Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/libcxx/src/experimental/time_zone.cpp
35231 views
1
//===----------------------------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
// For information see https://libcxx.llvm.org/DesignDocs/TimeZone.html
10
11
// TODO TZDB look at optimizations
12
//
13
// The current algorithm is correct but not efficient. For example, in a named
14
// rule based continuation finding the next rule does quite a bit of work,
15
// returns the next rule and "forgets" its state. This could be better.
16
//
17
// It would be possible to cache lookups. If a time for a zone is calculated its
18
// sys_info could be kept and the next lookup could test whether the time is in
19
// a "known" sys_info. The wording in the Standard hints at this slowness by
20
// "suggesting" this could be implemented on the user's side.
21
22
// TODO TZDB look at removing quirks
23
//
24
// The code has some special rules to adjust the timing at the continuation
25
// switches. This works correctly, but some of the places feel odd. It would be
26
// good to investigate this further and see whether all quirks are needed or
27
// that there are better fixes.
28
//
29
// These quirks often use a 12h interval; this is the scan interval of zdump,
30
// which implies there are no sys_info objects with a duration of less than 12h.
31
32
#include <algorithm>
33
#include <cctype>
34
#include <chrono>
35
#include <expected>
36
#include <map>
37
#include <numeric>
38
#include <ranges>
39
40
#include "include/tzdb/time_zone_private.h"
41
#include "include/tzdb/tzdb_list_private.h"
42
43
// TODO TZDB remove debug printing
44
#ifdef PRINT
45
# include <print>
46
#endif
47
48
_LIBCPP_BEGIN_NAMESPACE_STD
49
50
#ifdef PRINT
51
template <>
52
struct formatter<chrono::sys_info, char> {
53
template <class ParseContext>
54
constexpr typename ParseContext::iterator parse(ParseContext& ctx) {
55
return ctx.begin();
56
}
57
58
template <class FormatContext>
59
typename FormatContext::iterator format(const chrono::sys_info& info, FormatContext& ctx) const {
60
return std::format_to(
61
ctx.out(), "[{}, {}) {:%Q%q} {:%Q%q} {}", info.begin, info.end, info.offset, info.save, info.abbrev);
62
}
63
};
64
#endif
65
66
namespace chrono {
67
68
//===----------------------------------------------------------------------===//
69
// Details
70
//===----------------------------------------------------------------------===//
71
72
struct __sys_info {
73
sys_info __info;
74
bool __can_merge; // Can the returned sys_info object be merged with
75
};
76
77
// Return type for helper function to get a sys_info.
78
// - The expected result returns the "best" sys_info object. This object can be
79
// before the requested time. Sometimes sys_info objects from different
80
// continuations share their offset, save, and abbrev and these objects are
81
// merged to one sys_info object. The __can_merge flag determines whether the
82
// current result can be merged with the next result.
83
// - The unexpected result means no sys_info object was found and the time is
84
// the time to be used for the next search iteration.
85
using __sys_info_result = expected<__sys_info, sys_seconds>;
86
87
template <ranges::forward_range _Range,
88
class _Type,
89
class _Proj = identity,
90
indirect_strict_weak_order<const _Type*, projected<ranges::iterator_t<_Range>, _Proj>> _Comp = ranges::less>
91
[[nodiscard]] static ranges::borrowed_iterator_t<_Range>
92
__binary_find(_Range&& __r, const _Type& __value, _Comp __comp = {}, _Proj __proj = {}) {
93
auto __end = ranges::end(__r);
94
auto __ret = ranges::lower_bound(ranges::begin(__r), __end, __value, __comp, __proj);
95
if (__ret == __end)
96
return __end;
97
98
// When the value does not match the predicate it's equal and a valid result
99
// was found.
100
return !std::invoke(__comp, __value, std::invoke(__proj, *__ret)) ? __ret : __end;
101
}
102
103
// Format based on https://data.iana.org/time-zones/tz-how-to.html
104
//
105
// 1 a time zone abbreviation that is a string of three or more characters that
106
// are either ASCII alphanumerics, "+", or "-"
107
// 2 the string "%z", in which case the "%z" will be replaced by a numeric time
108
// zone abbreviation
109
// 3 a pair of time zone abbreviations separated by a slash ('/'), in which
110
// case the first string is the abbreviation for the standard time name and
111
// the second string is the abbreviation for the daylight saving time name
112
// 4 a string containing "%s", in which case the "%s" will be replaced by the
113
// text in the appropriate Rule's LETTER column, and the resulting string
114
// should be a time zone abbreviation
115
//
116
// Rule 1 is not strictly validated since America/Barbados uses a two letter
117
// abbreviation AT.
118
[[nodiscard]] static string
119
__format(const __tz::__continuation& __continuation, const string& __letters, seconds __save) {
120
bool __shift = false;
121
string __result;
122
for (char __c : __continuation.__format) {
123
if (__shift) {
124
switch (__c) {
125
case 's':
126
std::ranges::copy(__letters, std::back_inserter(__result));
127
break;
128
129
case 'z': {
130
if (__continuation.__format.size() != 2)
131
std::__throw_runtime_error(
132
std::format("corrupt tzdb FORMAT field: %z should be the entire contents, instead contains '{}'",
133
__continuation.__format)
134
.c_str());
135
chrono::hh_mm_ss __offset{__continuation.__stdoff + __save};
136
if (__offset.is_negative()) {
137
__result += '-';
138
__offset = chrono::hh_mm_ss{-(__continuation.__stdoff + __save)};
139
} else
140
__result += '+';
141
142
if (__offset.minutes() != 0min)
143
std::format_to(std::back_inserter(__result), "{:%H%M}", __offset);
144
else
145
std::format_to(std::back_inserter(__result), "{:%H}", __offset);
146
} break;
147
148
default:
149
std::__throw_runtime_error(
150
std::format("corrupt tzdb FORMAT field: invalid sequence '%{}' found, expected %s or %z", __c).c_str());
151
}
152
__shift = false;
153
154
} else if (__c == '/') {
155
if (__save != 0s)
156
__result.clear();
157
else
158
break;
159
160
} else if (__c == '%') {
161
__shift = true;
162
} else if (__c == '+' || __c == '-' || std::isalnum(__c)) {
163
__result.push_back(__c);
164
} else {
165
std::__throw_runtime_error(
166
std::format(
167
"corrupt tzdb FORMAT field: invalid character '{}' found, expected +, -, or an alphanumeric value", __c)
168
.c_str());
169
}
170
}
171
172
if (__shift)
173
std::__throw_runtime_error("corrupt tzdb FORMAT field: input ended with the start of the escape sequence '%'");
174
175
if (__result.empty())
176
std::__throw_runtime_error("corrupt tzdb FORMAT field: result is empty");
177
178
return __result;
179
}
180
181
[[nodiscard]] static sys_seconds __to_sys_seconds(year_month_day __ymd, seconds __seconds) {
182
seconds __result = static_cast<sys_days>(__ymd).time_since_epoch() + __seconds;
183
return sys_seconds{__result};
184
}
185
186
[[nodiscard]] static seconds __at_to_sys_seconds(const __tz::__continuation& __continuation) {
187
switch (__continuation.__at.__clock) {
188
case __tz::__clock::__local:
189
return __continuation.__at.__time - __continuation.__stdoff -
190
std::visit(
191
[](const auto& __value) {
192
using _Tp = decay_t<decltype(__value)>;
193
if constexpr (same_as<_Tp, monostate>)
194
return chrono::seconds{0};
195
else if constexpr (same_as<_Tp, __tz::__save>)
196
return chrono::duration_cast<seconds>(__value.__time);
197
else if constexpr (same_as<_Tp, std::string>)
198
// For a named rule based continuation the SAVE depends on the RULE
199
// active at the end. This should be determined separately.
200
return chrono::seconds{0};
201
else
202
static_assert(sizeof(_Tp) == 0); // TODO TZDB static_assert(false); after droping clang-16 support
203
204
std::__libcpp_unreachable();
205
},
206
__continuation.__rules);
207
208
case __tz::__clock::__universal:
209
return __continuation.__at.__time;
210
211
case __tz::__clock::__standard:
212
return __continuation.__at.__time - __continuation.__stdoff;
213
}
214
std::__libcpp_unreachable();
215
}
216
217
[[nodiscard]] static year_month_day __to_year_month_day(year __year, month __month, __tz::__on __on) {
218
return std::visit(
219
[&](const auto& __value) {
220
using _Tp = decay_t<decltype(__value)>;
221
if constexpr (same_as<_Tp, chrono::day>)
222
return year_month_day{__year, __month, __value};
223
else if constexpr (same_as<_Tp, weekday_last>)
224
return year_month_day{static_cast<sys_days>(year_month_weekday_last{__year, __month, __value})};
225
else if constexpr (same_as<_Tp, __tz::__constrained_weekday>)
226
return __value(__year, __month);
227
else
228
static_assert(sizeof(_Tp) == 0); // TODO TZDB static_assert(false); after droping clang-16 support
229
230
std::__libcpp_unreachable();
231
},
232
__on);
233
}
234
235
[[nodiscard]] static sys_seconds __until_to_sys_seconds(const __tz::__continuation& __continuation) {
236
// Does UNTIL contain the magic value for the last continuation?
237
if (__continuation.__year == chrono::year::min())
238
return sys_seconds::max();
239
240
year_month_day __ymd = chrono::__to_year_month_day(__continuation.__year, __continuation.__in, __continuation.__on);
241
return chrono::__to_sys_seconds(__ymd, chrono::__at_to_sys_seconds(__continuation));
242
}
243
244
// Holds the UNTIL time for a continuation with a named rule.
245
//
246
// Unlike continuations with an fixed SAVE named rules have a variable SAVE.
247
// This means when the UNTIL uses the local wall time the actual UNTIL value can
248
// only be determined when the SAVE is known. This class holds that abstraction.
249
class __named_rule_until {
250
public:
251
explicit __named_rule_until(const __tz::__continuation& __continuation)
252
: __until_{chrono::__until_to_sys_seconds(__continuation)},
253
__needs_adjustment_{
254
// The last continuation of a ZONE has no UNTIL which basically is
255
// until the end of _local_ time. This value is expressed by
256
// sys_seconds::max(). Subtracting the SAVE leaves large value.
257
// However SAVE can be negative, which would add a value to maximum
258
// leading to undefined behaviour. In practice this often results in
259
// an overflow to a very small value.
260
__until_ != sys_seconds::max() && __continuation.__at.__clock == __tz::__clock::__local} {}
261
262
// Gives the unadjusted until value, this is useful when the SAVE is not known
263
// at all.
264
sys_seconds __until() const noexcept { return __until_; }
265
266
bool __needs_adjustment() const noexcept { return __needs_adjustment_; }
267
268
// Returns the UNTIL adjusted for SAVE.
269
sys_seconds operator()(seconds __save) const noexcept { return __until_ - __needs_adjustment_ * __save; }
270
271
private:
272
sys_seconds __until_;
273
bool __needs_adjustment_;
274
};
275
276
[[nodiscard]] static seconds __at_to_seconds(seconds __stdoff, const __tz::__rule& __rule) {
277
switch (__rule.__at.__clock) {
278
case __tz::__clock::__local:
279
// Local time and standard time behave the same. This is not
280
// correct. Local time needs to adjust for the current saved time.
281
// To know the saved time the rules need to be known and sorted.
282
// This needs a time so to avoid the chicken and egg adjust the
283
// saving of the local time later.
284
return __rule.__at.__time - __stdoff;
285
286
case __tz::__clock::__universal:
287
return __rule.__at.__time;
288
289
case __tz::__clock::__standard:
290
return __rule.__at.__time - __stdoff;
291
}
292
std::__libcpp_unreachable();
293
}
294
295
[[nodiscard]] static sys_seconds __from_to_sys_seconds(seconds __stdoff, const __tz::__rule& __rule, year __year) {
296
year_month_day __ymd = chrono::__to_year_month_day(__year, __rule.__in, __rule.__on);
297
298
seconds __at = chrono::__at_to_seconds(__stdoff, __rule);
299
return chrono::__to_sys_seconds(__ymd, __at);
300
}
301
302
[[nodiscard]] static sys_seconds __from_to_sys_seconds(seconds __stdoff, const __tz::__rule& __rule) {
303
return chrono::__from_to_sys_seconds(__stdoff, __rule, __rule.__from);
304
}
305
306
[[nodiscard]] static const vector<__tz::__rule>&
307
__get_rules(const __tz::__rules_storage_type& __rules_db, const string& __rule_name) {
308
auto __result = chrono::__binary_find(__rules_db, __rule_name, {}, [](const auto& __p) { return __p.first; });
309
if (__result == std::end(__rules_db))
310
std::__throw_runtime_error(("corrupt tzdb: rule '" + __rule_name + " 'does not exist").c_str());
311
312
return __result->second;
313
}
314
315
// Returns the letters field for a time before the first rule.
316
//
317
// Per https://data.iana.org/time-zones/tz-how-to.html
318
// One wrinkle, not fully explained in zic.8.txt, is what happens when switching
319
// to a named rule. To what values should the SAVE and LETTER data be
320
// initialized?
321
//
322
// 1 If at least one transition has happened, use the SAVE and LETTER data from
323
// the most recent.
324
// 2 If switching to a named rule before any transition has happened, assume
325
// standard time (SAVE zero), and use the LETTER data from the earliest
326
// transition with a SAVE of zero.
327
//
328
// This function implements case 2.
329
[[nodiscard]] static string __letters_before_first_rule(const vector<__tz::__rule>& __rules) {
330
auto __letters =
331
__rules //
332
| views::filter([](const __tz::__rule& __rule) { return __rule.__save.__time == 0s; }) //
333
| views::transform([](const __tz::__rule& __rule) { return __rule.__letters; }) //
334
| views::take(1);
335
336
if (__letters.empty())
337
std::__throw_runtime_error("corrupt tzdb: rule has zero entries");
338
339
return __letters.front();
340
}
341
342
// Determines the information based on the continuation and the rules.
343
//
344
// There are several special cases to take into account
345
//
346
// === Entries before the first rule becomes active ===
347
// Asia/Hong_Kong
348
// 9 - JST 1945 N 18 2 // (1)
349
// 8 HK HK%sT // (2)
350
// R HK 1946 o - Ap 21 0 1 S // (3)
351
// There (1) is active until Novemer 18th 1945 at 02:00, after this time
352
// (2) becomes active. The first rule entry for HK (3) becomes active
353
// from April 21st 1945 at 01:00. In the period between (2) is active.
354
// This entry has an offset.
355
// This entry has no save, letters, or dst flag. So in the period
356
// after (1) and until (3) no rule entry is associated with the time.
357
358
[[nodiscard]] static sys_info __get_sys_info_before_first_rule(
359
sys_seconds __begin,
360
sys_seconds __end,
361
const __tz::__continuation& __continuation,
362
const vector<__tz::__rule>& __rules) {
363
return sys_info{
364
__begin,
365
__end,
366
__continuation.__stdoff,
367
chrono::minutes(0),
368
chrono::__format(__continuation, __letters_before_first_rule(__rules), 0s)};
369
}
370
371
// Returns the sys_info object for a time before the first rule.
372
// When this first rule has a SAVE of 0s the sys_info for the time before the
373
// first rule and for the first rule are identical and will be merged.
374
[[nodiscard]] static sys_info __get_sys_info_before_first_rule(
375
sys_seconds __begin,
376
sys_seconds __rule_end, // The end used when SAVE != 0s
377
sys_seconds __next_end, // The end used when SAVE == 0s the times are merged
378
const __tz::__continuation& __continuation,
379
const vector<__tz::__rule>& __rules,
380
vector<__tz::__rule>::const_iterator __rule) {
381
if (__rule->__save.__time != 0s)
382
return __get_sys_info_before_first_rule(__begin, __rule_end, __continuation, __rules);
383
384
return sys_info{
385
__begin, __next_end, __continuation.__stdoff, 0min, chrono::__format(__continuation, __rule->__letters, 0s)};
386
}
387
388
[[nodiscard]] static seconds __at_to_seconds(seconds __stdoff, seconds __save, const __tz::__rule& __rule) {
389
switch (__rule.__at.__clock) {
390
case __tz::__clock::__local:
391
return __rule.__at.__time - __stdoff - __save;
392
393
case __tz::__clock::__universal:
394
return __rule.__at.__time;
395
396
case __tz::__clock::__standard:
397
return __rule.__at.__time - __stdoff;
398
}
399
std::__libcpp_unreachable();
400
}
401
402
[[nodiscard]] static sys_seconds
403
__rule_to_sys_seconds(seconds __stdoff, seconds __save, const __tz::__rule& __rule, year __year) {
404
year_month_day __ymd = chrono::__to_year_month_day(__year, __rule.__in, __rule.__on);
405
406
seconds __at = chrono::__at_to_seconds(__stdoff, __save, __rule);
407
return chrono::__to_sys_seconds(__ymd, __at);
408
}
409
410
// Returns the first rule after __time.
411
// Note that a rule can be "active" in multiple years, this may result in an
412
// infinite loop where the same rule is returned every time, use __current to
413
// guard against that.
414
//
415
// When no next rule exists the returned time will be sys_seconds::max(). This
416
// can happen in practice. For example,
417
//
418
// R So 1945 o - May 24 2 2 M
419
// R So 1945 o - S 24 3 1 S
420
// R So 1945 o - N 18 2s 0 -
421
//
422
// Has 3 rules that are all only active in 1945.
423
[[nodiscard]] static pair<sys_seconds, vector<__tz::__rule>::const_iterator>
424
__next_rule(sys_seconds __time,
425
seconds __stdoff,
426
seconds __save,
427
const vector<__tz::__rule>& __rules,
428
vector<__tz::__rule>::const_iterator __current) {
429
year __year = year_month_day{chrono::floor<days>(__time)}.year();
430
431
// Note it would probably be better to store the pairs in a vector and then
432
// use min() to get the smallest element
433
map<sys_seconds, vector<__tz::__rule>::const_iterator> __candidates;
434
// Note this evaluates all rules which is a waste of effort; when the entries
435
// are beyond the current year's "next year" (where "next year" is not always
436
// year + 1) the algorithm should end.
437
for (auto __it = __rules.begin(); __it != __rules.end(); ++__it) {
438
for (year __y = __it->__from; __y <= __it->__to; ++__y) {
439
// Adding the current entry for the current year may lead to infinite
440
// loops due to the SAVE adjustment. Skip these entries.
441
if (__y == __year && __it == __current)
442
continue;
443
444
sys_seconds __t = chrono::__rule_to_sys_seconds(__stdoff, __save, *__it, __y);
445
if (__t <= __time)
446
continue;
447
448
_LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(!__candidates.contains(__t), "duplicated rule");
449
__candidates[__t] = __it;
450
break;
451
}
452
}
453
454
if (!__candidates.empty()) [[likely]] {
455
auto __it = __candidates.begin();
456
457
// When no rule is selected the time before the first rule and the first rule
458
// should not be merged.
459
if (__time == sys_seconds::min())
460
return *__it;
461
462
// There can be two constitutive rules that are the same. For example,
463
// Hong Kong
464
//
465
// R HK 1973 o - D 30 3:30 1 S (R1)
466
// R HK 1965 1976 - Ap Su>=16 3:30 1 S (R2)
467
//
468
// 1973-12-29 19:30:00 R1 becomes active.
469
// 1974-04-20 18:30:00 R2 becomes active.
470
// Both rules have a SAVE of 1 hour and LETTERS are S for both of them.
471
while (__it != __candidates.end()) {
472
if (__current->__save.__time != __it->second->__save.__time || __current->__letters != __it->second->__letters)
473
return *__it;
474
475
++__it;
476
}
477
}
478
479
return {sys_seconds::max(), __rules.end()};
480
}
481
482
// Returns the first rule of a set of rules.
483
// This is not always the first of the listed rules. For example
484
// R Sa 2008 2009 - Mar Su>=8 0 0 -
485
// R Sa 2007 2008 - O Su>=8 0 1 -
486
// The transition in October 2007 happens before the transition in March 2008.
487
[[nodiscard]] static vector<__tz::__rule>::const_iterator
488
__first_rule(seconds __stdoff, const vector<__tz::__rule>& __rules) {
489
return chrono::__next_rule(sys_seconds::min(), __stdoff, 0s, __rules, __rules.end()).second;
490
}
491
492
[[nodiscard]] static __sys_info_result __get_sys_info_rule(
493
sys_seconds __time,
494
sys_seconds __continuation_begin,
495
const __tz::__continuation& __continuation,
496
const vector<__tz::__rule>& __rules) {
497
auto __rule = chrono::__first_rule(__continuation.__stdoff, __rules);
498
_LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(__rule != __rules.end(), "the set of rules has no first rule");
499
500
// Avoid selecting a time before the start of the continuation
501
__time = std::max(__time, __continuation_begin);
502
503
sys_seconds __rule_begin = chrono::__from_to_sys_seconds(__continuation.__stdoff, *__rule);
504
505
// The time sought is very likely inside the current rule.
506
// When the continuation's UNTIL uses the local clock there are edge cases
507
// where this is not true.
508
//
509
// Start to walk the rules to find the proper one.
510
//
511
// For now we just walk all the rules TODO TZDB investigate whether a smarter
512
// algorithm would work.
513
auto __next = chrono::__next_rule(__rule_begin, __continuation.__stdoff, __rule->__save.__time, __rules, __rule);
514
515
// Ignore small steps, this happens with America/Punta_Arenas for the
516
// transition
517
// -4:42:46 - SMT 1927 S
518
// -5 x -05/-04 1932 S
519
// ...
520
//
521
// R x 1927 1931 - S 1 0 1 -
522
// R x 1928 1932 - Ap 1 0 0 -
523
//
524
// America/Punta_Arenas Thu Sep 1 04:42:45 1927 UT = Thu Sep 1 00:42:45 1927 -04 isdst=1 gmtoff=-14400
525
// America/Punta_Arenas Sun Apr 1 03:59:59 1928 UT = Sat Mar 31 23:59:59 1928 -04 isdst=1 gmtoff=-14400
526
// America/Punta_Arenas Sun Apr 1 04:00:00 1928 UT = Sat Mar 31 23:00:00 1928 -05 isdst=0 gmtoff=-18000
527
//
528
// Without this there will be a transition
529
// [1927-09-01 04:42:45, 1927-09-01 05:00:00) -05:00:00 0min -05
530
531
if (sys_seconds __begin = __rule->__save.__time != 0s ? __rule_begin : __next.first; __time < __begin) {
532
if (__continuation_begin == sys_seconds::min() || __begin - __continuation_begin > 12h)
533
return __sys_info{__get_sys_info_before_first_rule(
534
__continuation_begin, __rule_begin, __next.first, __continuation, __rules, __rule),
535
false};
536
537
// Europe/Berlin
538
// 1 c CE%sT 1945 May 24 2 (C1)
539
// 1 So CE%sT 1946 (C2)
540
//
541
// R c 1944 1945 - Ap M>=1 2s 1 S (R1)
542
//
543
// R So 1945 o - May 24 2 2 M (R2)
544
//
545
// When C2 becomes active the time would be before the first rule R2,
546
// giving a 1 hour sys_info.
547
seconds __save = __rule->__save.__time;
548
__named_rule_until __continuation_end{__continuation};
549
sys_seconds __sys_info_end = std::min(__continuation_end(__save), __next.first);
550
551
return __sys_info{
552
sys_info{__continuation_begin,
553
__sys_info_end,
554
__continuation.__stdoff + __save,
555
chrono::duration_cast<minutes>(__save),
556
chrono::__format(__continuation, __rule->__letters, __save)},
557
__sys_info_end == __continuation_end(__save)};
558
}
559
560
// See above for America/Asuncion
561
if (__rule->__save.__time == 0s && __time < __next.first) {
562
return __sys_info{
563
sys_info{__continuation_begin,
564
__next.first,
565
__continuation.__stdoff,
566
0min,
567
chrono::__format(__continuation, __rule->__letters, 0s)},
568
false};
569
}
570
571
if (__rule->__save.__time != 0s) {
572
// another fix for America/Punta_Arenas when not at the start of the
573
// sys_info object.
574
seconds __save = __rule->__save.__time;
575
if (__continuation_begin >= __rule_begin - __save && __time < __next.first) {
576
return __sys_info{
577
sys_info{__continuation_begin,
578
__next.first,
579
__continuation.__stdoff + __save,
580
chrono::duration_cast<minutes>(__save),
581
chrono::__format(__continuation, __rule->__letters, __save)},
582
false};
583
}
584
}
585
586
__named_rule_until __continuation_end{__continuation};
587
while (__next.second != __rules.end()) {
588
#ifdef PRINT
589
std::print(
590
stderr,
591
"Rule for {}: [{}, {}) off={} save={} duration={}\n",
592
__time,
593
__rule_begin,
594
__next.first,
595
__continuation.__stdoff,
596
__rule->__save.__time,
597
__next.first - __rule_begin);
598
#endif
599
600
sys_seconds __end = __continuation_end(__rule->__save.__time);
601
602
sys_seconds __sys_info_begin = std::max(__continuation_begin, __rule_begin);
603
sys_seconds __sys_info_end = std::min(__end, __next.first);
604
seconds __diff = chrono::abs(__sys_info_end - __sys_info_begin);
605
606
if (__diff < 12h) {
607
// Z America/Argentina/Buenos_Aires -3:53:48 - LMT 1894 O 31
608
// -4:16:48 - CMT 1920 May
609
// -4 - -04 1930 D
610
// -4 A -04/-03 1969 O 5
611
// -3 A -03/-02 1999 O 3
612
// -4 A -04/-03 2000 Mar 3
613
// ...
614
//
615
// ...
616
// R A 1989 1992 - O Su>=15 0 1 -
617
// R A 1999 o - O Su>=1 0 1 -
618
// R A 2000 o - Mar 3 0 0 -
619
// R A 2007 o - D 30 0 1 -
620
// ...
621
622
// The 1999 switch uses the same rule, but with a different stdoff.
623
// R A 1999 o - O Su>=1 0 1 -
624
// stdoff -3 -> 1999-10-03 03:00:00
625
// stdoff -4 -> 1999-10-03 04:00:00
626
// This generates an invalid entry and this is evaluated as a transition.
627
// Looking at the zdump like output in libc++ this generates jumps in
628
// the UTC time.
629
630
__rule = __next.second;
631
__next = __next_rule(__next.first, __continuation.__stdoff, __rule->__save.__time, __rules, __rule);
632
__end = __continuation_end(__rule->__save.__time);
633
__sys_info_end = std::min(__end, __next.first);
634
}
635
636
if ((__time >= __rule_begin && __time < __next.first) || __next.first >= __end) {
637
__sys_info_begin = std::max(__continuation_begin, __rule_begin);
638
__sys_info_end = std::min(__end, __next.first);
639
640
return __sys_info{
641
sys_info{__sys_info_begin,
642
__sys_info_end,
643
__continuation.__stdoff + __rule->__save.__time,
644
chrono::duration_cast<minutes>(__rule->__save.__time),
645
chrono::__format(__continuation, __rule->__letters, __rule->__save.__time)},
646
__sys_info_end == __end};
647
}
648
649
__rule_begin = __next.first;
650
__rule = __next.second;
651
__next = __next_rule(__rule_begin, __continuation.__stdoff, __rule->__save.__time, __rules, __rule);
652
}
653
654
return __sys_info{
655
sys_info{std::max(__continuation_begin, __rule_begin),
656
__continuation_end(__rule->__save.__time),
657
__continuation.__stdoff + __rule->__save.__time,
658
chrono::duration_cast<minutes>(__rule->__save.__time),
659
chrono::__format(__continuation, __rule->__letters, __rule->__save.__time)},
660
true};
661
}
662
663
[[nodiscard]] static __sys_info_result __get_sys_info_basic(
664
sys_seconds __time, sys_seconds __continuation_begin, const __tz::__continuation& __continuation, seconds __save) {
665
sys_seconds __continuation_end = chrono::__until_to_sys_seconds(__continuation);
666
return __sys_info{
667
sys_info{__continuation_begin,
668
__continuation_end,
669
__continuation.__stdoff + __save,
670
chrono::duration_cast<minutes>(__save),
671
__continuation.__format},
672
true};
673
}
674
675
[[nodiscard]] static __sys_info_result
676
__get_sys_info(sys_seconds __time,
677
sys_seconds __continuation_begin,
678
const __tz::__continuation& __continuation,
679
const __tz::__rules_storage_type& __rules_db) {
680
return std::visit(
681
[&](const auto& __value) {
682
using _Tp = decay_t<decltype(__value)>;
683
if constexpr (same_as<_Tp, std::string>)
684
return chrono::__get_sys_info_rule(
685
__time, __continuation_begin, __continuation, __get_rules(__rules_db, __value));
686
else if constexpr (same_as<_Tp, monostate>)
687
return chrono::__get_sys_info_basic(__time, __continuation_begin, __continuation, chrono::seconds(0));
688
else if constexpr (same_as<_Tp, __tz::__save>)
689
return chrono::__get_sys_info_basic(__time, __continuation_begin, __continuation, __value.__time);
690
else
691
static_assert(sizeof(_Tp) == 0); // TODO TZDB static_assert(false); after droping clang-16 support
692
693
std::__libcpp_unreachable();
694
},
695
__continuation.__rules);
696
}
697
698
// The transition from one continuation to the next continuation may result in
699
// two constitutive continuations with the same "offset" information.
700
// [time.zone.info.sys]/3
701
// The begin and end data members indicate that, for the associated time_zone
702
// and time_point, the offset and abbrev are in effect in the range
703
// [begin, end). This information can be used to efficiently iterate the
704
// transitions of a time_zone.
705
//
706
// Note that this does considers a change in the SAVE field not to be a
707
// different sys_info, zdump does consider this different.
708
// LWG XXXX The sys_info range should be affected by save
709
// matches the behaviour of the Standard and zdump.
710
//
711
// Iff the "offsets" are the same '__current.__end' is replaced with
712
// '__next.__end', which effectively merges the two objects in one object. The
713
// function returns true if a merge occurred.
714
[[nodiscard]] bool __merge_continuation(sys_info& __current, const sys_info& __next) {
715
if (__current.end != __next.begin)
716
return false;
717
718
if (__current.offset != __next.offset || __current.abbrev != __next.abbrev || __current.save != __next.save)
719
return false;
720
721
__current.end = __next.end;
722
return true;
723
}
724
725
//===----------------------------------------------------------------------===//
726
// Public API
727
//===----------------------------------------------------------------------===//
728
729
[[nodiscard]] _LIBCPP_EXPORTED_FROM_ABI time_zone time_zone::__create(unique_ptr<time_zone::__impl>&& __p) {
730
_LIBCPP_ASSERT_NON_NULL(__p != nullptr, "initialized time_zone without a valid pimpl object");
731
time_zone result;
732
result.__impl_ = std::move(__p);
733
return result;
734
}
735
736
_LIBCPP_EXPORTED_FROM_ABI time_zone::~time_zone() = default;
737
738
[[nodiscard]] _LIBCPP_EXPORTED_FROM_ABI string_view time_zone::__name() const noexcept { return __impl_->__name(); }
739
740
[[nodiscard]] _LIBCPP_AVAILABILITY_TZDB _LIBCPP_EXPORTED_FROM_ABI sys_info
741
time_zone::__get_info(sys_seconds __time) const {
742
optional<sys_info> __result;
743
bool __valid_result = false; // true iff __result.has_value() is true and
744
// __result.begin <= __time < __result.end is true.
745
bool __can_merge = false;
746
sys_seconds __continuation_begin = sys_seconds::min();
747
// Iterates over the Zone entry and its continuations. Internally the Zone
748
// entry is split in a Zone information and the first continuation. The last
749
// continuation has no UNTIL field. This means the loop should always find a
750
// continuation.
751
//
752
// For more information on background of zone information please consult the
753
// following information
754
// [zic manual](https://www.man7.org/linux/man-pages/man8/zic.8.html)
755
// [tz source info](https://data.iana.org/time-zones/tz-how-to.html)
756
// On POSIX systems the zdump tool can be useful:
757
// zdump -v Asia/Hong_Kong
758
// Gives all transitions in the Hong Kong time zone.
759
//
760
// During iteration the result for the current continuation is returned. If
761
// no continuation is applicable it will return the end time as "error". When
762
// two continuations are contiguous and contain the "same" information these
763
// ranges are merged as one range.
764
// The merging requires keeping any result that occurs before __time,
765
// likewise when a valid result is found the algorithm needs to test the next
766
// continuation to see whether it can be merged. For example, Africa/Ceuta
767
// Continuations
768
// 0 s WE%sT 1929 (C1)
769
// 0 - WET 1967 (C2)
770
// 0 Sp WE%sT 1984 Mar 16 (C3)
771
//
772
// Rules
773
// R s 1926 1929 - O Sa>=1 24s 0 - (R1)
774
//
775
// R Sp 1967 o - Jun 3 12 1 S (R2)
776
//
777
// The rule R1 is the last rule used in C1. The rule R2 is the first rule in
778
// C3. Since R2 is the first rule this means when a continuation uses this
779
// rule its value prior to R2 will be SAVE 0 LETTERS of the first entry with a
780
// SAVE of 0, in this case WET.
781
// This gives the following changes in the information.
782
// 1928-10-07 00:00:00 C1 R1 becomes active: offset 0 save 0 abbrev WET
783
// 1929-01-01 00:00:00 C2 becomes active: offset 0 save 0 abbrev WET
784
// 1967-01-01 00:00:00 C3 becomes active: offset 0 save 0 abbrev WET
785
// 1967-06-03 12:00:00 C3 R2 becomes active: offset 0 save 1 abbrev WEST
786
//
787
// The first 3 entries are contiguous and contain the same information, this
788
// means the period [1928-10-07 00:00:00, 1967-06-03 12:00:00) should be
789
// returned in one sys_info object.
790
791
const auto& __continuations = __impl_->__continuations();
792
const __tz::__rules_storage_type& __rules_db = __impl_->__rules_db();
793
for (auto __it = __continuations.begin(); __it != __continuations.end(); ++__it) {
794
const auto& __continuation = *__it;
795
__sys_info_result __sys_info = chrono::__get_sys_info(__time, __continuation_begin, __continuation, __rules_db);
796
797
if (__sys_info) {
798
_LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(
799
__sys_info->__info.begin < __sys_info->__info.end, "invalid sys_info range");
800
801
// Filters out dummy entries
802
// Z America/Argentina/Buenos_Aires -3:53:48 - LMT 1894 O 31
803
// ...
804
// -4 A -04/-03 2000 Mar 3 (C1)
805
// -3 A -03/-02 (C2)
806
//
807
// ...
808
// R A 2000 o - Mar 3 0 0 -
809
// R A 2007 o - D 30 0 1 -
810
// ...
811
//
812
// This results in an entry
813
// [2000-03-03 03:00:00, 2000-03-03 04:00:00) -10800s 60min -03
814
// for [C1 & R1, C1, R2) which due to the end of the continuation is an
815
// one hour "sys_info". Instead the entry should be ignored and replaced
816
// by [C2 & R1, C2 & R2) which is the proper range
817
// "[2000-03-03 03:00:00, 2007-12-30 03:00:00) -02:00:00 60min -02
818
819
if (std::holds_alternative<string>(__continuation.__rules) && __sys_info->__can_merge &&
820
__sys_info->__info.begin + 12h > __sys_info->__info.end) {
821
__continuation_begin = __sys_info->__info.begin;
822
continue;
823
}
824
825
if (!__result) {
826
// First entry found, always keep it.
827
__result = __sys_info->__info;
828
829
__valid_result = __time >= __result->begin && __time < __result->end;
830
__can_merge = __sys_info->__can_merge;
831
} else if (__can_merge && chrono::__merge_continuation(*__result, __sys_info->__info)) {
832
// The results are merged, update the result state. This may
833
// "overwrite" a valid sys_info object with another valid sys_info
834
// object.
835
__valid_result = __time >= __result->begin && __time < __result->end;
836
__can_merge = __sys_info->__can_merge;
837
} else {
838
// Here things get interesting:
839
// For example, America/Argentina/San_Luis
840
//
841
// -3 A -03/-02 2008 Ja 21 (C1)
842
// -4 Sa -04/-03 2009 O 11 (C2)
843
//
844
// R A 2007 o - D 30 0 1 - (R1)
845
//
846
// R Sa 2007 2008 - O Su>=8 0 1 - (R2)
847
//
848
// Based on C1 & R1 the end time of C1 is 2008-01-21 03:00:00
849
// Based on C2 & R2 the end time of C1 is 2008-01-21 02:00:00
850
// In this case the earlier time is the real time of the transition.
851
// However the algorithm used gives 2008-01-21 03:00:00.
852
//
853
// So we need to calculate the previous UNTIL in the current context and
854
// see whether it's earlier.
855
856
// The results could not be merged.
857
// - When we have a valid result that result is the final result.
858
// - Otherwise the result we had is before __time and the result we got
859
// is at a later time (possibly valid). This result is always better
860
// than the previous result.
861
if (__valid_result) {
862
return *__result;
863
} else {
864
_LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(
865
__it != __continuations.begin(), "the first rule should always seed the result");
866
const auto& __last = *(__it - 1);
867
if (std::holds_alternative<string>(__last.__rules)) {
868
// Europe/Berlin
869
// 1 c CE%sT 1945 May 24 2 (C1)
870
// 1 So CE%sT 1946 (C2)
871
//
872
// R c 1944 1945 - Ap M>=1 2s 1 S (R1)
873
//
874
// R So 1945 o - May 24 2 2 M (R2)
875
//
876
// When C2 becomes active the time would be before the first rule R2,
877
// giving a 1 hour sys_info. This is not valid and the results need
878
// merging.
879
880
if (__result->end != __sys_info->__info.begin) {
881
// When the UTC gap between the rules is due to the change of
882
// offsets adjust the new time to remove the gap.
883
sys_seconds __end = __result->end - __result->offset;
884
sys_seconds __begin = __sys_info->__info.begin - __sys_info->__info.offset;
885
if (__end == __begin) {
886
__sys_info->__info.begin = __result->end;
887
}
888
}
889
}
890
891
__result = __sys_info->__info;
892
__valid_result = __time >= __result->begin && __time < __result->end;
893
__can_merge = __sys_info->__can_merge;
894
}
895
}
896
__continuation_begin = __result->end;
897
} else {
898
__continuation_begin = __sys_info.error();
899
}
900
}
901
if (__valid_result)
902
return *__result;
903
904
std::__throw_runtime_error("tzdb: corrupt db");
905
}
906
907
// Is the "__local_time" present in "__first" and "__second". If so the
908
// local_info has an ambiguous result.
909
[[nodiscard]] static bool
910
__is_ambiguous(local_seconds __local_time, const sys_info& __first, const sys_info& __second) {
911
std::chrono::local_seconds __end_first{__first.end.time_since_epoch() + __first.offset};
912
std::chrono::local_seconds __begin_second{__second.begin.time_since_epoch() + __second.offset};
913
914
return __local_time < __end_first && __local_time >= __begin_second;
915
}
916
917
// Determines the result of the "__local_time". This expects the object
918
// "__first" to be earlier in time than "__second".
919
[[nodiscard]] static local_info
920
__get_info(local_seconds __local_time, const sys_info& __first, const sys_info& __second) {
921
std::chrono::local_seconds __end_first{__first.end.time_since_epoch() + __first.offset};
922
std::chrono::local_seconds __begin_second{__second.begin.time_since_epoch() + __second.offset};
923
924
if (__local_time < __end_first) {
925
if (__local_time >= __begin_second)
926
// |--------|
927
// |------|
928
// ^
929
return {local_info::ambiguous, __first, __second};
930
931
// |--------|
932
// |------|
933
// ^
934
return {local_info::unique, __first, sys_info{}};
935
}
936
937
if (__local_time < __begin_second)
938
// |--------|
939
// |------|
940
// ^
941
return {local_info::nonexistent, __first, __second};
942
943
// |--------|
944
// |------|
945
// ^
946
return {local_info::unique, __second, sys_info{}};
947
}
948
949
[[nodiscard]] _LIBCPP_AVAILABILITY_TZDB _LIBCPP_EXPORTED_FROM_ABI local_info
950
time_zone::__get_info(local_seconds __local_time) const {
951
seconds __local_seconds = __local_time.time_since_epoch();
952
953
/* An example of a typical year with a DST switch displayed in local time.
954
*
955
* At the first of April the time goes forward one hour. This means the
956
* time marked with ~~ is not a valid local time. This is represented by the
957
* nonexistent value in local_info.result.
958
*
959
* At the first of November the time goes backward one hour. This means the
960
* time marked with ^^ happens twice. This is represented by the ambiguous
961
* value in local_info.result.
962
*
963
* 2020.11.01 2021.04.01 2021.11.01
964
* offset +05 offset +05 offset +05
965
* save 0s save 1h save 0s
966
* |------------//----------|
967
* |---------//--------------|
968
* |-------------
969
* ~~ ^^
970
*
971
* These shifts can happen due to changes in the current time zone for a
972
* location. For example, Indian/Kerguelen switched only once. In 1950 from an
973
* offset of 0 hours to an offset of +05 hours.
974
*
975
* During all these shifts the UTC time will not have gaps.
976
*/
977
978
// The code needs to determine the system time for the local time. There is no
979
// information available. Assume the offset between system time and local time
980
// is 0s. This gives an initial estimate.
981
sys_seconds __guess{__local_seconds};
982
sys_info __info = __get_info(__guess);
983
984
// At this point the offset can be used to determine an estimate for the local
985
// time. Before doing that, determine the offset and validate whether the
986
// local time is the range [chrono::local_seconds::min(),
987
// chrono::local_seconds::max()).
988
if (__local_seconds < 0s && __info.offset > 0s)
989
if (__local_seconds - chrono::local_seconds::min().time_since_epoch() < __info.offset)
990
return {-1, __info, {}};
991
992
if (__local_seconds > 0s && __info.offset < 0s)
993
if (chrono::local_seconds::max().time_since_epoch() - __local_seconds < -__info.offset)
994
return {-2, __info, {}};
995
996
// Based on the information found in the sys_info, the local time can be
997
// converted to a system time. This resulting time can be in the following
998
// locations of the sys_info:
999
//
1000
// |---------//--------------|
1001
// 1 2.1 2.2 2.3 3
1002
//
1003
// 1. The estimate is before the returned sys_info object.
1004
// The result is either non-existent or unique in the previous sys_info.
1005
// 2. The estimate is in the sys_info object
1006
// - If the sys_info begin is not sys_seconds::min(), then it might be at
1007
// 2.1 and could be ambiguous with the previous or unique.
1008
// - If sys_info end is not sys_seconds::max(), then it might be at 2.3
1009
// and could be ambiguous with the next or unique.
1010
// - Else it is at 2.2 and always unique. This case happens when a
1011
// time zone has no transitions. For example, UTC or GMT+1.
1012
// 3. The estimate is after the returned sys_info object.
1013
// The result is either non-existent or unique in the next sys_info.
1014
//
1015
// There is no specification where the "middle" starts. Similar issues can
1016
// happen when sys_info objects are "short", then "unique in the next" could
1017
// become "ambiguous in the next and the one following". Theoretically there
1018
// is the option of the following time-line
1019
//
1020
// |------------|
1021
// |----|
1022
// |-----------------|
1023
//
1024
// However the local_info object only has 2 sys_info objects, so this option
1025
// is not tested.
1026
1027
sys_seconds __sys_time{__local_seconds - __info.offset};
1028
if (__sys_time < __info.begin)
1029
// Case 1 before __info
1030
return chrono::__get_info(__local_time, __get_info(__info.begin - 1s), __info);
1031
1032
if (__sys_time >= __info.end)
1033
// Case 3 after __info
1034
return chrono::__get_info(__local_time, __info, __get_info(__info.end));
1035
1036
// Case 2 in __info
1037
if (__info.begin != sys_seconds::min()) {
1038
// Case 2.1 Not at the beginning, when not ambiguous the result should test
1039
// case 2.3.
1040
sys_info __prev = __get_info(__info.begin - 1s);
1041
if (__is_ambiguous(__local_time, __prev, __info))
1042
return {local_info::ambiguous, __prev, __info};
1043
}
1044
1045
if (__info.end == sys_seconds::max())
1046
// At the end so it's case 2.2
1047
return {local_info::unique, __info, sys_info{}};
1048
1049
// This tests case 2.2 or case 2.3.
1050
return chrono::__get_info(__local_time, __info, __get_info(__info.end));
1051
}
1052
1053
} // namespace chrono
1054
1055
_LIBCPP_END_NAMESPACE_STD
1056
1057