Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/compiler-rt/lib/xray/xray_buffer_queue.h
35265 views
1
//===-- xray_buffer_queue.h ------------------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file is a part of XRay, a dynamic runtime instrumentation system.
10
//
11
// Defines the interface for a buffer queue implementation.
12
//
13
//===----------------------------------------------------------------------===//
14
#ifndef XRAY_BUFFER_QUEUE_H
15
#define XRAY_BUFFER_QUEUE_H
16
17
#include "sanitizer_common/sanitizer_atomic.h"
18
#include "sanitizer_common/sanitizer_common.h"
19
#include "sanitizer_common/sanitizer_mutex.h"
20
#include "xray_defs.h"
21
#include <cstddef>
22
#include <cstdint>
23
24
namespace __xray {
25
26
/// BufferQueue implements a circular queue of fixed sized buffers (much like a
27
/// freelist) but is concerned with making it quick to initialise, finalise, and
28
/// get from or return buffers to the queue. This is one key component of the
29
/// "flight data recorder" (FDR) mode to support ongoing XRay function call
30
/// trace collection.
31
class BufferQueue {
32
public:
33
/// ControlBlock represents the memory layout of how we interpret the backing
34
/// store for all buffers and extents managed by a BufferQueue instance. The
35
/// ControlBlock has the reference count as the first member, sized according
36
/// to platform-specific cache-line size. We never use the Buffer member of
37
/// the union, which is only there for compiler-supported alignment and
38
/// sizing.
39
///
40
/// This ensures that the `Data` member will be placed at least kCacheLineSize
41
/// bytes from the beginning of the structure.
42
struct ControlBlock {
43
union {
44
atomic_uint64_t RefCount;
45
char Buffer[kCacheLineSize];
46
};
47
48
/// We need to make this size 1, to conform to the C++ rules for array data
49
/// members. Typically, we want to subtract this 1 byte for sizing
50
/// information.
51
char Data[1];
52
};
53
54
struct Buffer {
55
atomic_uint64_t *Extents = nullptr;
56
uint64_t Generation{0};
57
void *Data = nullptr;
58
size_t Size = 0;
59
60
private:
61
friend class BufferQueue;
62
ControlBlock *BackingStore = nullptr;
63
ControlBlock *ExtentsBackingStore = nullptr;
64
size_t Count = 0;
65
};
66
67
struct BufferRep {
68
// The managed buffer.
69
Buffer Buff;
70
71
// This is true if the buffer has been returned to the available queue, and
72
// is considered "used" by another thread.
73
bool Used = false;
74
};
75
76
private:
77
// This models a ForwardIterator. |T| Must be either a `Buffer` or `const
78
// Buffer`. Note that we only advance to the "used" buffers, when
79
// incrementing, so that at dereference we're always at a valid point.
80
template <class T> class Iterator {
81
public:
82
BufferRep *Buffers = nullptr;
83
size_t Offset = 0;
84
size_t Max = 0;
85
86
Iterator &operator++() {
87
DCHECK_NE(Offset, Max);
88
do {
89
++Offset;
90
} while (Offset != Max && !Buffers[Offset].Used);
91
return *this;
92
}
93
94
Iterator operator++(int) {
95
Iterator C = *this;
96
++(*this);
97
return C;
98
}
99
100
T &operator*() const { return Buffers[Offset].Buff; }
101
102
T *operator->() const { return &(Buffers[Offset].Buff); }
103
104
Iterator(BufferRep *Root, size_t O, size_t M) XRAY_NEVER_INSTRUMENT
105
: Buffers(Root),
106
Offset(O),
107
Max(M) {
108
// We want to advance to the first Offset where the 'Used' property is
109
// true, or to the end of the list/queue.
110
while (Offset != Max && !Buffers[Offset].Used) {
111
++Offset;
112
}
113
}
114
115
Iterator() = default;
116
Iterator(const Iterator &) = default;
117
Iterator(Iterator &&) = default;
118
Iterator &operator=(const Iterator &) = default;
119
Iterator &operator=(Iterator &&) = default;
120
~Iterator() = default;
121
122
template <class V>
123
friend bool operator==(const Iterator &L, const Iterator<V> &R) {
124
DCHECK_EQ(L.Max, R.Max);
125
return L.Buffers == R.Buffers && L.Offset == R.Offset;
126
}
127
128
template <class V>
129
friend bool operator!=(const Iterator &L, const Iterator<V> &R) {
130
return !(L == R);
131
}
132
};
133
134
// Size of each individual Buffer.
135
size_t BufferSize;
136
137
// Amount of pre-allocated buffers.
138
size_t BufferCount;
139
140
SpinMutex Mutex;
141
atomic_uint8_t Finalizing;
142
143
// The collocated ControlBlock and buffer storage.
144
ControlBlock *BackingStore;
145
146
// The collocated ControlBlock and extents storage.
147
ControlBlock *ExtentsBackingStore;
148
149
// A dynamically allocated array of BufferRep instances.
150
BufferRep *Buffers;
151
152
// Pointer to the next buffer to be handed out.
153
BufferRep *Next;
154
155
// Pointer to the entry in the array where the next released buffer will be
156
// placed.
157
BufferRep *First;
158
159
// Count of buffers that have been handed out through 'getBuffer'.
160
size_t LiveBuffers;
161
162
// We use a generation number to identify buffers and which generation they're
163
// associated with.
164
atomic_uint64_t Generation;
165
166
/// Releases references to the buffers backed by the current buffer queue.
167
void cleanupBuffers();
168
169
public:
170
enum class ErrorCode : unsigned {
171
Ok,
172
NotEnoughMemory,
173
QueueFinalizing,
174
UnrecognizedBuffer,
175
AlreadyFinalized,
176
AlreadyInitialized,
177
};
178
179
static const char *getErrorString(ErrorCode E) {
180
switch (E) {
181
case ErrorCode::Ok:
182
return "(none)";
183
case ErrorCode::NotEnoughMemory:
184
return "no available buffers in the queue";
185
case ErrorCode::QueueFinalizing:
186
return "queue already finalizing";
187
case ErrorCode::UnrecognizedBuffer:
188
return "buffer being returned not owned by buffer queue";
189
case ErrorCode::AlreadyFinalized:
190
return "queue already finalized";
191
case ErrorCode::AlreadyInitialized:
192
return "queue already initialized";
193
}
194
return "unknown error";
195
}
196
197
/// Initialise a queue of size |N| with buffers of size |B|. We report success
198
/// through |Success|.
199
BufferQueue(size_t B, size_t N, bool &Success);
200
201
/// Updates |Buf| to contain the pointer to an appropriate buffer. Returns an
202
/// error in case there are no available buffers to return when we will run
203
/// over the upper bound for the total buffers.
204
///
205
/// Requirements:
206
/// - BufferQueue is not finalising.
207
///
208
/// Returns:
209
/// - ErrorCode::NotEnoughMemory on exceeding MaxSize.
210
/// - ErrorCode::Ok when we find a Buffer.
211
/// - ErrorCode::QueueFinalizing or ErrorCode::AlreadyFinalized on
212
/// a finalizing/finalized BufferQueue.
213
ErrorCode getBuffer(Buffer &Buf);
214
215
/// Updates |Buf| to point to nullptr, with size 0.
216
///
217
/// Returns:
218
/// - ErrorCode::Ok when we successfully release the buffer.
219
/// - ErrorCode::UnrecognizedBuffer for when this BufferQueue does not own
220
/// the buffer being released.
221
ErrorCode releaseBuffer(Buffer &Buf);
222
223
/// Initializes the buffer queue, starting a new generation. We can re-set the
224
/// size of buffers with |BS| along with the buffer count with |BC|.
225
///
226
/// Returns:
227
/// - ErrorCode::Ok when we successfully initialize the buffer. This
228
/// requires that the buffer queue is previously finalized.
229
/// - ErrorCode::AlreadyInitialized when the buffer queue is not finalized.
230
ErrorCode init(size_t BS, size_t BC);
231
232
bool finalizing() const {
233
return atomic_load(&Finalizing, memory_order_acquire);
234
}
235
236
uint64_t generation() const {
237
return atomic_load(&Generation, memory_order_acquire);
238
}
239
240
/// Returns the configured size of the buffers in the buffer queue.
241
size_t ConfiguredBufferSize() const { return BufferSize; }
242
243
/// Sets the state of the BufferQueue to finalizing, which ensures that:
244
///
245
/// - All subsequent attempts to retrieve a Buffer will fail.
246
/// - All releaseBuffer operations will not fail.
247
///
248
/// After a call to finalize succeeds, all subsequent calls to finalize will
249
/// fail with ErrorCode::QueueFinalizing.
250
ErrorCode finalize();
251
252
/// Applies the provided function F to each Buffer in the queue, only if the
253
/// Buffer is marked 'used' (i.e. has been the result of getBuffer(...) and a
254
/// releaseBuffer(...) operation).
255
template <class F> void apply(F Fn) XRAY_NEVER_INSTRUMENT {
256
SpinMutexLock G(&Mutex);
257
for (auto I = begin(), E = end(); I != E; ++I)
258
Fn(*I);
259
}
260
261
using const_iterator = Iterator<const Buffer>;
262
using iterator = Iterator<Buffer>;
263
264
/// Provides iterator access to the raw Buffer instances.
265
iterator begin() const { return iterator(Buffers, 0, BufferCount); }
266
const_iterator cbegin() const {
267
return const_iterator(Buffers, 0, BufferCount);
268
}
269
iterator end() const { return iterator(Buffers, BufferCount, BufferCount); }
270
const_iterator cend() const {
271
return const_iterator(Buffers, BufferCount, BufferCount);
272
}
273
274
// Cleans up allocated buffers.
275
~BufferQueue();
276
};
277
278
} // namespace __xray
279
280
#endif // XRAY_BUFFER_QUEUE_H
281
282