Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_rtl.h
35269 views
1
//===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file is a part of ThreadSanitizer (TSan), a race detector.
10
//
11
// Main internal TSan header file.
12
//
13
// Ground rules:
14
// - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
15
// function-scope locals)
16
// - All functions/classes/etc reside in namespace __tsan, except for those
17
// declared in tsan_interface.h.
18
// - Platform-specific files should be used instead of ifdefs (*).
19
// - No system headers included in header files (*).
20
// - Platform specific headres included only into platform-specific files (*).
21
//
22
// (*) Except when inlining is critical for performance.
23
//===----------------------------------------------------------------------===//
24
25
#ifndef TSAN_RTL_H
26
#define TSAN_RTL_H
27
28
#include "sanitizer_common/sanitizer_allocator.h"
29
#include "sanitizer_common/sanitizer_allocator_internal.h"
30
#include "sanitizer_common/sanitizer_asm.h"
31
#include "sanitizer_common/sanitizer_common.h"
32
#include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
33
#include "sanitizer_common/sanitizer_libignore.h"
34
#include "sanitizer_common/sanitizer_suppressions.h"
35
#include "sanitizer_common/sanitizer_thread_registry.h"
36
#include "sanitizer_common/sanitizer_vector.h"
37
#include "tsan_defs.h"
38
#include "tsan_flags.h"
39
#include "tsan_ignoreset.h"
40
#include "tsan_ilist.h"
41
#include "tsan_mman.h"
42
#include "tsan_mutexset.h"
43
#include "tsan_platform.h"
44
#include "tsan_report.h"
45
#include "tsan_shadow.h"
46
#include "tsan_stack_trace.h"
47
#include "tsan_sync.h"
48
#include "tsan_trace.h"
49
#include "tsan_vector_clock.h"
50
51
#if SANITIZER_WORDSIZE != 64
52
# error "ThreadSanitizer is supported only on 64-bit platforms"
53
#endif
54
55
namespace __tsan {
56
57
#if !SANITIZER_GO
58
struct MapUnmapCallback;
59
# if defined(__mips64) || defined(__aarch64__) || defined(__loongarch__) || \
60
defined(__powerpc__) || SANITIZER_RISCV64
61
62
struct AP32 {
63
static const uptr kSpaceBeg = 0;
64
static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
65
static const uptr kMetadataSize = 0;
66
typedef __sanitizer::CompactSizeClassMap SizeClassMap;
67
static const uptr kRegionSizeLog = 20;
68
using AddressSpaceView = LocalAddressSpaceView;
69
typedef __tsan::MapUnmapCallback MapUnmapCallback;
70
static const uptr kFlags = 0;
71
};
72
typedef SizeClassAllocator32<AP32> PrimaryAllocator;
73
#else
74
struct AP64 { // Allocator64 parameters. Deliberately using a short name.
75
# if defined(__s390x__)
76
typedef MappingS390x Mapping;
77
# else
78
typedef Mapping48AddressSpace Mapping;
79
# endif
80
static const uptr kSpaceBeg = Mapping::kHeapMemBeg;
81
static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg;
82
static const uptr kMetadataSize = 0;
83
typedef DefaultSizeClassMap SizeClassMap;
84
typedef __tsan::MapUnmapCallback MapUnmapCallback;
85
static const uptr kFlags = 0;
86
using AddressSpaceView = LocalAddressSpaceView;
87
};
88
typedef SizeClassAllocator64<AP64> PrimaryAllocator;
89
#endif
90
typedef CombinedAllocator<PrimaryAllocator> Allocator;
91
typedef Allocator::AllocatorCache AllocatorCache;
92
Allocator *allocator();
93
#endif
94
95
struct ThreadSignalContext;
96
97
struct JmpBuf {
98
uptr sp;
99
int int_signal_send;
100
bool in_blocking_func;
101
uptr in_signal_handler;
102
uptr *shadow_stack_pos;
103
};
104
105
// A Processor represents a physical thread, or a P for Go.
106
// It is used to store internal resources like allocate cache, and does not
107
// participate in race-detection logic (invisible to end user).
108
// In C++ it is tied to an OS thread just like ThreadState, however ideally
109
// it should be tied to a CPU (this way we will have fewer allocator caches).
110
// In Go it is tied to a P, so there are significantly fewer Processor's than
111
// ThreadState's (which are tied to Gs).
112
// A ThreadState must be wired with a Processor to handle events.
113
struct Processor {
114
ThreadState *thr; // currently wired thread, or nullptr
115
#if !SANITIZER_GO
116
AllocatorCache alloc_cache;
117
InternalAllocatorCache internal_alloc_cache;
118
#endif
119
DenseSlabAllocCache block_cache;
120
DenseSlabAllocCache sync_cache;
121
DDPhysicalThread *dd_pt;
122
};
123
124
#if !SANITIZER_GO
125
// ScopedGlobalProcessor temporary setups a global processor for the current
126
// thread, if it does not have one. Intended for interceptors that can run
127
// at the very thread end, when we already destroyed the thread processor.
128
struct ScopedGlobalProcessor {
129
ScopedGlobalProcessor();
130
~ScopedGlobalProcessor();
131
};
132
#endif
133
134
struct TidEpoch {
135
Tid tid;
136
Epoch epoch;
137
};
138
139
struct alignas(SANITIZER_CACHE_LINE_SIZE) TidSlot {
140
Mutex mtx;
141
Sid sid;
142
atomic_uint32_t raw_epoch;
143
ThreadState *thr;
144
Vector<TidEpoch> journal;
145
INode node;
146
147
Epoch epoch() const {
148
return static_cast<Epoch>(atomic_load(&raw_epoch, memory_order_relaxed));
149
}
150
151
void SetEpoch(Epoch v) {
152
atomic_store(&raw_epoch, static_cast<u32>(v), memory_order_relaxed);
153
}
154
155
TidSlot();
156
};
157
158
// This struct is stored in TLS.
159
struct alignas(SANITIZER_CACHE_LINE_SIZE) ThreadState {
160
FastState fast_state;
161
int ignore_sync;
162
#if !SANITIZER_GO
163
int ignore_interceptors;
164
#endif
165
uptr *shadow_stack_pos;
166
167
// Current position in tctx->trace.Back()->events (Event*).
168
atomic_uintptr_t trace_pos;
169
// PC of the last memory access, used to compute PC deltas in the trace.
170
uptr trace_prev_pc;
171
172
// Technically `current` should be a separate THREADLOCAL variable;
173
// but it is placed here in order to share cache line with previous fields.
174
ThreadState* current;
175
176
atomic_sint32_t pending_signals;
177
178
VectorClock clock;
179
180
// This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
181
// We do not distinguish beteween ignoring reads and writes
182
// for better performance.
183
int ignore_reads_and_writes;
184
int suppress_reports;
185
// Go does not support ignores.
186
#if !SANITIZER_GO
187
IgnoreSet mop_ignore_set;
188
IgnoreSet sync_ignore_set;
189
#endif
190
uptr *shadow_stack;
191
uptr *shadow_stack_end;
192
#if !SANITIZER_GO
193
Vector<JmpBuf> jmp_bufs;
194
int in_symbolizer;
195
atomic_uintptr_t in_blocking_func;
196
bool in_ignored_lib;
197
bool is_inited;
198
#endif
199
MutexSet mset;
200
bool is_dead;
201
const Tid tid;
202
uptr stk_addr;
203
uptr stk_size;
204
uptr tls_addr;
205
uptr tls_size;
206
ThreadContext *tctx;
207
208
DDLogicalThread *dd_lt;
209
210
TidSlot *slot;
211
uptr slot_epoch;
212
bool slot_locked;
213
214
// Current wired Processor, or nullptr. Required to handle any events.
215
Processor *proc1;
216
#if !SANITIZER_GO
217
Processor *proc() { return proc1; }
218
#else
219
Processor *proc();
220
#endif
221
222
atomic_uintptr_t in_signal_handler;
223
atomic_uintptr_t signal_ctx;
224
225
#if !SANITIZER_GO
226
StackID last_sleep_stack_id;
227
VectorClock last_sleep_clock;
228
#endif
229
230
// Set in regions of runtime that must be signal-safe and fork-safe.
231
// If set, malloc must not be called.
232
int nomalloc;
233
234
const ReportDesc *current_report;
235
236
explicit ThreadState(Tid tid);
237
};
238
239
#if !SANITIZER_GO
240
#if SANITIZER_APPLE || SANITIZER_ANDROID
241
ThreadState *cur_thread();
242
void set_cur_thread(ThreadState *thr);
243
void cur_thread_finalize();
244
inline ThreadState *cur_thread_init() { return cur_thread(); }
245
# else
246
__attribute__((tls_model("initial-exec")))
247
extern THREADLOCAL char cur_thread_placeholder[];
248
inline ThreadState *cur_thread() {
249
return reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current;
250
}
251
inline ThreadState *cur_thread_init() {
252
ThreadState *thr = reinterpret_cast<ThreadState *>(cur_thread_placeholder);
253
if (UNLIKELY(!thr->current))
254
thr->current = thr;
255
return thr->current;
256
}
257
inline void set_cur_thread(ThreadState *thr) {
258
reinterpret_cast<ThreadState *>(cur_thread_placeholder)->current = thr;
259
}
260
inline void cur_thread_finalize() { }
261
# endif // SANITIZER_APPLE || SANITIZER_ANDROID
262
#endif // SANITIZER_GO
263
264
class ThreadContext final : public ThreadContextBase {
265
public:
266
explicit ThreadContext(Tid tid);
267
~ThreadContext();
268
ThreadState *thr;
269
StackID creation_stack_id;
270
VectorClock *sync;
271
uptr sync_epoch;
272
Trace trace;
273
274
// Override superclass callbacks.
275
void OnDead() override;
276
void OnJoined(void *arg) override;
277
void OnFinished() override;
278
void OnStarted(void *arg) override;
279
void OnCreated(void *arg) override;
280
void OnReset() override;
281
void OnDetached(void *arg) override;
282
};
283
284
struct RacyStacks {
285
MD5Hash hash[2];
286
bool operator==(const RacyStacks &other) const;
287
};
288
289
struct RacyAddress {
290
uptr addr_min;
291
uptr addr_max;
292
};
293
294
struct FiredSuppression {
295
ReportType type;
296
uptr pc_or_addr;
297
Suppression *supp;
298
};
299
300
struct Context {
301
Context();
302
303
bool initialized;
304
#if !SANITIZER_GO
305
bool after_multithreaded_fork;
306
#endif
307
308
MetaMap metamap;
309
310
Mutex report_mtx;
311
int nreported;
312
atomic_uint64_t last_symbolize_time_ns;
313
314
void *background_thread;
315
atomic_uint32_t stop_background_thread;
316
317
ThreadRegistry thread_registry;
318
319
// This is used to prevent a very unlikely but very pathological behavior.
320
// Since memory access handling is not synchronized with DoReset,
321
// a thread running concurrently with DoReset can leave a bogus shadow value
322
// that will be later falsely detected as a race. For such false races
323
// RestoreStack will return false and we will not report it.
324
// However, consider that a thread leaves a whole lot of such bogus values
325
// and these values are later read by a whole lot of threads.
326
// This will cause massive amounts of ReportRace calls and lots of
327
// serialization. In very pathological cases the resulting slowdown
328
// can be >100x. This is very unlikely, but it was presumably observed
329
// in practice: https://github.com/google/sanitizers/issues/1552
330
// If this happens, previous access sid+epoch will be the same for all of
331
// these false races b/c if the thread will try to increment epoch, it will
332
// notice that DoReset has happened and will stop producing bogus shadow
333
// values. So, last_spurious_race is used to remember the last sid+epoch
334
// for which RestoreStack returned false. Then it is used to filter out
335
// races with the same sid+epoch very early and quickly.
336
// It is of course possible that multiple threads left multiple bogus shadow
337
// values and all of them are read by lots of threads at the same time.
338
// In such case last_spurious_race will only be able to deduplicate a few
339
// races from one thread, then few from another and so on. An alternative
340
// would be to hold an array of such sid+epoch, but we consider such scenario
341
// as even less likely.
342
// Note: this can lead to some rare false negatives as well:
343
// 1. When a legit access with the same sid+epoch participates in a race
344
// as the "previous" memory access, it will be wrongly filtered out.
345
// 2. When RestoreStack returns false for a legit memory access because it
346
// was already evicted from the thread trace, we will still remember it in
347
// last_spurious_race. Then if there is another racing memory access from
348
// the same thread that happened in the same epoch, but was stored in the
349
// next thread trace part (which is still preserved in the thread trace),
350
// we will also wrongly filter it out while RestoreStack would actually
351
// succeed for that second memory access.
352
RawShadow last_spurious_race;
353
354
Mutex racy_mtx;
355
Vector<RacyStacks> racy_stacks;
356
// Number of fired suppressions may be large enough.
357
Mutex fired_suppressions_mtx;
358
InternalMmapVector<FiredSuppression> fired_suppressions;
359
DDetector *dd;
360
361
Flags flags;
362
fd_t memprof_fd;
363
364
// The last slot index (kFreeSid) is used to denote freed memory.
365
TidSlot slots[kThreadSlotCount - 1];
366
367
// Protects global_epoch, slot_queue, trace_part_recycle.
368
Mutex slot_mtx;
369
uptr global_epoch; // guarded by slot_mtx and by all slot mutexes
370
bool resetting; // global reset is in progress
371
IList<TidSlot, &TidSlot::node> slot_queue SANITIZER_GUARDED_BY(slot_mtx);
372
IList<TraceHeader, &TraceHeader::global, TracePart> trace_part_recycle
373
SANITIZER_GUARDED_BY(slot_mtx);
374
uptr trace_part_total_allocated SANITIZER_GUARDED_BY(slot_mtx);
375
uptr trace_part_recycle_finished SANITIZER_GUARDED_BY(slot_mtx);
376
uptr trace_part_finished_excess SANITIZER_GUARDED_BY(slot_mtx);
377
#if SANITIZER_GO
378
uptr mapped_shadow_begin;
379
uptr mapped_shadow_end;
380
#endif
381
};
382
383
extern Context *ctx; // The one and the only global runtime context.
384
385
ALWAYS_INLINE Flags *flags() {
386
return &ctx->flags;
387
}
388
389
struct ScopedIgnoreInterceptors {
390
ScopedIgnoreInterceptors() {
391
#if !SANITIZER_GO
392
cur_thread()->ignore_interceptors++;
393
#endif
394
}
395
396
~ScopedIgnoreInterceptors() {
397
#if !SANITIZER_GO
398
cur_thread()->ignore_interceptors--;
399
#endif
400
}
401
};
402
403
const char *GetObjectTypeFromTag(uptr tag);
404
const char *GetReportHeaderFromTag(uptr tag);
405
uptr TagFromShadowStackFrame(uptr pc);
406
407
class ScopedReportBase {
408
public:
409
void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, Tid tid,
410
StackTrace stack, const MutexSet *mset);
411
void AddStack(StackTrace stack, bool suppressable = false);
412
void AddThread(const ThreadContext *tctx, bool suppressable = false);
413
void AddThread(Tid tid, bool suppressable = false);
414
void AddUniqueTid(Tid unique_tid);
415
int AddMutex(uptr addr, StackID creation_stack_id);
416
void AddLocation(uptr addr, uptr size);
417
void AddSleep(StackID stack_id);
418
void SetCount(int count);
419
void SetSigNum(int sig);
420
421
const ReportDesc *GetReport() const;
422
423
protected:
424
ScopedReportBase(ReportType typ, uptr tag);
425
~ScopedReportBase();
426
427
private:
428
ReportDesc *rep_;
429
// Symbolizer makes lots of intercepted calls. If we try to process them,
430
// at best it will cause deadlocks on internal mutexes.
431
ScopedIgnoreInterceptors ignore_interceptors_;
432
433
ScopedReportBase(const ScopedReportBase &) = delete;
434
void operator=(const ScopedReportBase &) = delete;
435
};
436
437
class ScopedReport : public ScopedReportBase {
438
public:
439
explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone);
440
~ScopedReport();
441
442
private:
443
ScopedErrorReportLock lock_;
444
};
445
446
bool ShouldReport(ThreadState *thr, ReportType typ);
447
ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack);
448
449
// The stack could look like:
450
// <start> | <main> | <foo> | tag | <bar>
451
// This will extract the tag and keep:
452
// <start> | <main> | <foo> | <bar>
453
template<typename StackTraceTy>
454
void ExtractTagFromStack(StackTraceTy *stack, uptr *tag = nullptr) {
455
if (stack->size < 2) return;
456
uptr possible_tag_pc = stack->trace[stack->size - 2];
457
uptr possible_tag = TagFromShadowStackFrame(possible_tag_pc);
458
if (possible_tag == kExternalTagNone) return;
459
stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1];
460
stack->size -= 1;
461
if (tag) *tag = possible_tag;
462
}
463
464
template<typename StackTraceTy>
465
void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack,
466
uptr *tag = nullptr) {
467
uptr size = thr->shadow_stack_pos - thr->shadow_stack;
468
uptr start = 0;
469
if (size + !!toppc > kStackTraceMax) {
470
start = size + !!toppc - kStackTraceMax;
471
size = kStackTraceMax - !!toppc;
472
}
473
stack->Init(&thr->shadow_stack[start], size, toppc);
474
ExtractTagFromStack(stack, tag);
475
}
476
477
#define GET_STACK_TRACE_FATAL(thr, pc) \
478
VarSizeStackTrace stack; \
479
ObtainCurrentStack(thr, pc, &stack); \
480
stack.ReverseOrder();
481
482
void MapShadow(uptr addr, uptr size);
483
void MapThreadTrace(uptr addr, uptr size, const char *name);
484
void DontNeedShadowFor(uptr addr, uptr size);
485
void UnmapShadow(ThreadState *thr, uptr addr, uptr size);
486
void InitializeShadowMemory();
487
void DontDumpShadow(uptr addr, uptr size);
488
void InitializeInterceptors();
489
void InitializeLibIgnore();
490
void InitializeDynamicAnnotations();
491
492
void ForkBefore(ThreadState *thr, uptr pc);
493
void ForkParentAfter(ThreadState *thr, uptr pc);
494
void ForkChildAfter(ThreadState *thr, uptr pc, bool start_thread);
495
496
void ReportRace(ThreadState *thr, RawShadow *shadow_mem, Shadow cur, Shadow old,
497
AccessType typ);
498
bool OutputReport(ThreadState *thr, const ScopedReport &srep);
499
bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
500
bool IsExpectedReport(uptr addr, uptr size);
501
502
#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
503
# define DPrintf Printf
504
#else
505
# define DPrintf(...)
506
#endif
507
508
#if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
509
# define DPrintf2 Printf
510
#else
511
# define DPrintf2(...)
512
#endif
513
514
StackID CurrentStackId(ThreadState *thr, uptr pc);
515
ReportStack *SymbolizeStackId(StackID stack_id);
516
void PrintCurrentStack(ThreadState *thr, uptr pc);
517
void PrintCurrentStackSlow(uptr pc); // uses libunwind
518
MBlock *JavaHeapBlock(uptr addr, uptr *start);
519
520
void Initialize(ThreadState *thr);
521
void MaybeSpawnBackgroundThread();
522
int Finalize(ThreadState *thr);
523
524
void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
525
void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
526
527
void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
528
AccessType typ);
529
void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
530
AccessType typ);
531
// This creates 2 non-inlined specialized versions of MemoryAccessRange.
532
template <bool is_read>
533
void MemoryAccessRangeT(ThreadState *thr, uptr pc, uptr addr, uptr size);
534
535
ALWAYS_INLINE
536
void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
537
bool is_write) {
538
if (size == 0)
539
return;
540
if (is_write)
541
MemoryAccessRangeT<false>(thr, pc, addr, size);
542
else
543
MemoryAccessRangeT<true>(thr, pc, addr, size);
544
}
545
546
void ShadowSet(RawShadow *p, RawShadow *end, RawShadow v);
547
void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
548
void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
549
void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
550
void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
551
uptr size);
552
553
void ThreadIgnoreBegin(ThreadState *thr, uptr pc);
554
void ThreadIgnoreEnd(ThreadState *thr);
555
void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc);
556
void ThreadIgnoreSyncEnd(ThreadState *thr);
557
558
Tid ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
559
void ThreadStart(ThreadState *thr, Tid tid, tid_t os_id,
560
ThreadType thread_type);
561
void ThreadFinish(ThreadState *thr);
562
Tid ThreadConsumeTid(ThreadState *thr, uptr pc, uptr uid);
563
void ThreadJoin(ThreadState *thr, uptr pc, Tid tid);
564
void ThreadDetach(ThreadState *thr, uptr pc, Tid tid);
565
void ThreadFinalize(ThreadState *thr);
566
void ThreadSetName(ThreadState *thr, const char *name);
567
int ThreadCount(ThreadState *thr);
568
void ProcessPendingSignalsImpl(ThreadState *thr);
569
void ThreadNotJoined(ThreadState *thr, uptr pc, Tid tid, uptr uid);
570
571
Processor *ProcCreate();
572
void ProcDestroy(Processor *proc);
573
void ProcWire(Processor *proc, ThreadState *thr);
574
void ProcUnwire(Processor *proc, ThreadState *thr);
575
576
// Note: the parameter is called flagz, because flags is already taken
577
// by the global function that returns flags.
578
void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
579
void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
580
void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
581
void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0,
582
int rec = 1);
583
int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
584
void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
585
void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
586
void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
587
void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
588
void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD
589
void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr);
590
591
void Acquire(ThreadState *thr, uptr pc, uptr addr);
592
// AcquireGlobal synchronizes the current thread with all other threads.
593
// In terms of happens-before relation, it draws a HB edge from all threads
594
// (where they happen to execute right now) to the current thread. We use it to
595
// handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
596
// right before executing finalizers. This provides a coarse, but simple
597
// approximation of the actual required synchronization.
598
void AcquireGlobal(ThreadState *thr);
599
void Release(ThreadState *thr, uptr pc, uptr addr);
600
void ReleaseStoreAcquire(ThreadState *thr, uptr pc, uptr addr);
601
void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
602
void AfterSleep(ThreadState *thr, uptr pc);
603
void IncrementEpoch(ThreadState *thr);
604
605
#if !SANITIZER_GO
606
uptr ALWAYS_INLINE HeapEnd() {
607
return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
608
}
609
#endif
610
611
void SlotAttachAndLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx);
612
void SlotDetach(ThreadState *thr);
613
void SlotLock(ThreadState *thr) SANITIZER_ACQUIRE(thr->slot->mtx);
614
void SlotUnlock(ThreadState *thr) SANITIZER_RELEASE(thr->slot->mtx);
615
void DoReset(ThreadState *thr, uptr epoch);
616
void FlushShadowMemory();
617
618
ThreadState *FiberCreate(ThreadState *thr, uptr pc, unsigned flags);
619
void FiberDestroy(ThreadState *thr, uptr pc, ThreadState *fiber);
620
void FiberSwitch(ThreadState *thr, uptr pc, ThreadState *fiber, unsigned flags);
621
622
// These need to match __tsan_switch_to_fiber_* flags defined in
623
// tsan_interface.h. See documentation there as well.
624
enum FiberSwitchFlags {
625
FiberSwitchFlagNoSync = 1 << 0, // __tsan_switch_to_fiber_no_sync
626
};
627
628
class SlotLocker {
629
public:
630
ALWAYS_INLINE
631
SlotLocker(ThreadState *thr, bool recursive = false)
632
: thr_(thr), locked_(recursive ? thr->slot_locked : false) {
633
#if !SANITIZER_GO
634
// We are in trouble if we are here with in_blocking_func set.
635
// If in_blocking_func is set, all signals will be delivered synchronously,
636
// which means we can't lock slots since the signal handler will try
637
// to lock it recursively and deadlock.
638
DCHECK(!atomic_load(&thr->in_blocking_func, memory_order_relaxed));
639
#endif
640
if (!locked_)
641
SlotLock(thr_);
642
}
643
644
ALWAYS_INLINE
645
~SlotLocker() {
646
if (!locked_)
647
SlotUnlock(thr_);
648
}
649
650
private:
651
ThreadState *thr_;
652
bool locked_;
653
};
654
655
class SlotUnlocker {
656
public:
657
SlotUnlocker(ThreadState *thr) : thr_(thr), locked_(thr->slot_locked) {
658
if (locked_)
659
SlotUnlock(thr_);
660
}
661
662
~SlotUnlocker() {
663
if (locked_)
664
SlotLock(thr_);
665
}
666
667
private:
668
ThreadState *thr_;
669
bool locked_;
670
};
671
672
ALWAYS_INLINE void ProcessPendingSignals(ThreadState *thr) {
673
if (UNLIKELY(atomic_load_relaxed(&thr->pending_signals)))
674
ProcessPendingSignalsImpl(thr);
675
}
676
677
extern bool is_initialized;
678
679
ALWAYS_INLINE
680
void LazyInitialize(ThreadState *thr) {
681
// If we can use .preinit_array, assume that __tsan_init
682
// called from .preinit_array initializes runtime before
683
// any instrumented code except when tsan is used as a
684
// shared library.
685
#if (!SANITIZER_CAN_USE_PREINIT_ARRAY || defined(SANITIZER_SHARED))
686
if (UNLIKELY(!is_initialized))
687
Initialize(thr);
688
#endif
689
}
690
691
void TraceResetForTesting();
692
void TraceSwitchPart(ThreadState *thr);
693
void TraceSwitchPartImpl(ThreadState *thr);
694
bool RestoreStack(EventType type, Sid sid, Epoch epoch, uptr addr, uptr size,
695
AccessType typ, Tid *ptid, VarSizeStackTrace *pstk,
696
MutexSet *pmset, uptr *ptag);
697
698
template <typename EventT>
699
ALWAYS_INLINE WARN_UNUSED_RESULT bool TraceAcquire(ThreadState *thr,
700
EventT **ev) {
701
// TraceSwitchPart accesses shadow_stack, but it's called infrequently,
702
// so we check it here proactively.
703
DCHECK(thr->shadow_stack);
704
Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(&thr->trace_pos));
705
#if SANITIZER_DEBUG
706
// TraceSwitch acquires these mutexes,
707
// so we lock them here to detect deadlocks more reliably.
708
{ Lock lock(&ctx->slot_mtx); }
709
{ Lock lock(&thr->tctx->trace.mtx); }
710
TracePart *current = thr->tctx->trace.parts.Back();
711
if (current) {
712
DCHECK_GE(pos, &current->events[0]);
713
DCHECK_LE(pos, &current->events[TracePart::kSize]);
714
} else {
715
DCHECK_EQ(pos, nullptr);
716
}
717
#endif
718
// TracePart is allocated with mmap and is at least 4K aligned.
719
// So the following check is a faster way to check for part end.
720
// It may have false positives in the middle of the trace,
721
// they are filtered out in TraceSwitch.
722
if (UNLIKELY(((uptr)(pos + 1) & TracePart::kAlignment) == 0))
723
return false;
724
*ev = reinterpret_cast<EventT *>(pos);
725
return true;
726
}
727
728
template <typename EventT>
729
ALWAYS_INLINE void TraceRelease(ThreadState *thr, EventT *evp) {
730
DCHECK_LE(evp + 1, &thr->tctx->trace.parts.Back()->events[TracePart::kSize]);
731
atomic_store_relaxed(&thr->trace_pos, (uptr)(evp + 1));
732
}
733
734
template <typename EventT>
735
void TraceEvent(ThreadState *thr, EventT ev) {
736
EventT *evp;
737
if (!TraceAcquire(thr, &evp)) {
738
TraceSwitchPart(thr);
739
UNUSED bool res = TraceAcquire(thr, &evp);
740
DCHECK(res);
741
}
742
*evp = ev;
743
TraceRelease(thr, evp);
744
}
745
746
ALWAYS_INLINE WARN_UNUSED_RESULT bool TryTraceFunc(ThreadState *thr,
747
uptr pc = 0) {
748
if (!kCollectHistory)
749
return true;
750
EventFunc *ev;
751
if (UNLIKELY(!TraceAcquire(thr, &ev)))
752
return false;
753
ev->is_access = 0;
754
ev->is_func = 1;
755
ev->pc = pc;
756
TraceRelease(thr, ev);
757
return true;
758
}
759
760
WARN_UNUSED_RESULT
761
bool TryTraceMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size,
762
AccessType typ);
763
WARN_UNUSED_RESULT
764
bool TryTraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
765
AccessType typ);
766
void TraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size,
767
AccessType typ);
768
void TraceFunc(ThreadState *thr, uptr pc = 0);
769
void TraceMutexLock(ThreadState *thr, EventType type, uptr pc, uptr addr,
770
StackID stk);
771
void TraceMutexUnlock(ThreadState *thr, uptr addr);
772
void TraceTime(ThreadState *thr);
773
774
void TraceRestartFuncExit(ThreadState *thr);
775
void TraceRestartFuncEntry(ThreadState *thr, uptr pc);
776
777
void GrowShadowStack(ThreadState *thr);
778
779
ALWAYS_INLINE
780
void FuncEntry(ThreadState *thr, uptr pc) {
781
DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.sid(), (void *)pc);
782
if (UNLIKELY(!TryTraceFunc(thr, pc)))
783
return TraceRestartFuncEntry(thr, pc);
784
DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
785
#if !SANITIZER_GO
786
DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
787
#else
788
if (thr->shadow_stack_pos == thr->shadow_stack_end)
789
GrowShadowStack(thr);
790
#endif
791
thr->shadow_stack_pos[0] = pc;
792
thr->shadow_stack_pos++;
793
}
794
795
ALWAYS_INLINE
796
void FuncExit(ThreadState *thr) {
797
DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.sid());
798
if (UNLIKELY(!TryTraceFunc(thr, 0)))
799
return TraceRestartFuncExit(thr);
800
DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
801
#if !SANITIZER_GO
802
DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
803
#endif
804
thr->shadow_stack_pos--;
805
}
806
807
#if !SANITIZER_GO
808
extern void (*on_initialize)(void);
809
extern int (*on_finalize)(int);
810
#endif
811
} // namespace __tsan
812
813
#endif // TSAN_RTL_H
814
815