Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/libcxx/src/ryu/f2s.cpp
35231 views
1
//===----------------------------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
// Copyright (c) Microsoft Corporation.
10
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11
12
// Copyright 2018 Ulf Adams
13
// Copyright (c) Microsoft Corporation. All rights reserved.
14
15
// Boost Software License - Version 1.0 - August 17th, 2003
16
17
// Permission is hereby granted, free of charge, to any person or organization
18
// obtaining a copy of the software and accompanying documentation covered by
19
// this license (the "Software") to use, reproduce, display, distribute,
20
// execute, and transmit the Software, and to prepare derivative works of the
21
// Software, and to permit third-parties to whom the Software is furnished to
22
// do so, all subject to the following:
23
24
// The copyright notices in the Software and this entire statement, including
25
// the above license grant, this restriction and the following disclaimer,
26
// must be included in all copies of the Software, in whole or in part, and
27
// all derivative works of the Software, unless such copies or derivative
28
// works are solely in the form of machine-executable object code generated by
29
// a source language processor.
30
31
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
32
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
33
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
34
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
35
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
36
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
37
// DEALINGS IN THE SOFTWARE.
38
39
// Avoid formatting to keep the changes with the original code minimal.
40
// clang-format off
41
42
#include <__assert>
43
#include <__config>
44
#include <charconv>
45
46
#include "include/ryu/common.h"
47
#include "include/ryu/d2fixed.h"
48
#include "include/ryu/d2s_intrinsics.h"
49
#include "include/ryu/digit_table.h"
50
#include "include/ryu/f2s.h"
51
#include "include/ryu/ryu.h"
52
53
_LIBCPP_BEGIN_NAMESPACE_STD
54
55
inline constexpr int __FLOAT_MANTISSA_BITS = 23;
56
inline constexpr int __FLOAT_EXPONENT_BITS = 8;
57
inline constexpr int __FLOAT_BIAS = 127;
58
59
inline constexpr int __FLOAT_POW5_INV_BITCOUNT = 59;
60
inline constexpr uint64_t __FLOAT_POW5_INV_SPLIT[31] = {
61
576460752303423489u, 461168601842738791u, 368934881474191033u, 295147905179352826u,
62
472236648286964522u, 377789318629571618u, 302231454903657294u, 483570327845851670u,
63
386856262276681336u, 309485009821345069u, 495176015714152110u, 396140812571321688u,
64
316912650057057351u, 507060240091291761u, 405648192073033409u, 324518553658426727u,
65
519229685853482763u, 415383748682786211u, 332306998946228969u, 531691198313966350u,
66
425352958651173080u, 340282366920938464u, 544451787073501542u, 435561429658801234u,
67
348449143727040987u, 557518629963265579u, 446014903970612463u, 356811923176489971u,
68
570899077082383953u, 456719261665907162u, 365375409332725730u
69
};
70
inline constexpr int __FLOAT_POW5_BITCOUNT = 61;
71
inline constexpr uint64_t __FLOAT_POW5_SPLIT[47] = {
72
1152921504606846976u, 1441151880758558720u, 1801439850948198400u, 2251799813685248000u,
73
1407374883553280000u, 1759218604441600000u, 2199023255552000000u, 1374389534720000000u,
74
1717986918400000000u, 2147483648000000000u, 1342177280000000000u, 1677721600000000000u,
75
2097152000000000000u, 1310720000000000000u, 1638400000000000000u, 2048000000000000000u,
76
1280000000000000000u, 1600000000000000000u, 2000000000000000000u, 1250000000000000000u,
77
1562500000000000000u, 1953125000000000000u, 1220703125000000000u, 1525878906250000000u,
78
1907348632812500000u, 1192092895507812500u, 1490116119384765625u, 1862645149230957031u,
79
1164153218269348144u, 1455191522836685180u, 1818989403545856475u, 2273736754432320594u,
80
1421085471520200371u, 1776356839400250464u, 2220446049250313080u, 1387778780781445675u,
81
1734723475976807094u, 2168404344971008868u, 1355252715606880542u, 1694065894508600678u,
82
2117582368135750847u, 1323488980084844279u, 1654361225106055349u, 2067951531382569187u,
83
1292469707114105741u, 1615587133892632177u, 2019483917365790221u
84
};
85
86
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __pow5Factor(uint32_t __value) {
87
uint32_t __count = 0;
88
for (;;) {
89
_LIBCPP_ASSERT_INTERNAL(__value != 0, "");
90
const uint32_t __q = __value / 5;
91
const uint32_t __r = __value % 5;
92
if (__r != 0) {
93
break;
94
}
95
__value = __q;
96
++__count;
97
}
98
return __count;
99
}
100
101
// Returns true if __value is divisible by 5^__p.
102
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __multipleOfPowerOf5(const uint32_t __value, const uint32_t __p) {
103
return __pow5Factor(__value) >= __p;
104
}
105
106
// Returns true if __value is divisible by 2^__p.
107
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __multipleOfPowerOf2(const uint32_t __value, const uint32_t __p) {
108
_LIBCPP_ASSERT_INTERNAL(__value != 0, "");
109
_LIBCPP_ASSERT_INTERNAL(__p < 32, "");
110
// __builtin_ctz doesn't appear to be faster here.
111
return (__value & ((1u << __p) - 1)) == 0;
112
}
113
114
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulShift(const uint32_t __m, const uint64_t __factor, const int32_t __shift) {
115
_LIBCPP_ASSERT_INTERNAL(__shift > 32, "");
116
117
// The casts here help MSVC to avoid calls to the __allmul library
118
// function.
119
const uint32_t __factorLo = static_cast<uint32_t>(__factor);
120
const uint32_t __factorHi = static_cast<uint32_t>(__factor >> 32);
121
const uint64_t __bits0 = static_cast<uint64_t>(__m) * __factorLo;
122
const uint64_t __bits1 = static_cast<uint64_t>(__m) * __factorHi;
123
124
#ifndef _LIBCPP_64_BIT
125
// On 32-bit platforms we can avoid a 64-bit shift-right since we only
126
// need the upper 32 bits of the result and the shift value is > 32.
127
const uint32_t __bits0Hi = static_cast<uint32_t>(__bits0 >> 32);
128
uint32_t __bits1Lo = static_cast<uint32_t>(__bits1);
129
uint32_t __bits1Hi = static_cast<uint32_t>(__bits1 >> 32);
130
__bits1Lo += __bits0Hi;
131
__bits1Hi += (__bits1Lo < __bits0Hi);
132
const int32_t __s = __shift - 32;
133
return (__bits1Hi << (32 - __s)) | (__bits1Lo >> __s);
134
#else // ^^^ 32-bit ^^^ / vvv 64-bit vvv
135
const uint64_t __sum = (__bits0 >> 32) + __bits1;
136
const uint64_t __shiftedSum = __sum >> (__shift - 32);
137
_LIBCPP_ASSERT_INTERNAL(__shiftedSum <= UINT32_MAX, "");
138
return static_cast<uint32_t>(__shiftedSum);
139
#endif // ^^^ 64-bit ^^^
140
}
141
142
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulPow5InvDivPow2(const uint32_t __m, const uint32_t __q, const int32_t __j) {
143
return __mulShift(__m, __FLOAT_POW5_INV_SPLIT[__q], __j);
144
}
145
146
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulPow5divPow2(const uint32_t __m, const uint32_t __i, const int32_t __j) {
147
return __mulShift(__m, __FLOAT_POW5_SPLIT[__i], __j);
148
}
149
150
// A floating decimal representing m * 10^e.
151
struct __floating_decimal_32 {
152
uint32_t __mantissa;
153
int32_t __exponent;
154
};
155
156
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline __floating_decimal_32 __f2d(const uint32_t __ieeeMantissa, const uint32_t __ieeeExponent) {
157
int32_t __e2;
158
uint32_t __m2;
159
if (__ieeeExponent == 0) {
160
// We subtract 2 so that the bounds computation has 2 additional bits.
161
__e2 = 1 - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS - 2;
162
__m2 = __ieeeMantissa;
163
} else {
164
__e2 = static_cast<int32_t>(__ieeeExponent) - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS - 2;
165
__m2 = (1u << __FLOAT_MANTISSA_BITS) | __ieeeMantissa;
166
}
167
const bool __even = (__m2 & 1) == 0;
168
const bool __acceptBounds = __even;
169
170
// Step 2: Determine the interval of valid decimal representations.
171
const uint32_t __mv = 4 * __m2;
172
const uint32_t __mp = 4 * __m2 + 2;
173
// Implicit bool -> int conversion. True is 1, false is 0.
174
const uint32_t __mmShift = __ieeeMantissa != 0 || __ieeeExponent <= 1;
175
const uint32_t __mm = 4 * __m2 - 1 - __mmShift;
176
177
// Step 3: Convert to a decimal power base using 64-bit arithmetic.
178
uint32_t __vr, __vp, __vm;
179
int32_t __e10;
180
bool __vmIsTrailingZeros = false;
181
bool __vrIsTrailingZeros = false;
182
uint8_t __lastRemovedDigit = 0;
183
if (__e2 >= 0) {
184
const uint32_t __q = __log10Pow2(__e2);
185
__e10 = static_cast<int32_t>(__q);
186
const int32_t __k = __FLOAT_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q)) - 1;
187
const int32_t __i = -__e2 + static_cast<int32_t>(__q) + __k;
188
__vr = __mulPow5InvDivPow2(__mv, __q, __i);
189
__vp = __mulPow5InvDivPow2(__mp, __q, __i);
190
__vm = __mulPow5InvDivPow2(__mm, __q, __i);
191
if (__q != 0 && (__vp - 1) / 10 <= __vm / 10) {
192
// We need to know one removed digit even if we are not going to loop below. We could use
193
// __q = X - 1 above, except that would require 33 bits for the result, and we've found that
194
// 32-bit arithmetic is faster even on 64-bit machines.
195
const int32_t __l = __FLOAT_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q - 1)) - 1;
196
__lastRemovedDigit = static_cast<uint8_t>(__mulPow5InvDivPow2(__mv, __q - 1,
197
-__e2 + static_cast<int32_t>(__q) - 1 + __l) % 10);
198
}
199
if (__q <= 9) {
200
// The largest power of 5 that fits in 24 bits is 5^10, but __q <= 9 seems to be safe as well.
201
// Only one of __mp, __mv, and __mm can be a multiple of 5, if any.
202
if (__mv % 5 == 0) {
203
__vrIsTrailingZeros = __multipleOfPowerOf5(__mv, __q);
204
} else if (__acceptBounds) {
205
__vmIsTrailingZeros = __multipleOfPowerOf5(__mm, __q);
206
} else {
207
__vp -= __multipleOfPowerOf5(__mp, __q);
208
}
209
}
210
} else {
211
const uint32_t __q = __log10Pow5(-__e2);
212
__e10 = static_cast<int32_t>(__q) + __e2;
213
const int32_t __i = -__e2 - static_cast<int32_t>(__q);
214
const int32_t __k = __pow5bits(__i) - __FLOAT_POW5_BITCOUNT;
215
int32_t __j = static_cast<int32_t>(__q) - __k;
216
__vr = __mulPow5divPow2(__mv, static_cast<uint32_t>(__i), __j);
217
__vp = __mulPow5divPow2(__mp, static_cast<uint32_t>(__i), __j);
218
__vm = __mulPow5divPow2(__mm, static_cast<uint32_t>(__i), __j);
219
if (__q != 0 && (__vp - 1) / 10 <= __vm / 10) {
220
__j = static_cast<int32_t>(__q) - 1 - (__pow5bits(__i + 1) - __FLOAT_POW5_BITCOUNT);
221
__lastRemovedDigit = static_cast<uint8_t>(__mulPow5divPow2(__mv, static_cast<uint32_t>(__i + 1), __j) % 10);
222
}
223
if (__q <= 1) {
224
// {__vr,__vp,__vm} is trailing zeros if {__mv,__mp,__mm} has at least __q trailing 0 bits.
225
// __mv = 4 * __m2, so it always has at least two trailing 0 bits.
226
__vrIsTrailingZeros = true;
227
if (__acceptBounds) {
228
// __mm = __mv - 1 - __mmShift, so it has 1 trailing 0 bit iff __mmShift == 1.
229
__vmIsTrailingZeros = __mmShift == 1;
230
} else {
231
// __mp = __mv + 2, so it always has at least one trailing 0 bit.
232
--__vp;
233
}
234
} else if (__q < 31) { // TRANSITION(ulfjack): Use a tighter bound here.
235
__vrIsTrailingZeros = __multipleOfPowerOf2(__mv, __q - 1);
236
}
237
}
238
239
// Step 4: Find the shortest decimal representation in the interval of valid representations.
240
int32_t __removed = 0;
241
uint32_t _Output;
242
if (__vmIsTrailingZeros || __vrIsTrailingZeros) {
243
// General case, which happens rarely (~4.0%).
244
while (__vp / 10 > __vm / 10) {
245
#ifdef __clang__ // TRANSITION, LLVM-23106
246
__vmIsTrailingZeros &= __vm - (__vm / 10) * 10 == 0;
247
#else
248
__vmIsTrailingZeros &= __vm % 10 == 0;
249
#endif
250
__vrIsTrailingZeros &= __lastRemovedDigit == 0;
251
__lastRemovedDigit = static_cast<uint8_t>(__vr % 10);
252
__vr /= 10;
253
__vp /= 10;
254
__vm /= 10;
255
++__removed;
256
}
257
if (__vmIsTrailingZeros) {
258
while (__vm % 10 == 0) {
259
__vrIsTrailingZeros &= __lastRemovedDigit == 0;
260
__lastRemovedDigit = static_cast<uint8_t>(__vr % 10);
261
__vr /= 10;
262
__vp /= 10;
263
__vm /= 10;
264
++__removed;
265
}
266
}
267
if (__vrIsTrailingZeros && __lastRemovedDigit == 5 && __vr % 2 == 0) {
268
// Round even if the exact number is .....50..0.
269
__lastRemovedDigit = 4;
270
}
271
// We need to take __vr + 1 if __vr is outside bounds or we need to round up.
272
_Output = __vr + ((__vr == __vm && (!__acceptBounds || !__vmIsTrailingZeros)) || __lastRemovedDigit >= 5);
273
} else {
274
// Specialized for the common case (~96.0%). Percentages below are relative to this.
275
// Loop iterations below (approximately):
276
// 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%
277
while (__vp / 10 > __vm / 10) {
278
__lastRemovedDigit = static_cast<uint8_t>(__vr % 10);
279
__vr /= 10;
280
__vp /= 10;
281
__vm /= 10;
282
++__removed;
283
}
284
// We need to take __vr + 1 if __vr is outside bounds or we need to round up.
285
_Output = __vr + (__vr == __vm || __lastRemovedDigit >= 5);
286
}
287
const int32_t __exp = __e10 + __removed;
288
289
__floating_decimal_32 __fd;
290
__fd.__exponent = __exp;
291
__fd.__mantissa = _Output;
292
return __fd;
293
}
294
295
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result _Large_integer_to_chars(char* const _First, char* const _Last,
296
const uint32_t _Mantissa2, const int32_t _Exponent2) {
297
298
// Print the integer _Mantissa2 * 2^_Exponent2 exactly.
299
300
// For nonzero integers, _Exponent2 >= -23. (The minimum value occurs when _Mantissa2 * 2^_Exponent2 is 1.
301
// In that case, _Mantissa2 is the implicit 1 bit followed by 23 zeros, so _Exponent2 is -23 to shift away
302
// the zeros.) The dense range of exactly representable integers has negative or zero exponents
303
// (as positive exponents make the range non-dense). For that dense range, Ryu will always be used:
304
// every digit is necessary to uniquely identify the value, so Ryu must print them all.
305
306
// Positive exponents are the non-dense range of exactly representable integers.
307
// This contains all of the values for which Ryu can't be used (and a few Ryu-friendly values).
308
309
// Performance note: Long division appears to be faster than losslessly widening float to double and calling
310
// __d2fixed_buffered_n(). If __f2fixed_buffered_n() is implemented, it might be faster than long division.
311
312
_LIBCPP_ASSERT_INTERNAL(_Exponent2 > 0, "");
313
_LIBCPP_ASSERT_INTERNAL(_Exponent2 <= 104, ""); // because __ieeeExponent <= 254
314
315
// Manually represent _Mantissa2 * 2^_Exponent2 as a large integer. _Mantissa2 is always 24 bits
316
// (due to the implicit bit), while _Exponent2 indicates a shift of at most 104 bits.
317
// 24 + 104 equals 128 equals 4 * 32, so we need exactly 4 32-bit elements.
318
// We use a little-endian representation, visualized like this:
319
320
// << left shift <<
321
// most significant
322
// _Data[3] _Data[2] _Data[1] _Data[0]
323
// least significant
324
// >> right shift >>
325
326
constexpr uint32_t _Data_size = 4;
327
uint32_t _Data[_Data_size]{};
328
329
// _Maxidx is the index of the most significant nonzero element.
330
uint32_t _Maxidx = ((24 + static_cast<uint32_t>(_Exponent2) + 31) / 32) - 1;
331
_LIBCPP_ASSERT_INTERNAL(_Maxidx < _Data_size, "");
332
333
const uint32_t _Bit_shift = static_cast<uint32_t>(_Exponent2) % 32;
334
if (_Bit_shift <= 8) { // _Mantissa2's 24 bits don't cross an element boundary
335
_Data[_Maxidx] = _Mantissa2 << _Bit_shift;
336
} else { // _Mantissa2's 24 bits cross an element boundary
337
_Data[_Maxidx - 1] = _Mantissa2 << _Bit_shift;
338
_Data[_Maxidx] = _Mantissa2 >> (32 - _Bit_shift);
339
}
340
341
// If Ryu hasn't determined the total output length, we need to buffer the digits generated from right to left
342
// by long division. The largest possible float is: 340'282346638'528859811'704183484'516925440
343
uint32_t _Blocks[4];
344
int32_t _Filled_blocks = 0;
345
// From left to right, we're going to print:
346
// _Data[0] will be [1, 10] digits.
347
// Then if _Filled_blocks > 0:
348
// _Blocks[_Filled_blocks - 1], ..., _Blocks[0] will be 0-filled 9-digit blocks.
349
350
if (_Maxidx != 0) { // If the integer is actually large, perform long division.
351
// Otherwise, skip to printing _Data[0].
352
for (;;) {
353
// Loop invariant: _Maxidx != 0 (i.e. the integer is actually large)
354
355
const uint32_t _Most_significant_elem = _Data[_Maxidx];
356
const uint32_t _Initial_remainder = _Most_significant_elem % 1000000000;
357
const uint32_t _Initial_quotient = _Most_significant_elem / 1000000000;
358
_Data[_Maxidx] = _Initial_quotient;
359
uint64_t _Remainder = _Initial_remainder;
360
361
// Process less significant elements.
362
uint32_t _Idx = _Maxidx;
363
do {
364
--_Idx; // Initially, _Remainder is at most 10^9 - 1.
365
366
// Now, _Remainder is at most (10^9 - 1) * 2^32 + 2^32 - 1, simplified to 10^9 * 2^32 - 1.
367
_Remainder = (_Remainder << 32) | _Data[_Idx];
368
369
// floor((10^9 * 2^32 - 1) / 10^9) == 2^32 - 1, so uint32_t _Quotient is lossless.
370
const uint32_t _Quotient = static_cast<uint32_t>(__div1e9(_Remainder));
371
372
// _Remainder is at most 10^9 - 1 again.
373
// For uint32_t truncation, see the __mod1e9() comment in d2s_intrinsics.h.
374
_Remainder = static_cast<uint32_t>(_Remainder) - 1000000000u * _Quotient;
375
376
_Data[_Idx] = _Quotient;
377
} while (_Idx != 0);
378
379
// Store a 0-filled 9-digit block.
380
_Blocks[_Filled_blocks++] = static_cast<uint32_t>(_Remainder);
381
382
if (_Initial_quotient == 0) { // Is the large integer shrinking?
383
--_Maxidx; // log2(10^9) is 29.9, so we can't shrink by more than one element.
384
if (_Maxidx == 0) {
385
break; // We've finished long division. Now we need to print _Data[0].
386
}
387
}
388
}
389
}
390
391
_LIBCPP_ASSERT_INTERNAL(_Data[0] != 0, "");
392
for (uint32_t _Idx = 1; _Idx < _Data_size; ++_Idx) {
393
_LIBCPP_ASSERT_INTERNAL(_Data[_Idx] == 0, "");
394
}
395
396
const uint32_t _Data_olength = _Data[0] >= 1000000000 ? 10 : __decimalLength9(_Data[0]);
397
const uint32_t _Total_fixed_length = _Data_olength + 9 * _Filled_blocks;
398
399
if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) {
400
return { _Last, errc::value_too_large };
401
}
402
403
char* _Result = _First;
404
405
// Print _Data[0]. While it's up to 10 digits,
406
// which is more than Ryu generates, the code below can handle this.
407
__append_n_digits(_Data_olength, _Data[0], _Result);
408
_Result += _Data_olength;
409
410
// Print 0-filled 9-digit blocks.
411
for (int32_t _Idx = _Filled_blocks - 1; _Idx >= 0; --_Idx) {
412
__append_nine_digits(_Blocks[_Idx], _Result);
413
_Result += 9;
414
}
415
416
return { _Result, errc{} };
417
}
418
419
[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result __to_chars(char* const _First, char* const _Last, const __floating_decimal_32 __v,
420
chars_format _Fmt, const uint32_t __ieeeMantissa, const uint32_t __ieeeExponent) {
421
// Step 5: Print the decimal representation.
422
uint32_t _Output = __v.__mantissa;
423
int32_t _Ryu_exponent = __v.__exponent;
424
const uint32_t __olength = __decimalLength9(_Output);
425
int32_t _Scientific_exponent = _Ryu_exponent + static_cast<int32_t>(__olength) - 1;
426
427
if (_Fmt == chars_format{}) {
428
int32_t _Lower;
429
int32_t _Upper;
430
431
if (__olength == 1) {
432
// Value | Fixed | Scientific
433
// 1e-3 | "0.001" | "1e-03"
434
// 1e4 | "10000" | "1e+04"
435
_Lower = -3;
436
_Upper = 4;
437
} else {
438
// Value | Fixed | Scientific
439
// 1234e-7 | "0.0001234" | "1.234e-04"
440
// 1234e5 | "123400000" | "1.234e+08"
441
_Lower = -static_cast<int32_t>(__olength + 3);
442
_Upper = 5;
443
}
444
445
if (_Lower <= _Ryu_exponent && _Ryu_exponent <= _Upper) {
446
_Fmt = chars_format::fixed;
447
} else {
448
_Fmt = chars_format::scientific;
449
}
450
} else if (_Fmt == chars_format::general) {
451
// C11 7.21.6.1 "The fprintf function"/8:
452
// "Let P equal [...] 6 if the precision is omitted [...].
453
// Then, if a conversion with style E would have an exponent of X:
454
// - if P > X >= -4, the conversion is with style f [...].
455
// - otherwise, the conversion is with style e [...]."
456
if (-4 <= _Scientific_exponent && _Scientific_exponent < 6) {
457
_Fmt = chars_format::fixed;
458
} else {
459
_Fmt = chars_format::scientific;
460
}
461
}
462
463
if (_Fmt == chars_format::fixed) {
464
// Example: _Output == 1729, __olength == 4
465
466
// _Ryu_exponent | Printed | _Whole_digits | _Total_fixed_length | Notes
467
// --------------|----------|---------------|----------------------|---------------------------------------
468
// 2 | 172900 | 6 | _Whole_digits | Ryu can't be used for printing
469
// 1 | 17290 | 5 | (sometimes adjusted) | when the trimmed digits are nonzero.
470
// --------------|----------|---------------|----------------------|---------------------------------------
471
// 0 | 1729 | 4 | _Whole_digits | Unified length cases.
472
// --------------|----------|---------------|----------------------|---------------------------------------
473
// -1 | 172.9 | 3 | __olength + 1 | This case can't happen for
474
// -2 | 17.29 | 2 | | __olength == 1, but no additional
475
// -3 | 1.729 | 1 | | code is needed to avoid it.
476
// --------------|----------|---------------|----------------------|---------------------------------------
477
// -4 | 0.1729 | 0 | 2 - _Ryu_exponent | C11 7.21.6.1 "The fprintf function"/8:
478
// -5 | 0.01729 | -1 | | "If a decimal-point character appears,
479
// -6 | 0.001729 | -2 | | at least one digit appears before it."
480
481
const int32_t _Whole_digits = static_cast<int32_t>(__olength) + _Ryu_exponent;
482
483
uint32_t _Total_fixed_length;
484
if (_Ryu_exponent >= 0) { // cases "172900" and "1729"
485
_Total_fixed_length = static_cast<uint32_t>(_Whole_digits);
486
if (_Output == 1) {
487
// Rounding can affect the number of digits.
488
// For example, 1e11f is exactly "99999997952" which is 11 digits instead of 12.
489
// We can use a lookup table to detect this and adjust the total length.
490
static constexpr uint8_t _Adjustment[39] = {
491
0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0,1,0,1,1,0,1,1,1 };
492
_Total_fixed_length -= _Adjustment[_Ryu_exponent];
493
// _Whole_digits doesn't need to be adjusted because these cases won't refer to it later.
494
}
495
} else if (_Whole_digits > 0) { // case "17.29"
496
_Total_fixed_length = __olength + 1;
497
} else { // case "0.001729"
498
_Total_fixed_length = static_cast<uint32_t>(2 - _Ryu_exponent);
499
}
500
501
if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) {
502
return { _Last, errc::value_too_large };
503
}
504
505
char* _Mid;
506
if (_Ryu_exponent > 0) { // case "172900"
507
bool _Can_use_ryu;
508
509
if (_Ryu_exponent > 10) { // 10^10 is the largest power of 10 that's exactly representable as a float.
510
_Can_use_ryu = false;
511
} else {
512
// Ryu generated X: __v.__mantissa * 10^_Ryu_exponent
513
// __v.__mantissa == 2^_Trailing_zero_bits * (__v.__mantissa >> _Trailing_zero_bits)
514
// 10^_Ryu_exponent == 2^_Ryu_exponent * 5^_Ryu_exponent
515
516
// _Trailing_zero_bits is [0, 29] (aside: because 2^29 is the largest power of 2
517
// with 9 decimal digits, which is float's round-trip limit.)
518
// _Ryu_exponent is [1, 10].
519
// Normalization adds [2, 23] (aside: at least 2 because the pre-normalized mantissa is at least 5).
520
// This adds up to [3, 62], which is well below float's maximum binary exponent 127.
521
522
// Therefore, we just need to consider (__v.__mantissa >> _Trailing_zero_bits) * 5^_Ryu_exponent.
523
524
// If that product would exceed 24 bits, then X can't be exactly represented as a float.
525
// (That's not a problem for round-tripping, because X is close enough to the original float,
526
// but X isn't mathematically equal to the original float.) This requires a high-precision fallback.
527
528
// If the product is 24 bits or smaller, then X can be exactly represented as a float (and we don't
529
// need to re-synthesize it; the original float must have been X, because Ryu wouldn't produce the
530
// same output for two different floats X and Y). This allows Ryu's output to be used (zero-filled).
531
532
// (2^24 - 1) / 5^0 (for indexing), (2^24 - 1) / 5^1, ..., (2^24 - 1) / 5^10
533
static constexpr uint32_t _Max_shifted_mantissa[11] = {
534
16777215, 3355443, 671088, 134217, 26843, 5368, 1073, 214, 42, 8, 1 };
535
536
unsigned long _Trailing_zero_bits;
537
(void) _BitScanForward(&_Trailing_zero_bits, __v.__mantissa); // __v.__mantissa is guaranteed nonzero
538
const uint32_t _Shifted_mantissa = __v.__mantissa >> _Trailing_zero_bits;
539
_Can_use_ryu = _Shifted_mantissa <= _Max_shifted_mantissa[_Ryu_exponent];
540
}
541
542
if (!_Can_use_ryu) {
543
const uint32_t _Mantissa2 = __ieeeMantissa | (1u << __FLOAT_MANTISSA_BITS); // restore implicit bit
544
const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent)
545
- __FLOAT_BIAS - __FLOAT_MANTISSA_BITS; // bias and normalization
546
547
// Performance note: We've already called Ryu, so this will redundantly perform buffering and bounds checking.
548
return _Large_integer_to_chars(_First, _Last, _Mantissa2, _Exponent2);
549
}
550
551
// _Can_use_ryu
552
// Print the decimal digits, left-aligned within [_First, _First + _Total_fixed_length).
553
_Mid = _First + __olength;
554
} else { // cases "1729", "17.29", and "0.001729"
555
// Print the decimal digits, right-aligned within [_First, _First + _Total_fixed_length).
556
_Mid = _First + _Total_fixed_length;
557
}
558
559
while (_Output >= 10000) {
560
#ifdef __clang__ // TRANSITION, LLVM-38217
561
const uint32_t __c = _Output - 10000 * (_Output / 10000);
562
#else
563
const uint32_t __c = _Output % 10000;
564
#endif
565
_Output /= 10000;
566
const uint32_t __c0 = (__c % 100) << 1;
567
const uint32_t __c1 = (__c / 100) << 1;
568
std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2);
569
std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2);
570
}
571
if (_Output >= 100) {
572
const uint32_t __c = (_Output % 100) << 1;
573
_Output /= 100;
574
std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);
575
}
576
if (_Output >= 10) {
577
const uint32_t __c = _Output << 1;
578
std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);
579
} else {
580
*--_Mid = static_cast<char>('0' + _Output);
581
}
582
583
if (_Ryu_exponent > 0) { // case "172900" with _Can_use_ryu
584
// Performance note: it might be more efficient to do this immediately after setting _Mid.
585
std::memset(_First + __olength, '0', static_cast<size_t>(_Ryu_exponent));
586
} else if (_Ryu_exponent == 0) { // case "1729"
587
// Done!
588
} else if (_Whole_digits > 0) { // case "17.29"
589
// Performance note: moving digits might not be optimal.
590
std::memmove(_First, _First + 1, static_cast<size_t>(_Whole_digits));
591
_First[_Whole_digits] = '.';
592
} else { // case "0.001729"
593
// Performance note: a larger memset() followed by overwriting '.' might be more efficient.
594
_First[0] = '0';
595
_First[1] = '.';
596
std::memset(_First + 2, '0', static_cast<size_t>(-_Whole_digits));
597
}
598
599
return { _First + _Total_fixed_length, errc{} };
600
}
601
602
const uint32_t _Total_scientific_length =
603
__olength + (__olength > 1) + 4; // digits + possible decimal point + scientific exponent
604
if (_Last - _First < static_cast<ptrdiff_t>(_Total_scientific_length)) {
605
return { _Last, errc::value_too_large };
606
}
607
char* const __result = _First;
608
609
// Print the decimal digits.
610
uint32_t __i = 0;
611
while (_Output >= 10000) {
612
#ifdef __clang__ // TRANSITION, LLVM-38217
613
const uint32_t __c = _Output - 10000 * (_Output / 10000);
614
#else
615
const uint32_t __c = _Output % 10000;
616
#endif
617
_Output /= 10000;
618
const uint32_t __c0 = (__c % 100) << 1;
619
const uint32_t __c1 = (__c / 100) << 1;
620
std::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2);
621
std::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2);
622
__i += 4;
623
}
624
if (_Output >= 100) {
625
const uint32_t __c = (_Output % 100) << 1;
626
_Output /= 100;
627
std::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c, 2);
628
__i += 2;
629
}
630
if (_Output >= 10) {
631
const uint32_t __c = _Output << 1;
632
// We can't use memcpy here: the decimal dot goes between these two digits.
633
__result[2] = __DIGIT_TABLE[__c + 1];
634
__result[0] = __DIGIT_TABLE[__c];
635
} else {
636
__result[0] = static_cast<char>('0' + _Output);
637
}
638
639
// Print decimal point if needed.
640
uint32_t __index;
641
if (__olength > 1) {
642
__result[1] = '.';
643
__index = __olength + 1;
644
} else {
645
__index = 1;
646
}
647
648
// Print the exponent.
649
__result[__index++] = 'e';
650
if (_Scientific_exponent < 0) {
651
__result[__index++] = '-';
652
_Scientific_exponent = -_Scientific_exponent;
653
} else {
654
__result[__index++] = '+';
655
}
656
657
std::memcpy(__result + __index, __DIGIT_TABLE + 2 * _Scientific_exponent, 2);
658
__index += 2;
659
660
return { _First + _Total_scientific_length, errc{} };
661
}
662
663
[[nodiscard]] to_chars_result __f2s_buffered_n(char* const _First, char* const _Last, const float __f,
664
const chars_format _Fmt) {
665
666
// Step 1: Decode the floating-point number, and unify normalized and subnormal cases.
667
const uint32_t __bits = __float_to_bits(__f);
668
669
// Case distinction; exit early for the easy cases.
670
if (__bits == 0) {
671
if (_Fmt == chars_format::scientific) {
672
if (_Last - _First < 5) {
673
return { _Last, errc::value_too_large };
674
}
675
676
std::memcpy(_First, "0e+00", 5);
677
678
return { _First + 5, errc{} };
679
}
680
681
// Print "0" for chars_format::fixed, chars_format::general, and chars_format{}.
682
if (_First == _Last) {
683
return { _Last, errc::value_too_large };
684
}
685
686
*_First = '0';
687
688
return { _First + 1, errc{} };
689
}
690
691
// Decode __bits into mantissa and exponent.
692
const uint32_t __ieeeMantissa = __bits & ((1u << __FLOAT_MANTISSA_BITS) - 1);
693
const uint32_t __ieeeExponent = __bits >> __FLOAT_MANTISSA_BITS;
694
695
// When _Fmt == chars_format::fixed and the floating-point number is a large integer,
696
// it's faster to skip Ryu and immediately print the integer exactly.
697
if (_Fmt == chars_format::fixed) {
698
const uint32_t _Mantissa2 = __ieeeMantissa | (1u << __FLOAT_MANTISSA_BITS); // restore implicit bit
699
const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent)
700
- __FLOAT_BIAS - __FLOAT_MANTISSA_BITS; // bias and normalization
701
702
// Normal values are equal to _Mantissa2 * 2^_Exponent2.
703
// (Subnormals are different, but they'll be rejected by the _Exponent2 test here, so they can be ignored.)
704
705
if (_Exponent2 > 0) {
706
return _Large_integer_to_chars(_First, _Last, _Mantissa2, _Exponent2);
707
}
708
}
709
710
const __floating_decimal_32 __v = __f2d(__ieeeMantissa, __ieeeExponent);
711
return __to_chars(_First, _Last, __v, _Fmt, __ieeeMantissa, __ieeeExponent);
712
}
713
714
_LIBCPP_END_NAMESPACE_STD
715
716
// clang-format on
717
718