Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_mman.cpp
35266 views
1
//===-- tsan_mman.cpp -----------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file is a part of ThreadSanitizer (TSan), a race detector.
10
//
11
//===----------------------------------------------------------------------===//
12
#include "tsan_mman.h"
13
14
#include "sanitizer_common/sanitizer_allocator_checks.h"
15
#include "sanitizer_common/sanitizer_allocator_interface.h"
16
#include "sanitizer_common/sanitizer_allocator_report.h"
17
#include "sanitizer_common/sanitizer_common.h"
18
#include "sanitizer_common/sanitizer_errno.h"
19
#include "sanitizer_common/sanitizer_placement_new.h"
20
#include "sanitizer_common/sanitizer_stackdepot.h"
21
#include "tsan_flags.h"
22
#include "tsan_interface.h"
23
#include "tsan_report.h"
24
#include "tsan_rtl.h"
25
26
namespace __tsan {
27
28
struct MapUnmapCallback {
29
void OnMap(uptr p, uptr size) const { }
30
void OnMapSecondary(uptr p, uptr size, uptr user_begin,
31
uptr user_size) const {};
32
void OnUnmap(uptr p, uptr size) const {
33
// We are about to unmap a chunk of user memory.
34
// Mark the corresponding shadow memory as not needed.
35
DontNeedShadowFor(p, size);
36
// Mark the corresponding meta shadow memory as not needed.
37
// Note the block does not contain any meta info at this point
38
// (this happens after free).
39
const uptr kMetaRatio = kMetaShadowCell / kMetaShadowSize;
40
const uptr kPageSize = GetPageSizeCached() * kMetaRatio;
41
// Block came from LargeMmapAllocator, so must be large.
42
// We rely on this in the calculations below.
43
CHECK_GE(size, 2 * kPageSize);
44
uptr diff = RoundUp(p, kPageSize) - p;
45
if (diff != 0) {
46
p += diff;
47
size -= diff;
48
}
49
diff = p + size - RoundDown(p + size, kPageSize);
50
if (diff != 0)
51
size -= diff;
52
uptr p_meta = (uptr)MemToMeta(p);
53
ReleaseMemoryPagesToOS(p_meta, p_meta + size / kMetaRatio);
54
}
55
};
56
57
alignas(64) static char allocator_placeholder[sizeof(Allocator)];
58
Allocator *allocator() {
59
return reinterpret_cast<Allocator*>(&allocator_placeholder);
60
}
61
62
struct GlobalProc {
63
Mutex mtx;
64
Processor *proc;
65
// This mutex represents the internal allocator combined for
66
// the purposes of deadlock detection. The internal allocator
67
// uses multiple mutexes, moreover they are locked only occasionally
68
// and they are spin mutexes which don't support deadlock detection.
69
// So we use this fake mutex to serve as a substitute for these mutexes.
70
CheckedMutex internal_alloc_mtx;
71
72
GlobalProc()
73
: mtx(MutexTypeGlobalProc),
74
proc(ProcCreate()),
75
internal_alloc_mtx(MutexTypeInternalAlloc) {}
76
};
77
78
alignas(64) static char global_proc_placeholder[sizeof(GlobalProc)];
79
GlobalProc *global_proc() {
80
return reinterpret_cast<GlobalProc*>(&global_proc_placeholder);
81
}
82
83
static void InternalAllocAccess() {
84
global_proc()->internal_alloc_mtx.Lock();
85
global_proc()->internal_alloc_mtx.Unlock();
86
}
87
88
ScopedGlobalProcessor::ScopedGlobalProcessor() {
89
GlobalProc *gp = global_proc();
90
ThreadState *thr = cur_thread();
91
if (thr->proc())
92
return;
93
// If we don't have a proc, use the global one.
94
// There are currently only two known case where this path is triggered:
95
// __interceptor_free
96
// __nptl_deallocate_tsd
97
// start_thread
98
// clone
99
// and:
100
// ResetRange
101
// __interceptor_munmap
102
// __deallocate_stack
103
// start_thread
104
// clone
105
// Ideally, we destroy thread state (and unwire proc) when a thread actually
106
// exits (i.e. when we join/wait it). Then we would not need the global proc
107
gp->mtx.Lock();
108
ProcWire(gp->proc, thr);
109
}
110
111
ScopedGlobalProcessor::~ScopedGlobalProcessor() {
112
GlobalProc *gp = global_proc();
113
ThreadState *thr = cur_thread();
114
if (thr->proc() != gp->proc)
115
return;
116
ProcUnwire(gp->proc, thr);
117
gp->mtx.Unlock();
118
}
119
120
void AllocatorLockBeforeFork() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
121
global_proc()->internal_alloc_mtx.Lock();
122
InternalAllocatorLock();
123
#if !SANITIZER_APPLE
124
// OS X allocates from hooks, see 6a3958247a.
125
allocator()->ForceLock();
126
StackDepotLockBeforeFork();
127
#endif
128
}
129
130
void AllocatorUnlockAfterFork(bool child) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
131
#if !SANITIZER_APPLE
132
StackDepotUnlockAfterFork(child);
133
allocator()->ForceUnlock();
134
#endif
135
InternalAllocatorUnlock();
136
global_proc()->internal_alloc_mtx.Unlock();
137
}
138
139
void GlobalProcessorLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
140
global_proc()->mtx.Lock();
141
}
142
143
void GlobalProcessorUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
144
global_proc()->mtx.Unlock();
145
}
146
147
static constexpr uptr kMaxAllowedMallocSize = 1ull << 40;
148
static uptr max_user_defined_malloc_size;
149
150
void InitializeAllocator() {
151
SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
152
allocator()->Init(common_flags()->allocator_release_to_os_interval_ms);
153
max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
154
? common_flags()->max_allocation_size_mb
155
<< 20
156
: kMaxAllowedMallocSize;
157
}
158
159
void InitializeAllocatorLate() {
160
new(global_proc()) GlobalProc();
161
}
162
163
void AllocatorProcStart(Processor *proc) {
164
allocator()->InitCache(&proc->alloc_cache);
165
internal_allocator()->InitCache(&proc->internal_alloc_cache);
166
}
167
168
void AllocatorProcFinish(Processor *proc) {
169
allocator()->DestroyCache(&proc->alloc_cache);
170
internal_allocator()->DestroyCache(&proc->internal_alloc_cache);
171
}
172
173
void AllocatorPrintStats() {
174
allocator()->PrintStats();
175
}
176
177
static void SignalUnsafeCall(ThreadState *thr, uptr pc) {
178
if (atomic_load_relaxed(&thr->in_signal_handler) == 0 ||
179
!ShouldReport(thr, ReportTypeSignalUnsafe))
180
return;
181
VarSizeStackTrace stack;
182
ObtainCurrentStack(thr, pc, &stack);
183
if (IsFiredSuppression(ctx, ReportTypeSignalUnsafe, stack))
184
return;
185
ThreadRegistryLock l(&ctx->thread_registry);
186
ScopedReport rep(ReportTypeSignalUnsafe);
187
rep.AddStack(stack, true);
188
OutputReport(thr, rep);
189
}
190
191
192
void *user_alloc_internal(ThreadState *thr, uptr pc, uptr sz, uptr align,
193
bool signal) {
194
if (sz >= kMaxAllowedMallocSize || align >= kMaxAllowedMallocSize ||
195
sz > max_user_defined_malloc_size) {
196
if (AllocatorMayReturnNull())
197
return nullptr;
198
uptr malloc_limit =
199
Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
200
GET_STACK_TRACE_FATAL(thr, pc);
201
ReportAllocationSizeTooBig(sz, malloc_limit, &stack);
202
}
203
if (UNLIKELY(IsRssLimitExceeded())) {
204
if (AllocatorMayReturnNull())
205
return nullptr;
206
GET_STACK_TRACE_FATAL(thr, pc);
207
ReportRssLimitExceeded(&stack);
208
}
209
void *p = allocator()->Allocate(&thr->proc()->alloc_cache, sz, align);
210
if (UNLIKELY(!p)) {
211
SetAllocatorOutOfMemory();
212
if (AllocatorMayReturnNull())
213
return nullptr;
214
GET_STACK_TRACE_FATAL(thr, pc);
215
ReportOutOfMemory(sz, &stack);
216
}
217
if (ctx && ctx->initialized)
218
OnUserAlloc(thr, pc, (uptr)p, sz, true);
219
if (signal)
220
SignalUnsafeCall(thr, pc);
221
return p;
222
}
223
224
void user_free(ThreadState *thr, uptr pc, void *p, bool signal) {
225
ScopedGlobalProcessor sgp;
226
if (ctx && ctx->initialized)
227
OnUserFree(thr, pc, (uptr)p, true);
228
allocator()->Deallocate(&thr->proc()->alloc_cache, p);
229
if (signal)
230
SignalUnsafeCall(thr, pc);
231
}
232
233
void *user_alloc(ThreadState *thr, uptr pc, uptr sz) {
234
return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, kDefaultAlignment));
235
}
236
237
void *user_calloc(ThreadState *thr, uptr pc, uptr size, uptr n) {
238
if (UNLIKELY(CheckForCallocOverflow(size, n))) {
239
if (AllocatorMayReturnNull())
240
return SetErrnoOnNull(nullptr);
241
GET_STACK_TRACE_FATAL(thr, pc);
242
ReportCallocOverflow(n, size, &stack);
243
}
244
void *p = user_alloc_internal(thr, pc, n * size);
245
if (p)
246
internal_memset(p, 0, n * size);
247
return SetErrnoOnNull(p);
248
}
249
250
void *user_reallocarray(ThreadState *thr, uptr pc, void *p, uptr size, uptr n) {
251
if (UNLIKELY(CheckForCallocOverflow(size, n))) {
252
if (AllocatorMayReturnNull())
253
return SetErrnoOnNull(nullptr);
254
GET_STACK_TRACE_FATAL(thr, pc);
255
ReportReallocArrayOverflow(size, n, &stack);
256
}
257
return user_realloc(thr, pc, p, size * n);
258
}
259
260
void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write) {
261
DPrintf("#%d: alloc(%zu) = 0x%zx\n", thr->tid, sz, p);
262
// Note: this can run before thread initialization/after finalization.
263
// As a result this is not necessarily synchronized with DoReset,
264
// which iterates over and resets all sync objects,
265
// but it is fine to create new MBlocks in this context.
266
ctx->metamap.AllocBlock(thr, pc, p, sz);
267
// If this runs before thread initialization/after finalization
268
// and we don't have trace initialized, we can't imitate writes.
269
// In such case just reset the shadow range, it is fine since
270
// it affects only a small fraction of special objects.
271
if (write && thr->ignore_reads_and_writes == 0 &&
272
atomic_load_relaxed(&thr->trace_pos))
273
MemoryRangeImitateWrite(thr, pc, (uptr)p, sz);
274
else
275
MemoryResetRange(thr, pc, (uptr)p, sz);
276
}
277
278
void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write) {
279
CHECK_NE(p, (void*)0);
280
if (!thr->slot) {
281
// Very early/late in thread lifetime, or during fork.
282
UNUSED uptr sz = ctx->metamap.FreeBlock(thr->proc(), p, false);
283
DPrintf("#%d: free(0x%zx, %zu) (no slot)\n", thr->tid, p, sz);
284
return;
285
}
286
SlotLocker locker(thr);
287
uptr sz = ctx->metamap.FreeBlock(thr->proc(), p, true);
288
DPrintf("#%d: free(0x%zx, %zu)\n", thr->tid, p, sz);
289
if (write && thr->ignore_reads_and_writes == 0)
290
MemoryRangeFreed(thr, pc, (uptr)p, sz);
291
}
292
293
void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) {
294
// FIXME: Handle "shrinking" more efficiently,
295
// it seems that some software actually does this.
296
if (!p)
297
return SetErrnoOnNull(user_alloc_internal(thr, pc, sz));
298
if (!sz) {
299
user_free(thr, pc, p);
300
return nullptr;
301
}
302
void *new_p = user_alloc_internal(thr, pc, sz);
303
if (new_p) {
304
uptr old_sz = user_alloc_usable_size(p);
305
internal_memcpy(new_p, p, min(old_sz, sz));
306
user_free(thr, pc, p);
307
}
308
return SetErrnoOnNull(new_p);
309
}
310
311
void *user_memalign(ThreadState *thr, uptr pc, uptr align, uptr sz) {
312
if (UNLIKELY(!IsPowerOfTwo(align))) {
313
errno = errno_EINVAL;
314
if (AllocatorMayReturnNull())
315
return nullptr;
316
GET_STACK_TRACE_FATAL(thr, pc);
317
ReportInvalidAllocationAlignment(align, &stack);
318
}
319
return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, align));
320
}
321
322
int user_posix_memalign(ThreadState *thr, uptr pc, void **memptr, uptr align,
323
uptr sz) {
324
if (UNLIKELY(!CheckPosixMemalignAlignment(align))) {
325
if (AllocatorMayReturnNull())
326
return errno_EINVAL;
327
GET_STACK_TRACE_FATAL(thr, pc);
328
ReportInvalidPosixMemalignAlignment(align, &stack);
329
}
330
void *ptr = user_alloc_internal(thr, pc, sz, align);
331
if (UNLIKELY(!ptr))
332
// OOM error is already taken care of by user_alloc_internal.
333
return errno_ENOMEM;
334
CHECK(IsAligned((uptr)ptr, align));
335
*memptr = ptr;
336
return 0;
337
}
338
339
void *user_aligned_alloc(ThreadState *thr, uptr pc, uptr align, uptr sz) {
340
if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(align, sz))) {
341
errno = errno_EINVAL;
342
if (AllocatorMayReturnNull())
343
return nullptr;
344
GET_STACK_TRACE_FATAL(thr, pc);
345
ReportInvalidAlignedAllocAlignment(sz, align, &stack);
346
}
347
return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, align));
348
}
349
350
void *user_valloc(ThreadState *thr, uptr pc, uptr sz) {
351
return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, GetPageSizeCached()));
352
}
353
354
void *user_pvalloc(ThreadState *thr, uptr pc, uptr sz) {
355
uptr PageSize = GetPageSizeCached();
356
if (UNLIKELY(CheckForPvallocOverflow(sz, PageSize))) {
357
errno = errno_ENOMEM;
358
if (AllocatorMayReturnNull())
359
return nullptr;
360
GET_STACK_TRACE_FATAL(thr, pc);
361
ReportPvallocOverflow(sz, &stack);
362
}
363
// pvalloc(0) should allocate one page.
364
sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
365
return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, PageSize));
366
}
367
368
static const void *user_alloc_begin(const void *p) {
369
if (p == nullptr || !IsAppMem((uptr)p))
370
return nullptr;
371
void *beg = allocator()->GetBlockBegin(p);
372
if (!beg)
373
return nullptr;
374
375
MBlock *b = ctx->metamap.GetBlock((uptr)beg);
376
if (!b)
377
return nullptr; // Not a valid pointer.
378
379
return (const void *)beg;
380
}
381
382
uptr user_alloc_usable_size(const void *p) {
383
if (p == 0 || !IsAppMem((uptr)p))
384
return 0;
385
MBlock *b = ctx->metamap.GetBlock((uptr)p);
386
if (!b)
387
return 0; // Not a valid pointer.
388
if (b->siz == 0)
389
return 1; // Zero-sized allocations are actually 1 byte.
390
return b->siz;
391
}
392
393
uptr user_alloc_usable_size_fast(const void *p) {
394
MBlock *b = ctx->metamap.GetBlock((uptr)p);
395
// Static objects may have malloc'd before tsan completes
396
// initialization, and may believe returned ptrs to be valid.
397
if (!b)
398
return 0; // Not a valid pointer.
399
if (b->siz == 0)
400
return 1; // Zero-sized allocations are actually 1 byte.
401
return b->siz;
402
}
403
404
void invoke_malloc_hook(void *ptr, uptr size) {
405
ThreadState *thr = cur_thread();
406
if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
407
return;
408
RunMallocHooks(ptr, size);
409
}
410
411
void invoke_free_hook(void *ptr) {
412
ThreadState *thr = cur_thread();
413
if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
414
return;
415
RunFreeHooks(ptr);
416
}
417
418
void *Alloc(uptr sz) {
419
ThreadState *thr = cur_thread();
420
if (thr->nomalloc) {
421
thr->nomalloc = 0; // CHECK calls internal_malloc().
422
CHECK(0);
423
}
424
InternalAllocAccess();
425
return InternalAlloc(sz, &thr->proc()->internal_alloc_cache);
426
}
427
428
void FreeImpl(void *p) {
429
ThreadState *thr = cur_thread();
430
if (thr->nomalloc) {
431
thr->nomalloc = 0; // CHECK calls internal_malloc().
432
CHECK(0);
433
}
434
InternalAllocAccess();
435
InternalFree(p, &thr->proc()->internal_alloc_cache);
436
}
437
438
} // namespace __tsan
439
440
using namespace __tsan;
441
442
extern "C" {
443
uptr __sanitizer_get_current_allocated_bytes() {
444
uptr stats[AllocatorStatCount];
445
allocator()->GetStats(stats);
446
return stats[AllocatorStatAllocated];
447
}
448
449
uptr __sanitizer_get_heap_size() {
450
uptr stats[AllocatorStatCount];
451
allocator()->GetStats(stats);
452
return stats[AllocatorStatMapped];
453
}
454
455
uptr __sanitizer_get_free_bytes() {
456
return 1;
457
}
458
459
uptr __sanitizer_get_unmapped_bytes() {
460
return 1;
461
}
462
463
uptr __sanitizer_get_estimated_allocated_size(uptr size) {
464
return size;
465
}
466
467
int __sanitizer_get_ownership(const void *p) {
468
return allocator()->GetBlockBegin(p) != 0;
469
}
470
471
const void *__sanitizer_get_allocated_begin(const void *p) {
472
return user_alloc_begin(p);
473
}
474
475
uptr __sanitizer_get_allocated_size(const void *p) {
476
return user_alloc_usable_size(p);
477
}
478
479
uptr __sanitizer_get_allocated_size_fast(const void *p) {
480
DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
481
uptr ret = user_alloc_usable_size_fast(p);
482
DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
483
return ret;
484
}
485
486
void __sanitizer_purge_allocator() {
487
allocator()->ForceReleaseToOS();
488
}
489
490
void __tsan_on_thread_idle() {
491
ThreadState *thr = cur_thread();
492
allocator()->SwallowCache(&thr->proc()->alloc_cache);
493
internal_allocator()->SwallowCache(&thr->proc()->internal_alloc_cache);
494
ctx->metamap.OnProcIdle(thr->proc());
495
}
496
} // extern "C"
497
498