Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/libcxx/src/include/to_chars_floating_point.h
35230 views
1
//===----------------------------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
// Copyright (c) Microsoft Corporation.
10
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11
12
// This implementation is dedicated to the memory of Mary and Thavatchai.
13
14
#ifndef _LIBCPP_SRC_INCLUDE_TO_CHARS_FLOATING_POINT_H
15
#define _LIBCPP_SRC_INCLUDE_TO_CHARS_FLOATING_POINT_H
16
17
// Avoid formatting to keep the changes with the original code minimal.
18
// clang-format off
19
20
#include <__algorithm/find.h>
21
#include <__algorithm/find_if.h>
22
#include <__algorithm/lower_bound.h>
23
#include <__algorithm/min.h>
24
#include <__assert>
25
#include <__config>
26
#include <__functional/operations.h>
27
#include <__iterator/access.h>
28
#include <__iterator/size.h>
29
#include <bit>
30
#include <cfloat>
31
#include <climits>
32
33
#include "include/ryu/ryu.h"
34
35
_LIBCPP_BEGIN_NAMESPACE_STD
36
37
namespace __itoa {
38
inline constexpr char _Charconv_digits[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e',
39
'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'};
40
static_assert(std::size(_Charconv_digits) == 36);
41
} // __itoa
42
43
// vvvvvvvvvv DERIVED FROM corecrt_internal_fltintrn.h vvvvvvvvvv
44
45
template <class _FloatingType>
46
struct _Floating_type_traits;
47
48
template <>
49
struct _Floating_type_traits<float> {
50
static constexpr int32_t _Mantissa_bits = FLT_MANT_DIG;
51
static constexpr int32_t _Exponent_bits = sizeof(float) * CHAR_BIT - FLT_MANT_DIG;
52
53
static constexpr int32_t _Maximum_binary_exponent = FLT_MAX_EXP - 1;
54
static constexpr int32_t _Minimum_binary_exponent = FLT_MIN_EXP - 1;
55
56
static constexpr int32_t _Exponent_bias = 127;
57
58
static constexpr int32_t _Sign_shift = _Exponent_bits + _Mantissa_bits - 1;
59
static constexpr int32_t _Exponent_shift = _Mantissa_bits - 1;
60
61
using _Uint_type = uint32_t;
62
63
static constexpr uint32_t _Exponent_mask = (1u << _Exponent_bits) - 1;
64
static constexpr uint32_t _Normal_mantissa_mask = (1u << _Mantissa_bits) - 1;
65
static constexpr uint32_t _Denormal_mantissa_mask = (1u << (_Mantissa_bits - 1)) - 1;
66
static constexpr uint32_t _Special_nan_mantissa_mask = 1u << (_Mantissa_bits - 2);
67
static constexpr uint32_t _Shifted_sign_mask = 1u << _Sign_shift;
68
static constexpr uint32_t _Shifted_exponent_mask = _Exponent_mask << _Exponent_shift;
69
};
70
71
template <>
72
struct _Floating_type_traits<double> {
73
static constexpr int32_t _Mantissa_bits = DBL_MANT_DIG;
74
static constexpr int32_t _Exponent_bits = sizeof(double) * CHAR_BIT - DBL_MANT_DIG;
75
76
static constexpr int32_t _Maximum_binary_exponent = DBL_MAX_EXP - 1;
77
static constexpr int32_t _Minimum_binary_exponent = DBL_MIN_EXP - 1;
78
79
static constexpr int32_t _Exponent_bias = 1023;
80
81
static constexpr int32_t _Sign_shift = _Exponent_bits + _Mantissa_bits - 1;
82
static constexpr int32_t _Exponent_shift = _Mantissa_bits - 1;
83
84
using _Uint_type = uint64_t;
85
86
static constexpr uint64_t _Exponent_mask = (1ULL << _Exponent_bits) - 1;
87
static constexpr uint64_t _Normal_mantissa_mask = (1ULL << _Mantissa_bits) - 1;
88
static constexpr uint64_t _Denormal_mantissa_mask = (1ULL << (_Mantissa_bits - 1)) - 1;
89
static constexpr uint64_t _Special_nan_mantissa_mask = 1ULL << (_Mantissa_bits - 2);
90
static constexpr uint64_t _Shifted_sign_mask = 1ULL << _Sign_shift;
91
static constexpr uint64_t _Shifted_exponent_mask = _Exponent_mask << _Exponent_shift;
92
};
93
94
// ^^^^^^^^^^ DERIVED FROM corecrt_internal_fltintrn.h ^^^^^^^^^^
95
96
// FUNCTION to_chars (FLOATING-POINT TO STRING)
97
template <class _Floating>
98
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI
99
to_chars_result _Floating_to_chars_hex_precision(
100
char* _First, char* const _Last, const _Floating _Value, int _Precision) noexcept {
101
102
// * Determine the effective _Precision.
103
// * Later, we'll decrement _Precision when printing each hexit after the decimal point.
104
105
// The hexits after the decimal point correspond to the explicitly stored fraction bits.
106
// float explicitly stores 23 fraction bits. 23 / 4 == 5.75, which is 6 hexits.
107
// double explicitly stores 52 fraction bits. 52 / 4 == 13, which is 13 hexits.
108
constexpr int _Full_precision = _IsSame<_Floating, float>::value ? 6 : 13;
109
constexpr int _Adjusted_explicit_bits = _Full_precision * 4;
110
111
if (_Precision < 0) {
112
// C11 7.21.6.1 "The fprintf function"/5: "A negative precision argument is taken as if the precision were
113
// omitted." /8: "if the precision is missing and FLT_RADIX is a power of 2, then the precision is sufficient
114
// for an exact representation of the value"
115
_Precision = _Full_precision;
116
}
117
118
// * Extract the _Ieee_mantissa and _Ieee_exponent.
119
using _Traits = _Floating_type_traits<_Floating>;
120
using _Uint_type = typename _Traits::_Uint_type;
121
122
const _Uint_type _Uint_value = std::bit_cast<_Uint_type>(_Value);
123
const _Uint_type _Ieee_mantissa = _Uint_value & _Traits::_Denormal_mantissa_mask;
124
const int32_t _Ieee_exponent = static_cast<int32_t>(_Uint_value >> _Traits::_Exponent_shift);
125
126
// * Prepare the _Adjusted_mantissa. This is aligned to hexit boundaries,
127
// * with the implicit bit restored (0 for zero values and subnormal values, 1 for normal values).
128
// * Also calculate the _Unbiased_exponent. This unifies the processing of zero, subnormal, and normal values.
129
_Uint_type _Adjusted_mantissa;
130
131
if constexpr (_IsSame<_Floating, float>::value) {
132
_Adjusted_mantissa = _Ieee_mantissa << 1; // align to hexit boundary (23 isn't divisible by 4)
133
} else {
134
_Adjusted_mantissa = _Ieee_mantissa; // already aligned (52 is divisible by 4)
135
}
136
137
int32_t _Unbiased_exponent;
138
139
if (_Ieee_exponent == 0) { // zero or subnormal
140
// implicit bit is 0
141
142
if (_Ieee_mantissa == 0) { // zero
143
// C11 7.21.6.1 "The fprintf function"/8: "If the value is zero, the exponent is zero."
144
_Unbiased_exponent = 0;
145
} else { // subnormal
146
_Unbiased_exponent = 1 - _Traits::_Exponent_bias;
147
}
148
} else { // normal
149
_Adjusted_mantissa |= _Uint_type{1} << _Adjusted_explicit_bits; // implicit bit is 1
150
_Unbiased_exponent = _Ieee_exponent - _Traits::_Exponent_bias;
151
}
152
153
// _Unbiased_exponent is within [-126, 127] for float, [-1022, 1023] for double.
154
155
// * Decompose _Unbiased_exponent into _Sign_character and _Absolute_exponent.
156
char _Sign_character;
157
uint32_t _Absolute_exponent;
158
159
if (_Unbiased_exponent < 0) {
160
_Sign_character = '-';
161
_Absolute_exponent = static_cast<uint32_t>(-_Unbiased_exponent);
162
} else {
163
_Sign_character = '+';
164
_Absolute_exponent = static_cast<uint32_t>(_Unbiased_exponent);
165
}
166
167
// _Absolute_exponent is within [0, 127] for float, [0, 1023] for double.
168
169
// * Perform a single bounds check.
170
{
171
int32_t _Exponent_length;
172
173
if (_Absolute_exponent < 10) {
174
_Exponent_length = 1;
175
} else if (_Absolute_exponent < 100) {
176
_Exponent_length = 2;
177
} else if constexpr (_IsSame<_Floating, float>::value) {
178
_Exponent_length = 3;
179
} else if (_Absolute_exponent < 1000) {
180
_Exponent_length = 3;
181
} else {
182
_Exponent_length = 4;
183
}
184
185
// _Precision might be enormous; avoid integer overflow by testing it separately.
186
ptrdiff_t _Buffer_size = _Last - _First;
187
188
if (_Buffer_size < _Precision) {
189
return {_Last, errc::value_too_large};
190
}
191
192
_Buffer_size -= _Precision;
193
194
const int32_t _Length_excluding_precision = 1 // leading hexit
195
+ static_cast<int32_t>(_Precision > 0) // possible decimal point
196
// excluding `+ _Precision`, hexits after decimal point
197
+ 2 // "p+" or "p-"
198
+ _Exponent_length; // exponent
199
200
if (_Buffer_size < _Length_excluding_precision) {
201
return {_Last, errc::value_too_large};
202
}
203
}
204
205
// * Perform rounding when we've been asked to omit hexits.
206
if (_Precision < _Full_precision) {
207
// _Precision is within [0, 5] for float, [0, 12] for double.
208
209
// _Dropped_bits is within [4, 24] for float, [4, 52] for double.
210
const int _Dropped_bits = (_Full_precision - _Precision) * 4;
211
212
// Perform rounding by adding an appropriately-shifted bit.
213
214
// This can propagate carries all the way into the leading hexit. Examples:
215
// "0.ff9" rounded to a precision of 2 is "1.00".
216
// "1.ff9" rounded to a precision of 2 is "2.00".
217
218
// Note that the leading hexit participates in the rounding decision. Examples:
219
// "0.8" rounded to a precision of 0 is "0".
220
// "1.8" rounded to a precision of 0 is "2".
221
222
// Reference implementation with suboptimal codegen:
223
// bool _Should_round_up(bool _Lsb_bit, bool _Round_bit, bool _Has_tail_bits) {
224
// // If there are no insignificant set bits, the value is exactly-representable and should not be rounded.
225
// //
226
// // If there are insignificant set bits, we need to round according to round_to_nearest.
227
// // We need to handle two cases: we round up if either [1] the value is slightly greater
228
// // than the midpoint between two exactly-representable values or [2] the value is exactly the midpoint
229
// // between two exactly-representable values and the greater of the two is even (this is "round-to-even").
230
// return _Round_bit && (_Has_tail_bits || _Lsb_bit);
231
//}
232
// const bool _Lsb_bit = (_Adjusted_mantissa & (_Uint_type{1} << _Dropped_bits)) != 0;
233
// const bool _Round_bit = (_Adjusted_mantissa & (_Uint_type{1} << (_Dropped_bits - 1))) != 0;
234
// const bool _Has_tail_bits = (_Adjusted_mantissa & ((_Uint_type{1} << (_Dropped_bits - 1)) - 1)) != 0;
235
// const bool _Should_round = _Should_round_up(_Lsb_bit, _Round_bit, _Has_tail_bits);
236
// _Adjusted_mantissa += _Uint_type{_Should_round} << _Dropped_bits;
237
238
// Example for optimized implementation: Let _Dropped_bits be 8.
239
// Bit index: ...[8]76543210
240
// _Adjusted_mantissa: ...[L]RTTTTTTT (not depicting known details, like hexit alignment)
241
// By focusing on the bit at index _Dropped_bits, we can avoid unnecessary branching and shifting.
242
243
// Bit index: ...[8]76543210
244
// _Lsb_bit: ...[L]RTTTTTTT
245
const _Uint_type _Lsb_bit = _Adjusted_mantissa;
246
247
// Bit index: ...9[8]76543210
248
// _Round_bit: ...L[R]TTTTTTT0
249
const _Uint_type _Round_bit = _Adjusted_mantissa << 1;
250
251
// We can detect (without branching) whether any of the trailing bits are set.
252
// Due to _Should_round below, this computation will be used if and only if R is 1, so we can assume that here.
253
// Bit index: ...9[8]76543210
254
// _Round_bit: ...L[1]TTTTTTT0
255
// _Has_tail_bits: ....[H]........
256
257
// If all of the trailing bits T are 0, then `_Round_bit - 1` will produce 0 for H (due to R being 1).
258
// If any of the trailing bits T are 1, then `_Round_bit - 1` will produce 1 for H (due to R being 1).
259
const _Uint_type _Has_tail_bits = _Round_bit - 1;
260
261
// Finally, we can use _Should_round_up() logic with bitwise-AND and bitwise-OR,
262
// selecting just the bit at index _Dropped_bits. This is the appropriately-shifted bit that we want.
263
const _Uint_type _Should_round = _Round_bit & (_Has_tail_bits | _Lsb_bit) & (_Uint_type{1} << _Dropped_bits);
264
265
// This rounding technique is dedicated to the memory of Peppermint. =^..^=
266
_Adjusted_mantissa += _Should_round;
267
}
268
269
// * Print the leading hexit, then mask it away.
270
{
271
const uint32_t _Nibble = static_cast<uint32_t>(_Adjusted_mantissa >> _Adjusted_explicit_bits);
272
_LIBCPP_ASSERT_INTERNAL(_Nibble < 3, "");
273
const char _Leading_hexit = static_cast<char>('0' + _Nibble);
274
275
*_First++ = _Leading_hexit;
276
277
constexpr _Uint_type _Mask = (_Uint_type{1} << _Adjusted_explicit_bits) - 1;
278
_Adjusted_mantissa &= _Mask;
279
}
280
281
// * Print the decimal point and trailing hexits.
282
283
// C11 7.21.6.1 "The fprintf function"/8:
284
// "if the precision is zero and the # flag is not specified, no decimal-point character appears."
285
if (_Precision > 0) {
286
*_First++ = '.';
287
288
int32_t _Number_of_bits_remaining = _Adjusted_explicit_bits; // 24 for float, 52 for double
289
290
for (;;) {
291
_LIBCPP_ASSERT_INTERNAL(_Number_of_bits_remaining >= 4, "");
292
_LIBCPP_ASSERT_INTERNAL(_Number_of_bits_remaining % 4 == 0, "");
293
_Number_of_bits_remaining -= 4;
294
295
const uint32_t _Nibble = static_cast<uint32_t>(_Adjusted_mantissa >> _Number_of_bits_remaining);
296
_LIBCPP_ASSERT_INTERNAL(_Nibble < 16, "");
297
const char _Hexit = __itoa::_Charconv_digits[_Nibble];
298
299
*_First++ = _Hexit;
300
301
// _Precision is the number of hexits that still need to be printed.
302
--_Precision;
303
if (_Precision == 0) {
304
break; // We're completely done with this phase.
305
}
306
// Otherwise, we need to keep printing hexits.
307
308
if (_Number_of_bits_remaining == 0) {
309
// We've finished printing _Adjusted_mantissa, so all remaining hexits are '0'.
310
std::memset(_First, '0', static_cast<size_t>(_Precision));
311
_First += _Precision;
312
break;
313
}
314
315
// Mask away the hexit that we just printed, then keep looping.
316
// (We skip this when breaking out of the loop above, because _Adjusted_mantissa isn't used later.)
317
const _Uint_type _Mask = (_Uint_type{1} << _Number_of_bits_remaining) - 1;
318
_Adjusted_mantissa &= _Mask;
319
}
320
}
321
322
// * Print the exponent.
323
324
// C11 7.21.6.1 "The fprintf function"/8: "The exponent always contains at least one digit, and only as many more
325
// digits as necessary to represent the decimal exponent of 2."
326
327
// Performance note: We should take advantage of the known ranges of possible exponents.
328
329
*_First++ = 'p';
330
*_First++ = _Sign_character;
331
332
// We've already printed '-' if necessary, so uint32_t _Absolute_exponent avoids testing that again.
333
return std::to_chars(_First, _Last, _Absolute_exponent);
334
}
335
336
template <class _Floating>
337
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI
338
to_chars_result _Floating_to_chars_hex_shortest(
339
char* _First, char* const _Last, const _Floating _Value) noexcept {
340
341
// This prints "1.728p+0" instead of "2.e5p-1".
342
// This prints "0.000002p-126" instead of "1p-149" for float.
343
// This prints "0.0000000000001p-1022" instead of "1p-1074" for double.
344
// This prioritizes being consistent with printf's de facto behavior (and hex-precision's behavior)
345
// over minimizing the number of characters printed.
346
347
using _Traits = _Floating_type_traits<_Floating>;
348
using _Uint_type = typename _Traits::_Uint_type;
349
350
const _Uint_type _Uint_value = std::bit_cast<_Uint_type>(_Value);
351
352
if (_Uint_value == 0) { // zero detected; write "0p+0" and return
353
// C11 7.21.6.1 "The fprintf function"/8: "If the value is zero, the exponent is zero."
354
// Special-casing zero is necessary because of the exponent.
355
const char* const _Str = "0p+0";
356
const size_t _Len = 4;
357
358
if (_Last - _First < static_cast<ptrdiff_t>(_Len)) {
359
return {_Last, errc::value_too_large};
360
}
361
362
std::memcpy(_First, _Str, _Len);
363
364
return {_First + _Len, errc{}};
365
}
366
367
const _Uint_type _Ieee_mantissa = _Uint_value & _Traits::_Denormal_mantissa_mask;
368
const int32_t _Ieee_exponent = static_cast<int32_t>(_Uint_value >> _Traits::_Exponent_shift);
369
370
char _Leading_hexit; // implicit bit
371
int32_t _Unbiased_exponent;
372
373
if (_Ieee_exponent == 0) { // subnormal
374
_Leading_hexit = '0';
375
_Unbiased_exponent = 1 - _Traits::_Exponent_bias;
376
} else { // normal
377
_Leading_hexit = '1';
378
_Unbiased_exponent = _Ieee_exponent - _Traits::_Exponent_bias;
379
}
380
381
// Performance note: Consider avoiding per-character bounds checking when there's plenty of space.
382
383
if (_First == _Last) {
384
return {_Last, errc::value_too_large};
385
}
386
387
*_First++ = _Leading_hexit;
388
389
if (_Ieee_mantissa == 0) {
390
// The fraction bits are all 0. Trim them away, including the decimal point.
391
} else {
392
if (_First == _Last) {
393
return {_Last, errc::value_too_large};
394
}
395
396
*_First++ = '.';
397
398
// The hexits after the decimal point correspond to the explicitly stored fraction bits.
399
// float explicitly stores 23 fraction bits. 23 / 4 == 5.75, so we'll print at most 6 hexits.
400
// double explicitly stores 52 fraction bits. 52 / 4 == 13, so we'll print at most 13 hexits.
401
_Uint_type _Adjusted_mantissa;
402
int32_t _Number_of_bits_remaining;
403
404
if constexpr (_IsSame<_Floating, float>::value) {
405
_Adjusted_mantissa = _Ieee_mantissa << 1; // align to hexit boundary (23 isn't divisible by 4)
406
_Number_of_bits_remaining = 24; // 23 fraction bits + 1 alignment bit
407
} else {
408
_Adjusted_mantissa = _Ieee_mantissa; // already aligned (52 is divisible by 4)
409
_Number_of_bits_remaining = 52; // 52 fraction bits
410
}
411
412
// do-while: The condition _Adjusted_mantissa != 0 is initially true - we have nonzero fraction bits and we've
413
// printed the decimal point. Each iteration, we print a hexit, mask it away, and keep looping if we still have
414
// nonzero fraction bits. If there would be trailing '0' hexits, this trims them. If there wouldn't be trailing
415
// '0' hexits, the same condition works (as we print the final hexit and mask it away); we don't need to test
416
// _Number_of_bits_remaining.
417
do {
418
_LIBCPP_ASSERT_INTERNAL(_Number_of_bits_remaining >= 4, "");
419
_LIBCPP_ASSERT_INTERNAL(_Number_of_bits_remaining % 4 == 0, "");
420
_Number_of_bits_remaining -= 4;
421
422
const uint32_t _Nibble = static_cast<uint32_t>(_Adjusted_mantissa >> _Number_of_bits_remaining);
423
_LIBCPP_ASSERT_INTERNAL(_Nibble < 16, "");
424
const char _Hexit = __itoa::_Charconv_digits[_Nibble];
425
426
if (_First == _Last) {
427
return {_Last, errc::value_too_large};
428
}
429
430
*_First++ = _Hexit;
431
432
const _Uint_type _Mask = (_Uint_type{1} << _Number_of_bits_remaining) - 1;
433
_Adjusted_mantissa &= _Mask;
434
435
} while (_Adjusted_mantissa != 0);
436
}
437
438
// C11 7.21.6.1 "The fprintf function"/8: "The exponent always contains at least one digit, and only as many more
439
// digits as necessary to represent the decimal exponent of 2."
440
441
// Performance note: We should take advantage of the known ranges of possible exponents.
442
443
// float: _Unbiased_exponent is within [-126, 127].
444
// double: _Unbiased_exponent is within [-1022, 1023].
445
446
if (_Last - _First < 2) {
447
return {_Last, errc::value_too_large};
448
}
449
450
*_First++ = 'p';
451
452
if (_Unbiased_exponent < 0) {
453
*_First++ = '-';
454
_Unbiased_exponent = -_Unbiased_exponent;
455
} else {
456
*_First++ = '+';
457
}
458
459
// We've already printed '-' if necessary, so static_cast<uint32_t> avoids testing that again.
460
return std::to_chars(_First, _Last, static_cast<uint32_t>(_Unbiased_exponent));
461
}
462
463
// For general precision, we can use lookup tables to avoid performing trial formatting.
464
465
// For a simple example, imagine counting the number of digits D in an integer, and needing to know
466
// whether D is less than 3, equal to 3/4/5/6, or greater than 6. We could use a lookup table:
467
// D | Largest integer with D digits
468
// 2 | 99
469
// 3 | 999
470
// 4 | 9'999
471
// 5 | 99'999
472
// 6 | 999'999
473
// 7 | table end
474
// Looking up an integer in this table with lower_bound() will work:
475
// * Too-small integers, like 7, 70, and 99, will cause lower_bound() to return the D == 2 row. (If all we care
476
// about is whether D is less than 3, then it's okay to smash the D == 1 and D == 2 cases together.)
477
// * Integers in [100, 999] will cause lower_bound() to return the D == 3 row, and so forth.
478
// * Too-large integers, like 1'000'000 and above, will cause lower_bound() to return the end of the table. If we
479
// compute D from that index, this will be considered D == 7, which will activate any "greater than 6" logic.
480
481
// Floating-point is slightly more complicated.
482
483
// The ordinary lookup tables are for X within [-5, 38] for float, and [-5, 308] for double.
484
// (-5 absorbs too-negative exponents, outside the P > X >= -4 criterion. 38 and 308 are the maximum exponents.)
485
// Due to the P > X condition, we can use a subset of the table for X within [-5, P - 1], suitably clamped.
486
487
// When P is small, rounding can affect X. For example:
488
// For P == 1, the largest double with X == 0 is: 9.4999999999999982236431605997495353221893310546875
489
// For P == 2, the largest double with X == 0 is: 9.949999999999999289457264239899814128875732421875
490
// For P == 3, the largest double with X == 0 is: 9.9949999999999992184029906638897955417633056640625
491
492
// Exponent adjustment is a concern for P within [1, 7] for float, and [1, 15] for double (determined via
493
// brute force). While larger values of P still perform rounding, they can't trigger exponent adjustment.
494
// This is because only values with repeated '9' digits can undergo exponent adjustment during rounding,
495
// and floating-point granularity limits the number of consecutive '9' digits that can appear.
496
497
// So, we need special lookup tables for small values of P.
498
// These tables have varying lengths due to the P > X >= -4 criterion. For example:
499
// For P == 1, need table entries for X: -5, -4, -3, -2, -1, 0
500
// For P == 2, need table entries for X: -5, -4, -3, -2, -1, 0, 1
501
// For P == 3, need table entries for X: -5, -4, -3, -2, -1, 0, 1, 2
502
// For P == 4, need table entries for X: -5, -4, -3, -2, -1, 0, 1, 2, 3
503
504
// We can concatenate these tables for compact storage, using triangular numbers to access them.
505
// The table for P begins at index (P - 1) * (P + 10) / 2 with length P + 5.
506
507
// For both the ordinary and special lookup tables, after an index I is returned by lower_bound(), X is I - 5.
508
509
// We need to special-case the floating-point value 0.0, which is considered to have X == 0.
510
// Otherwise, the lookup tables would consider it to have a highly negative X.
511
512
// Finally, because we're working with positive floating-point values,
513
// representation comparisons behave identically to floating-point comparisons.
514
515
// The following code generated the lookup tables for the scientific exponent X. Don't remove this code.
516
#if 0
517
// cl /EHsc /nologo /W4 /MT /O2 /std:c++17 generate_tables.cpp && generate_tables
518
519
#include <algorithm>
520
#include <assert.h>
521
#include <charconv>
522
#include <cmath>
523
#include <limits>
524
#include <map>
525
#include <stdint.h>
526
#include <stdio.h>
527
#include <system_error>
528
#include <type_traits>
529
#include <vector>
530
using namespace std;
531
532
template <typename UInt, typename Pred>
533
[[nodiscard]] UInt uint_partition_point(UInt first, const UInt last, Pred pred) {
534
// Find the beginning of the false partition in [first, last).
535
// [first, last) is partitioned when all of the true values occur before all of the false values.
536
537
static_assert(is_unsigned_v<UInt>);
538
assert(first <= last);
539
540
for (UInt n = last - first; n > 0;) {
541
const UInt n2 = n / 2;
542
const UInt mid = first + n2;
543
544
if (pred(mid)) {
545
first = mid + 1;
546
n = n - n2 - 1;
547
} else {
548
n = n2;
549
}
550
}
551
552
return first;
553
}
554
555
template <typename Floating>
556
[[nodiscard]] int scientific_exponent_X(const int P, const Floating flt) {
557
char buf[400]; // more than enough
558
559
// C11 7.21.6.1 "The fprintf function"/8 performs trial formatting with scientific precision P - 1.
560
const auto to_result = to_chars(buf, end(buf), flt, chars_format::scientific, P - 1);
561
assert(to_result.ec == errc{});
562
563
const char* exp_ptr = find(buf, to_result.ptr, 'e');
564
assert(exp_ptr != to_result.ptr);
565
566
++exp_ptr; // advance past 'e'
567
568
if (*exp_ptr == '+') {
569
++exp_ptr; // advance past '+' which from_chars() won't parse
570
}
571
572
int X;
573
const auto from_result = from_chars(exp_ptr, to_result.ptr, X);
574
assert(from_result.ec == errc{});
575
return X;
576
}
577
578
template <typename UInt>
579
void print_table(const vector<UInt>& v, const char* const name) {
580
constexpr const char* UIntName = _IsSame<UInt, uint32_t>::value ? "uint32_t" : "uint64_t";
581
582
printf("static constexpr %s %s[%zu] = {\n", UIntName, name, v.size());
583
584
for (const auto& val : v) {
585
if constexpr (_IsSame<UInt, uint32_t>::value) {
586
printf("0x%08Xu,\n", val);
587
} else {
588
printf("0x%016llXu,\n", val);
589
}
590
}
591
592
printf("};\n");
593
}
594
595
enum class Mode { Tables, Tests };
596
597
template <typename Floating>
598
void generate_tables(const Mode mode) {
599
using Limits = numeric_limits<Floating>;
600
using UInt = conditional_t<_IsSame<Floating, float>::value, uint32_t, uint64_t>;
601
602
map<int, map<int, UInt>> P_X_LargestValWithX;
603
604
constexpr int MaxP = Limits::max_exponent10 + 1; // MaxP performs no rounding during trial formatting
605
606
for (int P = 1; P <= MaxP; ++P) {
607
for (int X = -5; X < P; ++X) {
608
constexpr Floating first = static_cast<Floating>(9e-5); // well below 9.5e-5, otherwise arbitrary
609
constexpr Floating last = Limits::infinity(); // one bit above Limits::max()
610
611
const UInt val_beyond_X = uint_partition_point(reinterpret_cast<const UInt&>(first),
612
reinterpret_cast<const UInt&>(last),
613
[P, X](const UInt u) { return scientific_exponent_X(P, reinterpret_cast<const Floating&>(u)) <= X; });
614
615
P_X_LargestValWithX[P][X] = val_beyond_X - 1;
616
}
617
}
618
619
constexpr const char* FloatingName = _IsSame<Floating, float>::value ? "float" : "double";
620
621
constexpr int MaxSpecialP = _IsSame<Floating, float>::value ? 7 : 15; // MaxSpecialP is affected by exponent adjustment
622
623
if (mode == Mode::Tables) {
624
printf("template <>\n");
625
printf("struct _General_precision_tables<%s> {\n", FloatingName);
626
627
printf("static constexpr int _Max_special_P = %d;\n", MaxSpecialP);
628
629
vector<UInt> special;
630
631
for (int P = 1; P <= MaxSpecialP; ++P) {
632
for (int X = -5; X < P; ++X) {
633
const UInt val = P_X_LargestValWithX[P][X];
634
special.push_back(val);
635
}
636
}
637
638
print_table(special, "_Special_X_table");
639
640
for (int P = MaxSpecialP + 1; P < MaxP; ++P) {
641
for (int X = -5; X < P; ++X) {
642
const UInt val = P_X_LargestValWithX[P][X];
643
assert(val == P_X_LargestValWithX[MaxP][X]);
644
}
645
}
646
647
printf("static constexpr int _Max_P = %d;\n", MaxP);
648
649
vector<UInt> ordinary;
650
651
for (int X = -5; X < MaxP; ++X) {
652
const UInt val = P_X_LargestValWithX[MaxP][X];
653
ordinary.push_back(val);
654
}
655
656
print_table(ordinary, "_Ordinary_X_table");
657
658
printf("};\n");
659
} else {
660
printf("==========\n");
661
printf("Test cases for %s:\n", FloatingName);
662
663
constexpr int Hexits = _IsSame<Floating, float>::value ? 6 : 13;
664
constexpr const char* Suffix = _IsSame<Floating, float>::value ? "f" : "";
665
666
for (int P = 1; P <= MaxP; ++P) {
667
for (int X = -5; X < P; ++X) {
668
if (P <= MaxSpecialP || P == 25 || P == MaxP || X == P - 1) {
669
const UInt val1 = P_X_LargestValWithX[P][X];
670
const Floating f1 = reinterpret_cast<const Floating&>(val1);
671
const UInt val2 = val1 + 1;
672
const Floating f2 = reinterpret_cast<const Floating&>(val2);
673
674
printf("{%.*a%s, chars_format::general, %d, \"%.*g\"},\n", Hexits, f1, Suffix, P, P, f1);
675
if (isfinite(f2)) {
676
printf("{%.*a%s, chars_format::general, %d, \"%.*g\"},\n", Hexits, f2, Suffix, P, P, f2);
677
}
678
}
679
}
680
}
681
}
682
}
683
684
int main() {
685
printf("template <class _Floating>\n");
686
printf("struct _General_precision_tables;\n");
687
generate_tables<float>(Mode::Tables);
688
generate_tables<double>(Mode::Tables);
689
generate_tables<float>(Mode::Tests);
690
generate_tables<double>(Mode::Tests);
691
}
692
#endif // 0
693
694
template <class _Floating>
695
struct _General_precision_tables;
696
697
template <>
698
struct _General_precision_tables<float> {
699
static constexpr int _Max_special_P = 7;
700
701
static constexpr uint32_t _Special_X_table[63] = {0x38C73ABCu, 0x3A79096Bu, 0x3C1BA5E3u, 0x3DC28F5Cu, 0x3F733333u,
702
0x4117FFFFu, 0x38D0AAA7u, 0x3A826AA8u, 0x3C230553u, 0x3DCBC6A7u, 0x3F7EB851u, 0x411F3333u, 0x42C6FFFFu,
703
0x38D19C3Fu, 0x3A8301A7u, 0x3C23C211u, 0x3DCCB295u, 0x3F7FDF3Bu, 0x411FEB85u, 0x42C7E666u, 0x4479DFFFu,
704
0x38D1B468u, 0x3A8310C1u, 0x3C23D4F1u, 0x3DCCCA2Du, 0x3F7FFCB9u, 0x411FFDF3u, 0x42C7FD70u, 0x4479FCCCu,
705
0x461C3DFFu, 0x38D1B6D2u, 0x3A831243u, 0x3C23D6D4u, 0x3DCCCC89u, 0x3F7FFFACu, 0x411FFFCBu, 0x42C7FFBEu,
706
0x4479FFAEu, 0x461C3FCCu, 0x47C34FBFu, 0x38D1B710u, 0x3A83126Au, 0x3C23D704u, 0x3DCCCCC6u, 0x3F7FFFF7u,
707
0x411FFFFAu, 0x42C7FFF9u, 0x4479FFF7u, 0x461C3FFAu, 0x47C34FF9u, 0x497423F7u, 0x38D1B716u, 0x3A83126Eu,
708
0x3C23D709u, 0x3DCCCCCCu, 0x3F7FFFFFu, 0x411FFFFFu, 0x42C7FFFFu, 0x4479FFFFu, 0x461C3FFFu, 0x47C34FFFu,
709
0x497423FFu, 0x4B18967Fu};
710
711
static constexpr int _Max_P = 39;
712
713
static constexpr uint32_t _Ordinary_X_table[44] = {0x38D1B717u, 0x3A83126Eu, 0x3C23D70Au, 0x3DCCCCCCu, 0x3F7FFFFFu,
714
0x411FFFFFu, 0x42C7FFFFu, 0x4479FFFFu, 0x461C3FFFu, 0x47C34FFFu, 0x497423FFu, 0x4B18967Fu, 0x4CBEBC1Fu,
715
0x4E6E6B27u, 0x501502F8u, 0x51BA43B7u, 0x5368D4A5u, 0x551184E7u, 0x56B5E620u, 0x58635FA9u, 0x5A0E1BC9u,
716
0x5BB1A2BCu, 0x5D5E0B6Bu, 0x5F0AC723u, 0x60AD78EBu, 0x6258D726u, 0x64078678u, 0x65A96816u, 0x6753C21Bu,
717
0x69045951u, 0x6AA56FA5u, 0x6C4ECB8Fu, 0x6E013F39u, 0x6FA18F07u, 0x7149F2C9u, 0x72FC6F7Cu, 0x749DC5ADu,
718
0x76453719u, 0x77F684DFu, 0x799A130Bu, 0x7B4097CEu, 0x7CF0BDC2u, 0x7E967699u, 0x7F7FFFFFu};
719
};
720
721
template <>
722
struct _General_precision_tables<double> {
723
static constexpr int _Max_special_P = 15;
724
725
static constexpr uint64_t _Special_X_table[195] = {0x3F18E757928E0C9Du, 0x3F4F212D77318FC5u, 0x3F8374BC6A7EF9DBu,
726
0x3FB851EB851EB851u, 0x3FEE666666666666u, 0x4022FFFFFFFFFFFFu, 0x3F1A1554FBDAD751u, 0x3F504D551D68C692u,
727
0x3F8460AA64C2F837u, 0x3FB978D4FDF3B645u, 0x3FEFD70A3D70A3D7u, 0x4023E66666666666u, 0x4058DFFFFFFFFFFFu,
728
0x3F1A3387ECC8EB96u, 0x3F506034F3FD933Eu, 0x3F84784230FCF80Du, 0x3FB99652BD3C3611u, 0x3FEFFBE76C8B4395u,
729
0x4023FD70A3D70A3Du, 0x4058FCCCCCCCCCCCu, 0x408F3BFFFFFFFFFFu, 0x3F1A368D04E0BA6Au, 0x3F506218230C7482u,
730
0x3F847A9E2BCF91A3u, 0x3FB99945B6C3760Bu, 0x3FEFFF972474538Eu, 0x4023FFBE76C8B439u, 0x4058FFAE147AE147u,
731
0x408F3F9999999999u, 0x40C387BFFFFFFFFFu, 0x3F1A36DA54164F19u, 0x3F506248748DF16Fu, 0x3F847ADA91B16DCBu,
732
0x3FB99991361DC93Eu, 0x3FEFFFF583A53B8Eu, 0x4023FFF972474538u, 0x4058FFF7CED91687u, 0x408F3FF5C28F5C28u,
733
0x40C387F999999999u, 0x40F869F7FFFFFFFFu, 0x3F1A36E20F35445Du, 0x3F50624D49814ABAu, 0x3F847AE09BE19D69u,
734
0x3FB99998C2DA04C3u, 0x3FEFFFFEF39085F4u, 0x4023FFFF583A53B8u, 0x4058FFFF2E48E8A7u, 0x408F3FFEF9DB22D0u,
735
0x40C387FF5C28F5C2u, 0x40F869FF33333333u, 0x412E847EFFFFFFFFu, 0x3F1A36E2D51EC34Bu, 0x3F50624DC5333A0Eu,
736
0x3F847AE136800892u, 0x3FB9999984200AB7u, 0x3FEFFFFFE5280D65u, 0x4023FFFFEF39085Fu, 0x4058FFFFEB074A77u,
737
0x408F3FFFE5C91D14u, 0x40C387FFEF9DB22Du, 0x40F869FFEB851EB8u, 0x412E847FE6666666u, 0x416312CFEFFFFFFFu,
738
0x3F1A36E2E8E94FFCu, 0x3F50624DD191D1FDu, 0x3F847AE145F6467Du, 0x3FB999999773D81Cu, 0x3FEFFFFFFD50CE23u,
739
0x4023FFFFFE5280D6u, 0x4058FFFFFDE7210Bu, 0x408F3FFFFD60E94Eu, 0x40C387FFFE5C91D1u, 0x40F869FFFDF3B645u,
740
0x412E847FFD70A3D7u, 0x416312CFFE666666u, 0x4197D783FDFFFFFFu, 0x3F1A36E2EAE3F7A7u, 0x3F50624DD2CE7AC8u,
741
0x3F847AE14782197Bu, 0x3FB9999999629FD9u, 0x3FEFFFFFFFBB47D0u, 0x4023FFFFFFD50CE2u, 0x4058FFFFFFCA501Au,
742
0x408F3FFFFFBCE421u, 0x40C387FFFFD60E94u, 0x40F869FFFFCB923Au, 0x412E847FFFBE76C8u, 0x416312CFFFD70A3Du,
743
0x4197D783FFCCCCCCu, 0x41CDCD64FFBFFFFFu, 0x3F1A36E2EB16A205u, 0x3F50624DD2EE2543u, 0x3F847AE147A9AE94u,
744
0x3FB9999999941A39u, 0x3FEFFFFFFFF920C8u, 0x4023FFFFFFFBB47Du, 0x4058FFFFFFFAA19Cu, 0x408F3FFFFFF94A03u,
745
0x40C387FFFFFBCE42u, 0x40F869FFFFFAC1D2u, 0x412E847FFFF97247u, 0x416312CFFFFBE76Cu, 0x4197D783FFFAE147u,
746
0x41CDCD64FFF99999u, 0x4202A05F1FFBFFFFu, 0x3F1A36E2EB1BB30Fu, 0x3F50624DD2F14FE9u, 0x3F847AE147ADA3E3u,
747
0x3FB9999999990CDCu, 0x3FEFFFFFFFFF5014u, 0x4023FFFFFFFF920Cu, 0x4058FFFFFFFF768Fu, 0x408F3FFFFFFF5433u,
748
0x40C387FFFFFF94A0u, 0x40F869FFFFFF79C8u, 0x412E847FFFFF583Au, 0x416312CFFFFF9724u, 0x4197D783FFFF7CEDu,
749
0x41CDCD64FFFF5C28u, 0x4202A05F1FFF9999u, 0x42374876E7FF7FFFu, 0x3F1A36E2EB1C34C3u, 0x3F50624DD2F1A0FAu,
750
0x3F847AE147AE0938u, 0x3FB9999999998B86u, 0x3FEFFFFFFFFFEE68u, 0x4023FFFFFFFFF501u, 0x4058FFFFFFFFF241u,
751
0x408F3FFFFFFFEED1u, 0x40C387FFFFFFF543u, 0x40F869FFFFFFF294u, 0x412E847FFFFFEF39u, 0x416312CFFFFFF583u,
752
0x4197D783FFFFF2E4u, 0x41CDCD64FFFFEF9Du, 0x4202A05F1FFFF5C2u, 0x42374876E7FFF333u, 0x426D1A94A1FFEFFFu,
753
0x3F1A36E2EB1C41BBu, 0x3F50624DD2F1A915u, 0x3F847AE147AE135Au, 0x3FB9999999999831u, 0x3FEFFFFFFFFFFE3Du,
754
0x4023FFFFFFFFFEE6u, 0x4058FFFFFFFFFEA0u, 0x408F3FFFFFFFFE48u, 0x40C387FFFFFFFEEDu, 0x40F869FFFFFFFEA8u,
755
0x412E847FFFFFFE52u, 0x416312CFFFFFFEF3u, 0x4197D783FFFFFEB0u, 0x41CDCD64FFFFFE5Cu, 0x4202A05F1FFFFEF9u,
756
0x42374876E7FFFEB8u, 0x426D1A94A1FFFE66u, 0x42A2309CE53FFEFFu, 0x3F1A36E2EB1C4307u, 0x3F50624DD2F1A9E4u,
757
0x3F847AE147AE145Eu, 0x3FB9999999999975u, 0x3FEFFFFFFFFFFFD2u, 0x4023FFFFFFFFFFE3u, 0x4058FFFFFFFFFFDCu,
758
0x408F3FFFFFFFFFD4u, 0x40C387FFFFFFFFE4u, 0x40F869FFFFFFFFDDu, 0x412E847FFFFFFFD5u, 0x416312CFFFFFFFE5u,
759
0x4197D783FFFFFFDEu, 0x41CDCD64FFFFFFD6u, 0x4202A05F1FFFFFE5u, 0x42374876E7FFFFDFu, 0x426D1A94A1FFFFD7u,
760
0x42A2309CE53FFFE6u, 0x42D6BCC41E8FFFDFu, 0x3F1A36E2EB1C4328u, 0x3F50624DD2F1A9F9u, 0x3F847AE147AE1477u,
761
0x3FB9999999999995u, 0x3FEFFFFFFFFFFFFBu, 0x4023FFFFFFFFFFFDu, 0x4058FFFFFFFFFFFCu, 0x408F3FFFFFFFFFFBu,
762
0x40C387FFFFFFFFFDu, 0x40F869FFFFFFFFFCu, 0x412E847FFFFFFFFBu, 0x416312CFFFFFFFFDu, 0x4197D783FFFFFFFCu,
763
0x41CDCD64FFFFFFFBu, 0x4202A05F1FFFFFFDu, 0x42374876E7FFFFFCu, 0x426D1A94A1FFFFFBu, 0x42A2309CE53FFFFDu,
764
0x42D6BCC41E8FFFFCu, 0x430C6BF52633FFFBu};
765
766
static constexpr int _Max_P = 309;
767
768
static constexpr uint64_t _Ordinary_X_table[314] = {0x3F1A36E2EB1C432Cu, 0x3F50624DD2F1A9FBu, 0x3F847AE147AE147Au,
769
0x3FB9999999999999u, 0x3FEFFFFFFFFFFFFFu, 0x4023FFFFFFFFFFFFu, 0x4058FFFFFFFFFFFFu, 0x408F3FFFFFFFFFFFu,
770
0x40C387FFFFFFFFFFu, 0x40F869FFFFFFFFFFu, 0x412E847FFFFFFFFFu, 0x416312CFFFFFFFFFu, 0x4197D783FFFFFFFFu,
771
0x41CDCD64FFFFFFFFu, 0x4202A05F1FFFFFFFu, 0x42374876E7FFFFFFu, 0x426D1A94A1FFFFFFu, 0x42A2309CE53FFFFFu,
772
0x42D6BCC41E8FFFFFu, 0x430C6BF52633FFFFu, 0x4341C37937E07FFFu, 0x4376345785D89FFFu, 0x43ABC16D674EC7FFu,
773
0x43E158E460913CFFu, 0x4415AF1D78B58C3Fu, 0x444B1AE4D6E2EF4Fu, 0x4480F0CF064DD591u, 0x44B52D02C7E14AF6u,
774
0x44EA784379D99DB4u, 0x45208B2A2C280290u, 0x4554ADF4B7320334u, 0x4589D971E4FE8401u, 0x45C027E72F1F1281u,
775
0x45F431E0FAE6D721u, 0x46293E5939A08CE9u, 0x465F8DEF8808B024u, 0x4693B8B5B5056E16u, 0x46C8A6E32246C99Cu,
776
0x46FED09BEAD87C03u, 0x4733426172C74D82u, 0x476812F9CF7920E2u, 0x479E17B84357691Bu, 0x47D2CED32A16A1B1u,
777
0x48078287F49C4A1Du, 0x483D6329F1C35CA4u, 0x48725DFA371A19E6u, 0x48A6F578C4E0A060u, 0x48DCB2D6F618C878u,
778
0x4911EFC659CF7D4Bu, 0x49466BB7F0435C9Eu, 0x497C06A5EC5433C6u, 0x49B18427B3B4A05Bu, 0x49E5E531A0A1C872u,
779
0x4A1B5E7E08CA3A8Fu, 0x4A511B0EC57E6499u, 0x4A8561D276DDFDC0u, 0x4ABABA4714957D30u, 0x4AF0B46C6CDD6E3Eu,
780
0x4B24E1878814C9CDu, 0x4B5A19E96A19FC40u, 0x4B905031E2503DA8u, 0x4BC4643E5AE44D12u, 0x4BF97D4DF19D6057u,
781
0x4C2FDCA16E04B86Du, 0x4C63E9E4E4C2F344u, 0x4C98E45E1DF3B015u, 0x4CCF1D75A5709C1Au, 0x4D03726987666190u,
782
0x4D384F03E93FF9F4u, 0x4D6E62C4E38FF872u, 0x4DA2FDBB0E39FB47u, 0x4DD7BD29D1C87A19u, 0x4E0DAC74463A989Fu,
783
0x4E428BC8ABE49F63u, 0x4E772EBAD6DDC73Cu, 0x4EACFA698C95390Bu, 0x4EE21C81F7DD43A7u, 0x4F16A3A275D49491u,
784
0x4F4C4C8B1349B9B5u, 0x4F81AFD6EC0E1411u, 0x4FB61BCCA7119915u, 0x4FEBA2BFD0D5FF5Bu, 0x502145B7E285BF98u,
785
0x50559725DB272F7Fu, 0x508AFCEF51F0FB5Eu, 0x50C0DE1593369D1Bu, 0x50F5159AF8044462u, 0x512A5B01B605557Au,
786
0x516078E111C3556Cu, 0x5194971956342AC7u, 0x51C9BCDFABC13579u, 0x5200160BCB58C16Cu, 0x52341B8EBE2EF1C7u,
787
0x526922726DBAAE39u, 0x529F6B0F092959C7u, 0x52D3A2E965B9D81Cu, 0x53088BA3BF284E23u, 0x533EAE8CAEF261ACu,
788
0x53732D17ED577D0Bu, 0x53A7F85DE8AD5C4Eu, 0x53DDF67562D8B362u, 0x5412BA095DC7701Du, 0x5447688BB5394C25u,
789
0x547D42AEA2879F2Eu, 0x54B249AD2594C37Cu, 0x54E6DC186EF9F45Cu, 0x551C931E8AB87173u, 0x5551DBF316B346E7u,
790
0x558652EFDC6018A1u, 0x55BBE7ABD3781ECAu, 0x55F170CB642B133Eu, 0x5625CCFE3D35D80Eu, 0x565B403DCC834E11u,
791
0x569108269FD210CBu, 0x56C54A3047C694FDu, 0x56FA9CBC59B83A3Du, 0x5730A1F5B8132466u, 0x5764CA732617ED7Fu,
792
0x5799FD0FEF9DE8DFu, 0x57D03E29F5C2B18Bu, 0x58044DB473335DEEu, 0x583961219000356Au, 0x586FB969F40042C5u,
793
0x58A3D3E2388029BBu, 0x58D8C8DAC6A0342Au, 0x590EFB1178484134u, 0x59435CEAEB2D28C0u, 0x59783425A5F872F1u,
794
0x59AE412F0F768FADu, 0x59E2E8BD69AA19CCu, 0x5A17A2ECC414A03Fu, 0x5A4D8BA7F519C84Fu, 0x5A827748F9301D31u,
795
0x5AB7151B377C247Eu, 0x5AECDA62055B2D9Du, 0x5B22087D4358FC82u, 0x5B568A9C942F3BA3u, 0x5B8C2D43B93B0A8Bu,
796
0x5BC19C4A53C4E697u, 0x5BF6035CE8B6203Du, 0x5C2B843422E3A84Cu, 0x5C6132A095CE492Fu, 0x5C957F48BB41DB7Bu,
797
0x5CCADF1AEA12525Au, 0x5D00CB70D24B7378u, 0x5D34FE4D06DE5056u, 0x5D6A3DE04895E46Cu, 0x5DA066AC2D5DAEC3u,
798
0x5DD4805738B51A74u, 0x5E09A06D06E26112u, 0x5E400444244D7CABu, 0x5E7405552D60DBD6u, 0x5EA906AA78B912CBu,
799
0x5EDF485516E7577Eu, 0x5F138D352E5096AFu, 0x5F48708279E4BC5Au, 0x5F7E8CA3185DEB71u, 0x5FB317E5EF3AB327u,
800
0x5FE7DDDF6B095FF0u, 0x601DD55745CBB7ECu, 0x6052A5568B9F52F4u, 0x60874EAC2E8727B1u, 0x60BD22573A28F19Du,
801
0x60F2357684599702u, 0x6126C2D4256FFCC2u, 0x615C73892ECBFBF3u, 0x6191C835BD3F7D78u, 0x61C63A432C8F5CD6u,
802
0x61FBC8D3F7B3340Bu, 0x62315D847AD00087u, 0x6265B4E5998400A9u, 0x629B221EFFE500D3u, 0x62D0F5535FEF2084u,
803
0x630532A837EAE8A5u, 0x633A7F5245E5A2CEu, 0x63708F936BAF85C1u, 0x63A4B378469B6731u, 0x63D9E056584240FDu,
804
0x64102C35F729689Eu, 0x6444374374F3C2C6u, 0x647945145230B377u, 0x64AF965966BCE055u, 0x64E3BDF7E0360C35u,
805
0x6518AD75D8438F43u, 0x654ED8D34E547313u, 0x6583478410F4C7ECu, 0x65B819651531F9E7u, 0x65EE1FBE5A7E7861u,
806
0x6622D3D6F88F0B3Cu, 0x665788CCB6B2CE0Cu, 0x668D6AFFE45F818Fu, 0x66C262DFEEBBB0F9u, 0x66F6FB97EA6A9D37u,
807
0x672CBA7DE5054485u, 0x6761F48EAF234AD3u, 0x679671B25AEC1D88u, 0x67CC0E1EF1A724EAu, 0x680188D357087712u,
808
0x6835EB082CCA94D7u, 0x686B65CA37FD3A0Du, 0x68A11F9E62FE4448u, 0x68D56785FBBDD55Au, 0x690AC1677AAD4AB0u,
809
0x6940B8E0ACAC4EAEu, 0x6974E718D7D7625Au, 0x69AA20DF0DCD3AF0u, 0x69E0548B68A044D6u, 0x6A1469AE42C8560Cu,
810
0x6A498419D37A6B8Fu, 0x6A7FE52048590672u, 0x6AB3EF342D37A407u, 0x6AE8EB0138858D09u, 0x6B1F25C186A6F04Cu,
811
0x6B537798F428562Fu, 0x6B88557F31326BBBu, 0x6BBE6ADEFD7F06AAu, 0x6BF302CB5E6F642Au, 0x6C27C37E360B3D35u,
812
0x6C5DB45DC38E0C82u, 0x6C9290BA9A38C7D1u, 0x6CC734E940C6F9C5u, 0x6CFD022390F8B837u, 0x6D3221563A9B7322u,
813
0x6D66A9ABC9424FEBu, 0x6D9C5416BB92E3E6u, 0x6DD1B48E353BCE6Fu, 0x6E0621B1C28AC20Bu, 0x6E3BAA1E332D728Eu,
814
0x6E714A52DFFC6799u, 0x6EA59CE797FB817Fu, 0x6EDB04217DFA61DFu, 0x6F10E294EEBC7D2Bu, 0x6F451B3A2A6B9C76u,
815
0x6F7A6208B5068394u, 0x6FB07D457124123Cu, 0x6FE49C96CD6D16CBu, 0x7019C3BC80C85C7Eu, 0x70501A55D07D39CFu,
816
0x708420EB449C8842u, 0x70B9292615C3AA53u, 0x70EF736F9B3494E8u, 0x7123A825C100DD11u, 0x7158922F31411455u,
817
0x718EB6BAFD91596Bu, 0x71C33234DE7AD7E2u, 0x71F7FEC216198DDBu, 0x722DFE729B9FF152u, 0x7262BF07A143F6D3u,
818
0x72976EC98994F488u, 0x72CD4A7BEBFA31AAu, 0x73024E8D737C5F0Au, 0x7336E230D05B76CDu, 0x736C9ABD04725480u,
819
0x73A1E0B622C774D0u, 0x73D658E3AB795204u, 0x740BEF1C9657A685u, 0x74417571DDF6C813u, 0x7475D2CE55747A18u,
820
0x74AB4781EAD1989Eu, 0x74E10CB132C2FF63u, 0x75154FDD7F73BF3Bu, 0x754AA3D4DF50AF0Au, 0x7580A6650B926D66u,
821
0x75B4CFFE4E7708C0u, 0x75EA03FDE214CAF0u, 0x7620427EAD4CFED6u, 0x7654531E58A03E8Bu, 0x768967E5EEC84E2Eu,
822
0x76BFC1DF6A7A61BAu, 0x76F3D92BA28C7D14u, 0x7728CF768B2F9C59u, 0x775F03542DFB8370u, 0x779362149CBD3226u,
823
0x77C83A99C3EC7EAFu, 0x77FE494034E79E5Bu, 0x7832EDC82110C2F9u, 0x7867A93A2954F3B7u, 0x789D9388B3AA30A5u,
824
0x78D27C35704A5E67u, 0x79071B42CC5CF601u, 0x793CE2137F743381u, 0x79720D4C2FA8A030u, 0x79A6909F3B92C83Du,
825
0x79DC34C70A777A4Cu, 0x7A11A0FC668AAC6Fu, 0x7A46093B802D578Bu, 0x7A7B8B8A6038AD6Eu, 0x7AB137367C236C65u,
826
0x7AE585041B2C477Eu, 0x7B1AE64521F7595Eu, 0x7B50CFEB353A97DAu, 0x7B8503E602893DD1u, 0x7BBA44DF832B8D45u,
827
0x7BF06B0BB1FB384Bu, 0x7C2485CE9E7A065Eu, 0x7C59A742461887F6u, 0x7C9008896BCF54F9u, 0x7CC40AABC6C32A38u,
828
0x7CF90D56B873F4C6u, 0x7D2F50AC6690F1F8u, 0x7D63926BC01A973Bu, 0x7D987706B0213D09u, 0x7DCE94C85C298C4Cu,
829
0x7E031CFD3999F7AFu, 0x7E37E43C8800759Bu, 0x7E6DDD4BAA009302u, 0x7EA2AA4F4A405BE1u, 0x7ED754E31CD072D9u,
830
0x7F0D2A1BE4048F90u, 0x7F423A516E82D9BAu, 0x7F76C8E5CA239028u, 0x7FAC7B1F3CAC7433u, 0x7FE1CCF385EBC89Fu,
831
0x7FEFFFFFFFFFFFFFu};
832
};
833
834
template <class _Floating>
835
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI
836
to_chars_result _Floating_to_chars_general_precision(
837
char* _First, char* const _Last, const _Floating _Value, int _Precision) noexcept {
838
839
using _Traits = _Floating_type_traits<_Floating>;
840
using _Uint_type = typename _Traits::_Uint_type;
841
842
const _Uint_type _Uint_value = std::bit_cast<_Uint_type>(_Value);
843
844
if (_Uint_value == 0) { // zero detected; write "0" and return; _Precision is irrelevant due to zero-trimming
845
if (_First == _Last) {
846
return {_Last, errc::value_too_large};
847
}
848
849
*_First++ = '0';
850
851
return {_First, errc{}};
852
}
853
854
// C11 7.21.6.1 "The fprintf function"/5:
855
// "A negative precision argument is taken as if the precision were omitted."
856
// /8: "g,G [...] Let P equal the precision if nonzero, 6 if the precision is omitted,
857
// or 1 if the precision is zero."
858
859
// Performance note: It's possible to rewrite this for branchless codegen,
860
// but profiling will be necessary to determine whether that's faster.
861
if (_Precision < 0) {
862
_Precision = 6;
863
} else if (_Precision == 0) {
864
_Precision = 1;
865
} else if (_Precision < 1'000'000) {
866
// _Precision is ok.
867
} else {
868
// Avoid integer overflow.
869
// Due to general notation's zero-trimming behavior, we can simply clamp _Precision.
870
// This is further clamped below.
871
_Precision = 1'000'000;
872
}
873
874
// _Precision is now the Standard's P.
875
876
// /8: "Then, if a conversion with style E would have an exponent of X:
877
// - if P > X >= -4, the conversion is with style f (or F) and precision P - (X + 1).
878
// - otherwise, the conversion is with style e (or E) and precision P - 1."
879
880
// /8: "Finally, [...] any trailing zeros are removed from the fractional portion of the result
881
// and the decimal-point character is removed if there is no fractional portion remaining."
882
883
using _Tables = _General_precision_tables<_Floating>;
884
885
const _Uint_type* _Table_begin;
886
const _Uint_type* _Table_end;
887
888
if (_Precision <= _Tables::_Max_special_P) {
889
_Table_begin = _Tables::_Special_X_table + (_Precision - 1) * (_Precision + 10) / 2;
890
_Table_end = _Table_begin + _Precision + 5;
891
} else {
892
_Table_begin = _Tables::_Ordinary_X_table;
893
_Table_end = _Table_begin + std::min(_Precision, _Tables::_Max_P) + 5;
894
}
895
896
// Profiling indicates that linear search is faster than binary search for small tables.
897
// Performance note: lambda captures may have a small performance cost.
898
const _Uint_type* const _Table_lower_bound = [=] {
899
if constexpr (!_IsSame<_Floating, float>::value) {
900
if (_Precision > 155) { // threshold determined via profiling
901
return std::lower_bound(_Table_begin, _Table_end, _Uint_value, less{});
902
}
903
}
904
905
return std::find_if(_Table_begin, _Table_end, [=](const _Uint_type _Elem) { return _Uint_value <= _Elem; });
906
}();
907
908
const ptrdiff_t _Table_index = _Table_lower_bound - _Table_begin;
909
const int _Scientific_exponent_X = static_cast<int>(_Table_index - 5);
910
const bool _Use_fixed_notation = _Precision > _Scientific_exponent_X && _Scientific_exponent_X >= -4;
911
912
// Performance note: it might (or might not) be faster to modify Ryu Printf to perform zero-trimming.
913
// Such modifications would involve a fairly complicated state machine (notably, both '0' and '9' digits would
914
// need to be buffered, due to rounding), and that would have performance costs due to increased branching.
915
// Here, we're using a simpler approach: writing into a local buffer, manually zero-trimming, and then copying into
916
// the output range. The necessary buffer size is reasonably small, the zero-trimming logic is simple and fast,
917
// and the final copying is also fast.
918
919
constexpr int _Max_output_length =
920
_IsSame<_Floating, float>::value ? 117 : 773; // cases: 0x1.fffffep-126f and 0x1.fffffffffffffp-1022
921
constexpr int _Max_fixed_precision =
922
_IsSame<_Floating, float>::value ? 37 : 66; // cases: 0x1.fffffep-14f and 0x1.fffffffffffffp-14
923
constexpr int _Max_scientific_precision =
924
_IsSame<_Floating, float>::value ? 111 : 766; // cases: 0x1.fffffep-126f and 0x1.fffffffffffffp-1022
925
926
// Note that _Max_output_length is determined by scientific notation and is more than enough for fixed notation.
927
// 0x1.fffffep+127f is 39 digits, plus 1 for '.', plus _Max_fixed_precision for '0' digits, equals 77.
928
// 0x1.fffffffffffffp+1023 is 309 digits, plus 1 for '.', plus _Max_fixed_precision for '0' digits, equals 376.
929
930
char _Buffer[_Max_output_length];
931
const char* const _Significand_first = _Buffer; // e.g. "1.234"
932
const char* _Significand_last = nullptr;
933
const char* _Exponent_first = nullptr; // e.g. "e-05"
934
const char* _Exponent_last = nullptr;
935
int _Effective_precision; // number of digits printed after the decimal point, before trimming
936
937
// Write into the local buffer.
938
// Clamping _Effective_precision allows _Buffer to be as small as possible, and increases efficiency.
939
if (_Use_fixed_notation) {
940
_Effective_precision = std::min(_Precision - (_Scientific_exponent_X + 1), _Max_fixed_precision);
941
const to_chars_result _Buf_result =
942
_Floating_to_chars_fixed_precision(_Buffer, std::end(_Buffer), _Value, _Effective_precision);
943
_LIBCPP_ASSERT_INTERNAL(_Buf_result.ec == errc{}, "");
944
_Significand_last = _Buf_result.ptr;
945
} else {
946
_Effective_precision = std::min(_Precision - 1, _Max_scientific_precision);
947
const to_chars_result _Buf_result =
948
_Floating_to_chars_scientific_precision(_Buffer, std::end(_Buffer), _Value, _Effective_precision);
949
_LIBCPP_ASSERT_INTERNAL(_Buf_result.ec == errc{}, "");
950
_Significand_last = std::find(_Buffer, _Buf_result.ptr, 'e');
951
_Exponent_first = _Significand_last;
952
_Exponent_last = _Buf_result.ptr;
953
}
954
955
// If we printed a decimal point followed by digits, perform zero-trimming.
956
if (_Effective_precision > 0) {
957
while (_Significand_last[-1] == '0') { // will stop at '.' or a nonzero digit
958
--_Significand_last;
959
}
960
961
if (_Significand_last[-1] == '.') {
962
--_Significand_last;
963
}
964
}
965
966
// Copy the significand to the output range.
967
const ptrdiff_t _Significand_distance = _Significand_last - _Significand_first;
968
if (_Last - _First < _Significand_distance) {
969
return {_Last, errc::value_too_large};
970
}
971
std::memcpy(_First, _Significand_first, static_cast<size_t>(_Significand_distance));
972
_First += _Significand_distance;
973
974
// Copy the exponent to the output range.
975
if (!_Use_fixed_notation) {
976
const ptrdiff_t _Exponent_distance = _Exponent_last - _Exponent_first;
977
if (_Last - _First < _Exponent_distance) {
978
return {_Last, errc::value_too_large};
979
}
980
std::memcpy(_First, _Exponent_first, static_cast<size_t>(_Exponent_distance));
981
_First += _Exponent_distance;
982
}
983
984
return {_First, errc{}};
985
}
986
987
enum class _Floating_to_chars_overload { _Plain, _Format_only, _Format_precision };
988
989
template <_Floating_to_chars_overload _Overload, class _Floating>
990
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI
991
to_chars_result _Floating_to_chars(
992
char* _First, char* const _Last, _Floating _Value, const chars_format _Fmt, const int _Precision) noexcept {
993
994
if constexpr (_Overload == _Floating_to_chars_overload::_Plain) {
995
_LIBCPP_ASSERT_INTERNAL(_Fmt == chars_format{}, ""); // plain overload must pass chars_format{} internally
996
} else {
997
_LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN(_Fmt == chars_format::general || _Fmt == chars_format::scientific
998
|| _Fmt == chars_format::fixed || _Fmt == chars_format::hex,
999
"invalid format in to_chars()");
1000
}
1001
1002
using _Traits = _Floating_type_traits<_Floating>;
1003
using _Uint_type = typename _Traits::_Uint_type;
1004
1005
_Uint_type _Uint_value = std::bit_cast<_Uint_type>(_Value);
1006
1007
const bool _Was_negative = (_Uint_value & _Traits::_Shifted_sign_mask) != 0;
1008
1009
if (_Was_negative) { // sign bit detected; write minus sign and clear sign bit
1010
if (_First == _Last) {
1011
return {_Last, errc::value_too_large};
1012
}
1013
1014
*_First++ = '-';
1015
1016
_Uint_value &= ~_Traits::_Shifted_sign_mask;
1017
_Value = std::bit_cast<_Floating>(_Uint_value);
1018
}
1019
1020
if ((_Uint_value & _Traits::_Shifted_exponent_mask) == _Traits::_Shifted_exponent_mask) {
1021
// inf/nan detected; write appropriate string and return
1022
const char* _Str;
1023
size_t _Len;
1024
1025
const _Uint_type _Mantissa = _Uint_value & _Traits::_Denormal_mantissa_mask;
1026
1027
if (_Mantissa == 0) {
1028
_Str = "inf";
1029
_Len = 3;
1030
} else if (_Was_negative && _Mantissa == _Traits::_Special_nan_mantissa_mask) {
1031
// When a NaN value has the sign bit set, the quiet bit set, and all other mantissa bits cleared,
1032
// the UCRT interprets it to mean "indeterminate", and indicates this by printing "-nan(ind)".
1033
_Str = "nan(ind)";
1034
_Len = 8;
1035
} else if ((_Mantissa & _Traits::_Special_nan_mantissa_mask) != 0) {
1036
_Str = "nan";
1037
_Len = 3;
1038
} else {
1039
_Str = "nan(snan)";
1040
_Len = 9;
1041
}
1042
1043
if (_Last - _First < static_cast<ptrdiff_t>(_Len)) {
1044
return {_Last, errc::value_too_large};
1045
}
1046
1047
std::memcpy(_First, _Str, _Len);
1048
1049
return {_First + _Len, errc{}};
1050
}
1051
1052
if constexpr (_Overload == _Floating_to_chars_overload::_Plain) {
1053
return _Floating_to_chars_ryu(_First, _Last, _Value, chars_format{});
1054
} else if constexpr (_Overload == _Floating_to_chars_overload::_Format_only) {
1055
if (_Fmt == chars_format::hex) {
1056
return _Floating_to_chars_hex_shortest(_First, _Last, _Value);
1057
}
1058
1059
return _Floating_to_chars_ryu(_First, _Last, _Value, _Fmt);
1060
} else if constexpr (_Overload == _Floating_to_chars_overload::_Format_precision) {
1061
switch (_Fmt) {
1062
case chars_format::scientific:
1063
return _Floating_to_chars_scientific_precision(_First, _Last, _Value, _Precision);
1064
case chars_format::fixed:
1065
return _Floating_to_chars_fixed_precision(_First, _Last, _Value, _Precision);
1066
case chars_format::general:
1067
return _Floating_to_chars_general_precision(_First, _Last, _Value, _Precision);
1068
case chars_format::hex:
1069
default: // avoid MSVC warning C4715: not all control paths return a value
1070
return _Floating_to_chars_hex_precision(_First, _Last, _Value, _Precision);
1071
}
1072
}
1073
}
1074
1075
// clang-format on
1076
1077
_LIBCPP_END_NAMESPACE_STD
1078
1079
#endif // _LIBCPP_SRC_INCLUDE_TO_CHARS_FLOATING_POINT_H
1080
1081