Path: blob/main/contrib/llvm-project/libcxx/src/ryu/f2s.cpp
35231 views
//===----------------------------------------------------------------------===//1//2// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.3// See https://llvm.org/LICENSE.txt for license information.4// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception5//6//===----------------------------------------------------------------------===//78// Copyright (c) Microsoft Corporation.9// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception1011// Copyright 2018 Ulf Adams12// Copyright (c) Microsoft Corporation. All rights reserved.1314// Boost Software License - Version 1.0 - August 17th, 20031516// Permission is hereby granted, free of charge, to any person or organization17// obtaining a copy of the software and accompanying documentation covered by18// this license (the "Software") to use, reproduce, display, distribute,19// execute, and transmit the Software, and to prepare derivative works of the20// Software, and to permit third-parties to whom the Software is furnished to21// do so, all subject to the following:2223// The copyright notices in the Software and this entire statement, including24// the above license grant, this restriction and the following disclaimer,25// must be included in all copies of the Software, in whole or in part, and26// all derivative works of the Software, unless such copies or derivative27// works are solely in the form of machine-executable object code generated by28// a source language processor.2930// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR31// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,32// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT33// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE34// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,35// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER36// DEALINGS IN THE SOFTWARE.3738// Avoid formatting to keep the changes with the original code minimal.39// clang-format off4041#include <__assert>42#include <__config>43#include <charconv>4445#include "include/ryu/common.h"46#include "include/ryu/d2fixed.h"47#include "include/ryu/d2s_intrinsics.h"48#include "include/ryu/digit_table.h"49#include "include/ryu/f2s.h"50#include "include/ryu/ryu.h"5152_LIBCPP_BEGIN_NAMESPACE_STD5354inline constexpr int __FLOAT_MANTISSA_BITS = 23;55inline constexpr int __FLOAT_EXPONENT_BITS = 8;56inline constexpr int __FLOAT_BIAS = 127;5758inline constexpr int __FLOAT_POW5_INV_BITCOUNT = 59;59inline constexpr uint64_t __FLOAT_POW5_INV_SPLIT[31] = {60576460752303423489u, 461168601842738791u, 368934881474191033u, 295147905179352826u,61472236648286964522u, 377789318629571618u, 302231454903657294u, 483570327845851670u,62386856262276681336u, 309485009821345069u, 495176015714152110u, 396140812571321688u,63316912650057057351u, 507060240091291761u, 405648192073033409u, 324518553658426727u,64519229685853482763u, 415383748682786211u, 332306998946228969u, 531691198313966350u,65425352958651173080u, 340282366920938464u, 544451787073501542u, 435561429658801234u,66348449143727040987u, 557518629963265579u, 446014903970612463u, 356811923176489971u,67570899077082383953u, 456719261665907162u, 365375409332725730u68};69inline constexpr int __FLOAT_POW5_BITCOUNT = 61;70inline constexpr uint64_t __FLOAT_POW5_SPLIT[47] = {711152921504606846976u, 1441151880758558720u, 1801439850948198400u, 2251799813685248000u,721407374883553280000u, 1759218604441600000u, 2199023255552000000u, 1374389534720000000u,731717986918400000000u, 2147483648000000000u, 1342177280000000000u, 1677721600000000000u,742097152000000000000u, 1310720000000000000u, 1638400000000000000u, 2048000000000000000u,751280000000000000000u, 1600000000000000000u, 2000000000000000000u, 1250000000000000000u,761562500000000000000u, 1953125000000000000u, 1220703125000000000u, 1525878906250000000u,771907348632812500000u, 1192092895507812500u, 1490116119384765625u, 1862645149230957031u,781164153218269348144u, 1455191522836685180u, 1818989403545856475u, 2273736754432320594u,791421085471520200371u, 1776356839400250464u, 2220446049250313080u, 1387778780781445675u,801734723475976807094u, 2168404344971008868u, 1355252715606880542u, 1694065894508600678u,812117582368135750847u, 1323488980084844279u, 1654361225106055349u, 2067951531382569187u,821292469707114105741u, 1615587133892632177u, 2019483917365790221u83};8485[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __pow5Factor(uint32_t __value) {86uint32_t __count = 0;87for (;;) {88_LIBCPP_ASSERT_INTERNAL(__value != 0, "");89const uint32_t __q = __value / 5;90const uint32_t __r = __value % 5;91if (__r != 0) {92break;93}94__value = __q;95++__count;96}97return __count;98}99100// Returns true if __value is divisible by 5^__p.101[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __multipleOfPowerOf5(const uint32_t __value, const uint32_t __p) {102return __pow5Factor(__value) >= __p;103}104105// Returns true if __value is divisible by 2^__p.106[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline bool __multipleOfPowerOf2(const uint32_t __value, const uint32_t __p) {107_LIBCPP_ASSERT_INTERNAL(__value != 0, "");108_LIBCPP_ASSERT_INTERNAL(__p < 32, "");109// __builtin_ctz doesn't appear to be faster here.110return (__value & ((1u << __p) - 1)) == 0;111}112113[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulShift(const uint32_t __m, const uint64_t __factor, const int32_t __shift) {114_LIBCPP_ASSERT_INTERNAL(__shift > 32, "");115116// The casts here help MSVC to avoid calls to the __allmul library117// function.118const uint32_t __factorLo = static_cast<uint32_t>(__factor);119const uint32_t __factorHi = static_cast<uint32_t>(__factor >> 32);120const uint64_t __bits0 = static_cast<uint64_t>(__m) * __factorLo;121const uint64_t __bits1 = static_cast<uint64_t>(__m) * __factorHi;122123#ifndef _LIBCPP_64_BIT124// On 32-bit platforms we can avoid a 64-bit shift-right since we only125// need the upper 32 bits of the result and the shift value is > 32.126const uint32_t __bits0Hi = static_cast<uint32_t>(__bits0 >> 32);127uint32_t __bits1Lo = static_cast<uint32_t>(__bits1);128uint32_t __bits1Hi = static_cast<uint32_t>(__bits1 >> 32);129__bits1Lo += __bits0Hi;130__bits1Hi += (__bits1Lo < __bits0Hi);131const int32_t __s = __shift - 32;132return (__bits1Hi << (32 - __s)) | (__bits1Lo >> __s);133#else // ^^^ 32-bit ^^^ / vvv 64-bit vvv134const uint64_t __sum = (__bits0 >> 32) + __bits1;135const uint64_t __shiftedSum = __sum >> (__shift - 32);136_LIBCPP_ASSERT_INTERNAL(__shiftedSum <= UINT32_MAX, "");137return static_cast<uint32_t>(__shiftedSum);138#endif // ^^^ 64-bit ^^^139}140141[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulPow5InvDivPow2(const uint32_t __m, const uint32_t __q, const int32_t __j) {142return __mulShift(__m, __FLOAT_POW5_INV_SPLIT[__q], __j);143}144145[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline uint32_t __mulPow5divPow2(const uint32_t __m, const uint32_t __i, const int32_t __j) {146return __mulShift(__m, __FLOAT_POW5_SPLIT[__i], __j);147}148149// A floating decimal representing m * 10^e.150struct __floating_decimal_32 {151uint32_t __mantissa;152int32_t __exponent;153};154155[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline __floating_decimal_32 __f2d(const uint32_t __ieeeMantissa, const uint32_t __ieeeExponent) {156int32_t __e2;157uint32_t __m2;158if (__ieeeExponent == 0) {159// We subtract 2 so that the bounds computation has 2 additional bits.160__e2 = 1 - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS - 2;161__m2 = __ieeeMantissa;162} else {163__e2 = static_cast<int32_t>(__ieeeExponent) - __FLOAT_BIAS - __FLOAT_MANTISSA_BITS - 2;164__m2 = (1u << __FLOAT_MANTISSA_BITS) | __ieeeMantissa;165}166const bool __even = (__m2 & 1) == 0;167const bool __acceptBounds = __even;168169// Step 2: Determine the interval of valid decimal representations.170const uint32_t __mv = 4 * __m2;171const uint32_t __mp = 4 * __m2 + 2;172// Implicit bool -> int conversion. True is 1, false is 0.173const uint32_t __mmShift = __ieeeMantissa != 0 || __ieeeExponent <= 1;174const uint32_t __mm = 4 * __m2 - 1 - __mmShift;175176// Step 3: Convert to a decimal power base using 64-bit arithmetic.177uint32_t __vr, __vp, __vm;178int32_t __e10;179bool __vmIsTrailingZeros = false;180bool __vrIsTrailingZeros = false;181uint8_t __lastRemovedDigit = 0;182if (__e2 >= 0) {183const uint32_t __q = __log10Pow2(__e2);184__e10 = static_cast<int32_t>(__q);185const int32_t __k = __FLOAT_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q)) - 1;186const int32_t __i = -__e2 + static_cast<int32_t>(__q) + __k;187__vr = __mulPow5InvDivPow2(__mv, __q, __i);188__vp = __mulPow5InvDivPow2(__mp, __q, __i);189__vm = __mulPow5InvDivPow2(__mm, __q, __i);190if (__q != 0 && (__vp - 1) / 10 <= __vm / 10) {191// We need to know one removed digit even if we are not going to loop below. We could use192// __q = X - 1 above, except that would require 33 bits for the result, and we've found that193// 32-bit arithmetic is faster even on 64-bit machines.194const int32_t __l = __FLOAT_POW5_INV_BITCOUNT + __pow5bits(static_cast<int32_t>(__q - 1)) - 1;195__lastRemovedDigit = static_cast<uint8_t>(__mulPow5InvDivPow2(__mv, __q - 1,196-__e2 + static_cast<int32_t>(__q) - 1 + __l) % 10);197}198if (__q <= 9) {199// The largest power of 5 that fits in 24 bits is 5^10, but __q <= 9 seems to be safe as well.200// Only one of __mp, __mv, and __mm can be a multiple of 5, if any.201if (__mv % 5 == 0) {202__vrIsTrailingZeros = __multipleOfPowerOf5(__mv, __q);203} else if (__acceptBounds) {204__vmIsTrailingZeros = __multipleOfPowerOf5(__mm, __q);205} else {206__vp -= __multipleOfPowerOf5(__mp, __q);207}208}209} else {210const uint32_t __q = __log10Pow5(-__e2);211__e10 = static_cast<int32_t>(__q) + __e2;212const int32_t __i = -__e2 - static_cast<int32_t>(__q);213const int32_t __k = __pow5bits(__i) - __FLOAT_POW5_BITCOUNT;214int32_t __j = static_cast<int32_t>(__q) - __k;215__vr = __mulPow5divPow2(__mv, static_cast<uint32_t>(__i), __j);216__vp = __mulPow5divPow2(__mp, static_cast<uint32_t>(__i), __j);217__vm = __mulPow5divPow2(__mm, static_cast<uint32_t>(__i), __j);218if (__q != 0 && (__vp - 1) / 10 <= __vm / 10) {219__j = static_cast<int32_t>(__q) - 1 - (__pow5bits(__i + 1) - __FLOAT_POW5_BITCOUNT);220__lastRemovedDigit = static_cast<uint8_t>(__mulPow5divPow2(__mv, static_cast<uint32_t>(__i + 1), __j) % 10);221}222if (__q <= 1) {223// {__vr,__vp,__vm} is trailing zeros if {__mv,__mp,__mm} has at least __q trailing 0 bits.224// __mv = 4 * __m2, so it always has at least two trailing 0 bits.225__vrIsTrailingZeros = true;226if (__acceptBounds) {227// __mm = __mv - 1 - __mmShift, so it has 1 trailing 0 bit iff __mmShift == 1.228__vmIsTrailingZeros = __mmShift == 1;229} else {230// __mp = __mv + 2, so it always has at least one trailing 0 bit.231--__vp;232}233} else if (__q < 31) { // TRANSITION(ulfjack): Use a tighter bound here.234__vrIsTrailingZeros = __multipleOfPowerOf2(__mv, __q - 1);235}236}237238// Step 4: Find the shortest decimal representation in the interval of valid representations.239int32_t __removed = 0;240uint32_t _Output;241if (__vmIsTrailingZeros || __vrIsTrailingZeros) {242// General case, which happens rarely (~4.0%).243while (__vp / 10 > __vm / 10) {244#ifdef __clang__ // TRANSITION, LLVM-23106245__vmIsTrailingZeros &= __vm - (__vm / 10) * 10 == 0;246#else247__vmIsTrailingZeros &= __vm % 10 == 0;248#endif249__vrIsTrailingZeros &= __lastRemovedDigit == 0;250__lastRemovedDigit = static_cast<uint8_t>(__vr % 10);251__vr /= 10;252__vp /= 10;253__vm /= 10;254++__removed;255}256if (__vmIsTrailingZeros) {257while (__vm % 10 == 0) {258__vrIsTrailingZeros &= __lastRemovedDigit == 0;259__lastRemovedDigit = static_cast<uint8_t>(__vr % 10);260__vr /= 10;261__vp /= 10;262__vm /= 10;263++__removed;264}265}266if (__vrIsTrailingZeros && __lastRemovedDigit == 5 && __vr % 2 == 0) {267// Round even if the exact number is .....50..0.268__lastRemovedDigit = 4;269}270// We need to take __vr + 1 if __vr is outside bounds or we need to round up.271_Output = __vr + ((__vr == __vm && (!__acceptBounds || !__vmIsTrailingZeros)) || __lastRemovedDigit >= 5);272} else {273// Specialized for the common case (~96.0%). Percentages below are relative to this.274// Loop iterations below (approximately):275// 0: 13.6%, 1: 70.7%, 2: 14.1%, 3: 1.39%, 4: 0.14%, 5+: 0.01%276while (__vp / 10 > __vm / 10) {277__lastRemovedDigit = static_cast<uint8_t>(__vr % 10);278__vr /= 10;279__vp /= 10;280__vm /= 10;281++__removed;282}283// We need to take __vr + 1 if __vr is outside bounds or we need to round up.284_Output = __vr + (__vr == __vm || __lastRemovedDigit >= 5);285}286const int32_t __exp = __e10 + __removed;287288__floating_decimal_32 __fd;289__fd.__exponent = __exp;290__fd.__mantissa = _Output;291return __fd;292}293294[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result _Large_integer_to_chars(char* const _First, char* const _Last,295const uint32_t _Mantissa2, const int32_t _Exponent2) {296297// Print the integer _Mantissa2 * 2^_Exponent2 exactly.298299// For nonzero integers, _Exponent2 >= -23. (The minimum value occurs when _Mantissa2 * 2^_Exponent2 is 1.300// In that case, _Mantissa2 is the implicit 1 bit followed by 23 zeros, so _Exponent2 is -23 to shift away301// the zeros.) The dense range of exactly representable integers has negative or zero exponents302// (as positive exponents make the range non-dense). For that dense range, Ryu will always be used:303// every digit is necessary to uniquely identify the value, so Ryu must print them all.304305// Positive exponents are the non-dense range of exactly representable integers.306// This contains all of the values for which Ryu can't be used (and a few Ryu-friendly values).307308// Performance note: Long division appears to be faster than losslessly widening float to double and calling309// __d2fixed_buffered_n(). If __f2fixed_buffered_n() is implemented, it might be faster than long division.310311_LIBCPP_ASSERT_INTERNAL(_Exponent2 > 0, "");312_LIBCPP_ASSERT_INTERNAL(_Exponent2 <= 104, ""); // because __ieeeExponent <= 254313314// Manually represent _Mantissa2 * 2^_Exponent2 as a large integer. _Mantissa2 is always 24 bits315// (due to the implicit bit), while _Exponent2 indicates a shift of at most 104 bits.316// 24 + 104 equals 128 equals 4 * 32, so we need exactly 4 32-bit elements.317// We use a little-endian representation, visualized like this:318319// << left shift <<320// most significant321// _Data[3] _Data[2] _Data[1] _Data[0]322// least significant323// >> right shift >>324325constexpr uint32_t _Data_size = 4;326uint32_t _Data[_Data_size]{};327328// _Maxidx is the index of the most significant nonzero element.329uint32_t _Maxidx = ((24 + static_cast<uint32_t>(_Exponent2) + 31) / 32) - 1;330_LIBCPP_ASSERT_INTERNAL(_Maxidx < _Data_size, "");331332const uint32_t _Bit_shift = static_cast<uint32_t>(_Exponent2) % 32;333if (_Bit_shift <= 8) { // _Mantissa2's 24 bits don't cross an element boundary334_Data[_Maxidx] = _Mantissa2 << _Bit_shift;335} else { // _Mantissa2's 24 bits cross an element boundary336_Data[_Maxidx - 1] = _Mantissa2 << _Bit_shift;337_Data[_Maxidx] = _Mantissa2 >> (32 - _Bit_shift);338}339340// If Ryu hasn't determined the total output length, we need to buffer the digits generated from right to left341// by long division. The largest possible float is: 340'282346638'528859811'704183484'516925440342uint32_t _Blocks[4];343int32_t _Filled_blocks = 0;344// From left to right, we're going to print:345// _Data[0] will be [1, 10] digits.346// Then if _Filled_blocks > 0:347// _Blocks[_Filled_blocks - 1], ..., _Blocks[0] will be 0-filled 9-digit blocks.348349if (_Maxidx != 0) { // If the integer is actually large, perform long division.350// Otherwise, skip to printing _Data[0].351for (;;) {352// Loop invariant: _Maxidx != 0 (i.e. the integer is actually large)353354const uint32_t _Most_significant_elem = _Data[_Maxidx];355const uint32_t _Initial_remainder = _Most_significant_elem % 1000000000;356const uint32_t _Initial_quotient = _Most_significant_elem / 1000000000;357_Data[_Maxidx] = _Initial_quotient;358uint64_t _Remainder = _Initial_remainder;359360// Process less significant elements.361uint32_t _Idx = _Maxidx;362do {363--_Idx; // Initially, _Remainder is at most 10^9 - 1.364365// Now, _Remainder is at most (10^9 - 1) * 2^32 + 2^32 - 1, simplified to 10^9 * 2^32 - 1.366_Remainder = (_Remainder << 32) | _Data[_Idx];367368// floor((10^9 * 2^32 - 1) / 10^9) == 2^32 - 1, so uint32_t _Quotient is lossless.369const uint32_t _Quotient = static_cast<uint32_t>(__div1e9(_Remainder));370371// _Remainder is at most 10^9 - 1 again.372// For uint32_t truncation, see the __mod1e9() comment in d2s_intrinsics.h.373_Remainder = static_cast<uint32_t>(_Remainder) - 1000000000u * _Quotient;374375_Data[_Idx] = _Quotient;376} while (_Idx != 0);377378// Store a 0-filled 9-digit block.379_Blocks[_Filled_blocks++] = static_cast<uint32_t>(_Remainder);380381if (_Initial_quotient == 0) { // Is the large integer shrinking?382--_Maxidx; // log2(10^9) is 29.9, so we can't shrink by more than one element.383if (_Maxidx == 0) {384break; // We've finished long division. Now we need to print _Data[0].385}386}387}388}389390_LIBCPP_ASSERT_INTERNAL(_Data[0] != 0, "");391for (uint32_t _Idx = 1; _Idx < _Data_size; ++_Idx) {392_LIBCPP_ASSERT_INTERNAL(_Data[_Idx] == 0, "");393}394395const uint32_t _Data_olength = _Data[0] >= 1000000000 ? 10 : __decimalLength9(_Data[0]);396const uint32_t _Total_fixed_length = _Data_olength + 9 * _Filled_blocks;397398if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) {399return { _Last, errc::value_too_large };400}401402char* _Result = _First;403404// Print _Data[0]. While it's up to 10 digits,405// which is more than Ryu generates, the code below can handle this.406__append_n_digits(_Data_olength, _Data[0], _Result);407_Result += _Data_olength;408409// Print 0-filled 9-digit blocks.410for (int32_t _Idx = _Filled_blocks - 1; _Idx >= 0; --_Idx) {411__append_nine_digits(_Blocks[_Idx], _Result);412_Result += 9;413}414415return { _Result, errc{} };416}417418[[nodiscard]] _LIBCPP_HIDE_FROM_ABI inline to_chars_result __to_chars(char* const _First, char* const _Last, const __floating_decimal_32 __v,419chars_format _Fmt, const uint32_t __ieeeMantissa, const uint32_t __ieeeExponent) {420// Step 5: Print the decimal representation.421uint32_t _Output = __v.__mantissa;422int32_t _Ryu_exponent = __v.__exponent;423const uint32_t __olength = __decimalLength9(_Output);424int32_t _Scientific_exponent = _Ryu_exponent + static_cast<int32_t>(__olength) - 1;425426if (_Fmt == chars_format{}) {427int32_t _Lower;428int32_t _Upper;429430if (__olength == 1) {431// Value | Fixed | Scientific432// 1e-3 | "0.001" | "1e-03"433// 1e4 | "10000" | "1e+04"434_Lower = -3;435_Upper = 4;436} else {437// Value | Fixed | Scientific438// 1234e-7 | "0.0001234" | "1.234e-04"439// 1234e5 | "123400000" | "1.234e+08"440_Lower = -static_cast<int32_t>(__olength + 3);441_Upper = 5;442}443444if (_Lower <= _Ryu_exponent && _Ryu_exponent <= _Upper) {445_Fmt = chars_format::fixed;446} else {447_Fmt = chars_format::scientific;448}449} else if (_Fmt == chars_format::general) {450// C11 7.21.6.1 "The fprintf function"/8:451// "Let P equal [...] 6 if the precision is omitted [...].452// Then, if a conversion with style E would have an exponent of X:453// - if P > X >= -4, the conversion is with style f [...].454// - otherwise, the conversion is with style e [...]."455if (-4 <= _Scientific_exponent && _Scientific_exponent < 6) {456_Fmt = chars_format::fixed;457} else {458_Fmt = chars_format::scientific;459}460}461462if (_Fmt == chars_format::fixed) {463// Example: _Output == 1729, __olength == 4464465// _Ryu_exponent | Printed | _Whole_digits | _Total_fixed_length | Notes466// --------------|----------|---------------|----------------------|---------------------------------------467// 2 | 172900 | 6 | _Whole_digits | Ryu can't be used for printing468// 1 | 17290 | 5 | (sometimes adjusted) | when the trimmed digits are nonzero.469// --------------|----------|---------------|----------------------|---------------------------------------470// 0 | 1729 | 4 | _Whole_digits | Unified length cases.471// --------------|----------|---------------|----------------------|---------------------------------------472// -1 | 172.9 | 3 | __olength + 1 | This case can't happen for473// -2 | 17.29 | 2 | | __olength == 1, but no additional474// -3 | 1.729 | 1 | | code is needed to avoid it.475// --------------|----------|---------------|----------------------|---------------------------------------476// -4 | 0.1729 | 0 | 2 - _Ryu_exponent | C11 7.21.6.1 "The fprintf function"/8:477// -5 | 0.01729 | -1 | | "If a decimal-point character appears,478// -6 | 0.001729 | -2 | | at least one digit appears before it."479480const int32_t _Whole_digits = static_cast<int32_t>(__olength) + _Ryu_exponent;481482uint32_t _Total_fixed_length;483if (_Ryu_exponent >= 0) { // cases "172900" and "1729"484_Total_fixed_length = static_cast<uint32_t>(_Whole_digits);485if (_Output == 1) {486// Rounding can affect the number of digits.487// For example, 1e11f is exactly "99999997952" which is 11 digits instead of 12.488// We can use a lookup table to detect this and adjust the total length.489static constexpr uint8_t _Adjustment[39] = {4900,0,0,0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,1,1,0,0,1,1,0,1,0,1,1,0,0,1,0,1,1,0,1,1,1 };491_Total_fixed_length -= _Adjustment[_Ryu_exponent];492// _Whole_digits doesn't need to be adjusted because these cases won't refer to it later.493}494} else if (_Whole_digits > 0) { // case "17.29"495_Total_fixed_length = __olength + 1;496} else { // case "0.001729"497_Total_fixed_length = static_cast<uint32_t>(2 - _Ryu_exponent);498}499500if (_Last - _First < static_cast<ptrdiff_t>(_Total_fixed_length)) {501return { _Last, errc::value_too_large };502}503504char* _Mid;505if (_Ryu_exponent > 0) { // case "172900"506bool _Can_use_ryu;507508if (_Ryu_exponent > 10) { // 10^10 is the largest power of 10 that's exactly representable as a float.509_Can_use_ryu = false;510} else {511// Ryu generated X: __v.__mantissa * 10^_Ryu_exponent512// __v.__mantissa == 2^_Trailing_zero_bits * (__v.__mantissa >> _Trailing_zero_bits)513// 10^_Ryu_exponent == 2^_Ryu_exponent * 5^_Ryu_exponent514515// _Trailing_zero_bits is [0, 29] (aside: because 2^29 is the largest power of 2516// with 9 decimal digits, which is float's round-trip limit.)517// _Ryu_exponent is [1, 10].518// Normalization adds [2, 23] (aside: at least 2 because the pre-normalized mantissa is at least 5).519// This adds up to [3, 62], which is well below float's maximum binary exponent 127.520521// Therefore, we just need to consider (__v.__mantissa >> _Trailing_zero_bits) * 5^_Ryu_exponent.522523// If that product would exceed 24 bits, then X can't be exactly represented as a float.524// (That's not a problem for round-tripping, because X is close enough to the original float,525// but X isn't mathematically equal to the original float.) This requires a high-precision fallback.526527// If the product is 24 bits or smaller, then X can be exactly represented as a float (and we don't528// need to re-synthesize it; the original float must have been X, because Ryu wouldn't produce the529// same output for two different floats X and Y). This allows Ryu's output to be used (zero-filled).530531// (2^24 - 1) / 5^0 (for indexing), (2^24 - 1) / 5^1, ..., (2^24 - 1) / 5^10532static constexpr uint32_t _Max_shifted_mantissa[11] = {53316777215, 3355443, 671088, 134217, 26843, 5368, 1073, 214, 42, 8, 1 };534535unsigned long _Trailing_zero_bits;536(void) _BitScanForward(&_Trailing_zero_bits, __v.__mantissa); // __v.__mantissa is guaranteed nonzero537const uint32_t _Shifted_mantissa = __v.__mantissa >> _Trailing_zero_bits;538_Can_use_ryu = _Shifted_mantissa <= _Max_shifted_mantissa[_Ryu_exponent];539}540541if (!_Can_use_ryu) {542const uint32_t _Mantissa2 = __ieeeMantissa | (1u << __FLOAT_MANTISSA_BITS); // restore implicit bit543const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent)544- __FLOAT_BIAS - __FLOAT_MANTISSA_BITS; // bias and normalization545546// Performance note: We've already called Ryu, so this will redundantly perform buffering and bounds checking.547return _Large_integer_to_chars(_First, _Last, _Mantissa2, _Exponent2);548}549550// _Can_use_ryu551// Print the decimal digits, left-aligned within [_First, _First + _Total_fixed_length).552_Mid = _First + __olength;553} else { // cases "1729", "17.29", and "0.001729"554// Print the decimal digits, right-aligned within [_First, _First + _Total_fixed_length).555_Mid = _First + _Total_fixed_length;556}557558while (_Output >= 10000) {559#ifdef __clang__ // TRANSITION, LLVM-38217560const uint32_t __c = _Output - 10000 * (_Output / 10000);561#else562const uint32_t __c = _Output % 10000;563#endif564_Output /= 10000;565const uint32_t __c0 = (__c % 100) << 1;566const uint32_t __c1 = (__c / 100) << 1;567std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c0, 2);568std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c1, 2);569}570if (_Output >= 100) {571const uint32_t __c = (_Output % 100) << 1;572_Output /= 100;573std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);574}575if (_Output >= 10) {576const uint32_t __c = _Output << 1;577std::memcpy(_Mid -= 2, __DIGIT_TABLE + __c, 2);578} else {579*--_Mid = static_cast<char>('0' + _Output);580}581582if (_Ryu_exponent > 0) { // case "172900" with _Can_use_ryu583// Performance note: it might be more efficient to do this immediately after setting _Mid.584std::memset(_First + __olength, '0', static_cast<size_t>(_Ryu_exponent));585} else if (_Ryu_exponent == 0) { // case "1729"586// Done!587} else if (_Whole_digits > 0) { // case "17.29"588// Performance note: moving digits might not be optimal.589std::memmove(_First, _First + 1, static_cast<size_t>(_Whole_digits));590_First[_Whole_digits] = '.';591} else { // case "0.001729"592// Performance note: a larger memset() followed by overwriting '.' might be more efficient.593_First[0] = '0';594_First[1] = '.';595std::memset(_First + 2, '0', static_cast<size_t>(-_Whole_digits));596}597598return { _First + _Total_fixed_length, errc{} };599}600601const uint32_t _Total_scientific_length =602__olength + (__olength > 1) + 4; // digits + possible decimal point + scientific exponent603if (_Last - _First < static_cast<ptrdiff_t>(_Total_scientific_length)) {604return { _Last, errc::value_too_large };605}606char* const __result = _First;607608// Print the decimal digits.609uint32_t __i = 0;610while (_Output >= 10000) {611#ifdef __clang__ // TRANSITION, LLVM-38217612const uint32_t __c = _Output - 10000 * (_Output / 10000);613#else614const uint32_t __c = _Output % 10000;615#endif616_Output /= 10000;617const uint32_t __c0 = (__c % 100) << 1;618const uint32_t __c1 = (__c / 100) << 1;619std::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c0, 2);620std::memcpy(__result + __olength - __i - 3, __DIGIT_TABLE + __c1, 2);621__i += 4;622}623if (_Output >= 100) {624const uint32_t __c = (_Output % 100) << 1;625_Output /= 100;626std::memcpy(__result + __olength - __i - 1, __DIGIT_TABLE + __c, 2);627__i += 2;628}629if (_Output >= 10) {630const uint32_t __c = _Output << 1;631// We can't use memcpy here: the decimal dot goes between these two digits.632__result[2] = __DIGIT_TABLE[__c + 1];633__result[0] = __DIGIT_TABLE[__c];634} else {635__result[0] = static_cast<char>('0' + _Output);636}637638// Print decimal point if needed.639uint32_t __index;640if (__olength > 1) {641__result[1] = '.';642__index = __olength + 1;643} else {644__index = 1;645}646647// Print the exponent.648__result[__index++] = 'e';649if (_Scientific_exponent < 0) {650__result[__index++] = '-';651_Scientific_exponent = -_Scientific_exponent;652} else {653__result[__index++] = '+';654}655656std::memcpy(__result + __index, __DIGIT_TABLE + 2 * _Scientific_exponent, 2);657__index += 2;658659return { _First + _Total_scientific_length, errc{} };660}661662[[nodiscard]] to_chars_result __f2s_buffered_n(char* const _First, char* const _Last, const float __f,663const chars_format _Fmt) {664665// Step 1: Decode the floating-point number, and unify normalized and subnormal cases.666const uint32_t __bits = __float_to_bits(__f);667668// Case distinction; exit early for the easy cases.669if (__bits == 0) {670if (_Fmt == chars_format::scientific) {671if (_Last - _First < 5) {672return { _Last, errc::value_too_large };673}674675std::memcpy(_First, "0e+00", 5);676677return { _First + 5, errc{} };678}679680// Print "0" for chars_format::fixed, chars_format::general, and chars_format{}.681if (_First == _Last) {682return { _Last, errc::value_too_large };683}684685*_First = '0';686687return { _First + 1, errc{} };688}689690// Decode __bits into mantissa and exponent.691const uint32_t __ieeeMantissa = __bits & ((1u << __FLOAT_MANTISSA_BITS) - 1);692const uint32_t __ieeeExponent = __bits >> __FLOAT_MANTISSA_BITS;693694// When _Fmt == chars_format::fixed and the floating-point number is a large integer,695// it's faster to skip Ryu and immediately print the integer exactly.696if (_Fmt == chars_format::fixed) {697const uint32_t _Mantissa2 = __ieeeMantissa | (1u << __FLOAT_MANTISSA_BITS); // restore implicit bit698const int32_t _Exponent2 = static_cast<int32_t>(__ieeeExponent)699- __FLOAT_BIAS - __FLOAT_MANTISSA_BITS; // bias and normalization700701// Normal values are equal to _Mantissa2 * 2^_Exponent2.702// (Subnormals are different, but they'll be rejected by the _Exponent2 test here, so they can be ignored.)703704if (_Exponent2 > 0) {705return _Large_integer_to_chars(_First, _Last, _Mantissa2, _Exponent2);706}707}708709const __floating_decimal_32 __v = __f2d(__ieeeMantissa, __ieeeExponent);710return __to_chars(_First, _Last, __v, _Fmt, __ieeeMantissa, __ieeeExponent);711}712713_LIBCPP_END_NAMESPACE_STD714715// clang-format on716717718