ScanRangeForPointers(ranges[i].begin, ranges[i].end, frontier, "FAKE STACK",
363
kReachable);
364
}
365
}
366
367
# if SANITIZER_FUCHSIA
368
369
// Fuchsia handles all threads together with its own callback.
370
static void ProcessThreads(SuspendedThreadsList const &, Frontier *, tid_t,
371
uptr) {}
372
373
# else
374
375
# if SANITIZER_ANDROID
376
// FIXME: Move this out into *libcdep.cpp
377
extern "C" SANITIZER_WEAK_ATTRIBUTE void __libc_iterate_dynamic_tls(
378
pid_t, void (*cb)(void *, void *, uptr, void *), void *);
379
# endif
380
381
static void ProcessThreadRegistry(Frontier *frontier) {
382
InternalMmapVector<uptr> ptrs;
383
GetAdditionalThreadContextPtrsLocked(&ptrs);
384
385
for (uptr i = 0; i < ptrs.size(); ++i) {
386
void *ptr = reinterpret_cast<void *>(ptrs[i]);
387
uptr chunk = PointsIntoChunk(ptr);
388
if (!chunk)
389
continue;
390
LsanMetadata m(chunk);
391
if (!m.allocated())
392
continue;
393
394
// Mark as reachable and add to frontier.
395
LOG_POINTERS("Treating pointer %p from ThreadContext as reachable\n", ptr);
396
m.set_tag(kReachable);
397
frontier->push_back(chunk);
398
}
399
}
400
401
// Scans thread data (stacks and TLS) for heap pointers.
402
static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
403
Frontier *frontier, tid_t caller_tid,
404
uptr caller_sp) {
405
InternalMmapVector<uptr> registers;
406
InternalMmapVector<Range> extra_ranges;
407
for (uptr i = 0; i < suspended_threads.ThreadCount(); i++) {
408
tid_t os_id = static_cast<tid_t>(suspended_threads.GetThreadID(i));
409
LOG_THREADS("Processing thread %llu.\n", os_id);
410
uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
411
DTLS *dtls;
412
bool thread_found =
413
GetThreadRangesLocked(os_id, &stack_begin, &stack_end, &tls_begin,
414
&tls_end, &cache_begin, &cache_end, &dtls);
415
if (!thread_found) {
416
// If a thread can't be found in the thread registry, it's probably in the
417
// process of destruction. Log this event and move on.
418
LOG_THREADS("Thread %llu not found in registry.\n", os_id);
419
continue;
420
}
421
uptr sp;
422
PtraceRegistersStatus have_registers =
423
suspended_threads.GetRegistersAndSP(i, &registers, &sp);
424
if (have_registers != REGISTERS_AVAILABLE) {
425
Report("Unable to get registers from thread %llu.\n", os_id);
426
// If unable to get SP, consider the entire stack to be reachable unless
427
// GetRegistersAndSP failed with ESRCH.
428
if (have_registers == REGISTERS_UNAVAILABLE_FATAL)
429
continue;
430
sp = stack_begin;
431
}
432
if (suspended_threads.GetThreadID(i) == caller_tid) {
433
sp = caller_sp;
434
}
435
436
if (flags()->use_registers && have_registers) {
437
uptr registers_begin = reinterpret_cast<uptr>(registers.data());
438
uptr registers_end =
439
reinterpret_cast<uptr>(registers.data() + registers.size());
440
ScanRangeForPointers(registers_begin, registers_end, frontier,
441
"REGISTERS", kReachable);
442
}
443
444
if (flags()->use_stacks) {
445
LOG_THREADS("Stack at %p-%p (SP = %p).\n", (void *)stack_begin,
446
(void *)stack_end, (void *)sp);
447
if (sp < stack_begin || sp >= stack_end) {
448
// SP is outside the recorded stack range (e.g. the thread is running a
449
// signal handler on alternate stack, or swapcontext was used).
450
// Again, consider the entire stack range to be reachable.
451
LOG_THREADS("WARNING: stack pointer not in stack range.\n");
452
uptr page_size = GetPageSizeCached();
453
int skipped = 0;
454
while (stack_begin < stack_end &&
455
!IsAccessibleMemoryRange(stack_begin, 1)) {
456
skipped++;
457
stack_begin += page_size;
458
}
459
LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n",
460
skipped, (void *)stack_begin, (void *)stack_end);
461
} else {
462
// Shrink the stack range to ignore out-of-scope values.
463
stack_begin = sp;
464
}
465
ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
466
kReachable);
467
extra_ranges.clear();
468
GetThreadExtraStackRangesLocked(os_id, &extra_ranges);
469
ScanExtraStackRanges(extra_ranges, frontier);
470
}
471
472
if (flags()->use_tls) {
473
if (tls_begin) {
474
LOG_THREADS("TLS at %p-%p.\n", (void *)tls_begin, (void *)tls_end);
475
// If the tls and cache ranges don't overlap, scan full tls range,
476
// otherwise, only scan the non-overlapping portions
477
if (cache_begin == cache_end || tls_end < cache_begin ||
478
tls_begin > cache_end) {
479
ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
480
} else {
481
if (tls_begin < cache_begin)
482
ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
483
kReachable);
484
if (tls_end > cache_end)
485
ScanRangeForPointers(cache_end, tls_end, frontier, "TLS",
486
kReachable);
487
}
488
}
489
# if SANITIZER_ANDROID
490
auto *cb = +[](void *dtls_begin, void *dtls_end, uptr /*dso_idd*/,
491
void *arg) -> void {
492
ScanRangeForPointers(reinterpret_cast<uptr>(dtls_begin),
493
reinterpret_cast<uptr>(dtls_end),
494
reinterpret_cast<Frontier *>(arg), "DTLS",
495
kReachable);
496
};
497
498
// FIXME: There might be a race-condition here (and in Bionic) if the
499
// thread is suspended in the middle of updating its DTLS. IOWs, we
500
// could scan already freed memory. (probably fine for now)
501
__libc_iterate_dynamic_tls(os_id, cb, frontier);
502
# else
503
if (dtls && !DTLSInDestruction(dtls)) {
504
ForEachDVT(dtls, [&](const DTLS::DTV &dtv, int id) {
505
uptr dtls_beg = dtv.beg;
506
uptr dtls_end = dtls_beg + dtv.size;
507
if (dtls_beg < dtls_end) {
508
LOG_THREADS("DTLS %d at %p-%p.\n", id, (void *)dtls_beg,
509
(void *)dtls_end);
510
ScanRangeForPointers(dtls_beg, dtls_end, frontier, "DTLS",
511
kReachable);
512
}
513
});
514
} else {
515
// We are handling a thread with DTLS under destruction. Log about
516
// this and continue.
517
LOG_THREADS("Thread %llu has DTLS under destruction.\n", os_id);
518
}
519
# endif
520
}
521
}
522
523
// Add pointers reachable from ThreadContexts
524
ProcessThreadRegistry(frontier);
525
}
526
527
# endif // SANITIZER_FUCHSIA
528
529
// A map that contains [region_begin, region_end) pairs.
530
using RootRegions = DenseMap<detail::DenseMapPair<uptr, uptr>, uptr>;
531
532
static RootRegions &GetRootRegionsLocked() {
533
global_mutex.CheckLocked();
534
static RootRegions *regions = nullptr;
535
alignas(RootRegions) static char placeholder[sizeof(RootRegions)];
536
if (!regions)
537
regions = new (placeholder) RootRegions();
538
return *regions;
539
}
540
541
bool HasRootRegions() { return !GetRootRegionsLocked().empty(); }
542
543
void ScanRootRegions(Frontier *frontier,
544
const InternalMmapVectorNoCtor<Region> &mapped_regions) {
545
if (!flags()->use_root_regions)
546
return;
547
548
InternalMmapVector<Region> regions;
549
GetRootRegionsLocked().forEach([&](const auto &kv) {
550
regions.push_back({kv.first.first, kv.first.second});
551
return true;
552
});
553
554
InternalMmapVector<Region> intersection;
555
Intersect(mapped_regions, regions, intersection);
556
557
for (const Region &r : intersection) {
558
LOG_POINTERS("Root region intersects with mapped region at %p-%p\n",
559
(void *)r.begin, (void *)r.end);
560
ScanRangeForPointers(r.begin, r.end, frontier, "ROOT", kReachable);
561
}
562
}
563
564
// Scans root regions for heap pointers.
565
static void ProcessRootRegions(Frontier *frontier) {
566
if (!flags()->use_root_regions || !HasRootRegions())
567
return;
568
MemoryMappingLayout proc_maps(/*cache_enabled*/ true);
569
MemoryMappedSegment segment;
570
InternalMmapVector<Region> mapped_regions;
571
while (proc_maps.Next(&segment))
572
if (segment.IsReadable())
573
mapped_regions.push_back({segment.start, segment.end});
574
ScanRootRegions(frontier, mapped_regions);
575
}
576
577
static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
578
while (frontier->size()) {
579
uptr next_chunk = frontier->back();
580
frontier->pop_back();
581
LsanMetadata m(next_chunk);
582
ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
583
"HEAP", tag);
584
}
585
}
586
587
// ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
588
// which are reachable from it as indirectly leaked.
589
static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
590
chunk = GetUserBegin(chunk);
591
LsanMetadata m(chunk);
592
if (m.allocated() && m.tag() != kReachable) {
593
ScanRangeForPointers(chunk, chunk + m.requested_size(),
594
/* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
595
}
596
}
597
598
static void IgnoredSuppressedCb(uptr chunk, void *arg) {
599
CHECK(arg);
600
chunk = GetUserBegin(chunk);
601
LsanMetadata m(chunk);
602
if (!m.allocated() || m.tag() == kIgnored)
603
return;
604
605
const InternalMmapVector<u32> &suppressed =
606
*static_cast<const InternalMmapVector<u32> *>(arg);
607
uptr idx = InternalLowerBound(suppressed, m.stack_trace_id());
608
if (idx >= suppressed.size() || m.stack_trace_id() != suppressed[idx])
609
return;
610
611
LOG_POINTERS("Suppressed: chunk %p-%p of size %zu.\n", (void *)chunk,
612
(void *)(chunk + m.requested_size()), m.requested_size());
613
m.set_tag(kIgnored);
614
}
615
616
// ForEachChunk callback. If chunk is marked as ignored, adds its address to
617
// frontier.
618
static void CollectIgnoredCb(uptr chunk, void *arg) {
619
CHECK(arg);
620
chunk = GetUserBegin(chunk);
621
LsanMetadata m(chunk);
622
if (m.allocated() && m.tag() == kIgnored) {
623
LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n", (void *)chunk,
624
(void *)(chunk + m.requested_size()), m.requested_size());
625
reinterpret_cast<Frontier *>(arg)->push_back(chunk);
626
}
627
}
628
629
// Sets the appropriate tag on each chunk.
630
static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads,
631
Frontier *frontier, tid_t caller_tid,
632
uptr caller_sp) {
633
const InternalMmapVector<u32> &suppressed_stacks =
634
GetSuppressionContext()->GetSortedSuppressedStacks();
635
if (!suppressed_stacks.empty()) {
636
ForEachChunk(IgnoredSuppressedCb,
637
const_cast<InternalMmapVector<u32> *>(&suppressed_stacks));
638
}
639
ForEachChunk(CollectIgnoredCb, frontier);
640
ProcessGlobalRegions(frontier);
641
ProcessThreads(suspended_threads, frontier, caller_tid, caller_sp);
642
ProcessRootRegions(frontier);
643
FloodFillTag(frontier, kReachable);
644
645
// The check here is relatively expensive, so we do this in a separate flood
646
// fill. That way we can skip the check for chunks that are reachable
647
// otherwise.
648
LOG_POINTERS("Processing platform-specific allocations.\n");
649
ProcessPlatformSpecificAllocations(frontier);
650
FloodFillTag(frontier, kReachable);
651
652
// Iterate over leaked chunks and mark those that are reachable from other
653
// leaked chunks.
654
LOG_POINTERS("Scanning leaked chunks.\n");
655
ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
656
}
657
658
// ForEachChunk callback. Resets the tags to pre-leak-check state.
659
static void ResetTagsCb(uptr chunk, void *arg) {
660
(void)arg;
661
chunk = GetUserBegin(chunk);
662
LsanMetadata m(chunk);
663
if (m.allocated() && m.tag() != kIgnored)
664
m.set_tag(kDirectlyLeaked);
665
}
666
667
// ForEachChunk callback. Aggregates information about unreachable chunks into
668
// a LeakReport.
669
static void CollectLeaksCb(uptr chunk, void *arg) {
670
CHECK(arg);
671
LeakedChunks *leaks = reinterpret_cast<LeakedChunks *>(arg);
672
chunk = GetUserBegin(chunk);
673
LsanMetadata m(chunk);
674
if (!m.allocated())
675
return;
676
if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked)
677
leaks->push_back({chunk, m.stack_trace_id(), m.requested_size(), m.tag()});
678
}
679
680
void LeakSuppressionContext::PrintMatchedSuppressions() {
681
InternalMmapVector<Suppression *> matched;
682
context.GetMatched(&matched);
683
if (!matched.size())
684
return;
685
const char *line = "-----------------------------------------------------";
686
Printf("%s\n", line);
687
Printf("Suppressions used:\n");
688
Printf(" count bytes template\n");
689
for (uptr i = 0; i < matched.size(); i++) {
690
Printf("%7zu %10zu %s\n",
691
static_cast<uptr>(atomic_load_relaxed(&matched[i]->hit_count)),
692
matched[i]->weight, matched[i]->templ);
693
}
694
Printf("%s\n\n", line);
695
}
696
697
# if SANITIZER_FUCHSIA
698
699
// Fuchsia provides a libc interface that guarantees all threads are
700
// covered, and SuspendedThreadList is never really used.
701
static void ReportUnsuspendedThreads(const SuspendedThreadsList &) {}
702
703
# else // !SANITIZER_FUCHSIA
704
705
static void ReportUnsuspendedThreads(
706
const SuspendedThreadsList &suspended_threads) {
707
InternalMmapVector<tid_t> threads(suspended_threads.ThreadCount());
708
for (uptr i = 0; i < suspended_threads.ThreadCount(); ++i)
709
threads[i] = suspended_threads.GetThreadID(i);
710
711
Sort(threads.data(), threads.size());
712
713
InternalMmapVector<tid_t> unsuspended;
714
GetRunningThreadsLocked(&unsuspended);
715
716
for (auto os_id : unsuspended) {
717
uptr i = InternalLowerBound(threads, os_id);
718
if (i >= threads.size() || threads[i] != os_id)
719
Report(
720
"Running thread %zu was not suspended. False leaks are possible.\n",
721
os_id);
722
}
723
}
724
725
# endif // !SANITIZER_FUCHSIA
726
727
static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
728
void *arg) {
729
CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
730
CHECK(param);
731
CHECK(!param->success);
732
ReportUnsuspendedThreads(suspended_threads);
733
ClassifyAllChunks(suspended_threads, &param->frontier, param->caller_tid,
734
param->caller_sp);
735
ForEachChunk(CollectLeaksCb, &param->leaks);
736
// Clean up for subsequent leak checks. This assumes we did not overwrite any
737
// kIgnored tags.
738
ForEachChunk(ResetTagsCb, nullptr);
739
param->success = true;
740
}
741
742
static bool PrintResults(LeakReport &report) {
743
uptr unsuppressed_count = report.UnsuppressedLeakCount();
744
if (unsuppressed_count) {
745
Decorator d;
746
Printf(
747
"\n"
748
"================================================================="
749
"\n");
750
Printf("%s", d.Error());
751
Report("ERROR: LeakSanitizer: detected memory leaks\n");
752
Printf("%s", d.Default());
753
report.ReportTopLeaks(flags()->max_leaks);
754
}
755
if (common_flags()->print_suppressions)
756
GetSuppressionContext()->PrintMatchedSuppressions();
757
if (unsuppressed_count > 0) {
758
report.PrintSummary();
759
return true;
760
}
761
return false;
762
}
763
764
static bool CheckForLeaks() {
765
if (&__lsan_is_turned_off && __lsan_is_turned_off()) {
766
VReport(1, "LeakSanitizer is disabled");
767
return false;
768
}
769
VReport(1, "LeakSanitizer: checking for leaks");
770
// Inside LockStuffAndStopTheWorld we can't run symbolizer, so we can't match
771
// suppressions. However if a stack id was previously suppressed, it should be
772
// suppressed in future checks as well.
773
for (int i = 0;; ++i) {
774
EnsureMainThreadIDIsCorrect();
775
CheckForLeaksParam param;
776
// Capture calling thread's stack pointer early, to avoid false negatives.
777
// Old frame with dead pointers might be overlapped by new frame inside
778
// CheckForLeaks which does not use bytes with pointers before the
779
// threads are suspended and stack pointers captured.
780
param.caller_tid = GetTid();
781
param.caller_sp = reinterpret_cast<uptr>(__builtin_frame_address(0));
782
LockStuffAndStopTheWorld(CheckForLeaksCallback, &param);
783
if (!param.success) {
784
Report("LeakSanitizer has encountered a fatal error.\n");
785
Report(
786
"HINT: For debugging, try setting environment variable "
787
"LSAN_OPTIONS=verbosity=1:log_threads=1\n");
788
Report(
789
"HINT: LeakSanitizer does not work under ptrace (strace, gdb, "
790
"etc)\n");
791
Die();
792
}
793
LeakReport leak_report;
794
leak_report.AddLeakedChunks(param.leaks);
795
796
// No new suppressions stacks, so rerun will not help and we can report.
797
if (!leak_report.ApplySuppressions())
798
return PrintResults(leak_report);
799
800
// No indirect leaks to report, so we are done here.
801
if (!leak_report.IndirectUnsuppressedLeakCount())
802
return PrintResults(leak_report);
803
804
if (i >= 8) {
805
Report("WARNING: LeakSanitizer gave up on indirect leaks suppression.\n");
806
return PrintResults(leak_report);
807
}
808
809
// We found a new previously unseen suppressed call stack. Rerun to make
810
// sure it does not hold indirect leaks.
811
VReport(1, "Rerun with %zu suppressed stacks.",
812
GetSuppressionContext()->GetSortedSuppressedStacks().size());
813
}
814
}
815
816
static bool has_reported_leaks = false;
817
bool HasReportedLeaks() { return has_reported_leaks; }
818
819
void DoLeakCheck() {
820
Lock l(&global_mutex);
821
static bool already_done;
822
if (already_done)
823
return;
824
already_done = true;
825
has_reported_leaks = CheckForLeaks();
826
if (has_reported_leaks)
827
HandleLeaks();
828
}
829
830
static int DoRecoverableLeakCheck() {
831
Lock l(&global_mutex);
832
bool have_leaks = CheckForLeaks();
833
return have_leaks ? 1 : 0;
834
}
835
836
void DoRecoverableLeakCheckVoid() { DoRecoverableLeakCheck(); }
837
838
///// LeakReport implementation. /////
839
840
// A hard limit on the number of distinct leaks, to avoid quadratic complexity
841
// in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
842
// in real-world applications.
843
// FIXME: Get rid of this limit by moving logic into DedupLeaks.
844
const uptr kMaxLeaksConsidered = 5000;
845
846
void LeakReport::AddLeakedChunks(const LeakedChunks &chunks) {
847
for (const LeakedChunk &leak : chunks) {
848
uptr chunk = leak.chunk;
849
u32 stack_trace_id = leak.stack_trace_id;
850
uptr leaked_size = leak.leaked_size;
851
ChunkTag tag = leak.tag;
852
CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
853
854
if (u32 resolution = flags()->resolution) {
855
StackTrace stack = StackDepotGet(stack_trace_id);
856
stack.size = Min(stack.size, resolution);
857
stack_trace_id = StackDepotPut(stack);
858
}
859
860
bool is_directly_leaked = (tag == kDirectlyLeaked);
861
uptr i;
862
for (i = 0; i < leaks_.size(); i++) {
863
if (leaks_[i].stack_trace_id == stack_trace_id &&
864
leaks_[i].is_directly_leaked == is_directly_leaked) {
865
leaks_[i].hit_count++;
866
leaks_[i].total_size += leaked_size;
867
break;
868
}
869
}
870
if (i == leaks_.size()) {
871
if (leaks_.size() == kMaxLeaksConsidered)
872
return;
873
Leak leak = {next_id_++, /* hit_count */ 1,
874
leaked_size, stack_trace_id,
875
is_directly_leaked, /* is_suppressed */ false};
876
leaks_.push_back(leak);
877
}
878
if (flags()->report_objects) {
879
LeakedObject obj = {leaks_[i].id, GetUserAddr(chunk), leaked_size};
880
leaked_objects_.push_back(obj);
881
}
882
}
883
}
884
885
static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
886
if (leak1.is_directly_leaked == leak2.is_directly_leaked)
887
return leak1.total_size > leak2.total_size;
888
else
889
return leak1.is_directly_leaked;
890
}
891
892
void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
893
CHECK(leaks_.size() <= kMaxLeaksConsidered);
894
Printf("\n");
895
if (leaks_.size() == kMaxLeaksConsidered)
896
Printf(
897
"Too many leaks! Only the first %zu leaks encountered will be "
898
"reported.\n",
899
kMaxLeaksConsidered);
900
901
uptr unsuppressed_count = UnsuppressedLeakCount();
902
if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
903
Printf("The %zu top leak(s):\n", num_leaks_to_report);
904
Sort(leaks_.data(), leaks_.size(), &LeakComparator);
905
uptr leaks_reported = 0;
906
for (uptr i = 0; i < leaks_.size(); i++) {
907
if (leaks_[i].is_suppressed)
908
continue;
909
PrintReportForLeak(i);
910
leaks_reported++;
911
if (leaks_reported == num_leaks_to_report)
912
break;
913
}
914
if (leaks_reported < unsuppressed_count) {
915
uptr remaining = unsuppressed_count - leaks_reported;
916
Printf("Omitting %zu more leak(s).\n", remaining);
917
}
918
}
919
920
void LeakReport::PrintReportForLeak(uptr index) {
921
Decorator d;
922
Printf("%s", d.Leak());
923
Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
924
leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
925
leaks_[index].total_size, leaks_[index].hit_count);
926
Printf("%s", d.Default());
927
928
CHECK(leaks_[index].stack_trace_id);
929
StackDepotGet(leaks_[index].stack_trace_id).Print();
930
931
if (flags()->report_objects) {
932
Printf("Objects leaked above:\n");
933
PrintLeakedObjectsForLeak(index);
934
Printf("\n");
935
}
936
}
937
938
void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
939
u32 leak_id = leaks_[index].id;
940
for (uptr j = 0; j < leaked_objects_.size(); j++) {
941
if (leaked_objects_[j].leak_id == leak_id)
942
Printf("%p (%zu bytes)\n", (void *)leaked_objects_[j].addr,
943
leaked_objects_[j].size);
944
}
945
}
946
947
void LeakReport::PrintSummary() {
948
CHECK(leaks_.size() <= kMaxLeaksConsidered);
949
uptr bytes = 0, allocations = 0;
950
for (uptr i = 0; i < leaks_.size(); i++) {
951
if (leaks_[i].is_suppressed)
952
continue;
953
bytes += leaks_[i].total_size;
954
allocations += leaks_[i].hit_count;
955
}
956
InternalScopedString summary;
957
summary.AppendF("%zu byte(s) leaked in %zu allocation(s).", bytes,
958
allocations);
959
ReportErrorSummary(summary.data());
960
}
961
962
uptr LeakReport::ApplySuppressions() {
963
LeakSuppressionContext *suppressions = GetSuppressionContext();
964
uptr new_suppressions = 0;
965
for (uptr i = 0; i < leaks_.size(); i++) {
966
if (suppressions->Suppress(leaks_[i].stack_trace_id, leaks_[i].hit_count,
967
leaks_[i].total_size)) {
968
leaks_[i].is_suppressed = true;
969
++new_suppressions;
970
}
971
}
972
return new_suppressions;
973
}
974
975
uptr LeakReport::UnsuppressedLeakCount() {
976
uptr result = 0;
977
for (uptr i = 0; i < leaks_.size(); i++)
978
if (!leaks_[i].is_suppressed)
979
result++;
980
return result;
981
}
982
983
uptr LeakReport::IndirectUnsuppressedLeakCount() {
984
uptr result = 0;
985
for (uptr i = 0; i < leaks_.size(); i++)
986
if (!leaks_[i].is_suppressed && !leaks_[i].is_directly_leaked)
987
result++;
988
return result;
989
}
990
991
} // namespace __lsan
992
#else // CAN_SANITIZE_LEAKS
993
namespace __lsan {
994
void InitCommonLsan() {}
995
void DoLeakCheck() {}
996
void DoRecoverableLeakCheckVoid() {}
997
void DisableInThisThread() {}
998
void EnableInThisThread() {}
999
} // namespace __lsan
1000
#endif // CAN_SANITIZE_LEAKS
1001
1002
using namespace __lsan;
1003
1004
extern "C" {
1005
SANITIZER_INTERFACE_ATTRIBUTE
1006
void __lsan_ignore_object(const void *p) {
1007
#if CAN_SANITIZE_LEAKS
1008
if (!common_flags()->detect_leaks)
1009
return;
1010
// Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
1011
// locked.
1012
Lock l(&global_mutex);
1013
IgnoreObjectResult res = IgnoreObject(p);
1014
if (res == kIgnoreObjectInvalid)
1015
VReport(1, "__lsan_ignore_object(): no heap object found at %p\n", p);
1016
if (res == kIgnoreObjectAlreadyIgnored)
1017
VReport(1,
1018
"__lsan_ignore_object(): "
1019
"heap object at %p is already being ignored\n",
1020
p);
1021
if (res == kIgnoreObjectSuccess)
1022
VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
1023
#endif // CAN_SANITIZE_LEAKS
1024
}
1025
1026
SANITIZER_INTERFACE_ATTRIBUTE
1027
void __lsan_register_root_region(const void *begin, uptr size) {
1028
#if CAN_SANITIZE_LEAKS
1029
VReport(1, "Registered root region at %p of size %zu\n", begin, size);
1030
uptr b = reinterpret_cast<uptr>(begin);
1031
uptr e = b + size;
1032
CHECK_LT(b, e);
1033
1034
Lock l(&global_mutex);
1035
++GetRootRegionsLocked()[{b, e}];
1036
#endif // CAN_SANITIZE_LEAKS
1037
}
1038
1039
SANITIZER_INTERFACE_ATTRIBUTE
1040
void __lsan_unregister_root_region(const void *begin, uptr size) {
1041
#if CAN_SANITIZE_LEAKS
1042
uptr b = reinterpret_cast<uptr>(begin);
1043
uptr e = b + size;
1044
CHECK_LT(b, e);
1045
VReport(1, "Unregistered root region at %p of size %zu\n", begin, size);
1046
1047
{
1048
Lock l(&global_mutex);
1049
if (auto *f = GetRootRegionsLocked().find({b, e})) {
1050
if (--(f->second) == 0)
1051
GetRootRegionsLocked().erase(f);
1052
return;
1053
}
1054
}
1055
Report(
1056
"__lsan_unregister_root_region(): region at %p of size %zu has not "
1057
"been registered.\n",
1058
begin, size);
1059
Die();
1060
#endif // CAN_SANITIZE_LEAKS
1061
}
1062
1063
SANITIZER_INTERFACE_ATTRIBUTE
1064
void __lsan_disable() {
1065
#if CAN_SANITIZE_LEAKS
1066
__lsan::DisableInThisThread();
1067
#endif
1068
}
1069
1070
SANITIZER_INTERFACE_ATTRIBUTE
1071
void __lsan_enable() {
1072
#if CAN_SANITIZE_LEAKS
1073
__lsan::EnableInThisThread();
1074
#endif
1075
}
1076
1077
SANITIZER_INTERFACE_ATTRIBUTE
1078
void __lsan_do_leak_check() {
1079
#if CAN_SANITIZE_LEAKS
1080
if (common_flags()->detect_leaks)
1081
__lsan::DoLeakCheck();
1082
#endif // CAN_SANITIZE_LEAKS
1083
}
1084
1085
SANITIZER_INTERFACE_ATTRIBUTE
1086
int __lsan_do_recoverable_leak_check() {
1087
#if CAN_SANITIZE_LEAKS
1088
if (common_flags()->detect_leaks)
1089
return __lsan::DoRecoverableLeakCheck();
1090
#endif // CAN_SANITIZE_LEAKS
1091
return 0;
1092
}
1093
1094
SANITIZER_INTERFACE_WEAK_DEF(const char *, __lsan_default_options, void) {
1095
return "";
1096
}
1097
1098
#if !SANITIZER_SUPPORTS_WEAK_HOOKS
1099
SANITIZER_INTERFACE_WEAK_DEF(int, __lsan_is_turned_off, void) {
1100
return 0;
1101
}
1102
1103
SANITIZER_INTERFACE_WEAK_DEF(const char *, __lsan_default_suppressions, void) {
1104
return "";
1105
}
1106
#endif
1107
} // extern "C"
1108
1109