Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_fd.cpp
35268 views
1
//===-- tsan_fd.cpp -------------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file is a part of ThreadSanitizer (TSan), a race detector.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "tsan_fd.h"
14
15
#include <sanitizer_common/sanitizer_atomic.h>
16
17
#include "tsan_interceptors.h"
18
#include "tsan_rtl.h"
19
20
namespace __tsan {
21
22
const int kTableSizeL1 = 1024;
23
const int kTableSizeL2 = 1024;
24
const int kTableSize = kTableSizeL1 * kTableSizeL2;
25
26
struct FdSync {
27
atomic_uint64_t rc;
28
};
29
30
struct FdDesc {
31
FdSync *sync;
32
// This is used to establish write -> epoll_wait synchronization
33
// where epoll_wait receives notification about the write.
34
atomic_uintptr_t aux_sync; // FdSync*
35
Tid creation_tid;
36
StackID creation_stack;
37
bool closed;
38
};
39
40
struct FdContext {
41
atomic_uintptr_t tab[kTableSizeL1];
42
// Addresses used for synchronization.
43
FdSync globsync;
44
FdSync filesync;
45
FdSync socksync;
46
u64 connectsync;
47
};
48
49
static FdContext fdctx;
50
51
static bool bogusfd(int fd) {
52
// Apparently a bogus fd value.
53
return fd < 0 || fd >= kTableSize;
54
}
55
56
static FdSync *allocsync(ThreadState *thr, uptr pc) {
57
FdSync *s = (FdSync*)user_alloc_internal(thr, pc, sizeof(FdSync),
58
kDefaultAlignment, false);
59
atomic_store(&s->rc, 1, memory_order_relaxed);
60
return s;
61
}
62
63
static FdSync *ref(FdSync *s) {
64
if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1)
65
atomic_fetch_add(&s->rc, 1, memory_order_relaxed);
66
return s;
67
}
68
69
static void unref(ThreadState *thr, uptr pc, FdSync *s) {
70
if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) {
71
if (atomic_fetch_sub(&s->rc, 1, memory_order_acq_rel) == 1) {
72
CHECK_NE(s, &fdctx.globsync);
73
CHECK_NE(s, &fdctx.filesync);
74
CHECK_NE(s, &fdctx.socksync);
75
user_free(thr, pc, s, false);
76
}
77
}
78
}
79
80
static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) {
81
CHECK_GE(fd, 0);
82
CHECK_LT(fd, kTableSize);
83
atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2];
84
uptr l1 = atomic_load(pl1, memory_order_consume);
85
if (l1 == 0) {
86
uptr size = kTableSizeL2 * sizeof(FdDesc);
87
// We need this to reside in user memory to properly catch races on it.
88
void *p = user_alloc_internal(thr, pc, size, kDefaultAlignment, false);
89
internal_memset(p, 0, size);
90
MemoryResetRange(thr, (uptr)&fddesc, (uptr)p, size);
91
if (atomic_compare_exchange_strong(pl1, &l1, (uptr)p, memory_order_acq_rel))
92
l1 = (uptr)p;
93
else
94
user_free(thr, pc, p, false);
95
}
96
FdDesc *fds = reinterpret_cast<FdDesc *>(l1);
97
return &fds[fd % kTableSizeL2];
98
}
99
100
// pd must be already ref'ed.
101
static void init(ThreadState *thr, uptr pc, int fd, FdSync *s,
102
bool write = true) {
103
FdDesc *d = fddesc(thr, pc, fd);
104
// As a matter of fact, we don't intercept all close calls.
105
// See e.g. libc __res_iclose().
106
if (d->sync) {
107
unref(thr, pc, d->sync);
108
d->sync = 0;
109
}
110
unref(thr, pc,
111
reinterpret_cast<FdSync *>(
112
atomic_load(&d->aux_sync, memory_order_relaxed)));
113
atomic_store(&d->aux_sync, 0, memory_order_relaxed);
114
if (flags()->io_sync == 0) {
115
unref(thr, pc, s);
116
} else if (flags()->io_sync == 1) {
117
d->sync = s;
118
} else if (flags()->io_sync == 2) {
119
unref(thr, pc, s);
120
d->sync = &fdctx.globsync;
121
}
122
d->creation_tid = thr->tid;
123
d->creation_stack = CurrentStackId(thr, pc);
124
d->closed = false;
125
// This prevents false positives on fd_close_norace3.cpp test.
126
// The mechanics of the false positive are not completely clear,
127
// but it happens only if global reset is enabled (flush_memory_ms=1)
128
// and may be related to lost writes during asynchronous MADV_DONTNEED.
129
SlotLocker locker(thr);
130
if (write) {
131
// To catch races between fd usage and open.
132
MemoryRangeImitateWrite(thr, pc, (uptr)d, 8);
133
} else {
134
// See the dup-related comment in FdClose.
135
MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead | kAccessSlotLocked);
136
}
137
}
138
139
void FdInit() {
140
atomic_store(&fdctx.globsync.rc, (u64)-1, memory_order_relaxed);
141
atomic_store(&fdctx.filesync.rc, (u64)-1, memory_order_relaxed);
142
atomic_store(&fdctx.socksync.rc, (u64)-1, memory_order_relaxed);
143
}
144
145
void FdOnFork(ThreadState *thr, uptr pc) {
146
// On fork() we need to reset all fd's, because the child is going
147
// close all them, and that will cause races between previous read/write
148
// and the close.
149
for (int l1 = 0; l1 < kTableSizeL1; l1++) {
150
FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
151
if (tab == 0)
152
break;
153
for (int l2 = 0; l2 < kTableSizeL2; l2++) {
154
FdDesc *d = &tab[l2];
155
MemoryResetRange(thr, pc, (uptr)d, 8);
156
}
157
}
158
}
159
160
bool FdLocation(uptr addr, int *fd, Tid *tid, StackID *stack, bool *closed) {
161
for (int l1 = 0; l1 < kTableSizeL1; l1++) {
162
FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
163
if (tab == 0)
164
break;
165
if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) {
166
int l2 = (addr - (uptr)tab) / sizeof(FdDesc);
167
FdDesc *d = &tab[l2];
168
*fd = l1 * kTableSizeL1 + l2;
169
*tid = d->creation_tid;
170
*stack = d->creation_stack;
171
*closed = d->closed;
172
return true;
173
}
174
}
175
return false;
176
}
177
178
void FdAcquire(ThreadState *thr, uptr pc, int fd) {
179
if (bogusfd(fd))
180
return;
181
FdDesc *d = fddesc(thr, pc, fd);
182
FdSync *s = d->sync;
183
DPrintf("#%d: FdAcquire(%d) -> %p\n", thr->tid, fd, s);
184
MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
185
if (s)
186
Acquire(thr, pc, (uptr)s);
187
}
188
189
void FdRelease(ThreadState *thr, uptr pc, int fd) {
190
if (bogusfd(fd))
191
return;
192
FdDesc *d = fddesc(thr, pc, fd);
193
FdSync *s = d->sync;
194
DPrintf("#%d: FdRelease(%d) -> %p\n", thr->tid, fd, s);
195
MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
196
if (s)
197
Release(thr, pc, (uptr)s);
198
if (uptr aux_sync = atomic_load(&d->aux_sync, memory_order_acquire))
199
Release(thr, pc, aux_sync);
200
}
201
202
void FdAccess(ThreadState *thr, uptr pc, int fd) {
203
DPrintf("#%d: FdAccess(%d)\n", thr->tid, fd);
204
if (bogusfd(fd))
205
return;
206
FdDesc *d = fddesc(thr, pc, fd);
207
MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
208
}
209
210
void FdClose(ThreadState *thr, uptr pc, int fd, bool write) {
211
DPrintf("#%d: FdClose(%d)\n", thr->tid, fd);
212
if (bogusfd(fd))
213
return;
214
FdDesc *d = fddesc(thr, pc, fd);
215
{
216
// Need to lock the slot to make MemoryAccess and MemoryResetRange atomic
217
// with respect to global reset. See the comment in MemoryRangeFreed.
218
SlotLocker locker(thr);
219
if (!MustIgnoreInterceptor(thr)) {
220
if (write) {
221
// To catch races between fd usage and close.
222
MemoryAccess(thr, pc, (uptr)d, 8,
223
kAccessWrite | kAccessCheckOnly | kAccessSlotLocked);
224
} else {
225
// This path is used only by dup2/dup3 calls.
226
// We do read instead of write because there is a number of legitimate
227
// cases where write would lead to false positives:
228
// 1. Some software dups a closed pipe in place of a socket before
229
// closing
230
// the socket (to prevent races actually).
231
// 2. Some daemons dup /dev/null in place of stdin/stdout.
232
// On the other hand we have not seen cases when write here catches real
233
// bugs.
234
MemoryAccess(thr, pc, (uptr)d, 8,
235
kAccessRead | kAccessCheckOnly | kAccessSlotLocked);
236
}
237
}
238
// We need to clear it, because if we do not intercept any call out there
239
// that creates fd, we will hit false postives.
240
MemoryResetRange(thr, pc, (uptr)d, 8);
241
}
242
unref(thr, pc, d->sync);
243
d->sync = 0;
244
unref(thr, pc,
245
reinterpret_cast<FdSync *>(
246
atomic_load(&d->aux_sync, memory_order_relaxed)));
247
atomic_store(&d->aux_sync, 0, memory_order_relaxed);
248
d->closed = true;
249
d->creation_tid = thr->tid;
250
d->creation_stack = CurrentStackId(thr, pc);
251
}
252
253
void FdFileCreate(ThreadState *thr, uptr pc, int fd) {
254
DPrintf("#%d: FdFileCreate(%d)\n", thr->tid, fd);
255
if (bogusfd(fd))
256
return;
257
init(thr, pc, fd, &fdctx.filesync);
258
}
259
260
void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd, bool write) {
261
DPrintf("#%d: FdDup(%d, %d)\n", thr->tid, oldfd, newfd);
262
if (bogusfd(oldfd) || bogusfd(newfd))
263
return;
264
// Ignore the case when user dups not yet connected socket.
265
FdDesc *od = fddesc(thr, pc, oldfd);
266
MemoryAccess(thr, pc, (uptr)od, 8, kAccessRead);
267
FdClose(thr, pc, newfd, write);
268
init(thr, pc, newfd, ref(od->sync), write);
269
}
270
271
void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) {
272
DPrintf("#%d: FdCreatePipe(%d, %d)\n", thr->tid, rfd, wfd);
273
FdSync *s = allocsync(thr, pc);
274
init(thr, pc, rfd, ref(s));
275
init(thr, pc, wfd, ref(s));
276
unref(thr, pc, s);
277
}
278
279
void FdEventCreate(ThreadState *thr, uptr pc, int fd) {
280
DPrintf("#%d: FdEventCreate(%d)\n", thr->tid, fd);
281
if (bogusfd(fd))
282
return;
283
init(thr, pc, fd, allocsync(thr, pc));
284
}
285
286
void FdSignalCreate(ThreadState *thr, uptr pc, int fd) {
287
DPrintf("#%d: FdSignalCreate(%d)\n", thr->tid, fd);
288
if (bogusfd(fd))
289
return;
290
init(thr, pc, fd, 0);
291
}
292
293
void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) {
294
DPrintf("#%d: FdInotifyCreate(%d)\n", thr->tid, fd);
295
if (bogusfd(fd))
296
return;
297
init(thr, pc, fd, 0);
298
}
299
300
void FdPollCreate(ThreadState *thr, uptr pc, int fd) {
301
DPrintf("#%d: FdPollCreate(%d)\n", thr->tid, fd);
302
if (bogusfd(fd))
303
return;
304
init(thr, pc, fd, allocsync(thr, pc));
305
}
306
307
void FdPollAdd(ThreadState *thr, uptr pc, int epfd, int fd) {
308
DPrintf("#%d: FdPollAdd(%d, %d)\n", thr->tid, epfd, fd);
309
if (bogusfd(epfd) || bogusfd(fd))
310
return;
311
FdDesc *d = fddesc(thr, pc, fd);
312
// Associate fd with epoll fd only once.
313
// While an fd can be associated with multiple epolls at the same time,
314
// or with different epolls during different phases of lifetime,
315
// synchronization semantics (and examples) of this are unclear.
316
// So we don't support this for now.
317
// If we change the association, it will also create lifetime management
318
// problem for FdRelease which accesses the aux_sync.
319
if (atomic_load(&d->aux_sync, memory_order_relaxed))
320
return;
321
FdDesc *epd = fddesc(thr, pc, epfd);
322
FdSync *s = epd->sync;
323
if (!s)
324
return;
325
uptr cmp = 0;
326
if (atomic_compare_exchange_strong(
327
&d->aux_sync, &cmp, reinterpret_cast<uptr>(s), memory_order_release))
328
ref(s);
329
}
330
331
void FdSocketCreate(ThreadState *thr, uptr pc, int fd) {
332
DPrintf("#%d: FdSocketCreate(%d)\n", thr->tid, fd);
333
if (bogusfd(fd))
334
return;
335
// It can be a UDP socket.
336
init(thr, pc, fd, &fdctx.socksync);
337
}
338
339
void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) {
340
DPrintf("#%d: FdSocketAccept(%d, %d)\n", thr->tid, fd, newfd);
341
if (bogusfd(fd))
342
return;
343
// Synchronize connect->accept.
344
Acquire(thr, pc, (uptr)&fdctx.connectsync);
345
init(thr, pc, newfd, &fdctx.socksync);
346
}
347
348
void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) {
349
DPrintf("#%d: FdSocketConnecting(%d)\n", thr->tid, fd);
350
if (bogusfd(fd))
351
return;
352
// Synchronize connect->accept.
353
Release(thr, pc, (uptr)&fdctx.connectsync);
354
}
355
356
void FdSocketConnect(ThreadState *thr, uptr pc, int fd) {
357
DPrintf("#%d: FdSocketConnect(%d)\n", thr->tid, fd);
358
if (bogusfd(fd))
359
return;
360
init(thr, pc, fd, &fdctx.socksync);
361
}
362
363
uptr File2addr(const char *path) {
364
(void)path;
365
static u64 addr;
366
return (uptr)&addr;
367
}
368
369
uptr Dir2addr(const char *path) {
370
(void)path;
371
static u64 addr;
372
return (uptr)&addr;
373
}
374
375
} // namespace __tsan
376
377