Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/compiler-rt/lib/scudo/standalone/primary32.h
35292 views
1
//===-- primary32.h ---------------------------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#ifndef SCUDO_PRIMARY32_H_
10
#define SCUDO_PRIMARY32_H_
11
12
#include "allocator_common.h"
13
#include "bytemap.h"
14
#include "common.h"
15
#include "list.h"
16
#include "local_cache.h"
17
#include "options.h"
18
#include "release.h"
19
#include "report.h"
20
#include "stats.h"
21
#include "string_utils.h"
22
#include "thread_annotations.h"
23
24
namespace scudo {
25
26
// SizeClassAllocator32 is an allocator for 32 or 64-bit address space.
27
//
28
// It maps Regions of 2^RegionSizeLog bytes aligned on a 2^RegionSizeLog bytes
29
// boundary, and keeps a bytemap of the mappable address space to track the size
30
// class they are associated with.
31
//
32
// Mapped regions are split into equally sized Blocks according to the size
33
// class they belong to, and the associated pointers are shuffled to prevent any
34
// predictable address pattern (the predictability increases with the block
35
// size).
36
//
37
// Regions for size class 0 are special and used to hold TransferBatches, which
38
// allow to transfer arrays of pointers from the global size class freelist to
39
// the thread specific freelist for said class, and back.
40
//
41
// Memory used by this allocator is never unmapped but can be partially
42
// reclaimed if the platform allows for it.
43
44
template <typename Config> class SizeClassAllocator32 {
45
public:
46
typedef typename Config::CompactPtrT CompactPtrT;
47
typedef typename Config::SizeClassMap SizeClassMap;
48
static const uptr GroupSizeLog = Config::getGroupSizeLog();
49
// The bytemap can only track UINT8_MAX - 1 classes.
50
static_assert(SizeClassMap::LargestClassId <= (UINT8_MAX - 1), "");
51
// Regions should be large enough to hold the largest Block.
52
static_assert((1UL << Config::getRegionSizeLog()) >= SizeClassMap::MaxSize,
53
"");
54
typedef SizeClassAllocator32<Config> ThisT;
55
typedef SizeClassAllocatorLocalCache<ThisT> CacheT;
56
typedef TransferBatch<ThisT> TransferBatchT;
57
typedef BatchGroup<ThisT> BatchGroupT;
58
59
static_assert(sizeof(BatchGroupT) <= sizeof(TransferBatchT),
60
"BatchGroupT uses the same class size as TransferBatchT");
61
62
static uptr getSizeByClassId(uptr ClassId) {
63
return (ClassId == SizeClassMap::BatchClassId)
64
? sizeof(TransferBatchT)
65
: SizeClassMap::getSizeByClassId(ClassId);
66
}
67
68
static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; }
69
70
void init(s32 ReleaseToOsInterval) NO_THREAD_SAFETY_ANALYSIS {
71
if (SCUDO_FUCHSIA)
72
reportError("SizeClassAllocator32 is not supported on Fuchsia");
73
74
if (SCUDO_TRUSTY)
75
reportError("SizeClassAllocator32 is not supported on Trusty");
76
77
DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT)));
78
PossibleRegions.init();
79
u32 Seed;
80
const u64 Time = getMonotonicTimeFast();
81
if (!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed)))
82
Seed = static_cast<u32>(
83
Time ^ (reinterpret_cast<uptr>(SizeClassInfoArray) >> 6));
84
for (uptr I = 0; I < NumClasses; I++) {
85
SizeClassInfo *Sci = getSizeClassInfo(I);
86
Sci->RandState = getRandomU32(&Seed);
87
// Sci->MaxRegionIndex is already initialized to 0.
88
Sci->MinRegionIndex = NumRegions;
89
Sci->ReleaseInfo.LastReleaseAtNs = Time;
90
}
91
92
// The default value in the primary config has the higher priority.
93
if (Config::getDefaultReleaseToOsIntervalMs() != INT32_MIN)
94
ReleaseToOsInterval = Config::getDefaultReleaseToOsIntervalMs();
95
setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
96
}
97
98
void unmapTestOnly() {
99
{
100
ScopedLock L(RegionsStashMutex);
101
while (NumberOfStashedRegions > 0) {
102
unmap(reinterpret_cast<void *>(RegionsStash[--NumberOfStashedRegions]),
103
RegionSize);
104
}
105
}
106
107
uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0;
108
for (uptr I = 0; I < NumClasses; I++) {
109
SizeClassInfo *Sci = getSizeClassInfo(I);
110
ScopedLock L(Sci->Mutex);
111
if (Sci->MinRegionIndex < MinRegionIndex)
112
MinRegionIndex = Sci->MinRegionIndex;
113
if (Sci->MaxRegionIndex > MaxRegionIndex)
114
MaxRegionIndex = Sci->MaxRegionIndex;
115
*Sci = {};
116
}
117
118
ScopedLock L(ByteMapMutex);
119
for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++)
120
if (PossibleRegions[I])
121
unmap(reinterpret_cast<void *>(I * RegionSize), RegionSize);
122
PossibleRegions.unmapTestOnly();
123
}
124
125
// When all blocks are freed, it has to be the same size as `AllocatedUser`.
126
void verifyAllBlocksAreReleasedTestOnly() {
127
// `BatchGroup` and `TransferBatch` also use the blocks from BatchClass.
128
uptr BatchClassUsedInFreeLists = 0;
129
for (uptr I = 0; I < NumClasses; I++) {
130
// We have to count BatchClassUsedInFreeLists in other regions first.
131
if (I == SizeClassMap::BatchClassId)
132
continue;
133
SizeClassInfo *Sci = getSizeClassInfo(I);
134
ScopedLock L1(Sci->Mutex);
135
uptr TotalBlocks = 0;
136
for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) {
137
// `BG::Batches` are `TransferBatches`. +1 for `BatchGroup`.
138
BatchClassUsedInFreeLists += BG.Batches.size() + 1;
139
for (const auto &It : BG.Batches)
140
TotalBlocks += It.getCount();
141
}
142
143
const uptr BlockSize = getSizeByClassId(I);
144
DCHECK_EQ(TotalBlocks, Sci->AllocatedUser / BlockSize);
145
DCHECK_EQ(Sci->FreeListInfo.PushedBlocks, Sci->FreeListInfo.PoppedBlocks);
146
}
147
148
SizeClassInfo *Sci = getSizeClassInfo(SizeClassMap::BatchClassId);
149
ScopedLock L1(Sci->Mutex);
150
uptr TotalBlocks = 0;
151
for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) {
152
if (LIKELY(!BG.Batches.empty())) {
153
for (const auto &It : BG.Batches)
154
TotalBlocks += It.getCount();
155
} else {
156
// `BatchGroup` with empty freelist doesn't have `TransferBatch` record
157
// itself.
158
++TotalBlocks;
159
}
160
}
161
162
const uptr BlockSize = getSizeByClassId(SizeClassMap::BatchClassId);
163
DCHECK_EQ(TotalBlocks + BatchClassUsedInFreeLists,
164
Sci->AllocatedUser / BlockSize);
165
const uptr BlocksInUse =
166
Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
167
DCHECK_EQ(BlocksInUse, BatchClassUsedInFreeLists);
168
}
169
170
CompactPtrT compactPtr(UNUSED uptr ClassId, uptr Ptr) const {
171
return static_cast<CompactPtrT>(Ptr);
172
}
173
174
void *decompactPtr(UNUSED uptr ClassId, CompactPtrT CompactPtr) const {
175
return reinterpret_cast<void *>(static_cast<uptr>(CompactPtr));
176
}
177
178
uptr compactPtrGroupBase(CompactPtrT CompactPtr) {
179
const uptr Mask = (static_cast<uptr>(1) << GroupSizeLog) - 1;
180
return CompactPtr & ~Mask;
181
}
182
183
uptr decompactGroupBase(uptr CompactPtrGroupBase) {
184
return CompactPtrGroupBase;
185
}
186
187
ALWAYS_INLINE static bool isSmallBlock(uptr BlockSize) {
188
const uptr PageSize = getPageSizeCached();
189
return BlockSize < PageSize / 16U;
190
}
191
192
ALWAYS_INLINE static bool isLargeBlock(uptr BlockSize) {
193
const uptr PageSize = getPageSizeCached();
194
return BlockSize > PageSize;
195
}
196
197
u16 popBlocks(CacheT *C, uptr ClassId, CompactPtrT *ToArray,
198
const u16 MaxBlockCount) {
199
DCHECK_LT(ClassId, NumClasses);
200
SizeClassInfo *Sci = getSizeClassInfo(ClassId);
201
ScopedLock L(Sci->Mutex);
202
203
u16 PopCount = popBlocksImpl(C, ClassId, Sci, ToArray, MaxBlockCount);
204
if (UNLIKELY(PopCount == 0)) {
205
if (UNLIKELY(!populateFreeList(C, ClassId, Sci)))
206
return 0U;
207
PopCount = popBlocksImpl(C, ClassId, Sci, ToArray, MaxBlockCount);
208
DCHECK_NE(PopCount, 0U);
209
}
210
211
return PopCount;
212
}
213
214
// Push the array of free blocks to the designated batch group.
215
void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) {
216
DCHECK_LT(ClassId, NumClasses);
217
DCHECK_GT(Size, 0);
218
219
SizeClassInfo *Sci = getSizeClassInfo(ClassId);
220
if (ClassId == SizeClassMap::BatchClassId) {
221
ScopedLock L(Sci->Mutex);
222
pushBatchClassBlocks(Sci, Array, Size);
223
return;
224
}
225
226
// TODO(chiahungduan): Consider not doing grouping if the group size is not
227
// greater than the block size with a certain scale.
228
229
// Sort the blocks so that blocks belonging to the same group can be pushed
230
// together.
231
bool SameGroup = true;
232
for (u32 I = 1; I < Size; ++I) {
233
if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I]))
234
SameGroup = false;
235
CompactPtrT Cur = Array[I];
236
u32 J = I;
237
while (J > 0 &&
238
compactPtrGroupBase(Cur) < compactPtrGroupBase(Array[J - 1])) {
239
Array[J] = Array[J - 1];
240
--J;
241
}
242
Array[J] = Cur;
243
}
244
245
ScopedLock L(Sci->Mutex);
246
pushBlocksImpl(C, ClassId, Sci, Array, Size, SameGroup);
247
}
248
249
void disable() NO_THREAD_SAFETY_ANALYSIS {
250
// The BatchClassId must be locked last since other classes can use it.
251
for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) {
252
if (static_cast<uptr>(I) == SizeClassMap::BatchClassId)
253
continue;
254
getSizeClassInfo(static_cast<uptr>(I))->Mutex.lock();
255
}
256
getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.lock();
257
RegionsStashMutex.lock();
258
ByteMapMutex.lock();
259
}
260
261
void enable() NO_THREAD_SAFETY_ANALYSIS {
262
ByteMapMutex.unlock();
263
RegionsStashMutex.unlock();
264
getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.unlock();
265
for (uptr I = 0; I < NumClasses; I++) {
266
if (I == SizeClassMap::BatchClassId)
267
continue;
268
getSizeClassInfo(I)->Mutex.unlock();
269
}
270
}
271
272
template <typename F> void iterateOverBlocks(F Callback) {
273
uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0;
274
for (uptr I = 0; I < NumClasses; I++) {
275
SizeClassInfo *Sci = getSizeClassInfo(I);
276
// TODO: The call of `iterateOverBlocks` requires disabling
277
// SizeClassAllocator32. We may consider locking each region on demand
278
// only.
279
Sci->Mutex.assertHeld();
280
if (Sci->MinRegionIndex < MinRegionIndex)
281
MinRegionIndex = Sci->MinRegionIndex;
282
if (Sci->MaxRegionIndex > MaxRegionIndex)
283
MaxRegionIndex = Sci->MaxRegionIndex;
284
}
285
286
// SizeClassAllocator32 is disabled, i.e., ByteMapMutex is held.
287
ByteMapMutex.assertHeld();
288
289
for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++) {
290
if (PossibleRegions[I] &&
291
(PossibleRegions[I] - 1U) != SizeClassMap::BatchClassId) {
292
const uptr BlockSize = getSizeByClassId(PossibleRegions[I] - 1U);
293
const uptr From = I * RegionSize;
294
const uptr To = From + (RegionSize / BlockSize) * BlockSize;
295
for (uptr Block = From; Block < To; Block += BlockSize)
296
Callback(Block);
297
}
298
}
299
}
300
301
void getStats(ScopedString *Str) {
302
// TODO(kostyak): get the RSS per region.
303
uptr TotalMapped = 0;
304
uptr PoppedBlocks = 0;
305
uptr PushedBlocks = 0;
306
for (uptr I = 0; I < NumClasses; I++) {
307
SizeClassInfo *Sci = getSizeClassInfo(I);
308
ScopedLock L(Sci->Mutex);
309
TotalMapped += Sci->AllocatedUser;
310
PoppedBlocks += Sci->FreeListInfo.PoppedBlocks;
311
PushedBlocks += Sci->FreeListInfo.PushedBlocks;
312
}
313
Str->append("Stats: SizeClassAllocator32: %zuM mapped in %zu allocations; "
314
"remains %zu\n",
315
TotalMapped >> 20, PoppedBlocks, PoppedBlocks - PushedBlocks);
316
for (uptr I = 0; I < NumClasses; I++) {
317
SizeClassInfo *Sci = getSizeClassInfo(I);
318
ScopedLock L(Sci->Mutex);
319
getStats(Str, I, Sci);
320
}
321
}
322
323
void getFragmentationInfo(ScopedString *Str) {
324
Str->append(
325
"Fragmentation Stats: SizeClassAllocator32: page size = %zu bytes\n",
326
getPageSizeCached());
327
328
for (uptr I = 1; I < NumClasses; I++) {
329
SizeClassInfo *Sci = getSizeClassInfo(I);
330
ScopedLock L(Sci->Mutex);
331
getSizeClassFragmentationInfo(Sci, I, Str);
332
}
333
}
334
335
bool setOption(Option O, sptr Value) {
336
if (O == Option::ReleaseInterval) {
337
const s32 Interval = Max(
338
Min(static_cast<s32>(Value), Config::getMaxReleaseToOsIntervalMs()),
339
Config::getMinReleaseToOsIntervalMs());
340
atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval);
341
return true;
342
}
343
// Not supported by the Primary, but not an error either.
344
return true;
345
}
346
347
uptr tryReleaseToOS(uptr ClassId, ReleaseToOS ReleaseType) {
348
SizeClassInfo *Sci = getSizeClassInfo(ClassId);
349
// TODO: Once we have separate locks like primary64, we may consider using
350
// tryLock() as well.
351
ScopedLock L(Sci->Mutex);
352
return releaseToOSMaybe(Sci, ClassId, ReleaseType);
353
}
354
355
uptr releaseToOS(ReleaseToOS ReleaseType) {
356
uptr TotalReleasedBytes = 0;
357
for (uptr I = 0; I < NumClasses; I++) {
358
if (I == SizeClassMap::BatchClassId)
359
continue;
360
SizeClassInfo *Sci = getSizeClassInfo(I);
361
ScopedLock L(Sci->Mutex);
362
TotalReleasedBytes += releaseToOSMaybe(Sci, I, ReleaseType);
363
}
364
return TotalReleasedBytes;
365
}
366
367
const char *getRegionInfoArrayAddress() const { return nullptr; }
368
static uptr getRegionInfoArraySize() { return 0; }
369
370
static BlockInfo findNearestBlock(UNUSED const char *RegionInfoData,
371
UNUSED uptr Ptr) {
372
return {};
373
}
374
375
AtomicOptions Options;
376
377
private:
378
static const uptr NumClasses = SizeClassMap::NumClasses;
379
static const uptr RegionSize = 1UL << Config::getRegionSizeLog();
380
static const uptr NumRegions = SCUDO_MMAP_RANGE_SIZE >>
381
Config::getRegionSizeLog();
382
static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U;
383
typedef FlatByteMap<NumRegions> ByteMap;
384
385
struct ReleaseToOsInfo {
386
uptr BytesInFreeListAtLastCheckpoint;
387
uptr RangesReleased;
388
uptr LastReleasedBytes;
389
u64 LastReleaseAtNs;
390
};
391
392
struct BlocksInfo {
393
SinglyLinkedList<BatchGroupT> BlockList = {};
394
uptr PoppedBlocks = 0;
395
uptr PushedBlocks = 0;
396
};
397
398
struct alignas(SCUDO_CACHE_LINE_SIZE) SizeClassInfo {
399
HybridMutex Mutex;
400
BlocksInfo FreeListInfo GUARDED_BY(Mutex);
401
uptr CurrentRegion GUARDED_BY(Mutex);
402
uptr CurrentRegionAllocated GUARDED_BY(Mutex);
403
u32 RandState;
404
uptr AllocatedUser GUARDED_BY(Mutex);
405
// Lowest & highest region index allocated for this size class, to avoid
406
// looping through the whole NumRegions.
407
uptr MinRegionIndex GUARDED_BY(Mutex);
408
uptr MaxRegionIndex GUARDED_BY(Mutex);
409
ReleaseToOsInfo ReleaseInfo GUARDED_BY(Mutex);
410
};
411
static_assert(sizeof(SizeClassInfo) % SCUDO_CACHE_LINE_SIZE == 0, "");
412
413
uptr computeRegionId(uptr Mem) {
414
const uptr Id = Mem >> Config::getRegionSizeLog();
415
CHECK_LT(Id, NumRegions);
416
return Id;
417
}
418
419
uptr allocateRegionSlow() {
420
uptr MapSize = 2 * RegionSize;
421
const uptr MapBase = reinterpret_cast<uptr>(
422
map(nullptr, MapSize, "scudo:primary", MAP_ALLOWNOMEM));
423
if (!MapBase)
424
return 0;
425
const uptr MapEnd = MapBase + MapSize;
426
uptr Region = MapBase;
427
if (isAligned(Region, RegionSize)) {
428
ScopedLock L(RegionsStashMutex);
429
if (NumberOfStashedRegions < MaxStashedRegions)
430
RegionsStash[NumberOfStashedRegions++] = MapBase + RegionSize;
431
else
432
MapSize = RegionSize;
433
} else {
434
Region = roundUp(MapBase, RegionSize);
435
unmap(reinterpret_cast<void *>(MapBase), Region - MapBase);
436
MapSize = RegionSize;
437
}
438
const uptr End = Region + MapSize;
439
if (End != MapEnd)
440
unmap(reinterpret_cast<void *>(End), MapEnd - End);
441
442
DCHECK_EQ(Region % RegionSize, 0U);
443
static_assert(Config::getRegionSizeLog() == GroupSizeLog,
444
"Memory group should be the same size as Region");
445
446
return Region;
447
}
448
449
uptr allocateRegion(SizeClassInfo *Sci, uptr ClassId) REQUIRES(Sci->Mutex) {
450
DCHECK_LT(ClassId, NumClasses);
451
uptr Region = 0;
452
{
453
ScopedLock L(RegionsStashMutex);
454
if (NumberOfStashedRegions > 0)
455
Region = RegionsStash[--NumberOfStashedRegions];
456
}
457
if (!Region)
458
Region = allocateRegionSlow();
459
if (LIKELY(Region)) {
460
// Sci->Mutex is held by the caller, updating the Min/Max is safe.
461
const uptr RegionIndex = computeRegionId(Region);
462
if (RegionIndex < Sci->MinRegionIndex)
463
Sci->MinRegionIndex = RegionIndex;
464
if (RegionIndex > Sci->MaxRegionIndex)
465
Sci->MaxRegionIndex = RegionIndex;
466
ScopedLock L(ByteMapMutex);
467
PossibleRegions.set(RegionIndex, static_cast<u8>(ClassId + 1U));
468
}
469
return Region;
470
}
471
472
SizeClassInfo *getSizeClassInfo(uptr ClassId) {
473
DCHECK_LT(ClassId, NumClasses);
474
return &SizeClassInfoArray[ClassId];
475
}
476
477
void pushBatchClassBlocks(SizeClassInfo *Sci, CompactPtrT *Array, u32 Size)
478
REQUIRES(Sci->Mutex) {
479
DCHECK_EQ(Sci, getSizeClassInfo(SizeClassMap::BatchClassId));
480
481
// Free blocks are recorded by TransferBatch in freelist for all
482
// size-classes. In addition, TransferBatch is allocated from BatchClassId.
483
// In order not to use additional block to record the free blocks in
484
// BatchClassId, they are self-contained. I.e., A TransferBatch records the
485
// block address of itself. See the figure below:
486
//
487
// TransferBatch at 0xABCD
488
// +----------------------------+
489
// | Free blocks' addr |
490
// | +------+------+------+ |
491
// | |0xABCD|... |... | |
492
// | +------+------+------+ |
493
// +----------------------------+
494
//
495
// When we allocate all the free blocks in the TransferBatch, the block used
496
// by TransferBatch is also free for use. We don't need to recycle the
497
// TransferBatch. Note that the correctness is maintained by the invariant,
498
//
499
// Each popBlocks() request returns the entire TransferBatch. Returning
500
// part of the blocks in a TransferBatch is invalid.
501
//
502
// This ensures that TransferBatch won't leak the address itself while it's
503
// still holding other valid data.
504
//
505
// Besides, BatchGroup is also allocated from BatchClassId and has its
506
// address recorded in the TransferBatch too. To maintain the correctness,
507
//
508
// The address of BatchGroup is always recorded in the last TransferBatch
509
// in the freelist (also imply that the freelist should only be
510
// updated with push_front). Once the last TransferBatch is popped,
511
// the block used by BatchGroup is also free for use.
512
//
513
// With this approach, the blocks used by BatchGroup and TransferBatch are
514
// reusable and don't need additional space for them.
515
516
Sci->FreeListInfo.PushedBlocks += Size;
517
BatchGroupT *BG = Sci->FreeListInfo.BlockList.front();
518
519
if (BG == nullptr) {
520
// Construct `BatchGroup` on the last element.
521
BG = reinterpret_cast<BatchGroupT *>(
522
decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
523
--Size;
524
BG->Batches.clear();
525
// BatchClass hasn't enabled memory group. Use `0` to indicate there's no
526
// memory group here.
527
BG->CompactPtrGroupBase = 0;
528
// `BG` is also the block of BatchClassId. Note that this is different
529
// from `CreateGroup` in `pushBlocksImpl`
530
BG->PushedBlocks = 1;
531
BG->BytesInBGAtLastCheckpoint = 0;
532
BG->MaxCachedPerBatch =
533
CacheT::getMaxCached(getSizeByClassId(SizeClassMap::BatchClassId));
534
535
Sci->FreeListInfo.BlockList.push_front(BG);
536
}
537
538
if (UNLIKELY(Size == 0))
539
return;
540
541
// This happens under 2 cases.
542
// 1. just allocated a new `BatchGroup`.
543
// 2. Only 1 block is pushed when the freelist is empty.
544
if (BG->Batches.empty()) {
545
// Construct the `TransferBatch` on the last element.
546
TransferBatchT *TB = reinterpret_cast<TransferBatchT *>(
547
decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
548
TB->clear();
549
// As mentioned above, addresses of `TransferBatch` and `BatchGroup` are
550
// recorded in the TransferBatch.
551
TB->add(Array[Size - 1]);
552
TB->add(
553
compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(BG)));
554
--Size;
555
DCHECK_EQ(BG->PushedBlocks, 1U);
556
// `TB` is also the block of BatchClassId.
557
BG->PushedBlocks += 1;
558
BG->Batches.push_front(TB);
559
}
560
561
TransferBatchT *CurBatch = BG->Batches.front();
562
DCHECK_NE(CurBatch, nullptr);
563
564
for (u32 I = 0; I < Size;) {
565
u16 UnusedSlots =
566
static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
567
if (UnusedSlots == 0) {
568
CurBatch = reinterpret_cast<TransferBatchT *>(
569
decompactPtr(SizeClassMap::BatchClassId, Array[I]));
570
CurBatch->clear();
571
// Self-contained
572
CurBatch->add(Array[I]);
573
++I;
574
// TODO(chiahungduan): Avoid the use of push_back() in `Batches` of
575
// BatchClassId.
576
BG->Batches.push_front(CurBatch);
577
UnusedSlots = static_cast<u16>(BG->MaxCachedPerBatch - 1);
578
}
579
// `UnusedSlots` is u16 so the result will be also fit in u16.
580
const u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
581
CurBatch->appendFromArray(&Array[I], AppendSize);
582
I += AppendSize;
583
}
584
585
BG->PushedBlocks += Size;
586
}
587
// Push the blocks to their batch group. The layout will be like,
588
//
589
// FreeListInfo.BlockList - > BG -> BG -> BG
590
// | | |
591
// v v v
592
// TB TB TB
593
// |
594
// v
595
// TB
596
//
597
// Each BlockGroup(BG) will associate with unique group id and the free blocks
598
// are managed by a list of TransferBatch(TB). To reduce the time of inserting
599
// blocks, BGs are sorted and the input `Array` are supposed to be sorted so
600
// that we can get better performance of maintaining sorted property.
601
// Use `SameGroup=true` to indicate that all blocks in the array are from the
602
// same group then we will skip checking the group id of each block.
603
//
604
// The region mutex needs to be held while calling this method.
605
void pushBlocksImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci,
606
CompactPtrT *Array, u32 Size, bool SameGroup = false)
607
REQUIRES(Sci->Mutex) {
608
DCHECK_NE(ClassId, SizeClassMap::BatchClassId);
609
DCHECK_GT(Size, 0U);
610
611
auto CreateGroup = [&](uptr CompactPtrGroupBase) {
612
BatchGroupT *BG =
613
reinterpret_cast<BatchGroupT *>(C->getBatchClassBlock());
614
BG->Batches.clear();
615
TransferBatchT *TB =
616
reinterpret_cast<TransferBatchT *>(C->getBatchClassBlock());
617
TB->clear();
618
619
BG->CompactPtrGroupBase = CompactPtrGroupBase;
620
BG->Batches.push_front(TB);
621
BG->PushedBlocks = 0;
622
BG->BytesInBGAtLastCheckpoint = 0;
623
BG->MaxCachedPerBatch = TransferBatchT::MaxNumCached;
624
625
return BG;
626
};
627
628
auto InsertBlocks = [&](BatchGroupT *BG, CompactPtrT *Array, u32 Size) {
629
SinglyLinkedList<TransferBatchT> &Batches = BG->Batches;
630
TransferBatchT *CurBatch = Batches.front();
631
DCHECK_NE(CurBatch, nullptr);
632
633
for (u32 I = 0; I < Size;) {
634
DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount());
635
u16 UnusedSlots =
636
static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
637
if (UnusedSlots == 0) {
638
CurBatch =
639
reinterpret_cast<TransferBatchT *>(C->getBatchClassBlock());
640
CurBatch->clear();
641
Batches.push_front(CurBatch);
642
UnusedSlots = BG->MaxCachedPerBatch;
643
}
644
// `UnusedSlots` is u16 so the result will be also fit in u16.
645
u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
646
CurBatch->appendFromArray(&Array[I], AppendSize);
647
I += AppendSize;
648
}
649
650
BG->PushedBlocks += Size;
651
};
652
653
Sci->FreeListInfo.PushedBlocks += Size;
654
BatchGroupT *Cur = Sci->FreeListInfo.BlockList.front();
655
656
// In the following, `Cur` always points to the BatchGroup for blocks that
657
// will be pushed next. `Prev` is the element right before `Cur`.
658
BatchGroupT *Prev = nullptr;
659
660
while (Cur != nullptr &&
661
compactPtrGroupBase(Array[0]) > Cur->CompactPtrGroupBase) {
662
Prev = Cur;
663
Cur = Cur->Next;
664
}
665
666
if (Cur == nullptr ||
667
compactPtrGroupBase(Array[0]) != Cur->CompactPtrGroupBase) {
668
Cur = CreateGroup(compactPtrGroupBase(Array[0]));
669
if (Prev == nullptr)
670
Sci->FreeListInfo.BlockList.push_front(Cur);
671
else
672
Sci->FreeListInfo.BlockList.insert(Prev, Cur);
673
}
674
675
// All the blocks are from the same group, just push without checking group
676
// id.
677
if (SameGroup) {
678
for (u32 I = 0; I < Size; ++I)
679
DCHECK_EQ(compactPtrGroupBase(Array[I]), Cur->CompactPtrGroupBase);
680
681
InsertBlocks(Cur, Array, Size);
682
return;
683
}
684
685
// The blocks are sorted by group id. Determine the segment of group and
686
// push them to their group together.
687
u32 Count = 1;
688
for (u32 I = 1; I < Size; ++I) {
689
if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I])) {
690
DCHECK_EQ(compactPtrGroupBase(Array[I - 1]), Cur->CompactPtrGroupBase);
691
InsertBlocks(Cur, Array + I - Count, Count);
692
693
while (Cur != nullptr &&
694
compactPtrGroupBase(Array[I]) > Cur->CompactPtrGroupBase) {
695
Prev = Cur;
696
Cur = Cur->Next;
697
}
698
699
if (Cur == nullptr ||
700
compactPtrGroupBase(Array[I]) != Cur->CompactPtrGroupBase) {
701
Cur = CreateGroup(compactPtrGroupBase(Array[I]));
702
DCHECK_NE(Prev, nullptr);
703
Sci->FreeListInfo.BlockList.insert(Prev, Cur);
704
}
705
706
Count = 1;
707
} else {
708
++Count;
709
}
710
}
711
712
InsertBlocks(Cur, Array + Size - Count, Count);
713
}
714
715
u16 popBlocksImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci,
716
CompactPtrT *ToArray, const u16 MaxBlockCount)
717
REQUIRES(Sci->Mutex) {
718
if (Sci->FreeListInfo.BlockList.empty())
719
return 0U;
720
721
SinglyLinkedList<TransferBatchT> &Batches =
722
Sci->FreeListInfo.BlockList.front()->Batches;
723
724
if (Batches.empty()) {
725
DCHECK_EQ(ClassId, SizeClassMap::BatchClassId);
726
BatchGroupT *BG = Sci->FreeListInfo.BlockList.front();
727
Sci->FreeListInfo.BlockList.pop_front();
728
729
// Block used by `BatchGroup` is from BatchClassId. Turn the block into
730
// `TransferBatch` with single block.
731
TransferBatchT *TB = reinterpret_cast<TransferBatchT *>(BG);
732
ToArray[0] =
733
compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(TB));
734
Sci->FreeListInfo.PoppedBlocks += 1;
735
return 1U;
736
}
737
738
// So far, instead of always filling the blocks to `MaxBlockCount`, we only
739
// examine single `TransferBatch` to minimize the time spent on the primary
740
// allocator. Besides, the sizes of `TransferBatch` and
741
// `CacheT::getMaxCached()` may also impact the time spent on accessing the
742
// primary allocator.
743
// TODO(chiahungduan): Evaluate if we want to always prepare `MaxBlockCount`
744
// blocks and/or adjust the size of `TransferBatch` according to
745
// `CacheT::getMaxCached()`.
746
TransferBatchT *B = Batches.front();
747
DCHECK_NE(B, nullptr);
748
DCHECK_GT(B->getCount(), 0U);
749
750
// BachClassId should always take all blocks in the TransferBatch. Read the
751
// comment in `pushBatchClassBlocks()` for more details.
752
const u16 PopCount = ClassId == SizeClassMap::BatchClassId
753
? B->getCount()
754
: Min(MaxBlockCount, B->getCount());
755
B->moveNToArray(ToArray, PopCount);
756
757
// TODO(chiahungduan): The deallocation of unused BatchClassId blocks can be
758
// done without holding `Mutex`.
759
if (B->empty()) {
760
Batches.pop_front();
761
// `TransferBatch` of BatchClassId is self-contained, no need to
762
// deallocate. Read the comment in `pushBatchClassBlocks()` for more
763
// details.
764
if (ClassId != SizeClassMap::BatchClassId)
765
C->deallocate(SizeClassMap::BatchClassId, B);
766
767
if (Batches.empty()) {
768
BatchGroupT *BG = Sci->FreeListInfo.BlockList.front();
769
Sci->FreeListInfo.BlockList.pop_front();
770
771
// We don't keep BatchGroup with zero blocks to avoid empty-checking
772
// while allocating. Note that block used for constructing BatchGroup is
773
// recorded as free blocks in the last element of BatchGroup::Batches.
774
// Which means, once we pop the last TransferBatch, the block is
775
// implicitly deallocated.
776
if (ClassId != SizeClassMap::BatchClassId)
777
C->deallocate(SizeClassMap::BatchClassId, BG);
778
}
779
}
780
781
Sci->FreeListInfo.PoppedBlocks += PopCount;
782
return PopCount;
783
}
784
785
NOINLINE bool populateFreeList(CacheT *C, uptr ClassId, SizeClassInfo *Sci)
786
REQUIRES(Sci->Mutex) {
787
uptr Region;
788
uptr Offset;
789
// If the size-class currently has a region associated to it, use it. The
790
// newly created blocks will be located after the currently allocated memory
791
// for that region (up to RegionSize). Otherwise, create a new region, where
792
// the new blocks will be carved from the beginning.
793
if (Sci->CurrentRegion) {
794
Region = Sci->CurrentRegion;
795
DCHECK_GT(Sci->CurrentRegionAllocated, 0U);
796
Offset = Sci->CurrentRegionAllocated;
797
} else {
798
DCHECK_EQ(Sci->CurrentRegionAllocated, 0U);
799
Region = allocateRegion(Sci, ClassId);
800
if (UNLIKELY(!Region))
801
return false;
802
C->getStats().add(StatMapped, RegionSize);
803
Sci->CurrentRegion = Region;
804
Offset = 0;
805
}
806
807
const uptr Size = getSizeByClassId(ClassId);
808
const u16 MaxCount = CacheT::getMaxCached(Size);
809
DCHECK_GT(MaxCount, 0U);
810
// The maximum number of blocks we should carve in the region is dictated
811
// by the maximum number of batches we want to fill, and the amount of
812
// memory left in the current region (we use the lowest of the two). This
813
// will not be 0 as we ensure that a region can at least hold one block (via
814
// static_assert and at the end of this function).
815
const u32 NumberOfBlocks =
816
Min(MaxNumBatches * MaxCount,
817
static_cast<u32>((RegionSize - Offset) / Size));
818
DCHECK_GT(NumberOfBlocks, 0U);
819
820
constexpr u32 ShuffleArraySize =
821
MaxNumBatches * TransferBatchT::MaxNumCached;
822
// Fill the transfer batches and put them in the size-class freelist. We
823
// need to randomize the blocks for security purposes, so we first fill a
824
// local array that we then shuffle before populating the batches.
825
CompactPtrT ShuffleArray[ShuffleArraySize];
826
DCHECK_LE(NumberOfBlocks, ShuffleArraySize);
827
828
uptr P = Region + Offset;
829
for (u32 I = 0; I < NumberOfBlocks; I++, P += Size)
830
ShuffleArray[I] = reinterpret_cast<CompactPtrT>(P);
831
832
if (ClassId != SizeClassMap::BatchClassId) {
833
u32 N = 1;
834
uptr CurGroup = compactPtrGroupBase(ShuffleArray[0]);
835
for (u32 I = 1; I < NumberOfBlocks; I++) {
836
if (UNLIKELY(compactPtrGroupBase(ShuffleArray[I]) != CurGroup)) {
837
shuffle(ShuffleArray + I - N, N, &Sci->RandState);
838
pushBlocksImpl(C, ClassId, Sci, ShuffleArray + I - N, N,
839
/*SameGroup=*/true);
840
N = 1;
841
CurGroup = compactPtrGroupBase(ShuffleArray[I]);
842
} else {
843
++N;
844
}
845
}
846
847
shuffle(ShuffleArray + NumberOfBlocks - N, N, &Sci->RandState);
848
pushBlocksImpl(C, ClassId, Sci, &ShuffleArray[NumberOfBlocks - N], N,
849
/*SameGroup=*/true);
850
} else {
851
pushBatchClassBlocks(Sci, ShuffleArray, NumberOfBlocks);
852
}
853
854
// Note that `PushedBlocks` and `PoppedBlocks` are supposed to only record
855
// the requests from `PushBlocks` and `PopBatch` which are external
856
// interfaces. `populateFreeList` is the internal interface so we should set
857
// the values back to avoid incorrectly setting the stats.
858
Sci->FreeListInfo.PushedBlocks -= NumberOfBlocks;
859
860
const uptr AllocatedUser = Size * NumberOfBlocks;
861
C->getStats().add(StatFree, AllocatedUser);
862
DCHECK_LE(Sci->CurrentRegionAllocated + AllocatedUser, RegionSize);
863
// If there is not enough room in the region currently associated to fit
864
// more blocks, we deassociate the region by resetting CurrentRegion and
865
// CurrentRegionAllocated. Otherwise, update the allocated amount.
866
if (RegionSize - (Sci->CurrentRegionAllocated + AllocatedUser) < Size) {
867
Sci->CurrentRegion = 0;
868
Sci->CurrentRegionAllocated = 0;
869
} else {
870
Sci->CurrentRegionAllocated += AllocatedUser;
871
}
872
Sci->AllocatedUser += AllocatedUser;
873
874
return true;
875
}
876
877
void getStats(ScopedString *Str, uptr ClassId, SizeClassInfo *Sci)
878
REQUIRES(Sci->Mutex) {
879
if (Sci->AllocatedUser == 0)
880
return;
881
const uptr BlockSize = getSizeByClassId(ClassId);
882
const uptr InUse =
883
Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
884
const uptr BytesInFreeList = Sci->AllocatedUser - InUse * BlockSize;
885
uptr PushedBytesDelta = 0;
886
if (BytesInFreeList >= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint) {
887
PushedBytesDelta =
888
BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
889
}
890
const uptr AvailableChunks = Sci->AllocatedUser / BlockSize;
891
Str->append(" %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu "
892
"inuse: %6zu avail: %6zu releases: %6zu last released: %6zuK "
893
"latest pushed bytes: %6zuK\n",
894
ClassId, getSizeByClassId(ClassId), Sci->AllocatedUser >> 10,
895
Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks,
896
InUse, AvailableChunks, Sci->ReleaseInfo.RangesReleased,
897
Sci->ReleaseInfo.LastReleasedBytes >> 10,
898
PushedBytesDelta >> 10);
899
}
900
901
void getSizeClassFragmentationInfo(SizeClassInfo *Sci, uptr ClassId,
902
ScopedString *Str) REQUIRES(Sci->Mutex) {
903
const uptr BlockSize = getSizeByClassId(ClassId);
904
const uptr First = Sci->MinRegionIndex;
905
const uptr Last = Sci->MaxRegionIndex;
906
const uptr Base = First * RegionSize;
907
const uptr NumberOfRegions = Last - First + 1U;
908
auto SkipRegion = [this, First, ClassId](uptr RegionIndex) {
909
ScopedLock L(ByteMapMutex);
910
return (PossibleRegions[First + RegionIndex] - 1U) != ClassId;
911
};
912
913
FragmentationRecorder Recorder;
914
if (!Sci->FreeListInfo.BlockList.empty()) {
915
PageReleaseContext Context =
916
markFreeBlocks(Sci, ClassId, BlockSize, Base, NumberOfRegions,
917
ReleaseToOS::ForceAll);
918
releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
919
}
920
921
const uptr PageSize = getPageSizeCached();
922
const uptr TotalBlocks = Sci->AllocatedUser / BlockSize;
923
const uptr InUseBlocks =
924
Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
925
uptr AllocatedPagesCount = 0;
926
if (TotalBlocks != 0U) {
927
for (uptr I = 0; I < NumberOfRegions; ++I) {
928
if (SkipRegion(I))
929
continue;
930
AllocatedPagesCount += RegionSize / PageSize;
931
}
932
933
DCHECK_NE(AllocatedPagesCount, 0U);
934
}
935
936
DCHECK_GE(AllocatedPagesCount, Recorder.getReleasedPagesCount());
937
const uptr InUsePages =
938
AllocatedPagesCount - Recorder.getReleasedPagesCount();
939
const uptr InUseBytes = InUsePages * PageSize;
940
941
uptr Integral;
942
uptr Fractional;
943
computePercentage(BlockSize * InUseBlocks, InUsePages * PageSize, &Integral,
944
&Fractional);
945
Str->append(" %02zu (%6zu): inuse/total blocks: %6zu/%6zu inuse/total "
946
"pages: %6zu/%6zu inuse bytes: %6zuK util: %3zu.%02zu%%\n",
947
ClassId, BlockSize, InUseBlocks, TotalBlocks, InUsePages,
948
AllocatedPagesCount, InUseBytes >> 10, Integral, Fractional);
949
}
950
951
NOINLINE uptr releaseToOSMaybe(SizeClassInfo *Sci, uptr ClassId,
952
ReleaseToOS ReleaseType = ReleaseToOS::Normal)
953
REQUIRES(Sci->Mutex) {
954
const uptr BlockSize = getSizeByClassId(ClassId);
955
956
DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks);
957
const uptr BytesInFreeList =
958
Sci->AllocatedUser -
959
(Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks) *
960
BlockSize;
961
962
if (UNLIKELY(BytesInFreeList == 0))
963
return 0;
964
965
// ====================================================================== //
966
// 1. Check if we have enough free blocks and if it's worth doing a page
967
// release.
968
// ====================================================================== //
969
if (ReleaseType != ReleaseToOS::ForceAll &&
970
!hasChanceToReleasePages(Sci, BlockSize, BytesInFreeList,
971
ReleaseType)) {
972
return 0;
973
}
974
975
const uptr First = Sci->MinRegionIndex;
976
const uptr Last = Sci->MaxRegionIndex;
977
DCHECK_NE(Last, 0U);
978
DCHECK_LE(First, Last);
979
uptr TotalReleasedBytes = 0;
980
const uptr Base = First * RegionSize;
981
const uptr NumberOfRegions = Last - First + 1U;
982
983
// ==================================================================== //
984
// 2. Mark the free blocks and we can tell which pages are in-use by
985
// querying `PageReleaseContext`.
986
// ==================================================================== //
987
PageReleaseContext Context = markFreeBlocks(Sci, ClassId, BlockSize, Base,
988
NumberOfRegions, ReleaseType);
989
if (!Context.hasBlockMarked())
990
return 0;
991
992
// ==================================================================== //
993
// 3. Release the unused physical pages back to the OS.
994
// ==================================================================== //
995
ReleaseRecorder Recorder(Base);
996
auto SkipRegion = [this, First, ClassId](uptr RegionIndex) {
997
ScopedLock L(ByteMapMutex);
998
return (PossibleRegions[First + RegionIndex] - 1U) != ClassId;
999
};
1000
releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
1001
1002
if (Recorder.getReleasedRangesCount() > 0) {
1003
Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
1004
Sci->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount();
1005
Sci->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes();
1006
TotalReleasedBytes += Sci->ReleaseInfo.LastReleasedBytes;
1007
}
1008
Sci->ReleaseInfo.LastReleaseAtNs = getMonotonicTimeFast();
1009
1010
return TotalReleasedBytes;
1011
}
1012
1013
bool hasChanceToReleasePages(SizeClassInfo *Sci, uptr BlockSize,
1014
uptr BytesInFreeList, ReleaseToOS ReleaseType)
1015
REQUIRES(Sci->Mutex) {
1016
DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks);
1017
const uptr PageSize = getPageSizeCached();
1018
1019
if (BytesInFreeList <= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint)
1020
Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
1021
1022
// Always update `BytesInFreeListAtLastCheckpoint` with the smallest value
1023
// so that we won't underestimate the releasable pages. For example, the
1024
// following is the region usage,
1025
//
1026
// BytesInFreeListAtLastCheckpoint AllocatedUser
1027
// v v
1028
// |--------------------------------------->
1029
// ^ ^
1030
// BytesInFreeList ReleaseThreshold
1031
//
1032
// In general, if we have collected enough bytes and the amount of free
1033
// bytes meets the ReleaseThreshold, we will try to do page release. If we
1034
// don't update `BytesInFreeListAtLastCheckpoint` when the current
1035
// `BytesInFreeList` is smaller, we may take longer time to wait for enough
1036
// freed blocks because we miss the bytes between
1037
// (BytesInFreeListAtLastCheckpoint - BytesInFreeList).
1038
const uptr PushedBytesDelta =
1039
BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
1040
if (PushedBytesDelta < PageSize)
1041
return false;
1042
1043
// Releasing smaller blocks is expensive, so we want to make sure that a
1044
// significant amount of bytes are free, and that there has been a good
1045
// amount of batches pushed to the freelist before attempting to release.
1046
if (isSmallBlock(BlockSize) && ReleaseType == ReleaseToOS::Normal)
1047
if (PushedBytesDelta < Sci->AllocatedUser / 16U)
1048
return false;
1049
1050
if (ReleaseType == ReleaseToOS::Normal) {
1051
const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs);
1052
if (IntervalMs < 0)
1053
return false;
1054
1055
// The constant 8 here is selected from profiling some apps and the number
1056
// of unreleased pages in the large size classes is around 16 pages or
1057
// more. Choose half of it as a heuristic and which also avoids page
1058
// release every time for every pushBlocks() attempt by large blocks.
1059
const bool ByPassReleaseInterval =
1060
isLargeBlock(BlockSize) && PushedBytesDelta > 8 * PageSize;
1061
if (!ByPassReleaseInterval) {
1062
if (Sci->ReleaseInfo.LastReleaseAtNs +
1063
static_cast<u64>(IntervalMs) * 1000000 >
1064
getMonotonicTimeFast()) {
1065
// Memory was returned recently.
1066
return false;
1067
}
1068
}
1069
} // if (ReleaseType == ReleaseToOS::Normal)
1070
1071
return true;
1072
}
1073
1074
PageReleaseContext markFreeBlocks(SizeClassInfo *Sci, const uptr ClassId,
1075
const uptr BlockSize, const uptr Base,
1076
const uptr NumberOfRegions,
1077
ReleaseToOS ReleaseType)
1078
REQUIRES(Sci->Mutex) {
1079
const uptr PageSize = getPageSizeCached();
1080
const uptr GroupSize = (1UL << GroupSizeLog);
1081
const uptr CurGroupBase =
1082
compactPtrGroupBase(compactPtr(ClassId, Sci->CurrentRegion));
1083
1084
PageReleaseContext Context(BlockSize, NumberOfRegions,
1085
/*ReleaseSize=*/RegionSize);
1086
1087
auto DecompactPtr = [](CompactPtrT CompactPtr) {
1088
return reinterpret_cast<uptr>(CompactPtr);
1089
};
1090
for (BatchGroupT &BG : Sci->FreeListInfo.BlockList) {
1091
const uptr GroupBase = decompactGroupBase(BG.CompactPtrGroupBase);
1092
// The `GroupSize` may not be divided by `BlockSize`, which means there is
1093
// an unused space at the end of Region. Exclude that space to avoid
1094
// unused page map entry.
1095
uptr AllocatedGroupSize = GroupBase == CurGroupBase
1096
? Sci->CurrentRegionAllocated
1097
: roundDownSlow(GroupSize, BlockSize);
1098
if (AllocatedGroupSize == 0)
1099
continue;
1100
1101
// TransferBatches are pushed in front of BG.Batches. The first one may
1102
// not have all caches used.
1103
const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch +
1104
BG.Batches.front()->getCount();
1105
const uptr BytesInBG = NumBlocks * BlockSize;
1106
1107
if (ReleaseType != ReleaseToOS::ForceAll) {
1108
if (BytesInBG <= BG.BytesInBGAtLastCheckpoint) {
1109
BG.BytesInBGAtLastCheckpoint = BytesInBG;
1110
continue;
1111
}
1112
1113
const uptr PushedBytesDelta = BytesInBG - BG.BytesInBGAtLastCheckpoint;
1114
if (PushedBytesDelta < PageSize)
1115
continue;
1116
1117
// Given the randomness property, we try to release the pages only if
1118
// the bytes used by free blocks exceed certain proportion of allocated
1119
// spaces.
1120
if (isSmallBlock(BlockSize) && (BytesInBG * 100U) / AllocatedGroupSize <
1121
(100U - 1U - BlockSize / 16U)) {
1122
continue;
1123
}
1124
}
1125
1126
// TODO: Consider updating this after page release if `ReleaseRecorder`
1127
// can tell the released bytes in each group.
1128
BG.BytesInBGAtLastCheckpoint = BytesInBG;
1129
1130
const uptr MaxContainedBlocks = AllocatedGroupSize / BlockSize;
1131
const uptr RegionIndex = (GroupBase - Base) / RegionSize;
1132
1133
if (NumBlocks == MaxContainedBlocks) {
1134
for (const auto &It : BG.Batches)
1135
for (u16 I = 0; I < It.getCount(); ++I)
1136
DCHECK_EQ(compactPtrGroupBase(It.get(I)), BG.CompactPtrGroupBase);
1137
1138
const uptr To = GroupBase + AllocatedGroupSize;
1139
Context.markRangeAsAllCounted(GroupBase, To, GroupBase, RegionIndex,
1140
AllocatedGroupSize);
1141
} else {
1142
DCHECK_LT(NumBlocks, MaxContainedBlocks);
1143
1144
// Note that we don't always visit blocks in each BatchGroup so that we
1145
// may miss the chance of releasing certain pages that cross
1146
// BatchGroups.
1147
Context.markFreeBlocksInRegion(BG.Batches, DecompactPtr, GroupBase,
1148
RegionIndex, AllocatedGroupSize,
1149
/*MayContainLastBlockInRegion=*/true);
1150
}
1151
1152
// We may not be able to do the page release In a rare case that we may
1153
// fail on PageMap allocation.
1154
if (UNLIKELY(!Context.hasBlockMarked()))
1155
break;
1156
}
1157
1158
return Context;
1159
}
1160
1161
SizeClassInfo SizeClassInfoArray[NumClasses] = {};
1162
1163
HybridMutex ByteMapMutex;
1164
// Track the regions in use, 0 is unused, otherwise store ClassId + 1.
1165
ByteMap PossibleRegions GUARDED_BY(ByteMapMutex) = {};
1166
atomic_s32 ReleaseToOsIntervalMs = {};
1167
// Unless several threads request regions simultaneously from different size
1168
// classes, the stash rarely contains more than 1 entry.
1169
static constexpr uptr MaxStashedRegions = 4;
1170
HybridMutex RegionsStashMutex;
1171
uptr NumberOfStashedRegions GUARDED_BY(RegionsStashMutex) = 0;
1172
uptr RegionsStash[MaxStashedRegions] GUARDED_BY(RegionsStashMutex) = {};
1173
};
1174
1175
} // namespace scudo
1176
1177
#endif // SCUDO_PRIMARY32_H_
1178
1179