Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/compiler-rt/lib/xray/xray_interface.cpp
35265 views
1
//===-- xray_interface.cpp --------------------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file is a part of XRay, a dynamic runtime instrumentation system.
10
//
11
// Implementation of the API functions.
12
//
13
//===----------------------------------------------------------------------===//
14
15
#include "xray_interface_internal.h"
16
17
#include <cinttypes>
18
#include <cstdio>
19
#include <errno.h>
20
#include <limits>
21
#include <string.h>
22
#include <sys/mman.h>
23
24
#if SANITIZER_FUCHSIA
25
#include <zircon/process.h>
26
#include <zircon/sanitizer.h>
27
#include <zircon/status.h>
28
#include <zircon/syscalls.h>
29
#endif
30
31
#include "sanitizer_common/sanitizer_addrhashmap.h"
32
#include "sanitizer_common/sanitizer_common.h"
33
34
#include "xray_defs.h"
35
#include "xray_flags.h"
36
37
extern __sanitizer::SpinMutex XRayInstrMapMutex;
38
extern __sanitizer::atomic_uint8_t XRayInitialized;
39
extern __xray::XRaySledMap XRayInstrMap;
40
41
namespace __xray {
42
43
#if defined(__x86_64__)
44
static const int16_t cSledLength = 12;
45
#elif defined(__aarch64__)
46
static const int16_t cSledLength = 32;
47
#elif defined(__arm__)
48
static const int16_t cSledLength = 28;
49
#elif SANITIZER_LOONGARCH64
50
static const int16_t cSledLength = 48;
51
#elif SANITIZER_MIPS32
52
static const int16_t cSledLength = 48;
53
#elif SANITIZER_MIPS64
54
static const int16_t cSledLength = 64;
55
#elif defined(__powerpc64__)
56
static const int16_t cSledLength = 8;
57
#elif defined(__hexagon__)
58
static const int16_t cSledLength = 20;
59
#else
60
#error "Unsupported CPU Architecture"
61
#endif /* CPU architecture */
62
63
// This is the function to call when we encounter the entry or exit sleds.
64
atomic_uintptr_t XRayPatchedFunction{0};
65
66
// This is the function to call from the arg1-enabled sleds/trampolines.
67
atomic_uintptr_t XRayArgLogger{0};
68
69
// This is the function to call when we encounter a custom event log call.
70
atomic_uintptr_t XRayPatchedCustomEvent{0};
71
72
// This is the function to call when we encounter a typed event log call.
73
atomic_uintptr_t XRayPatchedTypedEvent{0};
74
75
// This is the global status to determine whether we are currently
76
// patching/unpatching.
77
atomic_uint8_t XRayPatching{0};
78
79
struct TypeDescription {
80
uint32_t type_id;
81
std::size_t description_string_length;
82
};
83
84
using TypeDescriptorMapType = AddrHashMap<TypeDescription, 11>;
85
// An address map from immutable descriptors to type ids.
86
TypeDescriptorMapType TypeDescriptorAddressMap{};
87
88
atomic_uint32_t TypeEventDescriptorCounter{0};
89
90
// MProtectHelper is an RAII wrapper for calls to mprotect(...) that will
91
// undo any successful mprotect(...) changes. This is used to make a page
92
// writeable and executable, and upon destruction if it was successful in
93
// doing so returns the page into a read-only and executable page.
94
//
95
// This is only used specifically for runtime-patching of the XRay
96
// instrumentation points. This assumes that the executable pages are
97
// originally read-and-execute only.
98
class MProtectHelper {
99
void *PageAlignedAddr;
100
std::size_t MProtectLen;
101
bool MustCleanup;
102
103
public:
104
explicit MProtectHelper(void *PageAlignedAddr,
105
std::size_t MProtectLen,
106
std::size_t PageSize) XRAY_NEVER_INSTRUMENT
107
: PageAlignedAddr(PageAlignedAddr),
108
MProtectLen(MProtectLen),
109
MustCleanup(false) {
110
#if SANITIZER_FUCHSIA
111
MProtectLen = RoundUpTo(MProtectLen, PageSize);
112
#endif
113
}
114
115
int MakeWriteable() XRAY_NEVER_INSTRUMENT {
116
#if SANITIZER_FUCHSIA
117
auto R = __sanitizer_change_code_protection(
118
reinterpret_cast<uintptr_t>(PageAlignedAddr), MProtectLen, true);
119
if (R != ZX_OK) {
120
Report("XRay: cannot change code protection: %s\n",
121
_zx_status_get_string(R));
122
return -1;
123
}
124
MustCleanup = true;
125
return 0;
126
#else
127
auto R = mprotect(PageAlignedAddr, MProtectLen,
128
PROT_READ | PROT_WRITE | PROT_EXEC);
129
if (R != -1)
130
MustCleanup = true;
131
return R;
132
#endif
133
}
134
135
~MProtectHelper() XRAY_NEVER_INSTRUMENT {
136
if (MustCleanup) {
137
#if SANITIZER_FUCHSIA
138
auto R = __sanitizer_change_code_protection(
139
reinterpret_cast<uintptr_t>(PageAlignedAddr), MProtectLen, false);
140
if (R != ZX_OK) {
141
Report("XRay: cannot change code protection: %s\n",
142
_zx_status_get_string(R));
143
}
144
#else
145
mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_EXEC);
146
#endif
147
}
148
}
149
};
150
151
namespace {
152
153
bool patchSled(const XRaySledEntry &Sled, bool Enable,
154
int32_t FuncId) XRAY_NEVER_INSTRUMENT {
155
bool Success = false;
156
switch (Sled.Kind) {
157
case XRayEntryType::ENTRY:
158
Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_FunctionEntry);
159
break;
160
case XRayEntryType::EXIT:
161
Success = patchFunctionExit(Enable, FuncId, Sled);
162
break;
163
case XRayEntryType::TAIL:
164
Success = patchFunctionTailExit(Enable, FuncId, Sled);
165
break;
166
case XRayEntryType::LOG_ARGS_ENTRY:
167
Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_ArgLoggerEntry);
168
break;
169
case XRayEntryType::CUSTOM_EVENT:
170
Success = patchCustomEvent(Enable, FuncId, Sled);
171
break;
172
case XRayEntryType::TYPED_EVENT:
173
Success = patchTypedEvent(Enable, FuncId, Sled);
174
break;
175
default:
176
Report("Unsupported sled kind '%" PRIu64 "' @%04x\n", Sled.Address,
177
int(Sled.Kind));
178
return false;
179
}
180
return Success;
181
}
182
183
const XRayFunctionSledIndex
184
findFunctionSleds(int32_t FuncId,
185
const XRaySledMap &InstrMap) XRAY_NEVER_INSTRUMENT {
186
int32_t CurFn = 0;
187
uint64_t LastFnAddr = 0;
188
XRayFunctionSledIndex Index = {nullptr, 0};
189
190
for (std::size_t I = 0; I < InstrMap.Entries && CurFn <= FuncId; I++) {
191
const auto &Sled = InstrMap.Sleds[I];
192
const auto Function = Sled.function();
193
if (Function != LastFnAddr) {
194
CurFn++;
195
LastFnAddr = Function;
196
}
197
198
if (CurFn == FuncId) {
199
if (Index.Begin == nullptr)
200
Index.Begin = &Sled;
201
Index.Size = &Sled - Index.Begin + 1;
202
}
203
}
204
205
return Index;
206
}
207
208
XRayPatchingStatus patchFunction(int32_t FuncId,
209
bool Enable) XRAY_NEVER_INSTRUMENT {
210
if (!atomic_load(&XRayInitialized,
211
memory_order_acquire))
212
return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
213
214
uint8_t NotPatching = false;
215
if (!atomic_compare_exchange_strong(
216
&XRayPatching, &NotPatching, true, memory_order_acq_rel))
217
return XRayPatchingStatus::ONGOING; // Already patching.
218
219
// Next, we look for the function index.
220
XRaySledMap InstrMap;
221
{
222
SpinMutexLock Guard(&XRayInstrMapMutex);
223
InstrMap = XRayInstrMap;
224
}
225
226
// If we don't have an index, we can't patch individual functions.
227
if (InstrMap.Functions == 0)
228
return XRayPatchingStatus::NOT_INITIALIZED;
229
230
// FuncId must be a positive number, less than the number of functions
231
// instrumented.
232
if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) {
233
Report("Invalid function id provided: %d\n", FuncId);
234
return XRayPatchingStatus::FAILED;
235
}
236
237
// Now we patch ths sleds for this specific function.
238
XRayFunctionSledIndex SledRange;
239
if (InstrMap.SledsIndex) {
240
SledRange = {InstrMap.SledsIndex[FuncId - 1].fromPCRelative(),
241
InstrMap.SledsIndex[FuncId - 1].Size};
242
} else {
243
SledRange = findFunctionSleds(FuncId, InstrMap);
244
}
245
auto *f = SledRange.Begin;
246
bool SucceedOnce = false;
247
for (size_t i = 0; i != SledRange.Size; ++i)
248
SucceedOnce |= patchSled(f[i], Enable, FuncId);
249
250
atomic_store(&XRayPatching, false,
251
memory_order_release);
252
253
if (!SucceedOnce) {
254
Report("Failed patching any sled for function '%d'.", FuncId);
255
return XRayPatchingStatus::FAILED;
256
}
257
258
return XRayPatchingStatus::SUCCESS;
259
}
260
261
// controlPatching implements the common internals of the patching/unpatching
262
// implementation. |Enable| defines whether we're enabling or disabling the
263
// runtime XRay instrumentation.
264
XRayPatchingStatus controlPatching(bool Enable) XRAY_NEVER_INSTRUMENT {
265
if (!atomic_load(&XRayInitialized,
266
memory_order_acquire))
267
return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
268
269
uint8_t NotPatching = false;
270
if (!atomic_compare_exchange_strong(
271
&XRayPatching, &NotPatching, true, memory_order_acq_rel))
272
return XRayPatchingStatus::ONGOING; // Already patching.
273
274
uint8_t PatchingSuccess = false;
275
auto XRayPatchingStatusResetter =
276
at_scope_exit([&PatchingSuccess] {
277
if (!PatchingSuccess)
278
atomic_store(&XRayPatching, false,
279
memory_order_release);
280
});
281
282
XRaySledMap InstrMap;
283
{
284
SpinMutexLock Guard(&XRayInstrMapMutex);
285
InstrMap = XRayInstrMap;
286
}
287
if (InstrMap.Entries == 0)
288
return XRayPatchingStatus::NOT_INITIALIZED;
289
290
uint32_t FuncId = 1;
291
uint64_t CurFun = 0;
292
293
// First we want to find the bounds for which we have instrumentation points,
294
// and try to get as few calls to mprotect(...) as possible. We're assuming
295
// that all the sleds for the instrumentation map are contiguous as a single
296
// set of pages. When we do support dynamic shared object instrumentation,
297
// we'll need to do this for each set of page load offsets per DSO loaded. For
298
// now we're assuming we can mprotect the whole section of text between the
299
// minimum sled address and the maximum sled address (+ the largest sled
300
// size).
301
auto *MinSled = &InstrMap.Sleds[0];
302
auto *MaxSled = &InstrMap.Sleds[InstrMap.Entries - 1];
303
for (std::size_t I = 0; I < InstrMap.Entries; I++) {
304
const auto &Sled = InstrMap.Sleds[I];
305
if (Sled.address() < MinSled->address())
306
MinSled = &Sled;
307
if (Sled.address() > MaxSled->address())
308
MaxSled = &Sled;
309
}
310
311
const size_t PageSize = flags()->xray_page_size_override > 0
312
? flags()->xray_page_size_override
313
: GetPageSizeCached();
314
if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) {
315
Report("System page size is not a power of two: %zu\n", PageSize);
316
return XRayPatchingStatus::FAILED;
317
}
318
319
void *PageAlignedAddr =
320
reinterpret_cast<void *>(MinSled->address() & ~(PageSize - 1));
321
size_t MProtectLen =
322
(MaxSled->address() - reinterpret_cast<uptr>(PageAlignedAddr)) +
323
cSledLength;
324
MProtectHelper Protector(PageAlignedAddr, MProtectLen, PageSize);
325
if (Protector.MakeWriteable() == -1) {
326
Report("Failed mprotect: %d\n", errno);
327
return XRayPatchingStatus::FAILED;
328
}
329
330
for (std::size_t I = 0; I < InstrMap.Entries; ++I) {
331
auto &Sled = InstrMap.Sleds[I];
332
auto F = Sled.function();
333
if (CurFun == 0)
334
CurFun = F;
335
if (F != CurFun) {
336
++FuncId;
337
CurFun = F;
338
}
339
patchSled(Sled, Enable, FuncId);
340
}
341
atomic_store(&XRayPatching, false,
342
memory_order_release);
343
PatchingSuccess = true;
344
return XRayPatchingStatus::SUCCESS;
345
}
346
347
XRayPatchingStatus mprotectAndPatchFunction(int32_t FuncId,
348
bool Enable) XRAY_NEVER_INSTRUMENT {
349
XRaySledMap InstrMap;
350
{
351
SpinMutexLock Guard(&XRayInstrMapMutex);
352
InstrMap = XRayInstrMap;
353
}
354
355
// FuncId must be a positive number, less than the number of functions
356
// instrumented.
357
if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) {
358
Report("Invalid function id provided: %d\n", FuncId);
359
return XRayPatchingStatus::FAILED;
360
}
361
362
const size_t PageSize = flags()->xray_page_size_override > 0
363
? flags()->xray_page_size_override
364
: GetPageSizeCached();
365
if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) {
366
Report("Provided page size is not a power of two: %zu\n", PageSize);
367
return XRayPatchingStatus::FAILED;
368
}
369
370
// Here we compute the minimum sled and maximum sled associated with a
371
// particular function ID.
372
XRayFunctionSledIndex SledRange;
373
if (InstrMap.SledsIndex) {
374
SledRange = {InstrMap.SledsIndex[FuncId - 1].fromPCRelative(),
375
InstrMap.SledsIndex[FuncId - 1].Size};
376
} else {
377
SledRange = findFunctionSleds(FuncId, InstrMap);
378
}
379
auto *f = SledRange.Begin;
380
auto *e = SledRange.Begin + SledRange.Size;
381
auto *MinSled = f;
382
auto *MaxSled = e - 1;
383
while (f != e) {
384
if (f->address() < MinSled->address())
385
MinSled = f;
386
if (f->address() > MaxSled->address())
387
MaxSled = f;
388
++f;
389
}
390
391
void *PageAlignedAddr =
392
reinterpret_cast<void *>(MinSled->address() & ~(PageSize - 1));
393
size_t MProtectLen =
394
(MaxSled->address() - reinterpret_cast<uptr>(PageAlignedAddr)) +
395
cSledLength;
396
MProtectHelper Protector(PageAlignedAddr, MProtectLen, PageSize);
397
if (Protector.MakeWriteable() == -1) {
398
Report("Failed mprotect: %d\n", errno);
399
return XRayPatchingStatus::FAILED;
400
}
401
return patchFunction(FuncId, Enable);
402
}
403
404
} // namespace
405
406
} // namespace __xray
407
408
using namespace __xray;
409
410
// The following functions are declared `extern "C" {...}` in the header, hence
411
// they're defined in the global namespace.
412
413
int __xray_set_handler(void (*entry)(int32_t,
414
XRayEntryType)) XRAY_NEVER_INSTRUMENT {
415
if (atomic_load(&XRayInitialized,
416
memory_order_acquire)) {
417
418
atomic_store(&__xray::XRayPatchedFunction,
419
reinterpret_cast<uintptr_t>(entry),
420
memory_order_release);
421
return 1;
422
}
423
return 0;
424
}
425
426
int __xray_set_customevent_handler(void (*entry)(void *, size_t))
427
XRAY_NEVER_INSTRUMENT {
428
if (atomic_load(&XRayInitialized,
429
memory_order_acquire)) {
430
atomic_store(&__xray::XRayPatchedCustomEvent,
431
reinterpret_cast<uintptr_t>(entry),
432
memory_order_release);
433
return 1;
434
}
435
return 0;
436
}
437
438
int __xray_set_typedevent_handler(void (*entry)(size_t, const void *,
439
size_t)) XRAY_NEVER_INSTRUMENT {
440
if (atomic_load(&XRayInitialized,
441
memory_order_acquire)) {
442
atomic_store(&__xray::XRayPatchedTypedEvent,
443
reinterpret_cast<uintptr_t>(entry),
444
memory_order_release);
445
return 1;
446
}
447
return 0;
448
}
449
450
int __xray_remove_handler() XRAY_NEVER_INSTRUMENT {
451
return __xray_set_handler(nullptr);
452
}
453
454
int __xray_remove_customevent_handler() XRAY_NEVER_INSTRUMENT {
455
return __xray_set_customevent_handler(nullptr);
456
}
457
458
int __xray_remove_typedevent_handler() XRAY_NEVER_INSTRUMENT {
459
return __xray_set_typedevent_handler(nullptr);
460
}
461
462
uint16_t __xray_register_event_type(
463
const char *const event_type) XRAY_NEVER_INSTRUMENT {
464
TypeDescriptorMapType::Handle h(&TypeDescriptorAddressMap, (uptr)event_type);
465
if (h.created()) {
466
h->type_id = atomic_fetch_add(
467
&TypeEventDescriptorCounter, 1, memory_order_acq_rel);
468
h->description_string_length = strnlen(event_type, 1024);
469
}
470
return h->type_id;
471
}
472
473
XRayPatchingStatus __xray_patch() XRAY_NEVER_INSTRUMENT {
474
return controlPatching(true);
475
}
476
477
XRayPatchingStatus __xray_unpatch() XRAY_NEVER_INSTRUMENT {
478
return controlPatching(false);
479
}
480
481
XRayPatchingStatus __xray_patch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
482
return mprotectAndPatchFunction(FuncId, true);
483
}
484
485
XRayPatchingStatus
486
__xray_unpatch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
487
return mprotectAndPatchFunction(FuncId, false);
488
}
489
490
int __xray_set_handler_arg1(void (*entry)(int32_t, XRayEntryType, uint64_t)) {
491
if (!atomic_load(&XRayInitialized,
492
memory_order_acquire))
493
return 0;
494
495
// A relaxed write might not be visible even if the current thread gets
496
// scheduled on a different CPU/NUMA node. We need to wait for everyone to
497
// have this handler installed for consistency of collected data across CPUs.
498
atomic_store(&XRayArgLogger, reinterpret_cast<uint64_t>(entry),
499
memory_order_release);
500
return 1;
501
}
502
503
int __xray_remove_handler_arg1() { return __xray_set_handler_arg1(nullptr); }
504
505
uintptr_t __xray_function_address(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
506
XRaySledMap InstrMap;
507
{
508
SpinMutexLock Guard(&XRayInstrMapMutex);
509
InstrMap = XRayInstrMap;
510
}
511
512
if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions)
513
return 0;
514
const XRaySledEntry *Sled =
515
InstrMap.SledsIndex ? InstrMap.SledsIndex[FuncId - 1].fromPCRelative()
516
: findFunctionSleds(FuncId, InstrMap).Begin;
517
return Sled->function()
518
// On PPC, function entries are always aligned to 16 bytes. The beginning of a
519
// sled might be a local entry, which is always +8 based on the global entry.
520
// Always return the global entry.
521
#ifdef __PPC__
522
& ~0xf
523
#endif
524
;
525
}
526
527
size_t __xray_max_function_id() XRAY_NEVER_INSTRUMENT {
528
SpinMutexLock Guard(&XRayInstrMapMutex);
529
return XRayInstrMap.Functions;
530
}
531
532