Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/compiler-rt/lib/scudo/standalone/combined.h
35291 views
1
//===-- combined.h ----------------------------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#ifndef SCUDO_COMBINED_H_
10
#define SCUDO_COMBINED_H_
11
12
#include "allocator_config_wrapper.h"
13
#include "atomic_helpers.h"
14
#include "chunk.h"
15
#include "common.h"
16
#include "flags.h"
17
#include "flags_parser.h"
18
#include "local_cache.h"
19
#include "mem_map.h"
20
#include "memtag.h"
21
#include "mutex.h"
22
#include "options.h"
23
#include "quarantine.h"
24
#include "report.h"
25
#include "secondary.h"
26
#include "stack_depot.h"
27
#include "string_utils.h"
28
#include "tsd.h"
29
30
#include "scudo/interface.h"
31
32
#ifdef GWP_ASAN_HOOKS
33
#include "gwp_asan/guarded_pool_allocator.h"
34
#include "gwp_asan/optional/backtrace.h"
35
#include "gwp_asan/optional/segv_handler.h"
36
#endif // GWP_ASAN_HOOKS
37
38
extern "C" inline void EmptyCallback() {}
39
40
#ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
41
// This function is not part of the NDK so it does not appear in any public
42
// header files. We only declare/use it when targeting the platform.
43
extern "C" size_t android_unsafe_frame_pointer_chase(scudo::uptr *buf,
44
size_t num_entries);
45
#endif
46
47
namespace scudo {
48
49
template <class Config, void (*PostInitCallback)(void) = EmptyCallback>
50
class Allocator {
51
public:
52
using AllocatorConfig = BaseConfig<Config>;
53
using PrimaryT =
54
typename AllocatorConfig::template PrimaryT<PrimaryConfig<Config>>;
55
using SecondaryT =
56
typename AllocatorConfig::template SecondaryT<SecondaryConfig<Config>>;
57
using CacheT = typename PrimaryT::CacheT;
58
typedef Allocator<Config, PostInitCallback> ThisT;
59
typedef typename AllocatorConfig::template TSDRegistryT<ThisT> TSDRegistryT;
60
61
void callPostInitCallback() {
62
pthread_once(&PostInitNonce, PostInitCallback);
63
}
64
65
struct QuarantineCallback {
66
explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache)
67
: Allocator(Instance), Cache(LocalCache) {}
68
69
// Chunk recycling function, returns a quarantined chunk to the backend,
70
// first making sure it hasn't been tampered with.
71
void recycle(void *Ptr) {
72
Chunk::UnpackedHeader Header;
73
Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
74
if (UNLIKELY(Header.State != Chunk::State::Quarantined))
75
reportInvalidChunkState(AllocatorAction::Recycling, Ptr);
76
77
Header.State = Chunk::State::Available;
78
Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
79
80
if (allocatorSupportsMemoryTagging<AllocatorConfig>())
81
Ptr = untagPointer(Ptr);
82
void *BlockBegin = Allocator::getBlockBegin(Ptr, &Header);
83
Cache.deallocate(Header.ClassId, BlockBegin);
84
}
85
86
// We take a shortcut when allocating a quarantine batch by working with the
87
// appropriate class ID instead of using Size. The compiler should optimize
88
// the class ID computation and work with the associated cache directly.
89
void *allocate(UNUSED uptr Size) {
90
const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
91
sizeof(QuarantineBatch) + Chunk::getHeaderSize());
92
void *Ptr = Cache.allocate(QuarantineClassId);
93
// Quarantine batch allocation failure is fatal.
94
if (UNLIKELY(!Ptr))
95
reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId));
96
97
Ptr = reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) +
98
Chunk::getHeaderSize());
99
Chunk::UnpackedHeader Header = {};
100
Header.ClassId = QuarantineClassId & Chunk::ClassIdMask;
101
Header.SizeOrUnusedBytes = sizeof(QuarantineBatch);
102
Header.State = Chunk::State::Allocated;
103
Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
104
105
// Reset tag to 0 as this chunk may have been previously used for a tagged
106
// user allocation.
107
if (UNLIKELY(useMemoryTagging<AllocatorConfig>(
108
Allocator.Primary.Options.load())))
109
storeTags(reinterpret_cast<uptr>(Ptr),
110
reinterpret_cast<uptr>(Ptr) + sizeof(QuarantineBatch));
111
112
return Ptr;
113
}
114
115
void deallocate(void *Ptr) {
116
const uptr QuarantineClassId = SizeClassMap::getClassIdBySize(
117
sizeof(QuarantineBatch) + Chunk::getHeaderSize());
118
Chunk::UnpackedHeader Header;
119
Chunk::loadHeader(Allocator.Cookie, Ptr, &Header);
120
121
if (UNLIKELY(Header.State != Chunk::State::Allocated))
122
reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
123
DCHECK_EQ(Header.ClassId, QuarantineClassId);
124
DCHECK_EQ(Header.Offset, 0);
125
DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch));
126
127
Header.State = Chunk::State::Available;
128
Chunk::storeHeader(Allocator.Cookie, Ptr, &Header);
129
Cache.deallocate(QuarantineClassId,
130
reinterpret_cast<void *>(reinterpret_cast<uptr>(Ptr) -
131
Chunk::getHeaderSize()));
132
}
133
134
private:
135
ThisT &Allocator;
136
CacheT &Cache;
137
};
138
139
typedef GlobalQuarantine<QuarantineCallback, void> QuarantineT;
140
typedef typename QuarantineT::CacheT QuarantineCacheT;
141
142
void init() {
143
performSanityChecks();
144
145
// Check if hardware CRC32 is supported in the binary and by the platform,
146
// if so, opt for the CRC32 hardware version of the checksum.
147
if (&computeHardwareCRC32 && hasHardwareCRC32())
148
HashAlgorithm = Checksum::HardwareCRC32;
149
150
if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie))))
151
Cookie = static_cast<u32>(getMonotonicTime() ^
152
(reinterpret_cast<uptr>(this) >> 4));
153
154
initFlags();
155
reportUnrecognizedFlags();
156
157
// Store some flags locally.
158
if (getFlags()->may_return_null)
159
Primary.Options.set(OptionBit::MayReturnNull);
160
if (getFlags()->zero_contents)
161
Primary.Options.setFillContentsMode(ZeroFill);
162
else if (getFlags()->pattern_fill_contents)
163
Primary.Options.setFillContentsMode(PatternOrZeroFill);
164
if (getFlags()->dealloc_type_mismatch)
165
Primary.Options.set(OptionBit::DeallocTypeMismatch);
166
if (getFlags()->delete_size_mismatch)
167
Primary.Options.set(OptionBit::DeleteSizeMismatch);
168
if (allocatorSupportsMemoryTagging<AllocatorConfig>() &&
169
systemSupportsMemoryTagging())
170
Primary.Options.set(OptionBit::UseMemoryTagging);
171
172
QuarantineMaxChunkSize =
173
static_cast<u32>(getFlags()->quarantine_max_chunk_size);
174
175
Stats.init();
176
// TODO(chiahungduan): Given that we support setting the default value in
177
// the PrimaryConfig and CacheConfig, consider to deprecate the use of
178
// `release_to_os_interval_ms` flag.
179
const s32 ReleaseToOsIntervalMs = getFlags()->release_to_os_interval_ms;
180
Primary.init(ReleaseToOsIntervalMs);
181
Secondary.init(&Stats, ReleaseToOsIntervalMs);
182
Quarantine.init(
183
static_cast<uptr>(getFlags()->quarantine_size_kb << 10),
184
static_cast<uptr>(getFlags()->thread_local_quarantine_size_kb << 10));
185
}
186
187
void enableRingBuffer() NO_THREAD_SAFETY_ANALYSIS {
188
AllocationRingBuffer *RB = getRingBuffer();
189
if (RB)
190
RB->Depot->enable();
191
RingBufferInitLock.unlock();
192
}
193
194
void disableRingBuffer() NO_THREAD_SAFETY_ANALYSIS {
195
RingBufferInitLock.lock();
196
AllocationRingBuffer *RB = getRingBuffer();
197
if (RB)
198
RB->Depot->disable();
199
}
200
201
// Initialize the embedded GWP-ASan instance. Requires the main allocator to
202
// be functional, best called from PostInitCallback.
203
void initGwpAsan() {
204
#ifdef GWP_ASAN_HOOKS
205
gwp_asan::options::Options Opt;
206
Opt.Enabled = getFlags()->GWP_ASAN_Enabled;
207
Opt.MaxSimultaneousAllocations =
208
getFlags()->GWP_ASAN_MaxSimultaneousAllocations;
209
Opt.SampleRate = getFlags()->GWP_ASAN_SampleRate;
210
Opt.InstallSignalHandlers = getFlags()->GWP_ASAN_InstallSignalHandlers;
211
Opt.Recoverable = getFlags()->GWP_ASAN_Recoverable;
212
// Embedded GWP-ASan is locked through the Scudo atfork handler (via
213
// Allocator::disable calling GWPASan.disable). Disable GWP-ASan's atfork
214
// handler.
215
Opt.InstallForkHandlers = false;
216
Opt.Backtrace = gwp_asan::backtrace::getBacktraceFunction();
217
GuardedAlloc.init(Opt);
218
219
if (Opt.InstallSignalHandlers)
220
gwp_asan::segv_handler::installSignalHandlers(
221
&GuardedAlloc, Printf,
222
gwp_asan::backtrace::getPrintBacktraceFunction(),
223
gwp_asan::backtrace::getSegvBacktraceFunction(),
224
Opt.Recoverable);
225
226
GuardedAllocSlotSize =
227
GuardedAlloc.getAllocatorState()->maximumAllocationSize();
228
Stats.add(StatFree, static_cast<uptr>(Opt.MaxSimultaneousAllocations) *
229
GuardedAllocSlotSize);
230
#endif // GWP_ASAN_HOOKS
231
}
232
233
#ifdef GWP_ASAN_HOOKS
234
const gwp_asan::AllocationMetadata *getGwpAsanAllocationMetadata() {
235
return GuardedAlloc.getMetadataRegion();
236
}
237
238
const gwp_asan::AllocatorState *getGwpAsanAllocatorState() {
239
return GuardedAlloc.getAllocatorState();
240
}
241
#endif // GWP_ASAN_HOOKS
242
243
ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) {
244
TSDRegistry.initThreadMaybe(this, MinimalInit);
245
}
246
247
void unmapTestOnly() {
248
unmapRingBuffer();
249
TSDRegistry.unmapTestOnly(this);
250
Primary.unmapTestOnly();
251
Secondary.unmapTestOnly();
252
#ifdef GWP_ASAN_HOOKS
253
if (getFlags()->GWP_ASAN_InstallSignalHandlers)
254
gwp_asan::segv_handler::uninstallSignalHandlers();
255
GuardedAlloc.uninitTestOnly();
256
#endif // GWP_ASAN_HOOKS
257
}
258
259
TSDRegistryT *getTSDRegistry() { return &TSDRegistry; }
260
QuarantineT *getQuarantine() { return &Quarantine; }
261
262
// The Cache must be provided zero-initialized.
263
void initCache(CacheT *Cache) { Cache->init(&Stats, &Primary); }
264
265
// Release the resources used by a TSD, which involves:
266
// - draining the local quarantine cache to the global quarantine;
267
// - releasing the cached pointers back to the Primary;
268
// - unlinking the local stats from the global ones (destroying the cache does
269
// the last two items).
270
void commitBack(TSD<ThisT> *TSD) {
271
TSD->assertLocked(/*BypassCheck=*/true);
272
Quarantine.drain(&TSD->getQuarantineCache(),
273
QuarantineCallback(*this, TSD->getCache()));
274
TSD->getCache().destroy(&Stats);
275
}
276
277
void drainCache(TSD<ThisT> *TSD) {
278
TSD->assertLocked(/*BypassCheck=*/true);
279
Quarantine.drainAndRecycle(&TSD->getQuarantineCache(),
280
QuarantineCallback(*this, TSD->getCache()));
281
TSD->getCache().drain();
282
}
283
void drainCaches() { TSDRegistry.drainCaches(this); }
284
285
ALWAYS_INLINE void *getHeaderTaggedPointer(void *Ptr) {
286
if (!allocatorSupportsMemoryTagging<AllocatorConfig>())
287
return Ptr;
288
auto UntaggedPtr = untagPointer(Ptr);
289
if (UntaggedPtr != Ptr)
290
return UntaggedPtr;
291
// Secondary, or pointer allocated while memory tagging is unsupported or
292
// disabled. The tag mismatch is okay in the latter case because tags will
293
// not be checked.
294
return addHeaderTag(Ptr);
295
}
296
297
ALWAYS_INLINE uptr addHeaderTag(uptr Ptr) {
298
if (!allocatorSupportsMemoryTagging<AllocatorConfig>())
299
return Ptr;
300
return addFixedTag(Ptr, 2);
301
}
302
303
ALWAYS_INLINE void *addHeaderTag(void *Ptr) {
304
return reinterpret_cast<void *>(addHeaderTag(reinterpret_cast<uptr>(Ptr)));
305
}
306
307
NOINLINE u32 collectStackTrace(UNUSED StackDepot *Depot) {
308
#ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE
309
// Discard collectStackTrace() frame and allocator function frame.
310
constexpr uptr DiscardFrames = 2;
311
uptr Stack[MaxTraceSize + DiscardFrames];
312
uptr Size =
313
android_unsafe_frame_pointer_chase(Stack, MaxTraceSize + DiscardFrames);
314
Size = Min<uptr>(Size, MaxTraceSize + DiscardFrames);
315
return Depot->insert(Stack + Min<uptr>(DiscardFrames, Size), Stack + Size);
316
#else
317
return 0;
318
#endif
319
}
320
321
uptr computeOddEvenMaskForPointerMaybe(const Options &Options, uptr Ptr,
322
uptr ClassId) {
323
if (!Options.get(OptionBit::UseOddEvenTags))
324
return 0;
325
326
// If a chunk's tag is odd, we want the tags of the surrounding blocks to be
327
// even, and vice versa. Blocks are laid out Size bytes apart, and adding
328
// Size to Ptr will flip the least significant set bit of Size in Ptr, so
329
// that bit will have the pattern 010101... for consecutive blocks, which we
330
// can use to determine which tag mask to use.
331
return 0x5555U << ((Ptr >> SizeClassMap::getSizeLSBByClassId(ClassId)) & 1);
332
}
333
334
NOINLINE void *allocate(uptr Size, Chunk::Origin Origin,
335
uptr Alignment = MinAlignment,
336
bool ZeroContents = false) NO_THREAD_SAFETY_ANALYSIS {
337
initThreadMaybe();
338
339
const Options Options = Primary.Options.load();
340
if (UNLIKELY(Alignment > MaxAlignment)) {
341
if (Options.get(OptionBit::MayReturnNull))
342
return nullptr;
343
reportAlignmentTooBig(Alignment, MaxAlignment);
344
}
345
if (Alignment < MinAlignment)
346
Alignment = MinAlignment;
347
348
#ifdef GWP_ASAN_HOOKS
349
if (UNLIKELY(GuardedAlloc.shouldSample())) {
350
if (void *Ptr = GuardedAlloc.allocate(Size, Alignment)) {
351
Stats.lock();
352
Stats.add(StatAllocated, GuardedAllocSlotSize);
353
Stats.sub(StatFree, GuardedAllocSlotSize);
354
Stats.unlock();
355
return Ptr;
356
}
357
}
358
#endif // GWP_ASAN_HOOKS
359
360
const FillContentsMode FillContents = ZeroContents ? ZeroFill
361
: TSDRegistry.getDisableMemInit()
362
? NoFill
363
: Options.getFillContentsMode();
364
365
// If the requested size happens to be 0 (more common than you might think),
366
// allocate MinAlignment bytes on top of the header. Then add the extra
367
// bytes required to fulfill the alignment requirements: we allocate enough
368
// to be sure that there will be an address in the block that will satisfy
369
// the alignment.
370
const uptr NeededSize =
371
roundUp(Size, MinAlignment) +
372
((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize());
373
374
// Takes care of extravagantly large sizes as well as integer overflows.
375
static_assert(MaxAllowedMallocSize < UINTPTR_MAX - MaxAlignment, "");
376
if (UNLIKELY(Size >= MaxAllowedMallocSize)) {
377
if (Options.get(OptionBit::MayReturnNull))
378
return nullptr;
379
reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize);
380
}
381
DCHECK_LE(Size, NeededSize);
382
383
void *Block = nullptr;
384
uptr ClassId = 0;
385
uptr SecondaryBlockEnd = 0;
386
if (LIKELY(PrimaryT::canAllocate(NeededSize))) {
387
ClassId = SizeClassMap::getClassIdBySize(NeededSize);
388
DCHECK_NE(ClassId, 0U);
389
typename TSDRegistryT::ScopedTSD TSD(TSDRegistry);
390
Block = TSD->getCache().allocate(ClassId);
391
// If the allocation failed, retry in each successively larger class until
392
// it fits. If it fails to fit in the largest class, fallback to the
393
// Secondary.
394
if (UNLIKELY(!Block)) {
395
while (ClassId < SizeClassMap::LargestClassId && !Block)
396
Block = TSD->getCache().allocate(++ClassId);
397
if (!Block)
398
ClassId = 0;
399
}
400
}
401
if (UNLIKELY(ClassId == 0)) {
402
Block = Secondary.allocate(Options, Size, Alignment, &SecondaryBlockEnd,
403
FillContents);
404
}
405
406
if (UNLIKELY(!Block)) {
407
if (Options.get(OptionBit::MayReturnNull))
408
return nullptr;
409
printStats();
410
reportOutOfMemory(NeededSize);
411
}
412
413
const uptr UserPtr = roundUp(
414
reinterpret_cast<uptr>(Block) + Chunk::getHeaderSize(), Alignment);
415
const uptr SizeOrUnusedBytes =
416
ClassId ? Size : SecondaryBlockEnd - (UserPtr + Size);
417
418
if (LIKELY(!useMemoryTagging<AllocatorConfig>(Options))) {
419
return initChunk(ClassId, Origin, Block, UserPtr, SizeOrUnusedBytes,
420
FillContents);
421
}
422
423
return initChunkWithMemoryTagging(ClassId, Origin, Block, UserPtr, Size,
424
SizeOrUnusedBytes, FillContents);
425
}
426
427
NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0,
428
UNUSED uptr Alignment = MinAlignment) {
429
if (UNLIKELY(!Ptr))
430
return;
431
432
// For a deallocation, we only ensure minimal initialization, meaning thread
433
// local data will be left uninitialized for now (when using ELF TLS). The
434
// fallback cache will be used instead. This is a workaround for a situation
435
// where the only heap operation performed in a thread would be a free past
436
// the TLS destructors, ending up in initialized thread specific data never
437
// being destroyed properly. Any other heap operation will do a full init.
438
initThreadMaybe(/*MinimalInit=*/true);
439
440
#ifdef GWP_ASAN_HOOKS
441
if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) {
442
GuardedAlloc.deallocate(Ptr);
443
Stats.lock();
444
Stats.add(StatFree, GuardedAllocSlotSize);
445
Stats.sub(StatAllocated, GuardedAllocSlotSize);
446
Stats.unlock();
447
return;
448
}
449
#endif // GWP_ASAN_HOOKS
450
451
if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment)))
452
reportMisalignedPointer(AllocatorAction::Deallocating, Ptr);
453
454
void *TaggedPtr = Ptr;
455
Ptr = getHeaderTaggedPointer(Ptr);
456
457
Chunk::UnpackedHeader Header;
458
Chunk::loadHeader(Cookie, Ptr, &Header);
459
460
if (UNLIKELY(Header.State != Chunk::State::Allocated))
461
reportInvalidChunkState(AllocatorAction::Deallocating, Ptr);
462
463
const Options Options = Primary.Options.load();
464
if (Options.get(OptionBit::DeallocTypeMismatch)) {
465
if (UNLIKELY(Header.OriginOrWasZeroed != Origin)) {
466
// With the exception of memalign'd chunks, that can be still be free'd.
467
if (Header.OriginOrWasZeroed != Chunk::Origin::Memalign ||
468
Origin != Chunk::Origin::Malloc)
469
reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr,
470
Header.OriginOrWasZeroed, Origin);
471
}
472
}
473
474
const uptr Size = getSize(Ptr, &Header);
475
if (DeleteSize && Options.get(OptionBit::DeleteSizeMismatch)) {
476
if (UNLIKELY(DeleteSize != Size))
477
reportDeleteSizeMismatch(Ptr, DeleteSize, Size);
478
}
479
480
quarantineOrDeallocateChunk(Options, TaggedPtr, &Header, Size);
481
}
482
483
void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) {
484
initThreadMaybe();
485
486
const Options Options = Primary.Options.load();
487
if (UNLIKELY(NewSize >= MaxAllowedMallocSize)) {
488
if (Options.get(OptionBit::MayReturnNull))
489
return nullptr;
490
reportAllocationSizeTooBig(NewSize, 0, MaxAllowedMallocSize);
491
}
492
493
// The following cases are handled by the C wrappers.
494
DCHECK_NE(OldPtr, nullptr);
495
DCHECK_NE(NewSize, 0);
496
497
#ifdef GWP_ASAN_HOOKS
498
if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) {
499
uptr OldSize = GuardedAlloc.getSize(OldPtr);
500
void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
501
if (NewPtr)
502
memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize);
503
GuardedAlloc.deallocate(OldPtr);
504
Stats.lock();
505
Stats.add(StatFree, GuardedAllocSlotSize);
506
Stats.sub(StatAllocated, GuardedAllocSlotSize);
507
Stats.unlock();
508
return NewPtr;
509
}
510
#endif // GWP_ASAN_HOOKS
511
512
void *OldTaggedPtr = OldPtr;
513
OldPtr = getHeaderTaggedPointer(OldPtr);
514
515
if (UNLIKELY(!isAligned(reinterpret_cast<uptr>(OldPtr), MinAlignment)))
516
reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr);
517
518
Chunk::UnpackedHeader Header;
519
Chunk::loadHeader(Cookie, OldPtr, &Header);
520
521
if (UNLIKELY(Header.State != Chunk::State::Allocated))
522
reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr);
523
524
// Pointer has to be allocated with a malloc-type function. Some
525
// applications think that it is OK to realloc a memalign'ed pointer, which
526
// will trigger this check. It really isn't.
527
if (Options.get(OptionBit::DeallocTypeMismatch)) {
528
if (UNLIKELY(Header.OriginOrWasZeroed != Chunk::Origin::Malloc))
529
reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr,
530
Header.OriginOrWasZeroed,
531
Chunk::Origin::Malloc);
532
}
533
534
void *BlockBegin = getBlockBegin(OldTaggedPtr, &Header);
535
uptr BlockEnd;
536
uptr OldSize;
537
const uptr ClassId = Header.ClassId;
538
if (LIKELY(ClassId)) {
539
BlockEnd = reinterpret_cast<uptr>(BlockBegin) +
540
SizeClassMap::getSizeByClassId(ClassId);
541
OldSize = Header.SizeOrUnusedBytes;
542
} else {
543
BlockEnd = SecondaryT::getBlockEnd(BlockBegin);
544
OldSize = BlockEnd - (reinterpret_cast<uptr>(OldTaggedPtr) +
545
Header.SizeOrUnusedBytes);
546
}
547
// If the new chunk still fits in the previously allocated block (with a
548
// reasonable delta), we just keep the old block, and update the chunk
549
// header to reflect the size change.
550
if (reinterpret_cast<uptr>(OldTaggedPtr) + NewSize <= BlockEnd) {
551
if (NewSize > OldSize || (OldSize - NewSize) < getPageSizeCached()) {
552
// If we have reduced the size, set the extra bytes to the fill value
553
// so that we are ready to grow it again in the future.
554
if (NewSize < OldSize) {
555
const FillContentsMode FillContents =
556
TSDRegistry.getDisableMemInit() ? NoFill
557
: Options.getFillContentsMode();
558
if (FillContents != NoFill) {
559
memset(reinterpret_cast<char *>(OldTaggedPtr) + NewSize,
560
FillContents == ZeroFill ? 0 : PatternFillByte,
561
OldSize - NewSize);
562
}
563
}
564
565
Header.SizeOrUnusedBytes =
566
(ClassId ? NewSize
567
: BlockEnd -
568
(reinterpret_cast<uptr>(OldTaggedPtr) + NewSize)) &
569
Chunk::SizeOrUnusedBytesMask;
570
Chunk::storeHeader(Cookie, OldPtr, &Header);
571
if (UNLIKELY(useMemoryTagging<AllocatorConfig>(Options))) {
572
if (ClassId) {
573
resizeTaggedChunk(reinterpret_cast<uptr>(OldTaggedPtr) + OldSize,
574
reinterpret_cast<uptr>(OldTaggedPtr) + NewSize,
575
NewSize, untagPointer(BlockEnd));
576
storePrimaryAllocationStackMaybe(Options, OldPtr);
577
} else {
578
storeSecondaryAllocationStackMaybe(Options, OldPtr, NewSize);
579
}
580
}
581
return OldTaggedPtr;
582
}
583
}
584
585
// Otherwise we allocate a new one, and deallocate the old one. Some
586
// allocators will allocate an even larger chunk (by a fixed factor) to
587
// allow for potential further in-place realloc. The gains of such a trick
588
// are currently unclear.
589
void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment);
590
if (LIKELY(NewPtr)) {
591
memcpy(NewPtr, OldTaggedPtr, Min(NewSize, OldSize));
592
quarantineOrDeallocateChunk(Options, OldTaggedPtr, &Header, OldSize);
593
}
594
return NewPtr;
595
}
596
597
// TODO(kostyak): disable() is currently best-effort. There are some small
598
// windows of time when an allocation could still succeed after
599
// this function finishes. We will revisit that later.
600
void disable() NO_THREAD_SAFETY_ANALYSIS {
601
initThreadMaybe();
602
#ifdef GWP_ASAN_HOOKS
603
GuardedAlloc.disable();
604
#endif
605
TSDRegistry.disable();
606
Stats.disable();
607
Quarantine.disable();
608
Primary.disable();
609
Secondary.disable();
610
disableRingBuffer();
611
}
612
613
void enable() NO_THREAD_SAFETY_ANALYSIS {
614
initThreadMaybe();
615
enableRingBuffer();
616
Secondary.enable();
617
Primary.enable();
618
Quarantine.enable();
619
Stats.enable();
620
TSDRegistry.enable();
621
#ifdef GWP_ASAN_HOOKS
622
GuardedAlloc.enable();
623
#endif
624
}
625
626
// The function returns the amount of bytes required to store the statistics,
627
// which might be larger than the amount of bytes provided. Note that the
628
// statistics buffer is not necessarily constant between calls to this
629
// function. This can be called with a null buffer or zero size for buffer
630
// sizing purposes.
631
uptr getStats(char *Buffer, uptr Size) {
632
ScopedString Str;
633
const uptr Length = getStats(&Str) + 1;
634
if (Length < Size)
635
Size = Length;
636
if (Buffer && Size) {
637
memcpy(Buffer, Str.data(), Size);
638
Buffer[Size - 1] = '\0';
639
}
640
return Length;
641
}
642
643
void printStats() {
644
ScopedString Str;
645
getStats(&Str);
646
Str.output();
647
}
648
649
void printFragmentationInfo() {
650
ScopedString Str;
651
Primary.getFragmentationInfo(&Str);
652
// Secondary allocator dumps the fragmentation data in getStats().
653
Str.output();
654
}
655
656
void releaseToOS(ReleaseToOS ReleaseType) {
657
initThreadMaybe();
658
if (ReleaseType == ReleaseToOS::ForceAll)
659
drainCaches();
660
Primary.releaseToOS(ReleaseType);
661
Secondary.releaseToOS();
662
}
663
664
// Iterate over all chunks and call a callback for all busy chunks located
665
// within the provided memory range. Said callback must not use this allocator
666
// or a deadlock can ensue. This fits Android's malloc_iterate() needs.
667
void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback,
668
void *Arg) {
669
initThreadMaybe();
670
if (archSupportsMemoryTagging())
671
Base = untagPointer(Base);
672
const uptr From = Base;
673
const uptr To = Base + Size;
674
bool MayHaveTaggedPrimary =
675
allocatorSupportsMemoryTagging<AllocatorConfig>() &&
676
systemSupportsMemoryTagging();
677
auto Lambda = [this, From, To, MayHaveTaggedPrimary, Callback,
678
Arg](uptr Block) {
679
if (Block < From || Block >= To)
680
return;
681
uptr Chunk;
682
Chunk::UnpackedHeader Header;
683
if (MayHaveTaggedPrimary) {
684
// A chunk header can either have a zero tag (tagged primary) or the
685
// header tag (secondary, or untagged primary). We don't know which so
686
// try both.
687
ScopedDisableMemoryTagChecks x;
688
if (!getChunkFromBlock(Block, &Chunk, &Header) &&
689
!getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header))
690
return;
691
} else {
692
if (!getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header))
693
return;
694
}
695
if (Header.State == Chunk::State::Allocated) {
696
uptr TaggedChunk = Chunk;
697
if (allocatorSupportsMemoryTagging<AllocatorConfig>())
698
TaggedChunk = untagPointer(TaggedChunk);
699
if (useMemoryTagging<AllocatorConfig>(Primary.Options.load()))
700
TaggedChunk = loadTag(Chunk);
701
Callback(TaggedChunk, getSize(reinterpret_cast<void *>(Chunk), &Header),
702
Arg);
703
}
704
};
705
Primary.iterateOverBlocks(Lambda);
706
Secondary.iterateOverBlocks(Lambda);
707
#ifdef GWP_ASAN_HOOKS
708
GuardedAlloc.iterate(reinterpret_cast<void *>(Base), Size, Callback, Arg);
709
#endif
710
}
711
712
bool canReturnNull() {
713
initThreadMaybe();
714
return Primary.Options.load().get(OptionBit::MayReturnNull);
715
}
716
717
bool setOption(Option O, sptr Value) {
718
initThreadMaybe();
719
if (O == Option::MemtagTuning) {
720
// Enabling odd/even tags involves a tradeoff between use-after-free
721
// detection and buffer overflow detection. Odd/even tags make it more
722
// likely for buffer overflows to be detected by increasing the size of
723
// the guaranteed "red zone" around the allocation, but on the other hand
724
// use-after-free is less likely to be detected because the tag space for
725
// any particular chunk is cut in half. Therefore we use this tuning
726
// setting to control whether odd/even tags are enabled.
727
if (Value == M_MEMTAG_TUNING_BUFFER_OVERFLOW)
728
Primary.Options.set(OptionBit::UseOddEvenTags);
729
else if (Value == M_MEMTAG_TUNING_UAF)
730
Primary.Options.clear(OptionBit::UseOddEvenTags);
731
return true;
732
} else {
733
// We leave it to the various sub-components to decide whether or not they
734
// want to handle the option, but we do not want to short-circuit
735
// execution if one of the setOption was to return false.
736
const bool PrimaryResult = Primary.setOption(O, Value);
737
const bool SecondaryResult = Secondary.setOption(O, Value);
738
const bool RegistryResult = TSDRegistry.setOption(O, Value);
739
return PrimaryResult && SecondaryResult && RegistryResult;
740
}
741
return false;
742
}
743
744
// Return the usable size for a given chunk. Technically we lie, as we just
745
// report the actual size of a chunk. This is done to counteract code actively
746
// writing past the end of a chunk (like sqlite3) when the usable size allows
747
// for it, which then forces realloc to copy the usable size of a chunk as
748
// opposed to its actual size.
749
uptr getUsableSize(const void *Ptr) {
750
if (UNLIKELY(!Ptr))
751
return 0;
752
753
return getAllocSize(Ptr);
754
}
755
756
uptr getAllocSize(const void *Ptr) {
757
initThreadMaybe();
758
759
#ifdef GWP_ASAN_HOOKS
760
if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr)))
761
return GuardedAlloc.getSize(Ptr);
762
#endif // GWP_ASAN_HOOKS
763
764
Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr));
765
Chunk::UnpackedHeader Header;
766
Chunk::loadHeader(Cookie, Ptr, &Header);
767
768
// Getting the alloc size of a chunk only makes sense if it's allocated.
769
if (UNLIKELY(Header.State != Chunk::State::Allocated))
770
reportInvalidChunkState(AllocatorAction::Sizing, const_cast<void *>(Ptr));
771
772
return getSize(Ptr, &Header);
773
}
774
775
void getStats(StatCounters S) {
776
initThreadMaybe();
777
Stats.get(S);
778
}
779
780
// Returns true if the pointer provided was allocated by the current
781
// allocator instance, which is compliant with tcmalloc's ownership concept.
782
// A corrupted chunk will not be reported as owned, which is WAI.
783
bool isOwned(const void *Ptr) {
784
initThreadMaybe();
785
#ifdef GWP_ASAN_HOOKS
786
if (GuardedAlloc.pointerIsMine(Ptr))
787
return true;
788
#endif // GWP_ASAN_HOOKS
789
if (!Ptr || !isAligned(reinterpret_cast<uptr>(Ptr), MinAlignment))
790
return false;
791
Ptr = getHeaderTaggedPointer(const_cast<void *>(Ptr));
792
Chunk::UnpackedHeader Header;
793
return Chunk::isValid(Cookie, Ptr, &Header) &&
794
Header.State == Chunk::State::Allocated;
795
}
796
797
bool useMemoryTaggingTestOnly() const {
798
return useMemoryTagging<AllocatorConfig>(Primary.Options.load());
799
}
800
void disableMemoryTagging() {
801
// If we haven't been initialized yet, we need to initialize now in order to
802
// prevent a future call to initThreadMaybe() from enabling memory tagging
803
// based on feature detection. But don't call initThreadMaybe() because it
804
// may end up calling the allocator (via pthread_atfork, via the post-init
805
// callback), which may cause mappings to be created with memory tagging
806
// enabled.
807
TSDRegistry.initOnceMaybe(this);
808
if (allocatorSupportsMemoryTagging<AllocatorConfig>()) {
809
Secondary.disableMemoryTagging();
810
Primary.Options.clear(OptionBit::UseMemoryTagging);
811
}
812
}
813
814
void setTrackAllocationStacks(bool Track) {
815
initThreadMaybe();
816
if (getFlags()->allocation_ring_buffer_size <= 0) {
817
DCHECK(!Primary.Options.load().get(OptionBit::TrackAllocationStacks));
818
return;
819
}
820
821
if (Track) {
822
initRingBufferMaybe();
823
Primary.Options.set(OptionBit::TrackAllocationStacks);
824
} else
825
Primary.Options.clear(OptionBit::TrackAllocationStacks);
826
}
827
828
void setFillContents(FillContentsMode FillContents) {
829
initThreadMaybe();
830
Primary.Options.setFillContentsMode(FillContents);
831
}
832
833
void setAddLargeAllocationSlack(bool AddSlack) {
834
initThreadMaybe();
835
if (AddSlack)
836
Primary.Options.set(OptionBit::AddLargeAllocationSlack);
837
else
838
Primary.Options.clear(OptionBit::AddLargeAllocationSlack);
839
}
840
841
const char *getStackDepotAddress() {
842
initThreadMaybe();
843
AllocationRingBuffer *RB = getRingBuffer();
844
return RB ? reinterpret_cast<char *>(RB->Depot) : nullptr;
845
}
846
847
uptr getStackDepotSize() {
848
initThreadMaybe();
849
AllocationRingBuffer *RB = getRingBuffer();
850
return RB ? RB->StackDepotSize : 0;
851
}
852
853
const char *getRegionInfoArrayAddress() const {
854
return Primary.getRegionInfoArrayAddress();
855
}
856
857
static uptr getRegionInfoArraySize() {
858
return PrimaryT::getRegionInfoArraySize();
859
}
860
861
const char *getRingBufferAddress() {
862
initThreadMaybe();
863
return reinterpret_cast<char *>(getRingBuffer());
864
}
865
866
uptr getRingBufferSize() {
867
initThreadMaybe();
868
AllocationRingBuffer *RB = getRingBuffer();
869
return RB && RB->RingBufferElements
870
? ringBufferSizeInBytes(RB->RingBufferElements)
871
: 0;
872
}
873
874
static const uptr MaxTraceSize = 64;
875
876
static void collectTraceMaybe(const StackDepot *Depot,
877
uintptr_t (&Trace)[MaxTraceSize], u32 Hash) {
878
uptr RingPos, Size;
879
if (!Depot->find(Hash, &RingPos, &Size))
880
return;
881
for (unsigned I = 0; I != Size && I != MaxTraceSize; ++I)
882
Trace[I] = static_cast<uintptr_t>(Depot->at(RingPos + I));
883
}
884
885
static void getErrorInfo(struct scudo_error_info *ErrorInfo,
886
uintptr_t FaultAddr, const char *DepotPtr,
887
size_t DepotSize, const char *RegionInfoPtr,
888
const char *RingBufferPtr, size_t RingBufferSize,
889
const char *Memory, const char *MemoryTags,
890
uintptr_t MemoryAddr, size_t MemorySize) {
891
// N.B. we need to support corrupted data in any of the buffers here. We get
892
// this information from an external process (the crashing process) that
893
// should not be able to crash the crash dumper (crash_dump on Android).
894
// See also the get_error_info_fuzzer.
895
*ErrorInfo = {};
896
if (!allocatorSupportsMemoryTagging<AllocatorConfig>() ||
897
MemoryAddr + MemorySize < MemoryAddr)
898
return;
899
900
const StackDepot *Depot = nullptr;
901
if (DepotPtr) {
902
// check for corrupted StackDepot. First we need to check whether we can
903
// read the metadata, then whether the metadata matches the size.
904
if (DepotSize < sizeof(*Depot))
905
return;
906
Depot = reinterpret_cast<const StackDepot *>(DepotPtr);
907
if (!Depot->isValid(DepotSize))
908
return;
909
}
910
911
size_t NextErrorReport = 0;
912
913
// Check for OOB in the current block and the two surrounding blocks. Beyond
914
// that, UAF is more likely.
915
if (extractTag(FaultAddr) != 0)
916
getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
917
RegionInfoPtr, Memory, MemoryTags, MemoryAddr,
918
MemorySize, 0, 2);
919
920
// Check the ring buffer. For primary allocations this will only find UAF;
921
// for secondary allocations we can find either UAF or OOB.
922
getRingBufferErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
923
RingBufferPtr, RingBufferSize);
924
925
// Check for OOB in the 28 blocks surrounding the 3 we checked earlier.
926
// Beyond that we are likely to hit false positives.
927
if (extractTag(FaultAddr) != 0)
928
getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot,
929
RegionInfoPtr, Memory, MemoryTags, MemoryAddr,
930
MemorySize, 2, 16);
931
}
932
933
private:
934
typedef typename PrimaryT::SizeClassMap SizeClassMap;
935
936
static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG;
937
static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable.
938
static const uptr MinAlignment = 1UL << MinAlignmentLog;
939
static const uptr MaxAlignment = 1UL << MaxAlignmentLog;
940
static const uptr MaxAllowedMallocSize =
941
FIRST_32_SECOND_64(1UL << 31, 1ULL << 40);
942
943
static_assert(MinAlignment >= sizeof(Chunk::PackedHeader),
944
"Minimal alignment must at least cover a chunk header.");
945
static_assert(!allocatorSupportsMemoryTagging<AllocatorConfig>() ||
946
MinAlignment >= archMemoryTagGranuleSize(),
947
"");
948
949
static const u32 BlockMarker = 0x44554353U;
950
951
// These are indexes into an "array" of 32-bit values that store information
952
// inline with a chunk that is relevant to diagnosing memory tag faults, where
953
// 0 corresponds to the address of the user memory. This means that only
954
// negative indexes may be used. The smallest index that may be used is -2,
955
// which corresponds to 8 bytes before the user memory, because the chunk
956
// header size is 8 bytes and in allocators that support memory tagging the
957
// minimum alignment is at least the tag granule size (16 on aarch64).
958
static const sptr MemTagAllocationTraceIndex = -2;
959
static const sptr MemTagAllocationTidIndex = -1;
960
961
u32 Cookie = 0;
962
u32 QuarantineMaxChunkSize = 0;
963
964
GlobalStats Stats;
965
PrimaryT Primary;
966
SecondaryT Secondary;
967
QuarantineT Quarantine;
968
TSDRegistryT TSDRegistry;
969
pthread_once_t PostInitNonce = PTHREAD_ONCE_INIT;
970
971
#ifdef GWP_ASAN_HOOKS
972
gwp_asan::GuardedPoolAllocator GuardedAlloc;
973
uptr GuardedAllocSlotSize = 0;
974
#endif // GWP_ASAN_HOOKS
975
976
struct AllocationRingBuffer {
977
struct Entry {
978
atomic_uptr Ptr;
979
atomic_uptr AllocationSize;
980
atomic_u32 AllocationTrace;
981
atomic_u32 AllocationTid;
982
atomic_u32 DeallocationTrace;
983
atomic_u32 DeallocationTid;
984
};
985
StackDepot *Depot = nullptr;
986
uptr StackDepotSize = 0;
987
MemMapT RawRingBufferMap;
988
MemMapT RawStackDepotMap;
989
u32 RingBufferElements = 0;
990
atomic_uptr Pos;
991
// An array of Size (at least one) elements of type Entry is immediately
992
// following to this struct.
993
};
994
static_assert(sizeof(AllocationRingBuffer) %
995
alignof(typename AllocationRingBuffer::Entry) ==
996
0,
997
"invalid alignment");
998
999
// Lock to initialize the RingBuffer
1000
HybridMutex RingBufferInitLock;
1001
1002
// Pointer to memory mapped area starting with AllocationRingBuffer struct,
1003
// and immediately followed by Size elements of type Entry.
1004
atomic_uptr RingBufferAddress = {};
1005
1006
AllocationRingBuffer *getRingBuffer() {
1007
return reinterpret_cast<AllocationRingBuffer *>(
1008
atomic_load(&RingBufferAddress, memory_order_acquire));
1009
}
1010
1011
// The following might get optimized out by the compiler.
1012
NOINLINE void performSanityChecks() {
1013
// Verify that the header offset field can hold the maximum offset. In the
1014
// case of the Secondary allocator, it takes care of alignment and the
1015
// offset will always be small. In the case of the Primary, the worst case
1016
// scenario happens in the last size class, when the backend allocation
1017
// would already be aligned on the requested alignment, which would happen
1018
// to be the maximum alignment that would fit in that size class. As a
1019
// result, the maximum offset will be at most the maximum alignment for the
1020
// last size class minus the header size, in multiples of MinAlignment.
1021
Chunk::UnpackedHeader Header = {};
1022
const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex(
1023
SizeClassMap::MaxSize - MinAlignment);
1024
const uptr MaxOffset =
1025
(MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog;
1026
Header.Offset = MaxOffset & Chunk::OffsetMask;
1027
if (UNLIKELY(Header.Offset != MaxOffset))
1028
reportSanityCheckError("offset");
1029
1030
// Verify that we can fit the maximum size or amount of unused bytes in the
1031
// header. Given that the Secondary fits the allocation to a page, the worst
1032
// case scenario happens in the Primary. It will depend on the second to
1033
// last and last class sizes, as well as the dynamic base for the Primary.
1034
// The following is an over-approximation that works for our needs.
1035
const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1;
1036
Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
1037
if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes))
1038
reportSanityCheckError("size (or unused bytes)");
1039
1040
const uptr LargestClassId = SizeClassMap::LargestClassId;
1041
Header.ClassId = LargestClassId;
1042
if (UNLIKELY(Header.ClassId != LargestClassId))
1043
reportSanityCheckError("class ID");
1044
}
1045
1046
static inline void *getBlockBegin(const void *Ptr,
1047
Chunk::UnpackedHeader *Header) {
1048
return reinterpret_cast<void *>(
1049
reinterpret_cast<uptr>(Ptr) - Chunk::getHeaderSize() -
1050
(static_cast<uptr>(Header->Offset) << MinAlignmentLog));
1051
}
1052
1053
// Return the size of a chunk as requested during its allocation.
1054
inline uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) {
1055
const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes;
1056
if (LIKELY(Header->ClassId))
1057
return SizeOrUnusedBytes;
1058
if (allocatorSupportsMemoryTagging<AllocatorConfig>())
1059
Ptr = untagPointer(const_cast<void *>(Ptr));
1060
return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) -
1061
reinterpret_cast<uptr>(Ptr) - SizeOrUnusedBytes;
1062
}
1063
1064
ALWAYS_INLINE void *initChunk(const uptr ClassId, const Chunk::Origin Origin,
1065
void *Block, const uptr UserPtr,
1066
const uptr SizeOrUnusedBytes,
1067
const FillContentsMode FillContents) {
1068
// Compute the default pointer before adding the header tag
1069
const uptr DefaultAlignedPtr =
1070
reinterpret_cast<uptr>(Block) + Chunk::getHeaderSize();
1071
1072
Block = addHeaderTag(Block);
1073
// Only do content fill when it's from primary allocator because secondary
1074
// allocator has filled the content.
1075
if (ClassId != 0 && UNLIKELY(FillContents != NoFill)) {
1076
// This condition is not necessarily unlikely, but since memset is
1077
// costly, we might as well mark it as such.
1078
memset(Block, FillContents == ZeroFill ? 0 : PatternFillByte,
1079
PrimaryT::getSizeByClassId(ClassId));
1080
}
1081
1082
Chunk::UnpackedHeader Header = {};
1083
1084
if (UNLIKELY(DefaultAlignedPtr != UserPtr)) {
1085
const uptr Offset = UserPtr - DefaultAlignedPtr;
1086
DCHECK_GE(Offset, 2 * sizeof(u32));
1087
// The BlockMarker has no security purpose, but is specifically meant for
1088
// the chunk iteration function that can be used in debugging situations.
1089
// It is the only situation where we have to locate the start of a chunk
1090
// based on its block address.
1091
reinterpret_cast<u32 *>(Block)[0] = BlockMarker;
1092
reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset);
1093
Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask;
1094
}
1095
1096
Header.ClassId = ClassId & Chunk::ClassIdMask;
1097
Header.State = Chunk::State::Allocated;
1098
Header.OriginOrWasZeroed = Origin & Chunk::OriginMask;
1099
Header.SizeOrUnusedBytes = SizeOrUnusedBytes & Chunk::SizeOrUnusedBytesMask;
1100
Chunk::storeHeader(Cookie, reinterpret_cast<void *>(addHeaderTag(UserPtr)),
1101
&Header);
1102
1103
return reinterpret_cast<void *>(UserPtr);
1104
}
1105
1106
NOINLINE void *
1107
initChunkWithMemoryTagging(const uptr ClassId, const Chunk::Origin Origin,
1108
void *Block, const uptr UserPtr, const uptr Size,
1109
const uptr SizeOrUnusedBytes,
1110
const FillContentsMode FillContents) {
1111
const Options Options = Primary.Options.load();
1112
DCHECK(useMemoryTagging<AllocatorConfig>(Options));
1113
1114
// Compute the default pointer before adding the header tag
1115
const uptr DefaultAlignedPtr =
1116
reinterpret_cast<uptr>(Block) + Chunk::getHeaderSize();
1117
1118
void *Ptr = reinterpret_cast<void *>(UserPtr);
1119
void *TaggedPtr = Ptr;
1120
1121
if (LIKELY(ClassId)) {
1122
// Init the primary chunk.
1123
//
1124
// We only need to zero or tag the contents for Primary backed
1125
// allocations. We only set tags for primary allocations in order to avoid
1126
// faulting potentially large numbers of pages for large secondary
1127
// allocations. We assume that guard pages are enough to protect these
1128
// allocations.
1129
//
1130
// FIXME: When the kernel provides a way to set the background tag of a
1131
// mapping, we should be able to tag secondary allocations as well.
1132
//
1133
// When memory tagging is enabled, zeroing the contents is done as part of
1134
// setting the tag.
1135
1136
Chunk::UnpackedHeader Header;
1137
const uptr BlockSize = PrimaryT::getSizeByClassId(ClassId);
1138
const uptr BlockUptr = reinterpret_cast<uptr>(Block);
1139
const uptr BlockEnd = BlockUptr + BlockSize;
1140
// If possible, try to reuse the UAF tag that was set by deallocate().
1141
// For simplicity, only reuse tags if we have the same start address as
1142
// the previous allocation. This handles the majority of cases since
1143
// most allocations will not be more aligned than the minimum alignment.
1144
//
1145
// We need to handle situations involving reclaimed chunks, and retag
1146
// the reclaimed portions if necessary. In the case where the chunk is
1147
// fully reclaimed, the chunk's header will be zero, which will trigger
1148
// the code path for new mappings and invalid chunks that prepares the
1149
// chunk from scratch. There are three possibilities for partial
1150
// reclaiming:
1151
//
1152
// (1) Header was reclaimed, data was partially reclaimed.
1153
// (2) Header was not reclaimed, all data was reclaimed (e.g. because
1154
// data started on a page boundary).
1155
// (3) Header was not reclaimed, data was partially reclaimed.
1156
//
1157
// Case (1) will be handled in the same way as for full reclaiming,
1158
// since the header will be zero.
1159
//
1160
// We can detect case (2) by loading the tag from the start
1161
// of the chunk. If it is zero, it means that either all data was
1162
// reclaimed (since we never use zero as the chunk tag), or that the
1163
// previous allocation was of size zero. Either way, we need to prepare
1164
// a new chunk from scratch.
1165
//
1166
// We can detect case (3) by moving to the next page (if covered by the
1167
// chunk) and loading the tag of its first granule. If it is zero, it
1168
// means that all following pages may need to be retagged. On the other
1169
// hand, if it is nonzero, we can assume that all following pages are
1170
// still tagged, according to the logic that if any of the pages
1171
// following the next page were reclaimed, the next page would have been
1172
// reclaimed as well.
1173
uptr TaggedUserPtr;
1174
uptr PrevUserPtr;
1175
if (getChunkFromBlock(BlockUptr, &PrevUserPtr, &Header) &&
1176
PrevUserPtr == UserPtr &&
1177
(TaggedUserPtr = loadTag(UserPtr)) != UserPtr) {
1178
uptr PrevEnd = TaggedUserPtr + Header.SizeOrUnusedBytes;
1179
const uptr NextPage = roundUp(TaggedUserPtr, getPageSizeCached());
1180
if (NextPage < PrevEnd && loadTag(NextPage) != NextPage)
1181
PrevEnd = NextPage;
1182
TaggedPtr = reinterpret_cast<void *>(TaggedUserPtr);
1183
resizeTaggedChunk(PrevEnd, TaggedUserPtr + Size, Size, BlockEnd);
1184
if (UNLIKELY(FillContents != NoFill && !Header.OriginOrWasZeroed)) {
1185
// If an allocation needs to be zeroed (i.e. calloc) we can normally
1186
// avoid zeroing the memory now since we can rely on memory having
1187
// been zeroed on free, as this is normally done while setting the
1188
// UAF tag. But if tagging was disabled per-thread when the memory
1189
// was freed, it would not have been retagged and thus zeroed, and
1190
// therefore it needs to be zeroed now.
1191
memset(TaggedPtr, 0,
1192
Min(Size, roundUp(PrevEnd - TaggedUserPtr,
1193
archMemoryTagGranuleSize())));
1194
} else if (Size) {
1195
// Clear any stack metadata that may have previously been stored in
1196
// the chunk data.
1197
memset(TaggedPtr, 0, archMemoryTagGranuleSize());
1198
}
1199
} else {
1200
const uptr OddEvenMask =
1201
computeOddEvenMaskForPointerMaybe(Options, BlockUptr, ClassId);
1202
TaggedPtr = prepareTaggedChunk(Ptr, Size, OddEvenMask, BlockEnd);
1203
}
1204
storePrimaryAllocationStackMaybe(Options, Ptr);
1205
} else {
1206
// Init the secondary chunk.
1207
1208
Block = addHeaderTag(Block);
1209
Ptr = addHeaderTag(Ptr);
1210
storeTags(reinterpret_cast<uptr>(Block), reinterpret_cast<uptr>(Ptr));
1211
storeSecondaryAllocationStackMaybe(Options, Ptr, Size);
1212
}
1213
1214
Chunk::UnpackedHeader Header = {};
1215
1216
if (UNLIKELY(DefaultAlignedPtr != UserPtr)) {
1217
const uptr Offset = UserPtr - DefaultAlignedPtr;
1218
DCHECK_GE(Offset, 2 * sizeof(u32));
1219
// The BlockMarker has no security purpose, but is specifically meant for
1220
// the chunk iteration function that can be used in debugging situations.
1221
// It is the only situation where we have to locate the start of a chunk
1222
// based on its block address.
1223
reinterpret_cast<u32 *>(Block)[0] = BlockMarker;
1224
reinterpret_cast<u32 *>(Block)[1] = static_cast<u32>(Offset);
1225
Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask;
1226
}
1227
1228
Header.ClassId = ClassId & Chunk::ClassIdMask;
1229
Header.State = Chunk::State::Allocated;
1230
Header.OriginOrWasZeroed = Origin & Chunk::OriginMask;
1231
Header.SizeOrUnusedBytes = SizeOrUnusedBytes & Chunk::SizeOrUnusedBytesMask;
1232
Chunk::storeHeader(Cookie, Ptr, &Header);
1233
1234
return TaggedPtr;
1235
}
1236
1237
void quarantineOrDeallocateChunk(const Options &Options, void *TaggedPtr,
1238
Chunk::UnpackedHeader *Header,
1239
uptr Size) NO_THREAD_SAFETY_ANALYSIS {
1240
void *Ptr = getHeaderTaggedPointer(TaggedPtr);
1241
// If the quarantine is disabled, the actual size of a chunk is 0 or larger
1242
// than the maximum allowed, we return a chunk directly to the backend.
1243
// This purposefully underflows for Size == 0.
1244
const bool BypassQuarantine = !Quarantine.getCacheSize() ||
1245
((Size - 1) >= QuarantineMaxChunkSize) ||
1246
!Header->ClassId;
1247
if (BypassQuarantine)
1248
Header->State = Chunk::State::Available;
1249
else
1250
Header->State = Chunk::State::Quarantined;
1251
1252
void *BlockBegin;
1253
if (LIKELY(!useMemoryTagging<AllocatorConfig>(Options))) {
1254
Header->OriginOrWasZeroed = 0U;
1255
if (BypassQuarantine && allocatorSupportsMemoryTagging<AllocatorConfig>())
1256
Ptr = untagPointer(Ptr);
1257
BlockBegin = getBlockBegin(Ptr, Header);
1258
} else {
1259
Header->OriginOrWasZeroed =
1260
Header->ClassId && !TSDRegistry.getDisableMemInit();
1261
BlockBegin =
1262
retagBlock(Options, TaggedPtr, Ptr, Header, Size, BypassQuarantine);
1263
}
1264
1265
Chunk::storeHeader(Cookie, Ptr, Header);
1266
1267
if (BypassQuarantine) {
1268
const uptr ClassId = Header->ClassId;
1269
if (LIKELY(ClassId)) {
1270
bool CacheDrained;
1271
{
1272
typename TSDRegistryT::ScopedTSD TSD(TSDRegistry);
1273
CacheDrained = TSD->getCache().deallocate(ClassId, BlockBegin);
1274
}
1275
// When we have drained some blocks back to the Primary from TSD, that
1276
// implies that we may have the chance to release some pages as well.
1277
// Note that in order not to block other thread's accessing the TSD,
1278
// release the TSD first then try the page release.
1279
if (CacheDrained)
1280
Primary.tryReleaseToOS(ClassId, ReleaseToOS::Normal);
1281
} else {
1282
Secondary.deallocate(Options, BlockBegin);
1283
}
1284
} else {
1285
typename TSDRegistryT::ScopedTSD TSD(TSDRegistry);
1286
Quarantine.put(&TSD->getQuarantineCache(),
1287
QuarantineCallback(*this, TSD->getCache()), Ptr, Size);
1288
}
1289
}
1290
1291
NOINLINE void *retagBlock(const Options &Options, void *TaggedPtr, void *&Ptr,
1292
Chunk::UnpackedHeader *Header, const uptr Size,
1293
bool BypassQuarantine) {
1294
DCHECK(useMemoryTagging<AllocatorConfig>(Options));
1295
1296
const u8 PrevTag = extractTag(reinterpret_cast<uptr>(TaggedPtr));
1297
storeDeallocationStackMaybe(Options, Ptr, PrevTag, Size);
1298
if (Header->ClassId && !TSDRegistry.getDisableMemInit()) {
1299
uptr TaggedBegin, TaggedEnd;
1300
const uptr OddEvenMask = computeOddEvenMaskForPointerMaybe(
1301
Options, reinterpret_cast<uptr>(getBlockBegin(Ptr, Header)),
1302
Header->ClassId);
1303
// Exclude the previous tag so that immediate use after free is
1304
// detected 100% of the time.
1305
setRandomTag(Ptr, Size, OddEvenMask | (1UL << PrevTag), &TaggedBegin,
1306
&TaggedEnd);
1307
}
1308
1309
Ptr = untagPointer(Ptr);
1310
void *BlockBegin = getBlockBegin(Ptr, Header);
1311
if (BypassQuarantine && !Header->ClassId) {
1312
storeTags(reinterpret_cast<uptr>(BlockBegin),
1313
reinterpret_cast<uptr>(Ptr));
1314
}
1315
1316
return BlockBegin;
1317
}
1318
1319
bool getChunkFromBlock(uptr Block, uptr *Chunk,
1320
Chunk::UnpackedHeader *Header) {
1321
*Chunk =
1322
Block + getChunkOffsetFromBlock(reinterpret_cast<const char *>(Block));
1323
return Chunk::isValid(Cookie, reinterpret_cast<void *>(*Chunk), Header);
1324
}
1325
1326
static uptr getChunkOffsetFromBlock(const char *Block) {
1327
u32 Offset = 0;
1328
if (reinterpret_cast<const u32 *>(Block)[0] == BlockMarker)
1329
Offset = reinterpret_cast<const u32 *>(Block)[1];
1330
return Offset + Chunk::getHeaderSize();
1331
}
1332
1333
// Set the tag of the granule past the end of the allocation to 0, to catch
1334
// linear overflows even if a previous larger allocation used the same block
1335
// and tag. Only do this if the granule past the end is in our block, because
1336
// this would otherwise lead to a SEGV if the allocation covers the entire
1337
// block and our block is at the end of a mapping. The tag of the next block's
1338
// header granule will be set to 0, so it will serve the purpose of catching
1339
// linear overflows in this case.
1340
//
1341
// For allocations of size 0 we do not end up storing the address tag to the
1342
// memory tag space, which getInlineErrorInfo() normally relies on to match
1343
// address tags against chunks. To allow matching in this case we store the
1344
// address tag in the first byte of the chunk.
1345
void storeEndMarker(uptr End, uptr Size, uptr BlockEnd) {
1346
DCHECK_EQ(BlockEnd, untagPointer(BlockEnd));
1347
uptr UntaggedEnd = untagPointer(End);
1348
if (UntaggedEnd != BlockEnd) {
1349
storeTag(UntaggedEnd);
1350
if (Size == 0)
1351
*reinterpret_cast<u8 *>(UntaggedEnd) = extractTag(End);
1352
}
1353
}
1354
1355
void *prepareTaggedChunk(void *Ptr, uptr Size, uptr ExcludeMask,
1356
uptr BlockEnd) {
1357
// Prepare the granule before the chunk to store the chunk header by setting
1358
// its tag to 0. Normally its tag will already be 0, but in the case where a
1359
// chunk holding a low alignment allocation is reused for a higher alignment
1360
// allocation, the chunk may already have a non-zero tag from the previous
1361
// allocation.
1362
storeTag(reinterpret_cast<uptr>(Ptr) - archMemoryTagGranuleSize());
1363
1364
uptr TaggedBegin, TaggedEnd;
1365
setRandomTag(Ptr, Size, ExcludeMask, &TaggedBegin, &TaggedEnd);
1366
1367
storeEndMarker(TaggedEnd, Size, BlockEnd);
1368
return reinterpret_cast<void *>(TaggedBegin);
1369
}
1370
1371
void resizeTaggedChunk(uptr OldPtr, uptr NewPtr, uptr NewSize,
1372
uptr BlockEnd) {
1373
uptr RoundOldPtr = roundUp(OldPtr, archMemoryTagGranuleSize());
1374
uptr RoundNewPtr;
1375
if (RoundOldPtr >= NewPtr) {
1376
// If the allocation is shrinking we just need to set the tag past the end
1377
// of the allocation to 0. See explanation in storeEndMarker() above.
1378
RoundNewPtr = roundUp(NewPtr, archMemoryTagGranuleSize());
1379
} else {
1380
// Set the memory tag of the region
1381
// [RoundOldPtr, roundUp(NewPtr, archMemoryTagGranuleSize()))
1382
// to the pointer tag stored in OldPtr.
1383
RoundNewPtr = storeTags(RoundOldPtr, NewPtr);
1384
}
1385
storeEndMarker(RoundNewPtr, NewSize, BlockEnd);
1386
}
1387
1388
void storePrimaryAllocationStackMaybe(const Options &Options, void *Ptr) {
1389
if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1390
return;
1391
AllocationRingBuffer *RB = getRingBuffer();
1392
if (!RB)
1393
return;
1394
auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1395
Ptr32[MemTagAllocationTraceIndex] = collectStackTrace(RB->Depot);
1396
Ptr32[MemTagAllocationTidIndex] = getThreadID();
1397
}
1398
1399
void storeRingBufferEntry(AllocationRingBuffer *RB, void *Ptr,
1400
u32 AllocationTrace, u32 AllocationTid,
1401
uptr AllocationSize, u32 DeallocationTrace,
1402
u32 DeallocationTid) {
1403
uptr Pos = atomic_fetch_add(&RB->Pos, 1, memory_order_relaxed);
1404
typename AllocationRingBuffer::Entry *Entry =
1405
getRingBufferEntry(RB, Pos % RB->RingBufferElements);
1406
1407
// First invalidate our entry so that we don't attempt to interpret a
1408
// partially written state in getSecondaryErrorInfo(). The fences below
1409
// ensure that the compiler does not move the stores to Ptr in between the
1410
// stores to the other fields.
1411
atomic_store_relaxed(&Entry->Ptr, 0);
1412
1413
__atomic_signal_fence(__ATOMIC_SEQ_CST);
1414
atomic_store_relaxed(&Entry->AllocationTrace, AllocationTrace);
1415
atomic_store_relaxed(&Entry->AllocationTid, AllocationTid);
1416
atomic_store_relaxed(&Entry->AllocationSize, AllocationSize);
1417
atomic_store_relaxed(&Entry->DeallocationTrace, DeallocationTrace);
1418
atomic_store_relaxed(&Entry->DeallocationTid, DeallocationTid);
1419
__atomic_signal_fence(__ATOMIC_SEQ_CST);
1420
1421
atomic_store_relaxed(&Entry->Ptr, reinterpret_cast<uptr>(Ptr));
1422
}
1423
1424
void storeSecondaryAllocationStackMaybe(const Options &Options, void *Ptr,
1425
uptr Size) {
1426
if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1427
return;
1428
AllocationRingBuffer *RB = getRingBuffer();
1429
if (!RB)
1430
return;
1431
u32 Trace = collectStackTrace(RB->Depot);
1432
u32 Tid = getThreadID();
1433
1434
auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1435
Ptr32[MemTagAllocationTraceIndex] = Trace;
1436
Ptr32[MemTagAllocationTidIndex] = Tid;
1437
1438
storeRingBufferEntry(RB, untagPointer(Ptr), Trace, Tid, Size, 0, 0);
1439
}
1440
1441
void storeDeallocationStackMaybe(const Options &Options, void *Ptr,
1442
u8 PrevTag, uptr Size) {
1443
if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks)))
1444
return;
1445
AllocationRingBuffer *RB = getRingBuffer();
1446
if (!RB)
1447
return;
1448
auto *Ptr32 = reinterpret_cast<u32 *>(Ptr);
1449
u32 AllocationTrace = Ptr32[MemTagAllocationTraceIndex];
1450
u32 AllocationTid = Ptr32[MemTagAllocationTidIndex];
1451
1452
u32 DeallocationTrace = collectStackTrace(RB->Depot);
1453
u32 DeallocationTid = getThreadID();
1454
1455
storeRingBufferEntry(RB, addFixedTag(untagPointer(Ptr), PrevTag),
1456
AllocationTrace, AllocationTid, Size,
1457
DeallocationTrace, DeallocationTid);
1458
}
1459
1460
static const size_t NumErrorReports =
1461
sizeof(((scudo_error_info *)nullptr)->reports) /
1462
sizeof(((scudo_error_info *)nullptr)->reports[0]);
1463
1464
static void getInlineErrorInfo(struct scudo_error_info *ErrorInfo,
1465
size_t &NextErrorReport, uintptr_t FaultAddr,
1466
const StackDepot *Depot,
1467
const char *RegionInfoPtr, const char *Memory,
1468
const char *MemoryTags, uintptr_t MemoryAddr,
1469
size_t MemorySize, size_t MinDistance,
1470
size_t MaxDistance) {
1471
uptr UntaggedFaultAddr = untagPointer(FaultAddr);
1472
u8 FaultAddrTag = extractTag(FaultAddr);
1473
BlockInfo Info =
1474
PrimaryT::findNearestBlock(RegionInfoPtr, UntaggedFaultAddr);
1475
1476
auto GetGranule = [&](uptr Addr, const char **Data, uint8_t *Tag) -> bool {
1477
if (Addr < MemoryAddr || Addr + archMemoryTagGranuleSize() < Addr ||
1478
Addr + archMemoryTagGranuleSize() > MemoryAddr + MemorySize)
1479
return false;
1480
*Data = &Memory[Addr - MemoryAddr];
1481
*Tag = static_cast<u8>(
1482
MemoryTags[(Addr - MemoryAddr) / archMemoryTagGranuleSize()]);
1483
return true;
1484
};
1485
1486
auto ReadBlock = [&](uptr Addr, uptr *ChunkAddr,
1487
Chunk::UnpackedHeader *Header, const u32 **Data,
1488
u8 *Tag) {
1489
const char *BlockBegin;
1490
u8 BlockBeginTag;
1491
if (!GetGranule(Addr, &BlockBegin, &BlockBeginTag))
1492
return false;
1493
uptr ChunkOffset = getChunkOffsetFromBlock(BlockBegin);
1494
*ChunkAddr = Addr + ChunkOffset;
1495
1496
const char *ChunkBegin;
1497
if (!GetGranule(*ChunkAddr, &ChunkBegin, Tag))
1498
return false;
1499
*Header = *reinterpret_cast<const Chunk::UnpackedHeader *>(
1500
ChunkBegin - Chunk::getHeaderSize());
1501
*Data = reinterpret_cast<const u32 *>(ChunkBegin);
1502
1503
// Allocations of size 0 will have stashed the tag in the first byte of
1504
// the chunk, see storeEndMarker().
1505
if (Header->SizeOrUnusedBytes == 0)
1506
*Tag = static_cast<u8>(*ChunkBegin);
1507
1508
return true;
1509
};
1510
1511
if (NextErrorReport == NumErrorReports)
1512
return;
1513
1514
auto CheckOOB = [&](uptr BlockAddr) {
1515
if (BlockAddr < Info.RegionBegin || BlockAddr >= Info.RegionEnd)
1516
return false;
1517
1518
uptr ChunkAddr;
1519
Chunk::UnpackedHeader Header;
1520
const u32 *Data;
1521
uint8_t Tag;
1522
if (!ReadBlock(BlockAddr, &ChunkAddr, &Header, &Data, &Tag) ||
1523
Header.State != Chunk::State::Allocated || Tag != FaultAddrTag)
1524
return false;
1525
1526
auto *R = &ErrorInfo->reports[NextErrorReport++];
1527
R->error_type =
1528
UntaggedFaultAddr < ChunkAddr ? BUFFER_UNDERFLOW : BUFFER_OVERFLOW;
1529
R->allocation_address = ChunkAddr;
1530
R->allocation_size = Header.SizeOrUnusedBytes;
1531
if (Depot) {
1532
collectTraceMaybe(Depot, R->allocation_trace,
1533
Data[MemTagAllocationTraceIndex]);
1534
}
1535
R->allocation_tid = Data[MemTagAllocationTidIndex];
1536
return NextErrorReport == NumErrorReports;
1537
};
1538
1539
if (MinDistance == 0 && CheckOOB(Info.BlockBegin))
1540
return;
1541
1542
for (size_t I = Max<size_t>(MinDistance, 1); I != MaxDistance; ++I)
1543
if (CheckOOB(Info.BlockBegin + I * Info.BlockSize) ||
1544
CheckOOB(Info.BlockBegin - I * Info.BlockSize))
1545
return;
1546
}
1547
1548
static void getRingBufferErrorInfo(struct scudo_error_info *ErrorInfo,
1549
size_t &NextErrorReport,
1550
uintptr_t FaultAddr,
1551
const StackDepot *Depot,
1552
const char *RingBufferPtr,
1553
size_t RingBufferSize) {
1554
auto *RingBuffer =
1555
reinterpret_cast<const AllocationRingBuffer *>(RingBufferPtr);
1556
size_t RingBufferElements = ringBufferElementsFromBytes(RingBufferSize);
1557
if (!RingBuffer || RingBufferElements == 0 || !Depot)
1558
return;
1559
uptr Pos = atomic_load_relaxed(&RingBuffer->Pos);
1560
1561
for (uptr I = Pos - 1; I != Pos - 1 - RingBufferElements &&
1562
NextErrorReport != NumErrorReports;
1563
--I) {
1564
auto *Entry = getRingBufferEntry(RingBuffer, I % RingBufferElements);
1565
uptr EntryPtr = atomic_load_relaxed(&Entry->Ptr);
1566
if (!EntryPtr)
1567
continue;
1568
1569
uptr UntaggedEntryPtr = untagPointer(EntryPtr);
1570
uptr EntrySize = atomic_load_relaxed(&Entry->AllocationSize);
1571
u32 AllocationTrace = atomic_load_relaxed(&Entry->AllocationTrace);
1572
u32 AllocationTid = atomic_load_relaxed(&Entry->AllocationTid);
1573
u32 DeallocationTrace = atomic_load_relaxed(&Entry->DeallocationTrace);
1574
u32 DeallocationTid = atomic_load_relaxed(&Entry->DeallocationTid);
1575
1576
if (DeallocationTid) {
1577
// For UAF we only consider in-bounds fault addresses because
1578
// out-of-bounds UAF is rare and attempting to detect it is very likely
1579
// to result in false positives.
1580
if (FaultAddr < EntryPtr || FaultAddr >= EntryPtr + EntrySize)
1581
continue;
1582
} else {
1583
// Ring buffer OOB is only possible with secondary allocations. In this
1584
// case we are guaranteed a guard region of at least a page on either
1585
// side of the allocation (guard page on the right, guard page + tagged
1586
// region on the left), so ignore any faults outside of that range.
1587
if (FaultAddr < EntryPtr - getPageSizeCached() ||
1588
FaultAddr >= EntryPtr + EntrySize + getPageSizeCached())
1589
continue;
1590
1591
// For UAF the ring buffer will contain two entries, one for the
1592
// allocation and another for the deallocation. Don't report buffer
1593
// overflow/underflow using the allocation entry if we have already
1594
// collected a report from the deallocation entry.
1595
bool Found = false;
1596
for (uptr J = 0; J != NextErrorReport; ++J) {
1597
if (ErrorInfo->reports[J].allocation_address == UntaggedEntryPtr) {
1598
Found = true;
1599
break;
1600
}
1601
}
1602
if (Found)
1603
continue;
1604
}
1605
1606
auto *R = &ErrorInfo->reports[NextErrorReport++];
1607
if (DeallocationTid)
1608
R->error_type = USE_AFTER_FREE;
1609
else if (FaultAddr < EntryPtr)
1610
R->error_type = BUFFER_UNDERFLOW;
1611
else
1612
R->error_type = BUFFER_OVERFLOW;
1613
1614
R->allocation_address = UntaggedEntryPtr;
1615
R->allocation_size = EntrySize;
1616
collectTraceMaybe(Depot, R->allocation_trace, AllocationTrace);
1617
R->allocation_tid = AllocationTid;
1618
collectTraceMaybe(Depot, R->deallocation_trace, DeallocationTrace);
1619
R->deallocation_tid = DeallocationTid;
1620
}
1621
}
1622
1623
uptr getStats(ScopedString *Str) {
1624
Primary.getStats(Str);
1625
Secondary.getStats(Str);
1626
Quarantine.getStats(Str);
1627
TSDRegistry.getStats(Str);
1628
return Str->length();
1629
}
1630
1631
static typename AllocationRingBuffer::Entry *
1632
getRingBufferEntry(AllocationRingBuffer *RB, uptr N) {
1633
char *RBEntryStart =
1634
&reinterpret_cast<char *>(RB)[sizeof(AllocationRingBuffer)];
1635
return &reinterpret_cast<typename AllocationRingBuffer::Entry *>(
1636
RBEntryStart)[N];
1637
}
1638
static const typename AllocationRingBuffer::Entry *
1639
getRingBufferEntry(const AllocationRingBuffer *RB, uptr N) {
1640
const char *RBEntryStart =
1641
&reinterpret_cast<const char *>(RB)[sizeof(AllocationRingBuffer)];
1642
return &reinterpret_cast<const typename AllocationRingBuffer::Entry *>(
1643
RBEntryStart)[N];
1644
}
1645
1646
void initRingBufferMaybe() {
1647
ScopedLock L(RingBufferInitLock);
1648
if (getRingBuffer() != nullptr)
1649
return;
1650
1651
int ring_buffer_size = getFlags()->allocation_ring_buffer_size;
1652
if (ring_buffer_size <= 0)
1653
return;
1654
1655
u32 AllocationRingBufferSize = static_cast<u32>(ring_buffer_size);
1656
1657
// We store alloc and free stacks for each entry.
1658
constexpr u32 kStacksPerRingBufferEntry = 2;
1659
constexpr u32 kMaxU32Pow2 = ~(UINT32_MAX >> 1);
1660
static_assert(isPowerOfTwo(kMaxU32Pow2));
1661
// On Android we always have 3 frames at the bottom: __start_main,
1662
// __libc_init, main, and 3 at the top: malloc, scudo_malloc and
1663
// Allocator::allocate. This leaves 10 frames for the user app. The next
1664
// smallest power of two (8) would only leave 2, which is clearly too
1665
// little.
1666
constexpr u32 kFramesPerStack = 16;
1667
static_assert(isPowerOfTwo(kFramesPerStack));
1668
1669
if (AllocationRingBufferSize > kMaxU32Pow2 / kStacksPerRingBufferEntry)
1670
return;
1671
u32 TabSize = static_cast<u32>(roundUpPowerOfTwo(kStacksPerRingBufferEntry *
1672
AllocationRingBufferSize));
1673
if (TabSize > UINT32_MAX / kFramesPerStack)
1674
return;
1675
u32 RingSize = static_cast<u32>(TabSize * kFramesPerStack);
1676
1677
uptr StackDepotSize = sizeof(StackDepot) + sizeof(atomic_u64) * RingSize +
1678
sizeof(atomic_u32) * TabSize;
1679
MemMapT DepotMap;
1680
DepotMap.map(
1681
/*Addr=*/0U, roundUp(StackDepotSize, getPageSizeCached()),
1682
"scudo:stack_depot");
1683
auto *Depot = reinterpret_cast<StackDepot *>(DepotMap.getBase());
1684
Depot->init(RingSize, TabSize);
1685
1686
MemMapT MemMap;
1687
MemMap.map(
1688
/*Addr=*/0U,
1689
roundUp(ringBufferSizeInBytes(AllocationRingBufferSize),
1690
getPageSizeCached()),
1691
"scudo:ring_buffer");
1692
auto *RB = reinterpret_cast<AllocationRingBuffer *>(MemMap.getBase());
1693
RB->RawRingBufferMap = MemMap;
1694
RB->RingBufferElements = AllocationRingBufferSize;
1695
RB->Depot = Depot;
1696
RB->StackDepotSize = StackDepotSize;
1697
RB->RawStackDepotMap = DepotMap;
1698
1699
atomic_store(&RingBufferAddress, reinterpret_cast<uptr>(RB),
1700
memory_order_release);
1701
}
1702
1703
void unmapRingBuffer() {
1704
AllocationRingBuffer *RB = getRingBuffer();
1705
if (RB == nullptr)
1706
return;
1707
// N.B. because RawStackDepotMap is part of RawRingBufferMap, the order
1708
// is very important.
1709
RB->RawStackDepotMap.unmap(RB->RawStackDepotMap.getBase(),
1710
RB->RawStackDepotMap.getCapacity());
1711
// Note that the `RB->RawRingBufferMap` is stored on the pages managed by
1712
// itself. Take over the ownership before calling unmap() so that any
1713
// operation along with unmap() won't touch inaccessible pages.
1714
MemMapT RawRingBufferMap = RB->RawRingBufferMap;
1715
RawRingBufferMap.unmap(RawRingBufferMap.getBase(),
1716
RawRingBufferMap.getCapacity());
1717
atomic_store(&RingBufferAddress, 0, memory_order_release);
1718
}
1719
1720
static constexpr size_t ringBufferSizeInBytes(u32 RingBufferElements) {
1721
return sizeof(AllocationRingBuffer) +
1722
RingBufferElements * sizeof(typename AllocationRingBuffer::Entry);
1723
}
1724
1725
static constexpr size_t ringBufferElementsFromBytes(size_t Bytes) {
1726
if (Bytes < sizeof(AllocationRingBuffer)) {
1727
return 0;
1728
}
1729
return (Bytes - sizeof(AllocationRingBuffer)) /
1730
sizeof(typename AllocationRingBuffer::Entry);
1731
}
1732
};
1733
1734
} // namespace scudo
1735
1736
#endif // SCUDO_COMBINED_H_
1737
1738