Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_interface_atomic.cpp
35269 views
1
//===-- tsan_interface_atomic.cpp -----------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file is a part of ThreadSanitizer (TSan), a race detector.
10
//
11
//===----------------------------------------------------------------------===//
12
13
// ThreadSanitizer atomic operations are based on C++11/C1x standards.
14
// For background see C++11 standard. A slightly older, publicly
15
// available draft of the standard (not entirely up-to-date, but close enough
16
// for casual browsing) is available here:
17
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
18
// The following page contains more background information:
19
// http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
20
21
#include "sanitizer_common/sanitizer_placement_new.h"
22
#include "sanitizer_common/sanitizer_stacktrace.h"
23
#include "sanitizer_common/sanitizer_mutex.h"
24
#include "tsan_flags.h"
25
#include "tsan_interface.h"
26
#include "tsan_rtl.h"
27
28
using namespace __tsan;
29
30
#if !SANITIZER_GO && __TSAN_HAS_INT128
31
// Protects emulation of 128-bit atomic operations.
32
static StaticSpinMutex mutex128;
33
#endif
34
35
#if SANITIZER_DEBUG
36
static bool IsLoadOrder(morder mo) {
37
return mo == mo_relaxed || mo == mo_consume
38
|| mo == mo_acquire || mo == mo_seq_cst;
39
}
40
41
static bool IsStoreOrder(morder mo) {
42
return mo == mo_relaxed || mo == mo_release || mo == mo_seq_cst;
43
}
44
#endif
45
46
static bool IsReleaseOrder(morder mo) {
47
return mo == mo_release || mo == mo_acq_rel || mo == mo_seq_cst;
48
}
49
50
static bool IsAcquireOrder(morder mo) {
51
return mo == mo_consume || mo == mo_acquire
52
|| mo == mo_acq_rel || mo == mo_seq_cst;
53
}
54
55
static bool IsAcqRelOrder(morder mo) {
56
return mo == mo_acq_rel || mo == mo_seq_cst;
57
}
58
59
template<typename T> T func_xchg(volatile T *v, T op) {
60
T res = __sync_lock_test_and_set(v, op);
61
// __sync_lock_test_and_set does not contain full barrier.
62
__sync_synchronize();
63
return res;
64
}
65
66
template<typename T> T func_add(volatile T *v, T op) {
67
return __sync_fetch_and_add(v, op);
68
}
69
70
template<typename T> T func_sub(volatile T *v, T op) {
71
return __sync_fetch_and_sub(v, op);
72
}
73
74
template<typename T> T func_and(volatile T *v, T op) {
75
return __sync_fetch_and_and(v, op);
76
}
77
78
template<typename T> T func_or(volatile T *v, T op) {
79
return __sync_fetch_and_or(v, op);
80
}
81
82
template<typename T> T func_xor(volatile T *v, T op) {
83
return __sync_fetch_and_xor(v, op);
84
}
85
86
template<typename T> T func_nand(volatile T *v, T op) {
87
// clang does not support __sync_fetch_and_nand.
88
T cmp = *v;
89
for (;;) {
90
T newv = ~(cmp & op);
91
T cur = __sync_val_compare_and_swap(v, cmp, newv);
92
if (cmp == cur)
93
return cmp;
94
cmp = cur;
95
}
96
}
97
98
template<typename T> T func_cas(volatile T *v, T cmp, T xch) {
99
return __sync_val_compare_and_swap(v, cmp, xch);
100
}
101
102
// clang does not support 128-bit atomic ops.
103
// Atomic ops are executed under tsan internal mutex,
104
// here we assume that the atomic variables are not accessed
105
// from non-instrumented code.
106
#if !defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_16) && !SANITIZER_GO \
107
&& __TSAN_HAS_INT128
108
a128 func_xchg(volatile a128 *v, a128 op) {
109
SpinMutexLock lock(&mutex128);
110
a128 cmp = *v;
111
*v = op;
112
return cmp;
113
}
114
115
a128 func_add(volatile a128 *v, a128 op) {
116
SpinMutexLock lock(&mutex128);
117
a128 cmp = *v;
118
*v = cmp + op;
119
return cmp;
120
}
121
122
a128 func_sub(volatile a128 *v, a128 op) {
123
SpinMutexLock lock(&mutex128);
124
a128 cmp = *v;
125
*v = cmp - op;
126
return cmp;
127
}
128
129
a128 func_and(volatile a128 *v, a128 op) {
130
SpinMutexLock lock(&mutex128);
131
a128 cmp = *v;
132
*v = cmp & op;
133
return cmp;
134
}
135
136
a128 func_or(volatile a128 *v, a128 op) {
137
SpinMutexLock lock(&mutex128);
138
a128 cmp = *v;
139
*v = cmp | op;
140
return cmp;
141
}
142
143
a128 func_xor(volatile a128 *v, a128 op) {
144
SpinMutexLock lock(&mutex128);
145
a128 cmp = *v;
146
*v = cmp ^ op;
147
return cmp;
148
}
149
150
a128 func_nand(volatile a128 *v, a128 op) {
151
SpinMutexLock lock(&mutex128);
152
a128 cmp = *v;
153
*v = ~(cmp & op);
154
return cmp;
155
}
156
157
a128 func_cas(volatile a128 *v, a128 cmp, a128 xch) {
158
SpinMutexLock lock(&mutex128);
159
a128 cur = *v;
160
if (cur == cmp)
161
*v = xch;
162
return cur;
163
}
164
#endif
165
166
template <typename T>
167
static int AccessSize() {
168
if (sizeof(T) <= 1)
169
return 1;
170
else if (sizeof(T) <= 2)
171
return 2;
172
else if (sizeof(T) <= 4)
173
return 4;
174
else
175
return 8;
176
// For 16-byte atomics we also use 8-byte memory access,
177
// this leads to false negatives only in very obscure cases.
178
}
179
180
#if !SANITIZER_GO
181
static atomic_uint8_t *to_atomic(const volatile a8 *a) {
182
return reinterpret_cast<atomic_uint8_t *>(const_cast<a8 *>(a));
183
}
184
185
static atomic_uint16_t *to_atomic(const volatile a16 *a) {
186
return reinterpret_cast<atomic_uint16_t *>(const_cast<a16 *>(a));
187
}
188
#endif
189
190
static atomic_uint32_t *to_atomic(const volatile a32 *a) {
191
return reinterpret_cast<atomic_uint32_t *>(const_cast<a32 *>(a));
192
}
193
194
static atomic_uint64_t *to_atomic(const volatile a64 *a) {
195
return reinterpret_cast<atomic_uint64_t *>(const_cast<a64 *>(a));
196
}
197
198
static memory_order to_mo(morder mo) {
199
switch (mo) {
200
case mo_relaxed: return memory_order_relaxed;
201
case mo_consume: return memory_order_consume;
202
case mo_acquire: return memory_order_acquire;
203
case mo_release: return memory_order_release;
204
case mo_acq_rel: return memory_order_acq_rel;
205
case mo_seq_cst: return memory_order_seq_cst;
206
}
207
DCHECK(0);
208
return memory_order_seq_cst;
209
}
210
211
template<typename T>
212
static T NoTsanAtomicLoad(const volatile T *a, morder mo) {
213
return atomic_load(to_atomic(a), to_mo(mo));
214
}
215
216
#if __TSAN_HAS_INT128 && !SANITIZER_GO
217
static a128 NoTsanAtomicLoad(const volatile a128 *a, morder mo) {
218
SpinMutexLock lock(&mutex128);
219
return *a;
220
}
221
#endif
222
223
template <typename T>
224
static T AtomicLoad(ThreadState *thr, uptr pc, const volatile T *a, morder mo) {
225
DCHECK(IsLoadOrder(mo));
226
// This fast-path is critical for performance.
227
// Assume the access is atomic.
228
if (!IsAcquireOrder(mo)) {
229
MemoryAccess(thr, pc, (uptr)a, AccessSize<T>(),
230
kAccessRead | kAccessAtomic);
231
return NoTsanAtomicLoad(a, mo);
232
}
233
// Don't create sync object if it does not exist yet. For example, an atomic
234
// pointer is initialized to nullptr and then periodically acquire-loaded.
235
T v = NoTsanAtomicLoad(a, mo);
236
SyncVar *s = ctx->metamap.GetSyncIfExists((uptr)a);
237
if (s) {
238
SlotLocker locker(thr);
239
ReadLock lock(&s->mtx);
240
thr->clock.Acquire(s->clock);
241
// Re-read under sync mutex because we need a consistent snapshot
242
// of the value and the clock we acquire.
243
v = NoTsanAtomicLoad(a, mo);
244
}
245
MemoryAccess(thr, pc, (uptr)a, AccessSize<T>(), kAccessRead | kAccessAtomic);
246
return v;
247
}
248
249
template<typename T>
250
static void NoTsanAtomicStore(volatile T *a, T v, morder mo) {
251
atomic_store(to_atomic(a), v, to_mo(mo));
252
}
253
254
#if __TSAN_HAS_INT128 && !SANITIZER_GO
255
static void NoTsanAtomicStore(volatile a128 *a, a128 v, morder mo) {
256
SpinMutexLock lock(&mutex128);
257
*a = v;
258
}
259
#endif
260
261
template <typename T>
262
static void AtomicStore(ThreadState *thr, uptr pc, volatile T *a, T v,
263
morder mo) {
264
DCHECK(IsStoreOrder(mo));
265
MemoryAccess(thr, pc, (uptr)a, AccessSize<T>(), kAccessWrite | kAccessAtomic);
266
// This fast-path is critical for performance.
267
// Assume the access is atomic.
268
// Strictly saying even relaxed store cuts off release sequence,
269
// so must reset the clock.
270
if (!IsReleaseOrder(mo)) {
271
NoTsanAtomicStore(a, v, mo);
272
return;
273
}
274
SlotLocker locker(thr);
275
{
276
auto s = ctx->metamap.GetSyncOrCreate(thr, pc, (uptr)a, false);
277
Lock lock(&s->mtx);
278
thr->clock.ReleaseStore(&s->clock);
279
NoTsanAtomicStore(a, v, mo);
280
}
281
IncrementEpoch(thr);
282
}
283
284
template <typename T, T (*F)(volatile T *v, T op)>
285
static T AtomicRMW(ThreadState *thr, uptr pc, volatile T *a, T v, morder mo) {
286
MemoryAccess(thr, pc, (uptr)a, AccessSize<T>(), kAccessWrite | kAccessAtomic);
287
if (LIKELY(mo == mo_relaxed))
288
return F(a, v);
289
SlotLocker locker(thr);
290
{
291
auto s = ctx->metamap.GetSyncOrCreate(thr, pc, (uptr)a, false);
292
RWLock lock(&s->mtx, IsReleaseOrder(mo));
293
if (IsAcqRelOrder(mo))
294
thr->clock.ReleaseAcquire(&s->clock);
295
else if (IsReleaseOrder(mo))
296
thr->clock.Release(&s->clock);
297
else if (IsAcquireOrder(mo))
298
thr->clock.Acquire(s->clock);
299
v = F(a, v);
300
}
301
if (IsReleaseOrder(mo))
302
IncrementEpoch(thr);
303
return v;
304
}
305
306
template<typename T>
307
static T NoTsanAtomicExchange(volatile T *a, T v, morder mo) {
308
return func_xchg(a, v);
309
}
310
311
template<typename T>
312
static T NoTsanAtomicFetchAdd(volatile T *a, T v, morder mo) {
313
return func_add(a, v);
314
}
315
316
template<typename T>
317
static T NoTsanAtomicFetchSub(volatile T *a, T v, morder mo) {
318
return func_sub(a, v);
319
}
320
321
template<typename T>
322
static T NoTsanAtomicFetchAnd(volatile T *a, T v, morder mo) {
323
return func_and(a, v);
324
}
325
326
template<typename T>
327
static T NoTsanAtomicFetchOr(volatile T *a, T v, morder mo) {
328
return func_or(a, v);
329
}
330
331
template<typename T>
332
static T NoTsanAtomicFetchXor(volatile T *a, T v, morder mo) {
333
return func_xor(a, v);
334
}
335
336
template<typename T>
337
static T NoTsanAtomicFetchNand(volatile T *a, T v, morder mo) {
338
return func_nand(a, v);
339
}
340
341
template<typename T>
342
static T AtomicExchange(ThreadState *thr, uptr pc, volatile T *a, T v,
343
morder mo) {
344
return AtomicRMW<T, func_xchg>(thr, pc, a, v, mo);
345
}
346
347
template<typename T>
348
static T AtomicFetchAdd(ThreadState *thr, uptr pc, volatile T *a, T v,
349
morder mo) {
350
return AtomicRMW<T, func_add>(thr, pc, a, v, mo);
351
}
352
353
template<typename T>
354
static T AtomicFetchSub(ThreadState *thr, uptr pc, volatile T *a, T v,
355
morder mo) {
356
return AtomicRMW<T, func_sub>(thr, pc, a, v, mo);
357
}
358
359
template<typename T>
360
static T AtomicFetchAnd(ThreadState *thr, uptr pc, volatile T *a, T v,
361
morder mo) {
362
return AtomicRMW<T, func_and>(thr, pc, a, v, mo);
363
}
364
365
template<typename T>
366
static T AtomicFetchOr(ThreadState *thr, uptr pc, volatile T *a, T v,
367
morder mo) {
368
return AtomicRMW<T, func_or>(thr, pc, a, v, mo);
369
}
370
371
template<typename T>
372
static T AtomicFetchXor(ThreadState *thr, uptr pc, volatile T *a, T v,
373
morder mo) {
374
return AtomicRMW<T, func_xor>(thr, pc, a, v, mo);
375
}
376
377
template<typename T>
378
static T AtomicFetchNand(ThreadState *thr, uptr pc, volatile T *a, T v,
379
morder mo) {
380
return AtomicRMW<T, func_nand>(thr, pc, a, v, mo);
381
}
382
383
template<typename T>
384
static bool NoTsanAtomicCAS(volatile T *a, T *c, T v, morder mo, morder fmo) {
385
return atomic_compare_exchange_strong(to_atomic(a), c, v, to_mo(mo));
386
}
387
388
#if __TSAN_HAS_INT128
389
static bool NoTsanAtomicCAS(volatile a128 *a, a128 *c, a128 v,
390
morder mo, morder fmo) {
391
a128 old = *c;
392
a128 cur = func_cas(a, old, v);
393
if (cur == old)
394
return true;
395
*c = cur;
396
return false;
397
}
398
#endif
399
400
template<typename T>
401
static T NoTsanAtomicCAS(volatile T *a, T c, T v, morder mo, morder fmo) {
402
NoTsanAtomicCAS(a, &c, v, mo, fmo);
403
return c;
404
}
405
406
template <typename T>
407
static bool AtomicCAS(ThreadState *thr, uptr pc, volatile T *a, T *c, T v,
408
morder mo, morder fmo) {
409
// 31.7.2.18: "The failure argument shall not be memory_order_release
410
// nor memory_order_acq_rel". LLVM (2021-05) fallbacks to Monotonic
411
// (mo_relaxed) when those are used.
412
DCHECK(IsLoadOrder(fmo));
413
414
MemoryAccess(thr, pc, (uptr)a, AccessSize<T>(), kAccessWrite | kAccessAtomic);
415
if (LIKELY(mo == mo_relaxed && fmo == mo_relaxed)) {
416
T cc = *c;
417
T pr = func_cas(a, cc, v);
418
if (pr == cc)
419
return true;
420
*c = pr;
421
return false;
422
}
423
SlotLocker locker(thr);
424
bool release = IsReleaseOrder(mo);
425
bool success;
426
{
427
auto s = ctx->metamap.GetSyncOrCreate(thr, pc, (uptr)a, false);
428
RWLock lock(&s->mtx, release);
429
T cc = *c;
430
T pr = func_cas(a, cc, v);
431
success = pr == cc;
432
if (!success) {
433
*c = pr;
434
mo = fmo;
435
}
436
if (success && IsAcqRelOrder(mo))
437
thr->clock.ReleaseAcquire(&s->clock);
438
else if (success && IsReleaseOrder(mo))
439
thr->clock.Release(&s->clock);
440
else if (IsAcquireOrder(mo))
441
thr->clock.Acquire(s->clock);
442
}
443
if (success && release)
444
IncrementEpoch(thr);
445
return success;
446
}
447
448
template<typename T>
449
static T AtomicCAS(ThreadState *thr, uptr pc,
450
volatile T *a, T c, T v, morder mo, morder fmo) {
451
AtomicCAS(thr, pc, a, &c, v, mo, fmo);
452
return c;
453
}
454
455
#if !SANITIZER_GO
456
static void NoTsanAtomicFence(morder mo) {
457
__sync_synchronize();
458
}
459
460
static void AtomicFence(ThreadState *thr, uptr pc, morder mo) {
461
// FIXME(dvyukov): not implemented.
462
__sync_synchronize();
463
}
464
#endif
465
466
// Interface functions follow.
467
#if !SANITIZER_GO
468
469
// C/C++
470
471
static morder convert_morder(morder mo) {
472
if (flags()->force_seq_cst_atomics)
473
return (morder)mo_seq_cst;
474
475
// Filter out additional memory order flags:
476
// MEMMODEL_SYNC = 1 << 15
477
// __ATOMIC_HLE_ACQUIRE = 1 << 16
478
// __ATOMIC_HLE_RELEASE = 1 << 17
479
//
480
// HLE is an optimization, and we pretend that elision always fails.
481
// MEMMODEL_SYNC is used when lowering __sync_ atomics,
482
// since we use __sync_ atomics for actual atomic operations,
483
// we can safely ignore it as well. It also subtly affects semantics,
484
// but we don't model the difference.
485
return (morder)(mo & 0x7fff);
486
}
487
488
# define ATOMIC_IMPL(func, ...) \
489
ThreadState *const thr = cur_thread(); \
490
ProcessPendingSignals(thr); \
491
if (UNLIKELY(thr->ignore_sync || thr->ignore_interceptors)) \
492
return NoTsanAtomic##func(__VA_ARGS__); \
493
mo = convert_morder(mo); \
494
return Atomic##func(thr, GET_CALLER_PC(), __VA_ARGS__);
495
496
extern "C" {
497
SANITIZER_INTERFACE_ATTRIBUTE
498
a8 __tsan_atomic8_load(const volatile a8 *a, morder mo) {
499
ATOMIC_IMPL(Load, a, mo);
500
}
501
502
SANITIZER_INTERFACE_ATTRIBUTE
503
a16 __tsan_atomic16_load(const volatile a16 *a, morder mo) {
504
ATOMIC_IMPL(Load, a, mo);
505
}
506
507
SANITIZER_INTERFACE_ATTRIBUTE
508
a32 __tsan_atomic32_load(const volatile a32 *a, morder mo) {
509
ATOMIC_IMPL(Load, a, mo);
510
}
511
512
SANITIZER_INTERFACE_ATTRIBUTE
513
a64 __tsan_atomic64_load(const volatile a64 *a, morder mo) {
514
ATOMIC_IMPL(Load, a, mo);
515
}
516
517
#if __TSAN_HAS_INT128
518
SANITIZER_INTERFACE_ATTRIBUTE
519
a128 __tsan_atomic128_load(const volatile a128 *a, morder mo) {
520
ATOMIC_IMPL(Load, a, mo);
521
}
522
#endif
523
524
SANITIZER_INTERFACE_ATTRIBUTE
525
void __tsan_atomic8_store(volatile a8 *a, a8 v, morder mo) {
526
ATOMIC_IMPL(Store, a, v, mo);
527
}
528
529
SANITIZER_INTERFACE_ATTRIBUTE
530
void __tsan_atomic16_store(volatile a16 *a, a16 v, morder mo) {
531
ATOMIC_IMPL(Store, a, v, mo);
532
}
533
534
SANITIZER_INTERFACE_ATTRIBUTE
535
void __tsan_atomic32_store(volatile a32 *a, a32 v, morder mo) {
536
ATOMIC_IMPL(Store, a, v, mo);
537
}
538
539
SANITIZER_INTERFACE_ATTRIBUTE
540
void __tsan_atomic64_store(volatile a64 *a, a64 v, morder mo) {
541
ATOMIC_IMPL(Store, a, v, mo);
542
}
543
544
#if __TSAN_HAS_INT128
545
SANITIZER_INTERFACE_ATTRIBUTE
546
void __tsan_atomic128_store(volatile a128 *a, a128 v, morder mo) {
547
ATOMIC_IMPL(Store, a, v, mo);
548
}
549
#endif
550
551
SANITIZER_INTERFACE_ATTRIBUTE
552
a8 __tsan_atomic8_exchange(volatile a8 *a, a8 v, morder mo) {
553
ATOMIC_IMPL(Exchange, a, v, mo);
554
}
555
556
SANITIZER_INTERFACE_ATTRIBUTE
557
a16 __tsan_atomic16_exchange(volatile a16 *a, a16 v, morder mo) {
558
ATOMIC_IMPL(Exchange, a, v, mo);
559
}
560
561
SANITIZER_INTERFACE_ATTRIBUTE
562
a32 __tsan_atomic32_exchange(volatile a32 *a, a32 v, morder mo) {
563
ATOMIC_IMPL(Exchange, a, v, mo);
564
}
565
566
SANITIZER_INTERFACE_ATTRIBUTE
567
a64 __tsan_atomic64_exchange(volatile a64 *a, a64 v, morder mo) {
568
ATOMIC_IMPL(Exchange, a, v, mo);
569
}
570
571
#if __TSAN_HAS_INT128
572
SANITIZER_INTERFACE_ATTRIBUTE
573
a128 __tsan_atomic128_exchange(volatile a128 *a, a128 v, morder mo) {
574
ATOMIC_IMPL(Exchange, a, v, mo);
575
}
576
#endif
577
578
SANITIZER_INTERFACE_ATTRIBUTE
579
a8 __tsan_atomic8_fetch_add(volatile a8 *a, a8 v, morder mo) {
580
ATOMIC_IMPL(FetchAdd, a, v, mo);
581
}
582
583
SANITIZER_INTERFACE_ATTRIBUTE
584
a16 __tsan_atomic16_fetch_add(volatile a16 *a, a16 v, morder mo) {
585
ATOMIC_IMPL(FetchAdd, a, v, mo);
586
}
587
588
SANITIZER_INTERFACE_ATTRIBUTE
589
a32 __tsan_atomic32_fetch_add(volatile a32 *a, a32 v, morder mo) {
590
ATOMIC_IMPL(FetchAdd, a, v, mo);
591
}
592
593
SANITIZER_INTERFACE_ATTRIBUTE
594
a64 __tsan_atomic64_fetch_add(volatile a64 *a, a64 v, morder mo) {
595
ATOMIC_IMPL(FetchAdd, a, v, mo);
596
}
597
598
#if __TSAN_HAS_INT128
599
SANITIZER_INTERFACE_ATTRIBUTE
600
a128 __tsan_atomic128_fetch_add(volatile a128 *a, a128 v, morder mo) {
601
ATOMIC_IMPL(FetchAdd, a, v, mo);
602
}
603
#endif
604
605
SANITIZER_INTERFACE_ATTRIBUTE
606
a8 __tsan_atomic8_fetch_sub(volatile a8 *a, a8 v, morder mo) {
607
ATOMIC_IMPL(FetchSub, a, v, mo);
608
}
609
610
SANITIZER_INTERFACE_ATTRIBUTE
611
a16 __tsan_atomic16_fetch_sub(volatile a16 *a, a16 v, morder mo) {
612
ATOMIC_IMPL(FetchSub, a, v, mo);
613
}
614
615
SANITIZER_INTERFACE_ATTRIBUTE
616
a32 __tsan_atomic32_fetch_sub(volatile a32 *a, a32 v, morder mo) {
617
ATOMIC_IMPL(FetchSub, a, v, mo);
618
}
619
620
SANITIZER_INTERFACE_ATTRIBUTE
621
a64 __tsan_atomic64_fetch_sub(volatile a64 *a, a64 v, morder mo) {
622
ATOMIC_IMPL(FetchSub, a, v, mo);
623
}
624
625
#if __TSAN_HAS_INT128
626
SANITIZER_INTERFACE_ATTRIBUTE
627
a128 __tsan_atomic128_fetch_sub(volatile a128 *a, a128 v, morder mo) {
628
ATOMIC_IMPL(FetchSub, a, v, mo);
629
}
630
#endif
631
632
SANITIZER_INTERFACE_ATTRIBUTE
633
a8 __tsan_atomic8_fetch_and(volatile a8 *a, a8 v, morder mo) {
634
ATOMIC_IMPL(FetchAnd, a, v, mo);
635
}
636
637
SANITIZER_INTERFACE_ATTRIBUTE
638
a16 __tsan_atomic16_fetch_and(volatile a16 *a, a16 v, morder mo) {
639
ATOMIC_IMPL(FetchAnd, a, v, mo);
640
}
641
642
SANITIZER_INTERFACE_ATTRIBUTE
643
a32 __tsan_atomic32_fetch_and(volatile a32 *a, a32 v, morder mo) {
644
ATOMIC_IMPL(FetchAnd, a, v, mo);
645
}
646
647
SANITIZER_INTERFACE_ATTRIBUTE
648
a64 __tsan_atomic64_fetch_and(volatile a64 *a, a64 v, morder mo) {
649
ATOMIC_IMPL(FetchAnd, a, v, mo);
650
}
651
652
#if __TSAN_HAS_INT128
653
SANITIZER_INTERFACE_ATTRIBUTE
654
a128 __tsan_atomic128_fetch_and(volatile a128 *a, a128 v, morder mo) {
655
ATOMIC_IMPL(FetchAnd, a, v, mo);
656
}
657
#endif
658
659
SANITIZER_INTERFACE_ATTRIBUTE
660
a8 __tsan_atomic8_fetch_or(volatile a8 *a, a8 v, morder mo) {
661
ATOMIC_IMPL(FetchOr, a, v, mo);
662
}
663
664
SANITIZER_INTERFACE_ATTRIBUTE
665
a16 __tsan_atomic16_fetch_or(volatile a16 *a, a16 v, morder mo) {
666
ATOMIC_IMPL(FetchOr, a, v, mo);
667
}
668
669
SANITIZER_INTERFACE_ATTRIBUTE
670
a32 __tsan_atomic32_fetch_or(volatile a32 *a, a32 v, morder mo) {
671
ATOMIC_IMPL(FetchOr, a, v, mo);
672
}
673
674
SANITIZER_INTERFACE_ATTRIBUTE
675
a64 __tsan_atomic64_fetch_or(volatile a64 *a, a64 v, morder mo) {
676
ATOMIC_IMPL(FetchOr, a, v, mo);
677
}
678
679
#if __TSAN_HAS_INT128
680
SANITIZER_INTERFACE_ATTRIBUTE
681
a128 __tsan_atomic128_fetch_or(volatile a128 *a, a128 v, morder mo) {
682
ATOMIC_IMPL(FetchOr, a, v, mo);
683
}
684
#endif
685
686
SANITIZER_INTERFACE_ATTRIBUTE
687
a8 __tsan_atomic8_fetch_xor(volatile a8 *a, a8 v, morder mo) {
688
ATOMIC_IMPL(FetchXor, a, v, mo);
689
}
690
691
SANITIZER_INTERFACE_ATTRIBUTE
692
a16 __tsan_atomic16_fetch_xor(volatile a16 *a, a16 v, morder mo) {
693
ATOMIC_IMPL(FetchXor, a, v, mo);
694
}
695
696
SANITIZER_INTERFACE_ATTRIBUTE
697
a32 __tsan_atomic32_fetch_xor(volatile a32 *a, a32 v, morder mo) {
698
ATOMIC_IMPL(FetchXor, a, v, mo);
699
}
700
701
SANITIZER_INTERFACE_ATTRIBUTE
702
a64 __tsan_atomic64_fetch_xor(volatile a64 *a, a64 v, morder mo) {
703
ATOMIC_IMPL(FetchXor, a, v, mo);
704
}
705
706
#if __TSAN_HAS_INT128
707
SANITIZER_INTERFACE_ATTRIBUTE
708
a128 __tsan_atomic128_fetch_xor(volatile a128 *a, a128 v, morder mo) {
709
ATOMIC_IMPL(FetchXor, a, v, mo);
710
}
711
#endif
712
713
SANITIZER_INTERFACE_ATTRIBUTE
714
a8 __tsan_atomic8_fetch_nand(volatile a8 *a, a8 v, morder mo) {
715
ATOMIC_IMPL(FetchNand, a, v, mo);
716
}
717
718
SANITIZER_INTERFACE_ATTRIBUTE
719
a16 __tsan_atomic16_fetch_nand(volatile a16 *a, a16 v, morder mo) {
720
ATOMIC_IMPL(FetchNand, a, v, mo);
721
}
722
723
SANITIZER_INTERFACE_ATTRIBUTE
724
a32 __tsan_atomic32_fetch_nand(volatile a32 *a, a32 v, morder mo) {
725
ATOMIC_IMPL(FetchNand, a, v, mo);
726
}
727
728
SANITIZER_INTERFACE_ATTRIBUTE
729
a64 __tsan_atomic64_fetch_nand(volatile a64 *a, a64 v, morder mo) {
730
ATOMIC_IMPL(FetchNand, a, v, mo);
731
}
732
733
#if __TSAN_HAS_INT128
734
SANITIZER_INTERFACE_ATTRIBUTE
735
a128 __tsan_atomic128_fetch_nand(volatile a128 *a, a128 v, morder mo) {
736
ATOMIC_IMPL(FetchNand, a, v, mo);
737
}
738
#endif
739
740
SANITIZER_INTERFACE_ATTRIBUTE
741
int __tsan_atomic8_compare_exchange_strong(volatile a8 *a, a8 *c, a8 v,
742
morder mo, morder fmo) {
743
ATOMIC_IMPL(CAS, a, c, v, mo, fmo);
744
}
745
746
SANITIZER_INTERFACE_ATTRIBUTE
747
int __tsan_atomic16_compare_exchange_strong(volatile a16 *a, a16 *c, a16 v,
748
morder mo, morder fmo) {
749
ATOMIC_IMPL(CAS, a, c, v, mo, fmo);
750
}
751
752
SANITIZER_INTERFACE_ATTRIBUTE
753
int __tsan_atomic32_compare_exchange_strong(volatile a32 *a, a32 *c, a32 v,
754
morder mo, morder fmo) {
755
ATOMIC_IMPL(CAS, a, c, v, mo, fmo);
756
}
757
758
SANITIZER_INTERFACE_ATTRIBUTE
759
int __tsan_atomic64_compare_exchange_strong(volatile a64 *a, a64 *c, a64 v,
760
morder mo, morder fmo) {
761
ATOMIC_IMPL(CAS, a, c, v, mo, fmo);
762
}
763
764
#if __TSAN_HAS_INT128
765
SANITIZER_INTERFACE_ATTRIBUTE
766
int __tsan_atomic128_compare_exchange_strong(volatile a128 *a, a128 *c, a128 v,
767
morder mo, morder fmo) {
768
ATOMIC_IMPL(CAS, a, c, v, mo, fmo);
769
}
770
#endif
771
772
SANITIZER_INTERFACE_ATTRIBUTE
773
int __tsan_atomic8_compare_exchange_weak(volatile a8 *a, a8 *c, a8 v,
774
morder mo, morder fmo) {
775
ATOMIC_IMPL(CAS, a, c, v, mo, fmo);
776
}
777
778
SANITIZER_INTERFACE_ATTRIBUTE
779
int __tsan_atomic16_compare_exchange_weak(volatile a16 *a, a16 *c, a16 v,
780
morder mo, morder fmo) {
781
ATOMIC_IMPL(CAS, a, c, v, mo, fmo);
782
}
783
784
SANITIZER_INTERFACE_ATTRIBUTE
785
int __tsan_atomic32_compare_exchange_weak(volatile a32 *a, a32 *c, a32 v,
786
morder mo, morder fmo) {
787
ATOMIC_IMPL(CAS, a, c, v, mo, fmo);
788
}
789
790
SANITIZER_INTERFACE_ATTRIBUTE
791
int __tsan_atomic64_compare_exchange_weak(volatile a64 *a, a64 *c, a64 v,
792
morder mo, morder fmo) {
793
ATOMIC_IMPL(CAS, a, c, v, mo, fmo);
794
}
795
796
#if __TSAN_HAS_INT128
797
SANITIZER_INTERFACE_ATTRIBUTE
798
int __tsan_atomic128_compare_exchange_weak(volatile a128 *a, a128 *c, a128 v,
799
morder mo, morder fmo) {
800
ATOMIC_IMPL(CAS, a, c, v, mo, fmo);
801
}
802
#endif
803
804
SANITIZER_INTERFACE_ATTRIBUTE
805
a8 __tsan_atomic8_compare_exchange_val(volatile a8 *a, a8 c, a8 v,
806
morder mo, morder fmo) {
807
ATOMIC_IMPL(CAS, a, c, v, mo, fmo);
808
}
809
810
SANITIZER_INTERFACE_ATTRIBUTE
811
a16 __tsan_atomic16_compare_exchange_val(volatile a16 *a, a16 c, a16 v,
812
morder mo, morder fmo) {
813
ATOMIC_IMPL(CAS, a, c, v, mo, fmo);
814
}
815
816
SANITIZER_INTERFACE_ATTRIBUTE
817
a32 __tsan_atomic32_compare_exchange_val(volatile a32 *a, a32 c, a32 v,
818
morder mo, morder fmo) {
819
ATOMIC_IMPL(CAS, a, c, v, mo, fmo);
820
}
821
822
SANITIZER_INTERFACE_ATTRIBUTE
823
a64 __tsan_atomic64_compare_exchange_val(volatile a64 *a, a64 c, a64 v,
824
morder mo, morder fmo) {
825
ATOMIC_IMPL(CAS, a, c, v, mo, fmo);
826
}
827
828
#if __TSAN_HAS_INT128
829
SANITIZER_INTERFACE_ATTRIBUTE
830
a128 __tsan_atomic128_compare_exchange_val(volatile a128 *a, a128 c, a128 v,
831
morder mo, morder fmo) {
832
ATOMIC_IMPL(CAS, a, c, v, mo, fmo);
833
}
834
#endif
835
836
SANITIZER_INTERFACE_ATTRIBUTE
837
void __tsan_atomic_thread_fence(morder mo) { ATOMIC_IMPL(Fence, mo); }
838
839
SANITIZER_INTERFACE_ATTRIBUTE
840
void __tsan_atomic_signal_fence(morder mo) {
841
}
842
} // extern "C"
843
844
#else // #if !SANITIZER_GO
845
846
// Go
847
848
# define ATOMIC(func, ...) \
849
if (thr->ignore_sync) { \
850
NoTsanAtomic##func(__VA_ARGS__); \
851
} else { \
852
FuncEntry(thr, cpc); \
853
Atomic##func(thr, pc, __VA_ARGS__); \
854
FuncExit(thr); \
855
}
856
857
# define ATOMIC_RET(func, ret, ...) \
858
if (thr->ignore_sync) { \
859
(ret) = NoTsanAtomic##func(__VA_ARGS__); \
860
} else { \
861
FuncEntry(thr, cpc); \
862
(ret) = Atomic##func(thr, pc, __VA_ARGS__); \
863
FuncExit(thr); \
864
}
865
866
extern "C" {
867
SANITIZER_INTERFACE_ATTRIBUTE
868
void __tsan_go_atomic32_load(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
869
ATOMIC_RET(Load, *(a32*)(a+8), *(a32**)a, mo_acquire);
870
}
871
872
SANITIZER_INTERFACE_ATTRIBUTE
873
void __tsan_go_atomic64_load(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
874
ATOMIC_RET(Load, *(a64*)(a+8), *(a64**)a, mo_acquire);
875
}
876
877
SANITIZER_INTERFACE_ATTRIBUTE
878
void __tsan_go_atomic32_store(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
879
ATOMIC(Store, *(a32**)a, *(a32*)(a+8), mo_release);
880
}
881
882
SANITIZER_INTERFACE_ATTRIBUTE
883
void __tsan_go_atomic64_store(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
884
ATOMIC(Store, *(a64**)a, *(a64*)(a+8), mo_release);
885
}
886
887
SANITIZER_INTERFACE_ATTRIBUTE
888
void __tsan_go_atomic32_fetch_add(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
889
ATOMIC_RET(FetchAdd, *(a32*)(a+16), *(a32**)a, *(a32*)(a+8), mo_acq_rel);
890
}
891
892
SANITIZER_INTERFACE_ATTRIBUTE
893
void __tsan_go_atomic64_fetch_add(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
894
ATOMIC_RET(FetchAdd, *(a64*)(a+16), *(a64**)a, *(a64*)(a+8), mo_acq_rel);
895
}
896
897
SANITIZER_INTERFACE_ATTRIBUTE
898
void __tsan_go_atomic32_fetch_and(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
899
ATOMIC_RET(FetchAnd, *(a32 *)(a + 16), *(a32 **)a, *(a32 *)(a + 8),
900
mo_acq_rel);
901
}
902
903
SANITIZER_INTERFACE_ATTRIBUTE
904
void __tsan_go_atomic64_fetch_and(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
905
ATOMIC_RET(FetchAnd, *(a64 *)(a + 16), *(a64 **)a, *(a64 *)(a + 8),
906
mo_acq_rel);
907
}
908
909
SANITIZER_INTERFACE_ATTRIBUTE
910
void __tsan_go_atomic32_fetch_or(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
911
ATOMIC_RET(FetchOr, *(a32 *)(a + 16), *(a32 **)a, *(a32 *)(a + 8),
912
mo_acq_rel);
913
}
914
915
SANITIZER_INTERFACE_ATTRIBUTE
916
void __tsan_go_atomic64_fetch_or(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
917
ATOMIC_RET(FetchOr, *(a64 *)(a + 16), *(a64 **)a, *(a64 *)(a + 8),
918
mo_acq_rel);
919
}
920
921
SANITIZER_INTERFACE_ATTRIBUTE
922
void __tsan_go_atomic32_exchange(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
923
ATOMIC_RET(Exchange, *(a32*)(a+16), *(a32**)a, *(a32*)(a+8), mo_acq_rel);
924
}
925
926
SANITIZER_INTERFACE_ATTRIBUTE
927
void __tsan_go_atomic64_exchange(ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
928
ATOMIC_RET(Exchange, *(a64*)(a+16), *(a64**)a, *(a64*)(a+8), mo_acq_rel);
929
}
930
931
SANITIZER_INTERFACE_ATTRIBUTE
932
void __tsan_go_atomic32_compare_exchange(
933
ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
934
a32 cur = 0;
935
a32 cmp = *(a32*)(a+8);
936
ATOMIC_RET(CAS, cur, *(a32**)a, cmp, *(a32*)(a+12), mo_acq_rel, mo_acquire);
937
*(bool*)(a+16) = (cur == cmp);
938
}
939
940
SANITIZER_INTERFACE_ATTRIBUTE
941
void __tsan_go_atomic64_compare_exchange(
942
ThreadState *thr, uptr cpc, uptr pc, u8 *a) {
943
a64 cur = 0;
944
a64 cmp = *(a64*)(a+8);
945
ATOMIC_RET(CAS, cur, *(a64**)a, cmp, *(a64*)(a+16), mo_acq_rel, mo_acquire);
946
*(bool*)(a+24) = (cur == cmp);
947
}
948
} // extern "C"
949
#endif // #if !SANITIZER_GO
950
951