Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/libunwind/src/UnwindCursor.hpp
35154 views
1
//===----------------------------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//
8
// C++ interface to lower levels of libunwind
9
//===----------------------------------------------------------------------===//
10
11
#ifndef __UNWINDCURSOR_HPP__
12
#define __UNWINDCURSOR_HPP__
13
14
#include "cet_unwind.h"
15
#include <stdint.h>
16
#include <stdio.h>
17
#include <stdlib.h>
18
#include <unwind.h>
19
20
#ifdef _WIN32
21
#include <windows.h>
22
#include <ntverp.h>
23
#endif
24
#ifdef __APPLE__
25
#include <mach-o/dyld.h>
26
#endif
27
#ifdef _AIX
28
#include <dlfcn.h>
29
#include <sys/debug.h>
30
#include <sys/pseg.h>
31
#endif
32
33
#if defined(_LIBUNWIND_TARGET_LINUX) && \
34
(defined(_LIBUNWIND_TARGET_AARCH64) || defined(_LIBUNWIND_TARGET_RISCV) || \
35
defined(_LIBUNWIND_TARGET_S390X))
36
#include <errno.h>
37
#include <signal.h>
38
#include <sys/syscall.h>
39
#include <unistd.h>
40
#define _LIBUNWIND_CHECK_LINUX_SIGRETURN 1
41
#endif
42
43
#include "AddressSpace.hpp"
44
#include "CompactUnwinder.hpp"
45
#include "config.h"
46
#include "DwarfInstructions.hpp"
47
#include "EHHeaderParser.hpp"
48
#include "libunwind.h"
49
#include "libunwind_ext.h"
50
#include "Registers.hpp"
51
#include "RWMutex.hpp"
52
#include "Unwind-EHABI.h"
53
54
#if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
55
// Provide a definition for the DISPATCHER_CONTEXT struct for old (Win7 and
56
// earlier) SDKs.
57
// MinGW-w64 has always provided this struct.
58
#if defined(_WIN32) && defined(_LIBUNWIND_TARGET_X86_64) && \
59
!defined(__MINGW32__) && VER_PRODUCTBUILD < 8000
60
struct _DISPATCHER_CONTEXT {
61
ULONG64 ControlPc;
62
ULONG64 ImageBase;
63
PRUNTIME_FUNCTION FunctionEntry;
64
ULONG64 EstablisherFrame;
65
ULONG64 TargetIp;
66
PCONTEXT ContextRecord;
67
PEXCEPTION_ROUTINE LanguageHandler;
68
PVOID HandlerData;
69
PUNWIND_HISTORY_TABLE HistoryTable;
70
ULONG ScopeIndex;
71
ULONG Fill0;
72
};
73
#endif
74
75
struct UNWIND_INFO {
76
uint8_t Version : 3;
77
uint8_t Flags : 5;
78
uint8_t SizeOfProlog;
79
uint8_t CountOfCodes;
80
uint8_t FrameRegister : 4;
81
uint8_t FrameOffset : 4;
82
uint16_t UnwindCodes[2];
83
};
84
85
extern "C" _Unwind_Reason_Code __libunwind_seh_personality(
86
int, _Unwind_Action, uint64_t, _Unwind_Exception *,
87
struct _Unwind_Context *);
88
89
#endif
90
91
namespace libunwind {
92
93
#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
94
/// Cache of recently found FDEs.
95
template <typename A>
96
class _LIBUNWIND_HIDDEN DwarfFDECache {
97
typedef typename A::pint_t pint_t;
98
public:
99
static constexpr pint_t kSearchAll = static_cast<pint_t>(-1);
100
static pint_t findFDE(pint_t mh, pint_t pc);
101
static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde);
102
static void removeAllIn(pint_t mh);
103
static void iterateCacheEntries(void (*func)(unw_word_t ip_start,
104
unw_word_t ip_end,
105
unw_word_t fde, unw_word_t mh));
106
107
private:
108
109
struct entry {
110
pint_t mh;
111
pint_t ip_start;
112
pint_t ip_end;
113
pint_t fde;
114
};
115
116
// These fields are all static to avoid needing an initializer.
117
// There is only one instance of this class per process.
118
static RWMutex _lock;
119
#ifdef __APPLE__
120
static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide);
121
static bool _registeredForDyldUnloads;
122
#endif
123
static entry *_buffer;
124
static entry *_bufferUsed;
125
static entry *_bufferEnd;
126
static entry _initialBuffer[64];
127
};
128
129
template <typename A>
130
typename DwarfFDECache<A>::entry *
131
DwarfFDECache<A>::_buffer = _initialBuffer;
132
133
template <typename A>
134
typename DwarfFDECache<A>::entry *
135
DwarfFDECache<A>::_bufferUsed = _initialBuffer;
136
137
template <typename A>
138
typename DwarfFDECache<A>::entry *
139
DwarfFDECache<A>::_bufferEnd = &_initialBuffer[64];
140
141
template <typename A>
142
typename DwarfFDECache<A>::entry DwarfFDECache<A>::_initialBuffer[64];
143
144
template <typename A>
145
RWMutex DwarfFDECache<A>::_lock;
146
147
#ifdef __APPLE__
148
template <typename A>
149
bool DwarfFDECache<A>::_registeredForDyldUnloads = false;
150
#endif
151
152
template <typename A>
153
typename A::pint_t DwarfFDECache<A>::findFDE(pint_t mh, pint_t pc) {
154
pint_t result = 0;
155
_LIBUNWIND_LOG_IF_FALSE(_lock.lock_shared());
156
for (entry *p = _buffer; p < _bufferUsed; ++p) {
157
if ((mh == p->mh) || (mh == kSearchAll)) {
158
if ((p->ip_start <= pc) && (pc < p->ip_end)) {
159
result = p->fde;
160
break;
161
}
162
}
163
}
164
_LIBUNWIND_LOG_IF_FALSE(_lock.unlock_shared());
165
return result;
166
}
167
168
template <typename A>
169
void DwarfFDECache<A>::add(pint_t mh, pint_t ip_start, pint_t ip_end,
170
pint_t fde) {
171
#if !defined(_LIBUNWIND_NO_HEAP)
172
_LIBUNWIND_LOG_IF_FALSE(_lock.lock());
173
if (_bufferUsed >= _bufferEnd) {
174
size_t oldSize = (size_t)(_bufferEnd - _buffer);
175
size_t newSize = oldSize * 4;
176
// Can't use operator new (we are below it).
177
entry *newBuffer = (entry *)malloc(newSize * sizeof(entry));
178
memcpy(newBuffer, _buffer, oldSize * sizeof(entry));
179
if (_buffer != _initialBuffer)
180
free(_buffer);
181
_buffer = newBuffer;
182
_bufferUsed = &newBuffer[oldSize];
183
_bufferEnd = &newBuffer[newSize];
184
}
185
_bufferUsed->mh = mh;
186
_bufferUsed->ip_start = ip_start;
187
_bufferUsed->ip_end = ip_end;
188
_bufferUsed->fde = fde;
189
++_bufferUsed;
190
#ifdef __APPLE__
191
if (!_registeredForDyldUnloads) {
192
_dyld_register_func_for_remove_image(&dyldUnloadHook);
193
_registeredForDyldUnloads = true;
194
}
195
#endif
196
_LIBUNWIND_LOG_IF_FALSE(_lock.unlock());
197
#endif
198
}
199
200
template <typename A>
201
void DwarfFDECache<A>::removeAllIn(pint_t mh) {
202
_LIBUNWIND_LOG_IF_FALSE(_lock.lock());
203
entry *d = _buffer;
204
for (const entry *s = _buffer; s < _bufferUsed; ++s) {
205
if (s->mh != mh) {
206
if (d != s)
207
*d = *s;
208
++d;
209
}
210
}
211
_bufferUsed = d;
212
_LIBUNWIND_LOG_IF_FALSE(_lock.unlock());
213
}
214
215
#ifdef __APPLE__
216
template <typename A>
217
void DwarfFDECache<A>::dyldUnloadHook(const struct mach_header *mh, intptr_t ) {
218
removeAllIn((pint_t) mh);
219
}
220
#endif
221
222
template <typename A>
223
void DwarfFDECache<A>::iterateCacheEntries(void (*func)(
224
unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) {
225
_LIBUNWIND_LOG_IF_FALSE(_lock.lock());
226
for (entry *p = _buffer; p < _bufferUsed; ++p) {
227
(*func)(p->ip_start, p->ip_end, p->fde, p->mh);
228
}
229
_LIBUNWIND_LOG_IF_FALSE(_lock.unlock());
230
}
231
#endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
232
233
234
#define arrayoffsetof(type, index, field) ((size_t)(&((type *)0)[index].field))
235
236
#if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
237
template <typename A> class UnwindSectionHeader {
238
public:
239
UnwindSectionHeader(A &addressSpace, typename A::pint_t addr)
240
: _addressSpace(addressSpace), _addr(addr) {}
241
242
uint32_t version() const {
243
return _addressSpace.get32(_addr +
244
offsetof(unwind_info_section_header, version));
245
}
246
uint32_t commonEncodingsArraySectionOffset() const {
247
return _addressSpace.get32(_addr +
248
offsetof(unwind_info_section_header,
249
commonEncodingsArraySectionOffset));
250
}
251
uint32_t commonEncodingsArrayCount() const {
252
return _addressSpace.get32(_addr + offsetof(unwind_info_section_header,
253
commonEncodingsArrayCount));
254
}
255
uint32_t personalityArraySectionOffset() const {
256
return _addressSpace.get32(_addr + offsetof(unwind_info_section_header,
257
personalityArraySectionOffset));
258
}
259
uint32_t personalityArrayCount() const {
260
return _addressSpace.get32(
261
_addr + offsetof(unwind_info_section_header, personalityArrayCount));
262
}
263
uint32_t indexSectionOffset() const {
264
return _addressSpace.get32(
265
_addr + offsetof(unwind_info_section_header, indexSectionOffset));
266
}
267
uint32_t indexCount() const {
268
return _addressSpace.get32(
269
_addr + offsetof(unwind_info_section_header, indexCount));
270
}
271
272
private:
273
A &_addressSpace;
274
typename A::pint_t _addr;
275
};
276
277
template <typename A> class UnwindSectionIndexArray {
278
public:
279
UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr)
280
: _addressSpace(addressSpace), _addr(addr) {}
281
282
uint32_t functionOffset(uint32_t index) const {
283
return _addressSpace.get32(
284
_addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
285
functionOffset));
286
}
287
uint32_t secondLevelPagesSectionOffset(uint32_t index) const {
288
return _addressSpace.get32(
289
_addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
290
secondLevelPagesSectionOffset));
291
}
292
uint32_t lsdaIndexArraySectionOffset(uint32_t index) const {
293
return _addressSpace.get32(
294
_addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
295
lsdaIndexArraySectionOffset));
296
}
297
298
private:
299
A &_addressSpace;
300
typename A::pint_t _addr;
301
};
302
303
template <typename A> class UnwindSectionRegularPageHeader {
304
public:
305
UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr)
306
: _addressSpace(addressSpace), _addr(addr) {}
307
308
uint32_t kind() const {
309
return _addressSpace.get32(
310
_addr + offsetof(unwind_info_regular_second_level_page_header, kind));
311
}
312
uint16_t entryPageOffset() const {
313
return _addressSpace.get16(
314
_addr + offsetof(unwind_info_regular_second_level_page_header,
315
entryPageOffset));
316
}
317
uint16_t entryCount() const {
318
return _addressSpace.get16(
319
_addr +
320
offsetof(unwind_info_regular_second_level_page_header, entryCount));
321
}
322
323
private:
324
A &_addressSpace;
325
typename A::pint_t _addr;
326
};
327
328
template <typename A> class UnwindSectionRegularArray {
329
public:
330
UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr)
331
: _addressSpace(addressSpace), _addr(addr) {}
332
333
uint32_t functionOffset(uint32_t index) const {
334
return _addressSpace.get32(
335
_addr + arrayoffsetof(unwind_info_regular_second_level_entry, index,
336
functionOffset));
337
}
338
uint32_t encoding(uint32_t index) const {
339
return _addressSpace.get32(
340
_addr +
341
arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding));
342
}
343
344
private:
345
A &_addressSpace;
346
typename A::pint_t _addr;
347
};
348
349
template <typename A> class UnwindSectionCompressedPageHeader {
350
public:
351
UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr)
352
: _addressSpace(addressSpace), _addr(addr) {}
353
354
uint32_t kind() const {
355
return _addressSpace.get32(
356
_addr +
357
offsetof(unwind_info_compressed_second_level_page_header, kind));
358
}
359
uint16_t entryPageOffset() const {
360
return _addressSpace.get16(
361
_addr + offsetof(unwind_info_compressed_second_level_page_header,
362
entryPageOffset));
363
}
364
uint16_t entryCount() const {
365
return _addressSpace.get16(
366
_addr +
367
offsetof(unwind_info_compressed_second_level_page_header, entryCount));
368
}
369
uint16_t encodingsPageOffset() const {
370
return _addressSpace.get16(
371
_addr + offsetof(unwind_info_compressed_second_level_page_header,
372
encodingsPageOffset));
373
}
374
uint16_t encodingsCount() const {
375
return _addressSpace.get16(
376
_addr + offsetof(unwind_info_compressed_second_level_page_header,
377
encodingsCount));
378
}
379
380
private:
381
A &_addressSpace;
382
typename A::pint_t _addr;
383
};
384
385
template <typename A> class UnwindSectionCompressedArray {
386
public:
387
UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr)
388
: _addressSpace(addressSpace), _addr(addr) {}
389
390
uint32_t functionOffset(uint32_t index) const {
391
return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(
392
_addressSpace.get32(_addr + index * sizeof(uint32_t)));
393
}
394
uint16_t encodingIndex(uint32_t index) const {
395
return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(
396
_addressSpace.get32(_addr + index * sizeof(uint32_t)));
397
}
398
399
private:
400
A &_addressSpace;
401
typename A::pint_t _addr;
402
};
403
404
template <typename A> class UnwindSectionLsdaArray {
405
public:
406
UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr)
407
: _addressSpace(addressSpace), _addr(addr) {}
408
409
uint32_t functionOffset(uint32_t index) const {
410
return _addressSpace.get32(
411
_addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry,
412
index, functionOffset));
413
}
414
uint32_t lsdaOffset(uint32_t index) const {
415
return _addressSpace.get32(
416
_addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry,
417
index, lsdaOffset));
418
}
419
420
private:
421
A &_addressSpace;
422
typename A::pint_t _addr;
423
};
424
#endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
425
426
class _LIBUNWIND_HIDDEN AbstractUnwindCursor {
427
public:
428
// NOTE: provide a class specific placement deallocation function (S5.3.4 p20)
429
// This avoids an unnecessary dependency to libc++abi.
430
void operator delete(void *, size_t) {}
431
432
virtual ~AbstractUnwindCursor() {}
433
virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented"); }
434
virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented"); }
435
virtual void setReg(int, unw_word_t) {
436
_LIBUNWIND_ABORT("setReg not implemented");
437
}
438
virtual bool validFloatReg(int) {
439
_LIBUNWIND_ABORT("validFloatReg not implemented");
440
}
441
virtual unw_fpreg_t getFloatReg(int) {
442
_LIBUNWIND_ABORT("getFloatReg not implemented");
443
}
444
virtual void setFloatReg(int, unw_fpreg_t) {
445
_LIBUNWIND_ABORT("setFloatReg not implemented");
446
}
447
virtual int step(bool = false) { _LIBUNWIND_ABORT("step not implemented"); }
448
virtual void getInfo(unw_proc_info_t *) {
449
_LIBUNWIND_ABORT("getInfo not implemented");
450
}
451
virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented"); }
452
virtual bool isSignalFrame() {
453
_LIBUNWIND_ABORT("isSignalFrame not implemented");
454
}
455
virtual bool getFunctionName(char *, size_t, unw_word_t *) {
456
_LIBUNWIND_ABORT("getFunctionName not implemented");
457
}
458
virtual void setInfoBasedOnIPRegister(bool = false) {
459
_LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented");
460
}
461
virtual const char *getRegisterName(int) {
462
_LIBUNWIND_ABORT("getRegisterName not implemented");
463
}
464
#ifdef __arm__
465
virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented"); }
466
#endif
467
468
#ifdef _AIX
469
virtual uintptr_t getDataRelBase() {
470
_LIBUNWIND_ABORT("getDataRelBase not implemented");
471
}
472
#endif
473
474
#if defined(_LIBUNWIND_USE_CET) || defined(_LIBUNWIND_USE_GCS)
475
virtual void *get_registers() {
476
_LIBUNWIND_ABORT("get_registers not implemented");
477
}
478
#endif
479
};
480
481
#if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) && defined(_WIN32)
482
483
/// \c UnwindCursor contains all state (including all register values) during
484
/// an unwind. This is normally stack-allocated inside a unw_cursor_t.
485
template <typename A, typename R>
486
class UnwindCursor : public AbstractUnwindCursor {
487
typedef typename A::pint_t pint_t;
488
public:
489
UnwindCursor(unw_context_t *context, A &as);
490
UnwindCursor(CONTEXT *context, A &as);
491
UnwindCursor(A &as, void *threadArg);
492
virtual ~UnwindCursor() {}
493
virtual bool validReg(int);
494
virtual unw_word_t getReg(int);
495
virtual void setReg(int, unw_word_t);
496
virtual bool validFloatReg(int);
497
virtual unw_fpreg_t getFloatReg(int);
498
virtual void setFloatReg(int, unw_fpreg_t);
499
virtual int step(bool = false);
500
virtual void getInfo(unw_proc_info_t *);
501
virtual void jumpto();
502
virtual bool isSignalFrame();
503
virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off);
504
virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false);
505
virtual const char *getRegisterName(int num);
506
#ifdef __arm__
507
virtual void saveVFPAsX();
508
#endif
509
510
DISPATCHER_CONTEXT *getDispatcherContext() { return &_dispContext; }
511
void setDispatcherContext(DISPATCHER_CONTEXT *disp) {
512
_dispContext = *disp;
513
_info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData);
514
if (_dispContext.LanguageHandler) {
515
_info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality);
516
} else
517
_info.handler = 0;
518
}
519
520
// libunwind does not and should not depend on C++ library which means that we
521
// need our own definition of inline placement new.
522
static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; }
523
524
private:
525
526
pint_t getLastPC() const { return _dispContext.ControlPc; }
527
void setLastPC(pint_t pc) { _dispContext.ControlPc = pc; }
528
RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) {
529
#ifdef __arm__
530
// Remove the thumb bit; FunctionEntry ranges don't include the thumb bit.
531
pc &= ~1U;
532
#endif
533
// If pc points exactly at the end of the range, we might resolve the
534
// next function instead. Decrement pc by 1 to fit inside the current
535
// function.
536
pc -= 1;
537
_dispContext.FunctionEntry = RtlLookupFunctionEntry(pc,
538
&_dispContext.ImageBase,
539
_dispContext.HistoryTable);
540
*base = _dispContext.ImageBase;
541
return _dispContext.FunctionEntry;
542
}
543
bool getInfoFromSEH(pint_t pc);
544
int stepWithSEHData() {
545
_dispContext.LanguageHandler = RtlVirtualUnwind(UNW_FLAG_UHANDLER,
546
_dispContext.ImageBase,
547
_dispContext.ControlPc,
548
_dispContext.FunctionEntry,
549
_dispContext.ContextRecord,
550
&_dispContext.HandlerData,
551
&_dispContext.EstablisherFrame,
552
NULL);
553
// Update some fields of the unwind info now, since we have them.
554
_info.lsda = reinterpret_cast<unw_word_t>(_dispContext.HandlerData);
555
if (_dispContext.LanguageHandler) {
556
_info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality);
557
} else
558
_info.handler = 0;
559
return UNW_STEP_SUCCESS;
560
}
561
562
A &_addressSpace;
563
unw_proc_info_t _info;
564
DISPATCHER_CONTEXT _dispContext;
565
CONTEXT _msContext;
566
UNWIND_HISTORY_TABLE _histTable;
567
bool _unwindInfoMissing;
568
};
569
570
571
template <typename A, typename R>
572
UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as)
573
: _addressSpace(as), _unwindInfoMissing(false) {
574
static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
575
"UnwindCursor<> does not fit in unw_cursor_t");
576
static_assert((alignof(UnwindCursor<A, R>) <= alignof(unw_cursor_t)),
577
"UnwindCursor<> requires more alignment than unw_cursor_t");
578
memset(&_info, 0, sizeof(_info));
579
memset(&_histTable, 0, sizeof(_histTable));
580
memset(&_dispContext, 0, sizeof(_dispContext));
581
_dispContext.ContextRecord = &_msContext;
582
_dispContext.HistoryTable = &_histTable;
583
// Initialize MS context from ours.
584
R r(context);
585
RtlCaptureContext(&_msContext);
586
_msContext.ContextFlags = CONTEXT_CONTROL|CONTEXT_INTEGER|CONTEXT_FLOATING_POINT;
587
#if defined(_LIBUNWIND_TARGET_X86_64)
588
_msContext.Rax = r.getRegister(UNW_X86_64_RAX);
589
_msContext.Rcx = r.getRegister(UNW_X86_64_RCX);
590
_msContext.Rdx = r.getRegister(UNW_X86_64_RDX);
591
_msContext.Rbx = r.getRegister(UNW_X86_64_RBX);
592
_msContext.Rsp = r.getRegister(UNW_X86_64_RSP);
593
_msContext.Rbp = r.getRegister(UNW_X86_64_RBP);
594
_msContext.Rsi = r.getRegister(UNW_X86_64_RSI);
595
_msContext.Rdi = r.getRegister(UNW_X86_64_RDI);
596
_msContext.R8 = r.getRegister(UNW_X86_64_R8);
597
_msContext.R9 = r.getRegister(UNW_X86_64_R9);
598
_msContext.R10 = r.getRegister(UNW_X86_64_R10);
599
_msContext.R11 = r.getRegister(UNW_X86_64_R11);
600
_msContext.R12 = r.getRegister(UNW_X86_64_R12);
601
_msContext.R13 = r.getRegister(UNW_X86_64_R13);
602
_msContext.R14 = r.getRegister(UNW_X86_64_R14);
603
_msContext.R15 = r.getRegister(UNW_X86_64_R15);
604
_msContext.Rip = r.getRegister(UNW_REG_IP);
605
union {
606
v128 v;
607
M128A m;
608
} t;
609
t.v = r.getVectorRegister(UNW_X86_64_XMM0);
610
_msContext.Xmm0 = t.m;
611
t.v = r.getVectorRegister(UNW_X86_64_XMM1);
612
_msContext.Xmm1 = t.m;
613
t.v = r.getVectorRegister(UNW_X86_64_XMM2);
614
_msContext.Xmm2 = t.m;
615
t.v = r.getVectorRegister(UNW_X86_64_XMM3);
616
_msContext.Xmm3 = t.m;
617
t.v = r.getVectorRegister(UNW_X86_64_XMM4);
618
_msContext.Xmm4 = t.m;
619
t.v = r.getVectorRegister(UNW_X86_64_XMM5);
620
_msContext.Xmm5 = t.m;
621
t.v = r.getVectorRegister(UNW_X86_64_XMM6);
622
_msContext.Xmm6 = t.m;
623
t.v = r.getVectorRegister(UNW_X86_64_XMM7);
624
_msContext.Xmm7 = t.m;
625
t.v = r.getVectorRegister(UNW_X86_64_XMM8);
626
_msContext.Xmm8 = t.m;
627
t.v = r.getVectorRegister(UNW_X86_64_XMM9);
628
_msContext.Xmm9 = t.m;
629
t.v = r.getVectorRegister(UNW_X86_64_XMM10);
630
_msContext.Xmm10 = t.m;
631
t.v = r.getVectorRegister(UNW_X86_64_XMM11);
632
_msContext.Xmm11 = t.m;
633
t.v = r.getVectorRegister(UNW_X86_64_XMM12);
634
_msContext.Xmm12 = t.m;
635
t.v = r.getVectorRegister(UNW_X86_64_XMM13);
636
_msContext.Xmm13 = t.m;
637
t.v = r.getVectorRegister(UNW_X86_64_XMM14);
638
_msContext.Xmm14 = t.m;
639
t.v = r.getVectorRegister(UNW_X86_64_XMM15);
640
_msContext.Xmm15 = t.m;
641
#elif defined(_LIBUNWIND_TARGET_ARM)
642
_msContext.R0 = r.getRegister(UNW_ARM_R0);
643
_msContext.R1 = r.getRegister(UNW_ARM_R1);
644
_msContext.R2 = r.getRegister(UNW_ARM_R2);
645
_msContext.R3 = r.getRegister(UNW_ARM_R3);
646
_msContext.R4 = r.getRegister(UNW_ARM_R4);
647
_msContext.R5 = r.getRegister(UNW_ARM_R5);
648
_msContext.R6 = r.getRegister(UNW_ARM_R6);
649
_msContext.R7 = r.getRegister(UNW_ARM_R7);
650
_msContext.R8 = r.getRegister(UNW_ARM_R8);
651
_msContext.R9 = r.getRegister(UNW_ARM_R9);
652
_msContext.R10 = r.getRegister(UNW_ARM_R10);
653
_msContext.R11 = r.getRegister(UNW_ARM_R11);
654
_msContext.R12 = r.getRegister(UNW_ARM_R12);
655
_msContext.Sp = r.getRegister(UNW_ARM_SP);
656
_msContext.Lr = r.getRegister(UNW_ARM_LR);
657
_msContext.Pc = r.getRegister(UNW_ARM_IP);
658
for (int i = UNW_ARM_D0; i <= UNW_ARM_D31; ++i) {
659
union {
660
uint64_t w;
661
double d;
662
} d;
663
d.d = r.getFloatRegister(i);
664
_msContext.D[i - UNW_ARM_D0] = d.w;
665
}
666
#elif defined(_LIBUNWIND_TARGET_AARCH64)
667
for (int i = UNW_AARCH64_X0; i <= UNW_ARM64_X30; ++i)
668
_msContext.X[i - UNW_AARCH64_X0] = r.getRegister(i);
669
_msContext.Sp = r.getRegister(UNW_REG_SP);
670
_msContext.Pc = r.getRegister(UNW_REG_IP);
671
for (int i = UNW_AARCH64_V0; i <= UNW_ARM64_D31; ++i)
672
_msContext.V[i - UNW_AARCH64_V0].D[0] = r.getFloatRegister(i);
673
#endif
674
}
675
676
template <typename A, typename R>
677
UnwindCursor<A, R>::UnwindCursor(CONTEXT *context, A &as)
678
: _addressSpace(as), _unwindInfoMissing(false) {
679
static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
680
"UnwindCursor<> does not fit in unw_cursor_t");
681
memset(&_info, 0, sizeof(_info));
682
memset(&_histTable, 0, sizeof(_histTable));
683
memset(&_dispContext, 0, sizeof(_dispContext));
684
_dispContext.ContextRecord = &_msContext;
685
_dispContext.HistoryTable = &_histTable;
686
_msContext = *context;
687
}
688
689
690
template <typename A, typename R>
691
bool UnwindCursor<A, R>::validReg(int regNum) {
692
if (regNum == UNW_REG_IP || regNum == UNW_REG_SP) return true;
693
#if defined(_LIBUNWIND_TARGET_X86_64)
694
if (regNum >= UNW_X86_64_RAX && regNum <= UNW_X86_64_RIP) return true;
695
#elif defined(_LIBUNWIND_TARGET_ARM)
696
if ((regNum >= UNW_ARM_R0 && regNum <= UNW_ARM_R15) ||
697
regNum == UNW_ARM_RA_AUTH_CODE)
698
return true;
699
#elif defined(_LIBUNWIND_TARGET_AARCH64)
700
if (regNum >= UNW_AARCH64_X0 && regNum <= UNW_ARM64_X30) return true;
701
#endif
702
return false;
703
}
704
705
template <typename A, typename R>
706
unw_word_t UnwindCursor<A, R>::getReg(int regNum) {
707
switch (regNum) {
708
#if defined(_LIBUNWIND_TARGET_X86_64)
709
case UNW_X86_64_RIP:
710
case UNW_REG_IP: return _msContext.Rip;
711
case UNW_X86_64_RAX: return _msContext.Rax;
712
case UNW_X86_64_RDX: return _msContext.Rdx;
713
case UNW_X86_64_RCX: return _msContext.Rcx;
714
case UNW_X86_64_RBX: return _msContext.Rbx;
715
case UNW_REG_SP:
716
case UNW_X86_64_RSP: return _msContext.Rsp;
717
case UNW_X86_64_RBP: return _msContext.Rbp;
718
case UNW_X86_64_RSI: return _msContext.Rsi;
719
case UNW_X86_64_RDI: return _msContext.Rdi;
720
case UNW_X86_64_R8: return _msContext.R8;
721
case UNW_X86_64_R9: return _msContext.R9;
722
case UNW_X86_64_R10: return _msContext.R10;
723
case UNW_X86_64_R11: return _msContext.R11;
724
case UNW_X86_64_R12: return _msContext.R12;
725
case UNW_X86_64_R13: return _msContext.R13;
726
case UNW_X86_64_R14: return _msContext.R14;
727
case UNW_X86_64_R15: return _msContext.R15;
728
#elif defined(_LIBUNWIND_TARGET_ARM)
729
case UNW_ARM_R0: return _msContext.R0;
730
case UNW_ARM_R1: return _msContext.R1;
731
case UNW_ARM_R2: return _msContext.R2;
732
case UNW_ARM_R3: return _msContext.R3;
733
case UNW_ARM_R4: return _msContext.R4;
734
case UNW_ARM_R5: return _msContext.R5;
735
case UNW_ARM_R6: return _msContext.R6;
736
case UNW_ARM_R7: return _msContext.R7;
737
case UNW_ARM_R8: return _msContext.R8;
738
case UNW_ARM_R9: return _msContext.R9;
739
case UNW_ARM_R10: return _msContext.R10;
740
case UNW_ARM_R11: return _msContext.R11;
741
case UNW_ARM_R12: return _msContext.R12;
742
case UNW_REG_SP:
743
case UNW_ARM_SP: return _msContext.Sp;
744
case UNW_ARM_LR: return _msContext.Lr;
745
case UNW_REG_IP:
746
case UNW_ARM_IP: return _msContext.Pc;
747
#elif defined(_LIBUNWIND_TARGET_AARCH64)
748
case UNW_REG_SP: return _msContext.Sp;
749
case UNW_REG_IP: return _msContext.Pc;
750
default: return _msContext.X[regNum - UNW_AARCH64_X0];
751
#endif
752
}
753
_LIBUNWIND_ABORT("unsupported register");
754
}
755
756
template <typename A, typename R>
757
void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) {
758
switch (regNum) {
759
#if defined(_LIBUNWIND_TARGET_X86_64)
760
case UNW_X86_64_RIP:
761
case UNW_REG_IP: _msContext.Rip = value; break;
762
case UNW_X86_64_RAX: _msContext.Rax = value; break;
763
case UNW_X86_64_RDX: _msContext.Rdx = value; break;
764
case UNW_X86_64_RCX: _msContext.Rcx = value; break;
765
case UNW_X86_64_RBX: _msContext.Rbx = value; break;
766
case UNW_REG_SP:
767
case UNW_X86_64_RSP: _msContext.Rsp = value; break;
768
case UNW_X86_64_RBP: _msContext.Rbp = value; break;
769
case UNW_X86_64_RSI: _msContext.Rsi = value; break;
770
case UNW_X86_64_RDI: _msContext.Rdi = value; break;
771
case UNW_X86_64_R8: _msContext.R8 = value; break;
772
case UNW_X86_64_R9: _msContext.R9 = value; break;
773
case UNW_X86_64_R10: _msContext.R10 = value; break;
774
case UNW_X86_64_R11: _msContext.R11 = value; break;
775
case UNW_X86_64_R12: _msContext.R12 = value; break;
776
case UNW_X86_64_R13: _msContext.R13 = value; break;
777
case UNW_X86_64_R14: _msContext.R14 = value; break;
778
case UNW_X86_64_R15: _msContext.R15 = value; break;
779
#elif defined(_LIBUNWIND_TARGET_ARM)
780
case UNW_ARM_R0: _msContext.R0 = value; break;
781
case UNW_ARM_R1: _msContext.R1 = value; break;
782
case UNW_ARM_R2: _msContext.R2 = value; break;
783
case UNW_ARM_R3: _msContext.R3 = value; break;
784
case UNW_ARM_R4: _msContext.R4 = value; break;
785
case UNW_ARM_R5: _msContext.R5 = value; break;
786
case UNW_ARM_R6: _msContext.R6 = value; break;
787
case UNW_ARM_R7: _msContext.R7 = value; break;
788
case UNW_ARM_R8: _msContext.R8 = value; break;
789
case UNW_ARM_R9: _msContext.R9 = value; break;
790
case UNW_ARM_R10: _msContext.R10 = value; break;
791
case UNW_ARM_R11: _msContext.R11 = value; break;
792
case UNW_ARM_R12: _msContext.R12 = value; break;
793
case UNW_REG_SP:
794
case UNW_ARM_SP: _msContext.Sp = value; break;
795
case UNW_ARM_LR: _msContext.Lr = value; break;
796
case UNW_REG_IP:
797
case UNW_ARM_IP: _msContext.Pc = value; break;
798
#elif defined(_LIBUNWIND_TARGET_AARCH64)
799
case UNW_REG_SP: _msContext.Sp = value; break;
800
case UNW_REG_IP: _msContext.Pc = value; break;
801
case UNW_AARCH64_X0:
802
case UNW_AARCH64_X1:
803
case UNW_AARCH64_X2:
804
case UNW_AARCH64_X3:
805
case UNW_AARCH64_X4:
806
case UNW_AARCH64_X5:
807
case UNW_AARCH64_X6:
808
case UNW_AARCH64_X7:
809
case UNW_AARCH64_X8:
810
case UNW_AARCH64_X9:
811
case UNW_AARCH64_X10:
812
case UNW_AARCH64_X11:
813
case UNW_AARCH64_X12:
814
case UNW_AARCH64_X13:
815
case UNW_AARCH64_X14:
816
case UNW_AARCH64_X15:
817
case UNW_AARCH64_X16:
818
case UNW_AARCH64_X17:
819
case UNW_AARCH64_X18:
820
case UNW_AARCH64_X19:
821
case UNW_AARCH64_X20:
822
case UNW_AARCH64_X21:
823
case UNW_AARCH64_X22:
824
case UNW_AARCH64_X23:
825
case UNW_AARCH64_X24:
826
case UNW_AARCH64_X25:
827
case UNW_AARCH64_X26:
828
case UNW_AARCH64_X27:
829
case UNW_AARCH64_X28:
830
case UNW_AARCH64_FP:
831
case UNW_AARCH64_LR: _msContext.X[regNum - UNW_ARM64_X0] = value; break;
832
#endif
833
default:
834
_LIBUNWIND_ABORT("unsupported register");
835
}
836
}
837
838
template <typename A, typename R>
839
bool UnwindCursor<A, R>::validFloatReg(int regNum) {
840
#if defined(_LIBUNWIND_TARGET_ARM)
841
if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) return true;
842
if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) return true;
843
#elif defined(_LIBUNWIND_TARGET_AARCH64)
844
if (regNum >= UNW_AARCH64_V0 && regNum <= UNW_ARM64_D31) return true;
845
#else
846
(void)regNum;
847
#endif
848
return false;
849
}
850
851
template <typename A, typename R>
852
unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) {
853
#if defined(_LIBUNWIND_TARGET_ARM)
854
if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) {
855
union {
856
uint32_t w;
857
float f;
858
} d;
859
d.w = _msContext.S[regNum - UNW_ARM_S0];
860
return d.f;
861
}
862
if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) {
863
union {
864
uint64_t w;
865
double d;
866
} d;
867
d.w = _msContext.D[regNum - UNW_ARM_D0];
868
return d.d;
869
}
870
_LIBUNWIND_ABORT("unsupported float register");
871
#elif defined(_LIBUNWIND_TARGET_AARCH64)
872
return _msContext.V[regNum - UNW_AARCH64_V0].D[0];
873
#else
874
(void)regNum;
875
_LIBUNWIND_ABORT("float registers unimplemented");
876
#endif
877
}
878
879
template <typename A, typename R>
880
void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) {
881
#if defined(_LIBUNWIND_TARGET_ARM)
882
if (regNum >= UNW_ARM_S0 && regNum <= UNW_ARM_S31) {
883
union {
884
uint32_t w;
885
float f;
886
} d;
887
d.f = (float)value;
888
_msContext.S[regNum - UNW_ARM_S0] = d.w;
889
}
890
if (regNum >= UNW_ARM_D0 && regNum <= UNW_ARM_D31) {
891
union {
892
uint64_t w;
893
double d;
894
} d;
895
d.d = value;
896
_msContext.D[regNum - UNW_ARM_D0] = d.w;
897
}
898
_LIBUNWIND_ABORT("unsupported float register");
899
#elif defined(_LIBUNWIND_TARGET_AARCH64)
900
_msContext.V[regNum - UNW_AARCH64_V0].D[0] = value;
901
#else
902
(void)regNum;
903
(void)value;
904
_LIBUNWIND_ABORT("float registers unimplemented");
905
#endif
906
}
907
908
template <typename A, typename R> void UnwindCursor<A, R>::jumpto() {
909
RtlRestoreContext(&_msContext, nullptr);
910
}
911
912
#ifdef __arm__
913
template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {}
914
#endif
915
916
template <typename A, typename R>
917
const char *UnwindCursor<A, R>::getRegisterName(int regNum) {
918
return R::getRegisterName(regNum);
919
}
920
921
template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() {
922
return false;
923
}
924
925
#else // !defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) || !defined(_WIN32)
926
927
/// UnwindCursor contains all state (including all register values) during
928
/// an unwind. This is normally stack allocated inside a unw_cursor_t.
929
template <typename A, typename R>
930
class UnwindCursor : public AbstractUnwindCursor{
931
typedef typename A::pint_t pint_t;
932
public:
933
UnwindCursor(unw_context_t *context, A &as);
934
UnwindCursor(A &as, void *threadArg);
935
virtual ~UnwindCursor() {}
936
virtual bool validReg(int);
937
virtual unw_word_t getReg(int);
938
virtual void setReg(int, unw_word_t);
939
virtual bool validFloatReg(int);
940
virtual unw_fpreg_t getFloatReg(int);
941
virtual void setFloatReg(int, unw_fpreg_t);
942
virtual int step(bool stage2 = false);
943
virtual void getInfo(unw_proc_info_t *);
944
virtual void jumpto();
945
virtual bool isSignalFrame();
946
virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off);
947
virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false);
948
virtual const char *getRegisterName(int num);
949
#ifdef __arm__
950
virtual void saveVFPAsX();
951
#endif
952
953
#ifdef _AIX
954
virtual uintptr_t getDataRelBase();
955
#endif
956
957
#if defined(_LIBUNWIND_USE_CET) || defined(_LIBUNWIND_USE_GCS)
958
virtual void *get_registers() { return &_registers; }
959
#endif
960
961
// libunwind does not and should not depend on C++ library which means that we
962
// need our own definition of inline placement new.
963
static void *operator new(size_t, UnwindCursor<A, R> *p) { return p; }
964
965
private:
966
967
#if defined(_LIBUNWIND_ARM_EHABI)
968
bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections &sects);
969
970
int stepWithEHABI() {
971
size_t len = 0;
972
size_t off = 0;
973
// FIXME: Calling decode_eht_entry() here is violating the libunwind
974
// abstraction layer.
975
const uint32_t *ehtp =
976
decode_eht_entry(reinterpret_cast<const uint32_t *>(_info.unwind_info),
977
&off, &len);
978
if (_Unwind_VRS_Interpret((_Unwind_Context *)this, ehtp, off, len) !=
979
_URC_CONTINUE_UNWIND)
980
return UNW_STEP_END;
981
return UNW_STEP_SUCCESS;
982
}
983
#endif
984
985
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
986
bool setInfoForSigReturn() {
987
R dummy;
988
return setInfoForSigReturn(dummy);
989
}
990
int stepThroughSigReturn() {
991
R dummy;
992
return stepThroughSigReturn(dummy);
993
}
994
bool isReadableAddr(const pint_t addr) const;
995
#if defined(_LIBUNWIND_TARGET_AARCH64)
996
bool setInfoForSigReturn(Registers_arm64 &);
997
int stepThroughSigReturn(Registers_arm64 &);
998
#endif
999
#if defined(_LIBUNWIND_TARGET_RISCV)
1000
bool setInfoForSigReturn(Registers_riscv &);
1001
int stepThroughSigReturn(Registers_riscv &);
1002
#endif
1003
#if defined(_LIBUNWIND_TARGET_S390X)
1004
bool setInfoForSigReturn(Registers_s390x &);
1005
int stepThroughSigReturn(Registers_s390x &);
1006
#endif
1007
template <typename Registers> bool setInfoForSigReturn(Registers &) {
1008
return false;
1009
}
1010
template <typename Registers> int stepThroughSigReturn(Registers &) {
1011
return UNW_STEP_END;
1012
}
1013
#endif
1014
1015
#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1016
bool getInfoFromFdeCie(const typename CFI_Parser<A>::FDE_Info &fdeInfo,
1017
const typename CFI_Parser<A>::CIE_Info &cieInfo,
1018
pint_t pc, uintptr_t dso_base);
1019
bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections &sects,
1020
uint32_t fdeSectionOffsetHint=0);
1021
int stepWithDwarfFDE(bool stage2) {
1022
return DwarfInstructions<A, R>::stepWithDwarf(
1023
_addressSpace, (pint_t)this->getReg(UNW_REG_IP),
1024
(pint_t)_info.unwind_info, _registers, _isSignalFrame, stage2);
1025
}
1026
#endif
1027
1028
#if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
1029
bool getInfoFromCompactEncodingSection(pint_t pc,
1030
const UnwindInfoSections &sects);
1031
int stepWithCompactEncoding(bool stage2 = false) {
1032
#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1033
if ( compactSaysUseDwarf() )
1034
return stepWithDwarfFDE(stage2);
1035
#endif
1036
R dummy;
1037
return stepWithCompactEncoding(dummy);
1038
}
1039
1040
#if defined(_LIBUNWIND_TARGET_X86_64)
1041
int stepWithCompactEncoding(Registers_x86_64 &) {
1042
return CompactUnwinder_x86_64<A>::stepWithCompactEncoding(
1043
_info.format, _info.start_ip, _addressSpace, _registers);
1044
}
1045
#endif
1046
1047
#if defined(_LIBUNWIND_TARGET_I386)
1048
int stepWithCompactEncoding(Registers_x86 &) {
1049
return CompactUnwinder_x86<A>::stepWithCompactEncoding(
1050
_info.format, (uint32_t)_info.start_ip, _addressSpace, _registers);
1051
}
1052
#endif
1053
1054
#if defined(_LIBUNWIND_TARGET_PPC)
1055
int stepWithCompactEncoding(Registers_ppc &) {
1056
return UNW_EINVAL;
1057
}
1058
#endif
1059
1060
#if defined(_LIBUNWIND_TARGET_PPC64)
1061
int stepWithCompactEncoding(Registers_ppc64 &) {
1062
return UNW_EINVAL;
1063
}
1064
#endif
1065
1066
1067
#if defined(_LIBUNWIND_TARGET_AARCH64)
1068
int stepWithCompactEncoding(Registers_arm64 &) {
1069
return CompactUnwinder_arm64<A>::stepWithCompactEncoding(
1070
_info.format, _info.start_ip, _addressSpace, _registers);
1071
}
1072
#endif
1073
1074
#if defined(_LIBUNWIND_TARGET_MIPS_O32)
1075
int stepWithCompactEncoding(Registers_mips_o32 &) {
1076
return UNW_EINVAL;
1077
}
1078
#endif
1079
1080
#if defined(_LIBUNWIND_TARGET_MIPS_NEWABI)
1081
int stepWithCompactEncoding(Registers_mips_newabi &) {
1082
return UNW_EINVAL;
1083
}
1084
#endif
1085
1086
#if defined(_LIBUNWIND_TARGET_LOONGARCH)
1087
int stepWithCompactEncoding(Registers_loongarch &) { return UNW_EINVAL; }
1088
#endif
1089
1090
#if defined(_LIBUNWIND_TARGET_SPARC)
1091
int stepWithCompactEncoding(Registers_sparc &) { return UNW_EINVAL; }
1092
#endif
1093
1094
#if defined(_LIBUNWIND_TARGET_SPARC64)
1095
int stepWithCompactEncoding(Registers_sparc64 &) { return UNW_EINVAL; }
1096
#endif
1097
1098
#if defined (_LIBUNWIND_TARGET_RISCV)
1099
int stepWithCompactEncoding(Registers_riscv &) {
1100
return UNW_EINVAL;
1101
}
1102
#endif
1103
1104
bool compactSaysUseDwarf(uint32_t *offset=NULL) const {
1105
R dummy;
1106
return compactSaysUseDwarf(dummy, offset);
1107
}
1108
1109
#if defined(_LIBUNWIND_TARGET_X86_64)
1110
bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const {
1111
if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) {
1112
if (offset)
1113
*offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET);
1114
return true;
1115
}
1116
return false;
1117
}
1118
#endif
1119
1120
#if defined(_LIBUNWIND_TARGET_I386)
1121
bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const {
1122
if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) {
1123
if (offset)
1124
*offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET);
1125
return true;
1126
}
1127
return false;
1128
}
1129
#endif
1130
1131
#if defined(_LIBUNWIND_TARGET_PPC)
1132
bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const {
1133
return true;
1134
}
1135
#endif
1136
1137
#if defined(_LIBUNWIND_TARGET_PPC64)
1138
bool compactSaysUseDwarf(Registers_ppc64 &, uint32_t *) const {
1139
return true;
1140
}
1141
#endif
1142
1143
#if defined(_LIBUNWIND_TARGET_AARCH64)
1144
bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const {
1145
if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) {
1146
if (offset)
1147
*offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET);
1148
return true;
1149
}
1150
return false;
1151
}
1152
#endif
1153
1154
#if defined(_LIBUNWIND_TARGET_MIPS_O32)
1155
bool compactSaysUseDwarf(Registers_mips_o32 &, uint32_t *) const {
1156
return true;
1157
}
1158
#endif
1159
1160
#if defined(_LIBUNWIND_TARGET_MIPS_NEWABI)
1161
bool compactSaysUseDwarf(Registers_mips_newabi &, uint32_t *) const {
1162
return true;
1163
}
1164
#endif
1165
1166
#if defined(_LIBUNWIND_TARGET_LOONGARCH)
1167
bool compactSaysUseDwarf(Registers_loongarch &, uint32_t *) const {
1168
return true;
1169
}
1170
#endif
1171
1172
#if defined(_LIBUNWIND_TARGET_SPARC)
1173
bool compactSaysUseDwarf(Registers_sparc &, uint32_t *) const { return true; }
1174
#endif
1175
1176
#if defined(_LIBUNWIND_TARGET_SPARC64)
1177
bool compactSaysUseDwarf(Registers_sparc64 &, uint32_t *) const {
1178
return true;
1179
}
1180
#endif
1181
1182
#if defined (_LIBUNWIND_TARGET_RISCV)
1183
bool compactSaysUseDwarf(Registers_riscv &, uint32_t *) const {
1184
return true;
1185
}
1186
#endif
1187
1188
#endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
1189
1190
#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1191
compact_unwind_encoding_t dwarfEncoding() const {
1192
R dummy;
1193
return dwarfEncoding(dummy);
1194
}
1195
1196
#if defined(_LIBUNWIND_TARGET_X86_64)
1197
compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const {
1198
return UNWIND_X86_64_MODE_DWARF;
1199
}
1200
#endif
1201
1202
#if defined(_LIBUNWIND_TARGET_I386)
1203
compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const {
1204
return UNWIND_X86_MODE_DWARF;
1205
}
1206
#endif
1207
1208
#if defined(_LIBUNWIND_TARGET_PPC)
1209
compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const {
1210
return 0;
1211
}
1212
#endif
1213
1214
#if defined(_LIBUNWIND_TARGET_PPC64)
1215
compact_unwind_encoding_t dwarfEncoding(Registers_ppc64 &) const {
1216
return 0;
1217
}
1218
#endif
1219
1220
#if defined(_LIBUNWIND_TARGET_AARCH64)
1221
compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const {
1222
return UNWIND_ARM64_MODE_DWARF;
1223
}
1224
#endif
1225
1226
#if defined(_LIBUNWIND_TARGET_ARM)
1227
compact_unwind_encoding_t dwarfEncoding(Registers_arm &) const {
1228
return 0;
1229
}
1230
#endif
1231
1232
#if defined (_LIBUNWIND_TARGET_OR1K)
1233
compact_unwind_encoding_t dwarfEncoding(Registers_or1k &) const {
1234
return 0;
1235
}
1236
#endif
1237
1238
#if defined (_LIBUNWIND_TARGET_HEXAGON)
1239
compact_unwind_encoding_t dwarfEncoding(Registers_hexagon &) const {
1240
return 0;
1241
}
1242
#endif
1243
1244
#if defined (_LIBUNWIND_TARGET_MIPS_O32)
1245
compact_unwind_encoding_t dwarfEncoding(Registers_mips_o32 &) const {
1246
return 0;
1247
}
1248
#endif
1249
1250
#if defined (_LIBUNWIND_TARGET_MIPS_NEWABI)
1251
compact_unwind_encoding_t dwarfEncoding(Registers_mips_newabi &) const {
1252
return 0;
1253
}
1254
#endif
1255
1256
#if defined(_LIBUNWIND_TARGET_LOONGARCH)
1257
compact_unwind_encoding_t dwarfEncoding(Registers_loongarch &) const {
1258
return 0;
1259
}
1260
#endif
1261
1262
#if defined(_LIBUNWIND_TARGET_SPARC)
1263
compact_unwind_encoding_t dwarfEncoding(Registers_sparc &) const { return 0; }
1264
#endif
1265
1266
#if defined(_LIBUNWIND_TARGET_SPARC64)
1267
compact_unwind_encoding_t dwarfEncoding(Registers_sparc64 &) const {
1268
return 0;
1269
}
1270
#endif
1271
1272
#if defined (_LIBUNWIND_TARGET_RISCV)
1273
compact_unwind_encoding_t dwarfEncoding(Registers_riscv &) const {
1274
return 0;
1275
}
1276
#endif
1277
1278
#if defined (_LIBUNWIND_TARGET_S390X)
1279
compact_unwind_encoding_t dwarfEncoding(Registers_s390x &) const {
1280
return 0;
1281
}
1282
#endif
1283
1284
#endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1285
1286
#if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
1287
// For runtime environments using SEH unwind data without Windows runtime
1288
// support.
1289
pint_t getLastPC() const { /* FIXME: Implement */ return 0; }
1290
void setLastPC(pint_t pc) { /* FIXME: Implement */ }
1291
RUNTIME_FUNCTION *lookUpSEHUnwindInfo(pint_t pc, pint_t *base) {
1292
/* FIXME: Implement */
1293
*base = 0;
1294
return nullptr;
1295
}
1296
bool getInfoFromSEH(pint_t pc);
1297
int stepWithSEHData() { /* FIXME: Implement */ return 0; }
1298
#endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
1299
1300
#if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
1301
bool getInfoFromTBTable(pint_t pc, R &registers);
1302
int stepWithTBTable(pint_t pc, tbtable *TBTable, R &registers,
1303
bool &isSignalFrame);
1304
int stepWithTBTableData() {
1305
return stepWithTBTable(reinterpret_cast<pint_t>(this->getReg(UNW_REG_IP)),
1306
reinterpret_cast<tbtable *>(_info.unwind_info),
1307
_registers, _isSignalFrame);
1308
}
1309
#endif // defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
1310
1311
A &_addressSpace;
1312
R _registers;
1313
unw_proc_info_t _info;
1314
bool _unwindInfoMissing;
1315
bool _isSignalFrame;
1316
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
1317
bool _isSigReturn = false;
1318
#endif
1319
};
1320
1321
1322
template <typename A, typename R>
1323
UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as)
1324
: _addressSpace(as), _registers(context), _unwindInfoMissing(false),
1325
_isSignalFrame(false) {
1326
static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
1327
"UnwindCursor<> does not fit in unw_cursor_t");
1328
static_assert((alignof(UnwindCursor<A, R>) <= alignof(unw_cursor_t)),
1329
"UnwindCursor<> requires more alignment than unw_cursor_t");
1330
memset(&_info, 0, sizeof(_info));
1331
}
1332
1333
template <typename A, typename R>
1334
UnwindCursor<A, R>::UnwindCursor(A &as, void *)
1335
: _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) {
1336
memset(&_info, 0, sizeof(_info));
1337
// FIXME
1338
// fill in _registers from thread arg
1339
}
1340
1341
1342
template <typename A, typename R>
1343
bool UnwindCursor<A, R>::validReg(int regNum) {
1344
return _registers.validRegister(regNum);
1345
}
1346
1347
template <typename A, typename R>
1348
unw_word_t UnwindCursor<A, R>::getReg(int regNum) {
1349
return _registers.getRegister(regNum);
1350
}
1351
1352
template <typename A, typename R>
1353
void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) {
1354
_registers.setRegister(regNum, (typename A::pint_t)value);
1355
}
1356
1357
template <typename A, typename R>
1358
bool UnwindCursor<A, R>::validFloatReg(int regNum) {
1359
return _registers.validFloatRegister(regNum);
1360
}
1361
1362
template <typename A, typename R>
1363
unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) {
1364
return _registers.getFloatRegister(regNum);
1365
}
1366
1367
template <typename A, typename R>
1368
void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) {
1369
_registers.setFloatRegister(regNum, value);
1370
}
1371
1372
template <typename A, typename R> void UnwindCursor<A, R>::jumpto() {
1373
_registers.jumpto();
1374
}
1375
1376
#ifdef __arm__
1377
template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {
1378
_registers.saveVFPAsX();
1379
}
1380
#endif
1381
1382
#ifdef _AIX
1383
template <typename A, typename R>
1384
uintptr_t UnwindCursor<A, R>::getDataRelBase() {
1385
return reinterpret_cast<uintptr_t>(_info.extra);
1386
}
1387
#endif
1388
1389
template <typename A, typename R>
1390
const char *UnwindCursor<A, R>::getRegisterName(int regNum) {
1391
return _registers.getRegisterName(regNum);
1392
}
1393
1394
template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() {
1395
return _isSignalFrame;
1396
}
1397
1398
#endif // defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
1399
1400
#if defined(_LIBUNWIND_ARM_EHABI)
1401
template<typename A>
1402
struct EHABISectionIterator {
1403
typedef EHABISectionIterator _Self;
1404
1405
typedef typename A::pint_t value_type;
1406
typedef typename A::pint_t* pointer;
1407
typedef typename A::pint_t& reference;
1408
typedef size_t size_type;
1409
typedef size_t difference_type;
1410
1411
static _Self begin(A& addressSpace, const UnwindInfoSections& sects) {
1412
return _Self(addressSpace, sects, 0);
1413
}
1414
static _Self end(A& addressSpace, const UnwindInfoSections& sects) {
1415
return _Self(addressSpace, sects,
1416
sects.arm_section_length / sizeof(EHABIIndexEntry));
1417
}
1418
1419
EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i)
1420
: _i(i), _addressSpace(&addressSpace), _sects(&sects) {}
1421
1422
_Self& operator++() { ++_i; return *this; }
1423
_Self& operator+=(size_t a) { _i += a; return *this; }
1424
_Self& operator--() { assert(_i > 0); --_i; return *this; }
1425
_Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; }
1426
1427
_Self operator+(size_t a) { _Self out = *this; out._i += a; return out; }
1428
_Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; }
1429
1430
size_t operator-(const _Self& other) const { return _i - other._i; }
1431
1432
bool operator==(const _Self& other) const {
1433
assert(_addressSpace == other._addressSpace);
1434
assert(_sects == other._sects);
1435
return _i == other._i;
1436
}
1437
1438
bool operator!=(const _Self& other) const {
1439
assert(_addressSpace == other._addressSpace);
1440
assert(_sects == other._sects);
1441
return _i != other._i;
1442
}
1443
1444
typename A::pint_t operator*() const { return functionAddress(); }
1445
1446
typename A::pint_t functionAddress() const {
1447
typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
1448
EHABIIndexEntry, _i, functionOffset);
1449
return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr));
1450
}
1451
1452
typename A::pint_t dataAddress() {
1453
typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
1454
EHABIIndexEntry, _i, data);
1455
return indexAddr;
1456
}
1457
1458
private:
1459
size_t _i;
1460
A* _addressSpace;
1461
const UnwindInfoSections* _sects;
1462
};
1463
1464
namespace {
1465
1466
template <typename A>
1467
EHABISectionIterator<A> EHABISectionUpperBound(
1468
EHABISectionIterator<A> first,
1469
EHABISectionIterator<A> last,
1470
typename A::pint_t value) {
1471
size_t len = last - first;
1472
while (len > 0) {
1473
size_t l2 = len / 2;
1474
EHABISectionIterator<A> m = first + l2;
1475
if (value < *m) {
1476
len = l2;
1477
} else {
1478
first = ++m;
1479
len -= l2 + 1;
1480
}
1481
}
1482
return first;
1483
}
1484
1485
}
1486
1487
template <typename A, typename R>
1488
bool UnwindCursor<A, R>::getInfoFromEHABISection(
1489
pint_t pc,
1490
const UnwindInfoSections &sects) {
1491
EHABISectionIterator<A> begin =
1492
EHABISectionIterator<A>::begin(_addressSpace, sects);
1493
EHABISectionIterator<A> end =
1494
EHABISectionIterator<A>::end(_addressSpace, sects);
1495
if (begin == end)
1496
return false;
1497
1498
EHABISectionIterator<A> itNextPC = EHABISectionUpperBound(begin, end, pc);
1499
if (itNextPC == begin)
1500
return false;
1501
EHABISectionIterator<A> itThisPC = itNextPC - 1;
1502
1503
pint_t thisPC = itThisPC.functionAddress();
1504
// If an exception is thrown from a function, corresponding to the last entry
1505
// in the table, we don't really know the function extent and have to choose a
1506
// value for nextPC. Choosing max() will allow the range check during trace to
1507
// succeed.
1508
pint_t nextPC = (itNextPC == end) ? UINTPTR_MAX : itNextPC.functionAddress();
1509
pint_t indexDataAddr = itThisPC.dataAddress();
1510
1511
if (indexDataAddr == 0)
1512
return false;
1513
1514
uint32_t indexData = _addressSpace.get32(indexDataAddr);
1515
if (indexData == UNW_EXIDX_CANTUNWIND)
1516
return false;
1517
1518
// If the high bit is set, the exception handling table entry is inline inside
1519
// the index table entry on the second word (aka |indexDataAddr|). Otherwise,
1520
// the table points at an offset in the exception handling table (section 5
1521
// EHABI).
1522
pint_t exceptionTableAddr;
1523
uint32_t exceptionTableData;
1524
bool isSingleWordEHT;
1525
if (indexData & 0x80000000) {
1526
exceptionTableAddr = indexDataAddr;
1527
// TODO(ajwong): Should this data be 0?
1528
exceptionTableData = indexData;
1529
isSingleWordEHT = true;
1530
} else {
1531
exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData);
1532
exceptionTableData = _addressSpace.get32(exceptionTableAddr);
1533
isSingleWordEHT = false;
1534
}
1535
1536
// Now we know the 3 things:
1537
// exceptionTableAddr -- exception handler table entry.
1538
// exceptionTableData -- the data inside the first word of the eht entry.
1539
// isSingleWordEHT -- whether the entry is in the index.
1540
unw_word_t personalityRoutine = 0xbadf00d;
1541
bool scope32 = false;
1542
uintptr_t lsda;
1543
1544
// If the high bit in the exception handling table entry is set, the entry is
1545
// in compact form (section 6.3 EHABI).
1546
if (exceptionTableData & 0x80000000) {
1547
// Grab the index of the personality routine from the compact form.
1548
uint32_t choice = (exceptionTableData & 0x0f000000) >> 24;
1549
uint32_t extraWords = 0;
1550
switch (choice) {
1551
case 0:
1552
personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0;
1553
extraWords = 0;
1554
scope32 = false;
1555
lsda = isSingleWordEHT ? 0 : (exceptionTableAddr + 4);
1556
break;
1557
case 1:
1558
personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1;
1559
extraWords = (exceptionTableData & 0x00ff0000) >> 16;
1560
scope32 = false;
1561
lsda = exceptionTableAddr + (extraWords + 1) * 4;
1562
break;
1563
case 2:
1564
personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2;
1565
extraWords = (exceptionTableData & 0x00ff0000) >> 16;
1566
scope32 = true;
1567
lsda = exceptionTableAddr + (extraWords + 1) * 4;
1568
break;
1569
default:
1570
_LIBUNWIND_ABORT("unknown personality routine");
1571
return false;
1572
}
1573
1574
if (isSingleWordEHT) {
1575
if (extraWords != 0) {
1576
_LIBUNWIND_ABORT("index inlined table detected but pr function "
1577
"requires extra words");
1578
return false;
1579
}
1580
}
1581
} else {
1582
pint_t personalityAddr =
1583
exceptionTableAddr + signExtendPrel31(exceptionTableData);
1584
personalityRoutine = personalityAddr;
1585
1586
// ARM EHABI # 6.2, # 9.2
1587
//
1588
// +---- ehtp
1589
// v
1590
// +--------------------------------------+
1591
// | +--------+--------+--------+-------+ |
1592
// | |0| prel31 to personalityRoutine | |
1593
// | +--------+--------+--------+-------+ |
1594
// | | N | unwind opcodes | | <-- UnwindData
1595
// | +--------+--------+--------+-------+ |
1596
// | | Word 2 unwind opcodes | |
1597
// | +--------+--------+--------+-------+ |
1598
// | ... |
1599
// | +--------+--------+--------+-------+ |
1600
// | | Word N unwind opcodes | |
1601
// | +--------+--------+--------+-------+ |
1602
// | | LSDA | | <-- lsda
1603
// | | ... | |
1604
// | +--------+--------+--------+-------+ |
1605
// +--------------------------------------+
1606
1607
uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1;
1608
uint32_t FirstDataWord = *UnwindData;
1609
size_t N = ((FirstDataWord >> 24) & 0xff);
1610
size_t NDataWords = N + 1;
1611
lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords);
1612
}
1613
1614
_info.start_ip = thisPC;
1615
_info.end_ip = nextPC;
1616
_info.handler = personalityRoutine;
1617
_info.unwind_info = exceptionTableAddr;
1618
_info.lsda = lsda;
1619
// flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0.
1620
_info.flags = (isSingleWordEHT ? 1 : 0) | (scope32 ? 0x2 : 0); // Use enum?
1621
1622
return true;
1623
}
1624
#endif
1625
1626
#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1627
template <typename A, typename R>
1628
bool UnwindCursor<A, R>::getInfoFromFdeCie(
1629
const typename CFI_Parser<A>::FDE_Info &fdeInfo,
1630
const typename CFI_Parser<A>::CIE_Info &cieInfo, pint_t pc,
1631
uintptr_t dso_base) {
1632
typename CFI_Parser<A>::PrologInfo prolog;
1633
if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc,
1634
R::getArch(), &prolog)) {
1635
// Save off parsed FDE info
1636
_info.start_ip = fdeInfo.pcStart;
1637
_info.end_ip = fdeInfo.pcEnd;
1638
_info.lsda = fdeInfo.lsda;
1639
_info.handler = cieInfo.personality;
1640
// Some frameless functions need SP altered when resuming in function, so
1641
// propagate spExtraArgSize.
1642
_info.gp = prolog.spExtraArgSize;
1643
_info.flags = 0;
1644
_info.format = dwarfEncoding();
1645
_info.unwind_info = fdeInfo.fdeStart;
1646
_info.unwind_info_size = static_cast<uint32_t>(fdeInfo.fdeLength);
1647
_info.extra = static_cast<unw_word_t>(dso_base);
1648
return true;
1649
}
1650
return false;
1651
}
1652
1653
template <typename A, typename R>
1654
bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc,
1655
const UnwindInfoSections &sects,
1656
uint32_t fdeSectionOffsetHint) {
1657
typename CFI_Parser<A>::FDE_Info fdeInfo;
1658
typename CFI_Parser<A>::CIE_Info cieInfo;
1659
bool foundFDE = false;
1660
bool foundInCache = false;
1661
// If compact encoding table gave offset into dwarf section, go directly there
1662
if (fdeSectionOffsetHint != 0) {
1663
foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
1664
sects.dwarf_section_length,
1665
sects.dwarf_section + fdeSectionOffsetHint,
1666
&fdeInfo, &cieInfo);
1667
}
1668
#if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX)
1669
if (!foundFDE && (sects.dwarf_index_section != 0)) {
1670
foundFDE = EHHeaderParser<A>::findFDE(
1671
_addressSpace, pc, sects.dwarf_index_section,
1672
(uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo);
1673
}
1674
#endif
1675
if (!foundFDE) {
1676
// otherwise, search cache of previously found FDEs.
1677
pint_t cachedFDE = DwarfFDECache<A>::findFDE(sects.dso_base, pc);
1678
if (cachedFDE != 0) {
1679
foundFDE =
1680
CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
1681
sects.dwarf_section_length,
1682
cachedFDE, &fdeInfo, &cieInfo);
1683
foundInCache = foundFDE;
1684
}
1685
}
1686
if (!foundFDE) {
1687
// Still not found, do full scan of __eh_frame section.
1688
foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
1689
sects.dwarf_section_length, 0,
1690
&fdeInfo, &cieInfo);
1691
}
1692
if (foundFDE) {
1693
if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, sects.dso_base)) {
1694
// Add to cache (to make next lookup faster) if we had no hint
1695
// and there was no index.
1696
if (!foundInCache && (fdeSectionOffsetHint == 0)) {
1697
#if defined(_LIBUNWIND_SUPPORT_DWARF_INDEX)
1698
if (sects.dwarf_index_section == 0)
1699
#endif
1700
DwarfFDECache<A>::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd,
1701
fdeInfo.fdeStart);
1702
}
1703
return true;
1704
}
1705
}
1706
//_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX", (uint64_t)pc);
1707
return false;
1708
}
1709
#endif // defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
1710
1711
1712
#if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
1713
template <typename A, typename R>
1714
bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc,
1715
const UnwindInfoSections &sects) {
1716
const bool log = false;
1717
if (log)
1718
fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n",
1719
(uint64_t)pc, (uint64_t)sects.dso_base);
1720
1721
const UnwindSectionHeader<A> sectionHeader(_addressSpace,
1722
sects.compact_unwind_section);
1723
if (sectionHeader.version() != UNWIND_SECTION_VERSION)
1724
return false;
1725
1726
// do a binary search of top level index to find page with unwind info
1727
pint_t targetFunctionOffset = pc - sects.dso_base;
1728
const UnwindSectionIndexArray<A> topIndex(_addressSpace,
1729
sects.compact_unwind_section
1730
+ sectionHeader.indexSectionOffset());
1731
uint32_t low = 0;
1732
uint32_t high = sectionHeader.indexCount();
1733
uint32_t last = high - 1;
1734
while (low < high) {
1735
uint32_t mid = (low + high) / 2;
1736
//if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n",
1737
//mid, low, high, topIndex.functionOffset(mid));
1738
if (topIndex.functionOffset(mid) <= targetFunctionOffset) {
1739
if ((mid == last) ||
1740
(topIndex.functionOffset(mid + 1) > targetFunctionOffset)) {
1741
low = mid;
1742
break;
1743
} else {
1744
low = mid + 1;
1745
}
1746
} else {
1747
high = mid;
1748
}
1749
}
1750
const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low);
1751
const uint32_t firstLevelNextPageFunctionOffset =
1752
topIndex.functionOffset(low + 1);
1753
const pint_t secondLevelAddr =
1754
sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low);
1755
const pint_t lsdaArrayStartAddr =
1756
sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low);
1757
const pint_t lsdaArrayEndAddr =
1758
sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1);
1759
if (log)
1760
fprintf(stderr, "\tfirst level search for result index=%d "
1761
"to secondLevelAddr=0x%llX\n",
1762
low, (uint64_t) secondLevelAddr);
1763
// do a binary search of second level page index
1764
uint32_t encoding = 0;
1765
pint_t funcStart = 0;
1766
pint_t funcEnd = 0;
1767
pint_t lsda = 0;
1768
pint_t personality = 0;
1769
uint32_t pageKind = _addressSpace.get32(secondLevelAddr);
1770
if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) {
1771
// regular page
1772
UnwindSectionRegularPageHeader<A> pageHeader(_addressSpace,
1773
secondLevelAddr);
1774
UnwindSectionRegularArray<A> pageIndex(
1775
_addressSpace, secondLevelAddr + pageHeader.entryPageOffset());
1776
// binary search looks for entry with e where index[e].offset <= pc <
1777
// index[e+1].offset
1778
if (log)
1779
fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in "
1780
"regular page starting at secondLevelAddr=0x%llX\n",
1781
(uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr);
1782
low = 0;
1783
high = pageHeader.entryCount();
1784
while (low < high) {
1785
uint32_t mid = (low + high) / 2;
1786
if (pageIndex.functionOffset(mid) <= targetFunctionOffset) {
1787
if (mid == (uint32_t)(pageHeader.entryCount() - 1)) {
1788
// at end of table
1789
low = mid;
1790
funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base;
1791
break;
1792
} else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) {
1793
// next is too big, so we found it
1794
low = mid;
1795
funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base;
1796
break;
1797
} else {
1798
low = mid + 1;
1799
}
1800
} else {
1801
high = mid;
1802
}
1803
}
1804
encoding = pageIndex.encoding(low);
1805
funcStart = pageIndex.functionOffset(low) + sects.dso_base;
1806
if (pc < funcStart) {
1807
if (log)
1808
fprintf(
1809
stderr,
1810
"\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n",
1811
(uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd);
1812
return false;
1813
}
1814
if (pc > funcEnd) {
1815
if (log)
1816
fprintf(
1817
stderr,
1818
"\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n",
1819
(uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd);
1820
return false;
1821
}
1822
} else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) {
1823
// compressed page
1824
UnwindSectionCompressedPageHeader<A> pageHeader(_addressSpace,
1825
secondLevelAddr);
1826
UnwindSectionCompressedArray<A> pageIndex(
1827
_addressSpace, secondLevelAddr + pageHeader.entryPageOffset());
1828
const uint32_t targetFunctionPageOffset =
1829
(uint32_t)(targetFunctionOffset - firstLevelFunctionOffset);
1830
// binary search looks for entry with e where index[e].offset <= pc <
1831
// index[e+1].offset
1832
if (log)
1833
fprintf(stderr, "\tbinary search of compressed page starting at "
1834
"secondLevelAddr=0x%llX\n",
1835
(uint64_t) secondLevelAddr);
1836
low = 0;
1837
last = pageHeader.entryCount() - 1;
1838
high = pageHeader.entryCount();
1839
while (low < high) {
1840
uint32_t mid = (low + high) / 2;
1841
if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) {
1842
if ((mid == last) ||
1843
(pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) {
1844
low = mid;
1845
break;
1846
} else {
1847
low = mid + 1;
1848
}
1849
} else {
1850
high = mid;
1851
}
1852
}
1853
funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset
1854
+ sects.dso_base;
1855
if (low < last)
1856
funcEnd =
1857
pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset
1858
+ sects.dso_base;
1859
else
1860
funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base;
1861
if (pc < funcStart) {
1862
_LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX "
1863
"not in second level compressed unwind table. "
1864
"funcStart=0x%llX",
1865
(uint64_t) pc, (uint64_t) funcStart);
1866
return false;
1867
}
1868
if (pc > funcEnd) {
1869
_LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX "
1870
"not in second level compressed unwind table. "
1871
"funcEnd=0x%llX",
1872
(uint64_t) pc, (uint64_t) funcEnd);
1873
return false;
1874
}
1875
uint16_t encodingIndex = pageIndex.encodingIndex(low);
1876
if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) {
1877
// encoding is in common table in section header
1878
encoding = _addressSpace.get32(
1879
sects.compact_unwind_section +
1880
sectionHeader.commonEncodingsArraySectionOffset() +
1881
encodingIndex * sizeof(uint32_t));
1882
} else {
1883
// encoding is in page specific table
1884
uint16_t pageEncodingIndex =
1885
encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount();
1886
encoding = _addressSpace.get32(secondLevelAddr +
1887
pageHeader.encodingsPageOffset() +
1888
pageEncodingIndex * sizeof(uint32_t));
1889
}
1890
} else {
1891
_LIBUNWIND_DEBUG_LOG(
1892
"malformed __unwind_info at 0x%0llX bad second level page",
1893
(uint64_t)sects.compact_unwind_section);
1894
return false;
1895
}
1896
1897
// look up LSDA, if encoding says function has one
1898
if (encoding & UNWIND_HAS_LSDA) {
1899
UnwindSectionLsdaArray<A> lsdaIndex(_addressSpace, lsdaArrayStartAddr);
1900
uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base);
1901
low = 0;
1902
high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) /
1903
sizeof(unwind_info_section_header_lsda_index_entry);
1904
// binary search looks for entry with exact match for functionOffset
1905
if (log)
1906
fprintf(stderr,
1907
"\tbinary search of lsda table for targetFunctionOffset=0x%08X\n",
1908
funcStartOffset);
1909
while (low < high) {
1910
uint32_t mid = (low + high) / 2;
1911
if (lsdaIndex.functionOffset(mid) == funcStartOffset) {
1912
lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base;
1913
break;
1914
} else if (lsdaIndex.functionOffset(mid) < funcStartOffset) {
1915
low = mid + 1;
1916
} else {
1917
high = mid;
1918
}
1919
}
1920
if (lsda == 0) {
1921
_LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for "
1922
"pc=0x%0llX, but lsda table has no entry",
1923
encoding, (uint64_t) pc);
1924
return false;
1925
}
1926
}
1927
1928
// extract personality routine, if encoding says function has one
1929
uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >>
1930
(__builtin_ctz(UNWIND_PERSONALITY_MASK));
1931
if (personalityIndex != 0) {
1932
--personalityIndex; // change 1-based to zero-based index
1933
if (personalityIndex >= sectionHeader.personalityArrayCount()) {
1934
_LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d, "
1935
"but personality table has only %d entries",
1936
encoding, personalityIndex,
1937
sectionHeader.personalityArrayCount());
1938
return false;
1939
}
1940
int32_t personalityDelta = (int32_t)_addressSpace.get32(
1941
sects.compact_unwind_section +
1942
sectionHeader.personalityArraySectionOffset() +
1943
personalityIndex * sizeof(uint32_t));
1944
pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta;
1945
personality = _addressSpace.getP(personalityPointer);
1946
if (log)
1947
fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), "
1948
"personalityDelta=0x%08X, personality=0x%08llX\n",
1949
(uint64_t) pc, personalityDelta, (uint64_t) personality);
1950
}
1951
1952
if (log)
1953
fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), "
1954
"encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n",
1955
(uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart);
1956
_info.start_ip = funcStart;
1957
_info.end_ip = funcEnd;
1958
_info.lsda = lsda;
1959
_info.handler = personality;
1960
_info.gp = 0;
1961
_info.flags = 0;
1962
_info.format = encoding;
1963
_info.unwind_info = 0;
1964
_info.unwind_info_size = 0;
1965
_info.extra = sects.dso_base;
1966
return true;
1967
}
1968
#endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
1969
1970
1971
#if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
1972
template <typename A, typename R>
1973
bool UnwindCursor<A, R>::getInfoFromSEH(pint_t pc) {
1974
pint_t base;
1975
RUNTIME_FUNCTION *unwindEntry = lookUpSEHUnwindInfo(pc, &base);
1976
if (!unwindEntry) {
1977
_LIBUNWIND_DEBUG_LOG("\tpc not in table, pc=0x%llX", (uint64_t) pc);
1978
return false;
1979
}
1980
_info.gp = 0;
1981
_info.flags = 0;
1982
_info.format = 0;
1983
_info.unwind_info_size = sizeof(RUNTIME_FUNCTION);
1984
_info.unwind_info = reinterpret_cast<unw_word_t>(unwindEntry);
1985
_info.extra = base;
1986
_info.start_ip = base + unwindEntry->BeginAddress;
1987
#ifdef _LIBUNWIND_TARGET_X86_64
1988
_info.end_ip = base + unwindEntry->EndAddress;
1989
// Only fill in the handler and LSDA if they're stale.
1990
if (pc != getLastPC()) {
1991
UNWIND_INFO *xdata = reinterpret_cast<UNWIND_INFO *>(base + unwindEntry->UnwindData);
1992
if (xdata->Flags & (UNW_FLAG_EHANDLER|UNW_FLAG_UHANDLER)) {
1993
// The personality is given in the UNWIND_INFO itself. The LSDA immediately
1994
// follows the UNWIND_INFO. (This follows how both Clang and MSVC emit
1995
// these structures.)
1996
// N.B. UNWIND_INFO structs are DWORD-aligned.
1997
uint32_t lastcode = (xdata->CountOfCodes + 1) & ~1;
1998
const uint32_t *handler = reinterpret_cast<uint32_t *>(&xdata->UnwindCodes[lastcode]);
1999
_info.lsda = reinterpret_cast<unw_word_t>(handler+1);
2000
_dispContext.HandlerData = reinterpret_cast<void *>(_info.lsda);
2001
_dispContext.LanguageHandler =
2002
reinterpret_cast<EXCEPTION_ROUTINE *>(base + *handler);
2003
if (*handler) {
2004
_info.handler = reinterpret_cast<unw_word_t>(__libunwind_seh_personality);
2005
} else
2006
_info.handler = 0;
2007
} else {
2008
_info.lsda = 0;
2009
_info.handler = 0;
2010
}
2011
}
2012
#endif
2013
setLastPC(pc);
2014
return true;
2015
}
2016
#endif
2017
2018
#if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
2019
// Masks for traceback table field xtbtable.
2020
enum xTBTableMask : uint8_t {
2021
reservedBit = 0x02, // The traceback table was incorrectly generated if set
2022
// (see comments in function getInfoFromTBTable().
2023
ehInfoBit = 0x08 // Exception handling info is present if set
2024
};
2025
2026
enum frameType : unw_word_t {
2027
frameWithXLEHStateTable = 0,
2028
frameWithEHInfo = 1
2029
};
2030
2031
extern "C" {
2032
typedef _Unwind_Reason_Code __xlcxx_personality_v0_t(int, _Unwind_Action,
2033
uint64_t,
2034
_Unwind_Exception *,
2035
struct _Unwind_Context *);
2036
__attribute__((__weak__)) __xlcxx_personality_v0_t __xlcxx_personality_v0;
2037
}
2038
2039
static __xlcxx_personality_v0_t *xlcPersonalityV0;
2040
static RWMutex xlcPersonalityV0InitLock;
2041
2042
template <typename A, typename R>
2043
bool UnwindCursor<A, R>::getInfoFromTBTable(pint_t pc, R &registers) {
2044
uint32_t *p = reinterpret_cast<uint32_t *>(pc);
2045
2046
// Keep looking forward until a word of 0 is found. The traceback
2047
// table starts at the following word.
2048
while (*p)
2049
++p;
2050
tbtable *TBTable = reinterpret_cast<tbtable *>(p + 1);
2051
2052
if (_LIBUNWIND_TRACING_UNWINDING) {
2053
char functionBuf[512];
2054
const char *functionName = functionBuf;
2055
unw_word_t offset;
2056
if (!getFunctionName(functionBuf, sizeof(functionBuf), &offset)) {
2057
functionName = ".anonymous.";
2058
}
2059
_LIBUNWIND_TRACE_UNWINDING("%s: Look up traceback table of func=%s at %p",
2060
__func__, functionName,
2061
reinterpret_cast<void *>(TBTable));
2062
}
2063
2064
// If the traceback table does not contain necessary info, bypass this frame.
2065
if (!TBTable->tb.has_tboff)
2066
return false;
2067
2068
// Structure tbtable_ext contains important data we are looking for.
2069
p = reinterpret_cast<uint32_t *>(&TBTable->tb_ext);
2070
2071
// Skip field parminfo if it exists.
2072
if (TBTable->tb.fixedparms || TBTable->tb.floatparms)
2073
++p;
2074
2075
// p now points to tb_offset, the offset from start of function to TB table.
2076
unw_word_t start_ip =
2077
reinterpret_cast<unw_word_t>(TBTable) - *p - sizeof(uint32_t);
2078
unw_word_t end_ip = reinterpret_cast<unw_word_t>(TBTable);
2079
++p;
2080
2081
_LIBUNWIND_TRACE_UNWINDING("start_ip=%p, end_ip=%p\n",
2082
reinterpret_cast<void *>(start_ip),
2083
reinterpret_cast<void *>(end_ip));
2084
2085
// Skip field hand_mask if it exists.
2086
if (TBTable->tb.int_hndl)
2087
++p;
2088
2089
unw_word_t lsda = 0;
2090
unw_word_t handler = 0;
2091
unw_word_t flags = frameType::frameWithXLEHStateTable;
2092
2093
if (TBTable->tb.lang == TB_CPLUSPLUS && TBTable->tb.has_ctl) {
2094
// State table info is available. The ctl_info field indicates the
2095
// number of CTL anchors. There should be only one entry for the C++
2096
// state table.
2097
assert(*p == 1 && "libunwind: there must be only one ctl_info entry");
2098
++p;
2099
// p points to the offset of the state table into the stack.
2100
pint_t stateTableOffset = *p++;
2101
2102
int framePointerReg;
2103
2104
// Skip fields name_len and name if exist.
2105
if (TBTable->tb.name_present) {
2106
const uint16_t name_len = *(reinterpret_cast<uint16_t *>(p));
2107
p = reinterpret_cast<uint32_t *>(reinterpret_cast<char *>(p) + name_len +
2108
sizeof(uint16_t));
2109
}
2110
2111
if (TBTable->tb.uses_alloca)
2112
framePointerReg = *(reinterpret_cast<char *>(p));
2113
else
2114
framePointerReg = 1; // default frame pointer == SP
2115
2116
_LIBUNWIND_TRACE_UNWINDING(
2117
"framePointerReg=%d, framePointer=%p, "
2118
"stateTableOffset=%#lx\n",
2119
framePointerReg,
2120
reinterpret_cast<void *>(_registers.getRegister(framePointerReg)),
2121
stateTableOffset);
2122
lsda = _registers.getRegister(framePointerReg) + stateTableOffset;
2123
2124
// Since the traceback table generated by the legacy XLC++ does not
2125
// provide the location of the personality for the state table,
2126
// function __xlcxx_personality_v0(), which is the personality for the state
2127
// table and is exported from libc++abi, is directly assigned as the
2128
// handler here. When a legacy XLC++ frame is encountered, the symbol
2129
// is resolved dynamically using dlopen() to avoid hard dependency from
2130
// libunwind on libc++abi.
2131
2132
// Resolve the function pointer to the state table personality if it has
2133
// not already.
2134
if (xlcPersonalityV0 == NULL) {
2135
xlcPersonalityV0InitLock.lock();
2136
if (xlcPersonalityV0 == NULL) {
2137
// If libc++abi is statically linked in, symbol __xlcxx_personality_v0
2138
// has been resolved at the link time.
2139
xlcPersonalityV0 = &__xlcxx_personality_v0;
2140
if (xlcPersonalityV0 == NULL) {
2141
// libc++abi is dynamically linked. Resolve __xlcxx_personality_v0
2142
// using dlopen().
2143
const char libcxxabi[] = "libc++abi.a(libc++abi.so.1)";
2144
void *libHandle;
2145
// The AIX dlopen() sets errno to 0 when it is successful, which
2146
// clobbers the value of errno from the user code. This is an AIX
2147
// bug because according to POSIX it should not set errno to 0. To
2148
// workaround before AIX fixes the bug, errno is saved and restored.
2149
int saveErrno = errno;
2150
libHandle = dlopen(libcxxabi, RTLD_MEMBER | RTLD_NOW);
2151
if (libHandle == NULL) {
2152
_LIBUNWIND_TRACE_UNWINDING("dlopen() failed with errno=%d\n",
2153
errno);
2154
assert(0 && "dlopen() failed");
2155
}
2156
xlcPersonalityV0 = reinterpret_cast<__xlcxx_personality_v0_t *>(
2157
dlsym(libHandle, "__xlcxx_personality_v0"));
2158
if (xlcPersonalityV0 == NULL) {
2159
_LIBUNWIND_TRACE_UNWINDING("dlsym() failed with errno=%d\n", errno);
2160
assert(0 && "dlsym() failed");
2161
}
2162
dlclose(libHandle);
2163
errno = saveErrno;
2164
}
2165
}
2166
xlcPersonalityV0InitLock.unlock();
2167
}
2168
handler = reinterpret_cast<unw_word_t>(xlcPersonalityV0);
2169
_LIBUNWIND_TRACE_UNWINDING("State table: LSDA=%p, Personality=%p\n",
2170
reinterpret_cast<void *>(lsda),
2171
reinterpret_cast<void *>(handler));
2172
} else if (TBTable->tb.longtbtable) {
2173
// This frame has the traceback table extension. Possible cases are
2174
// 1) a C++ frame that has the 'eh_info' structure; 2) a C++ frame that
2175
// is not EH aware; or, 3) a frame of other languages. We need to figure out
2176
// if the traceback table extension contains the 'eh_info' structure.
2177
//
2178
// We also need to deal with the complexity arising from some XL compiler
2179
// versions use the wrong ordering of 'longtbtable' and 'has_vec' bits
2180
// where the 'longtbtable' bit is meant to be the 'has_vec' bit and vice
2181
// versa. For frames of code generated by those compilers, the 'longtbtable'
2182
// bit may be set but there isn't really a traceback table extension.
2183
//
2184
// In </usr/include/sys/debug.h>, there is the following definition of
2185
// 'struct tbtable_ext'. It is not really a structure but a dummy to
2186
// collect the description of optional parts of the traceback table.
2187
//
2188
// struct tbtable_ext {
2189
// ...
2190
// char alloca_reg; /* Register for alloca automatic storage */
2191
// struct vec_ext vec_ext; /* Vector extension (if has_vec is set) */
2192
// unsigned char xtbtable; /* More tbtable fields, if longtbtable is set*/
2193
// };
2194
//
2195
// Depending on how the 'has_vec'/'longtbtable' bit is interpreted, the data
2196
// following 'alloca_reg' can be treated either as 'struct vec_ext' or
2197
// 'unsigned char xtbtable'. 'xtbtable' bits are defined in
2198
// </usr/include/sys/debug.h> as flags. The 7th bit '0x02' is currently
2199
// unused and should not be set. 'struct vec_ext' is defined in
2200
// </usr/include/sys/debug.h> as follows:
2201
//
2202
// struct vec_ext {
2203
// unsigned vr_saved:6; /* Number of non-volatile vector regs saved
2204
// */
2205
// /* first register saved is assumed to be */
2206
// /* 32 - vr_saved */
2207
// unsigned saves_vrsave:1; /* Set if vrsave is saved on the stack */
2208
// unsigned has_varargs:1;
2209
// ...
2210
// };
2211
//
2212
// Here, the 7th bit is used as 'saves_vrsave'. To determine whether it
2213
// is 'struct vec_ext' or 'xtbtable' that follows 'alloca_reg',
2214
// we checks if the 7th bit is set or not because 'xtbtable' should
2215
// never have the 7th bit set. The 7th bit of 'xtbtable' will be reserved
2216
// in the future to make sure the mitigation works. This mitigation
2217
// is not 100% bullet proof because 'struct vec_ext' may not always have
2218
// 'saves_vrsave' bit set.
2219
//
2220
// 'reservedBit' is defined in enum 'xTBTableMask' above as the mask for
2221
// checking the 7th bit.
2222
2223
// p points to field name len.
2224
uint8_t *charPtr = reinterpret_cast<uint8_t *>(p);
2225
2226
// Skip fields name_len and name if they exist.
2227
if (TBTable->tb.name_present) {
2228
const uint16_t name_len = *(reinterpret_cast<uint16_t *>(charPtr));
2229
charPtr = charPtr + name_len + sizeof(uint16_t);
2230
}
2231
2232
// Skip field alloc_reg if it exists.
2233
if (TBTable->tb.uses_alloca)
2234
++charPtr;
2235
2236
// Check traceback table bit has_vec. Skip struct vec_ext if it exists.
2237
if (TBTable->tb.has_vec)
2238
// Note struct vec_ext does exist at this point because whether the
2239
// ordering of longtbtable and has_vec bits is correct or not, both
2240
// are set.
2241
charPtr += sizeof(struct vec_ext);
2242
2243
// charPtr points to field 'xtbtable'. Check if the EH info is available.
2244
// Also check if the reserved bit of the extended traceback table field
2245
// 'xtbtable' is set. If it is, the traceback table was incorrectly
2246
// generated by an XL compiler that uses the wrong ordering of 'longtbtable'
2247
// and 'has_vec' bits and this is in fact 'struct vec_ext'. So skip the
2248
// frame.
2249
if ((*charPtr & xTBTableMask::ehInfoBit) &&
2250
!(*charPtr & xTBTableMask::reservedBit)) {
2251
// Mark this frame has the new EH info.
2252
flags = frameType::frameWithEHInfo;
2253
2254
// eh_info is available.
2255
charPtr++;
2256
// The pointer is 4-byte aligned.
2257
if (reinterpret_cast<uintptr_t>(charPtr) % 4)
2258
charPtr += 4 - reinterpret_cast<uintptr_t>(charPtr) % 4;
2259
uintptr_t *ehInfo =
2260
reinterpret_cast<uintptr_t *>(*(reinterpret_cast<uintptr_t *>(
2261
registers.getRegister(2) +
2262
*(reinterpret_cast<uintptr_t *>(charPtr)))));
2263
2264
// ehInfo points to structure en_info. The first member is version.
2265
// Only version 0 is currently supported.
2266
assert(*(reinterpret_cast<uint32_t *>(ehInfo)) == 0 &&
2267
"libunwind: ehInfo version other than 0 is not supported");
2268
2269
// Increment ehInfo to point to member lsda.
2270
++ehInfo;
2271
lsda = *ehInfo++;
2272
2273
// enInfo now points to member personality.
2274
handler = *ehInfo;
2275
2276
_LIBUNWIND_TRACE_UNWINDING("Range table: LSDA=%#lx, Personality=%#lx\n",
2277
lsda, handler);
2278
}
2279
}
2280
2281
_info.start_ip = start_ip;
2282
_info.end_ip = end_ip;
2283
_info.lsda = lsda;
2284
_info.handler = handler;
2285
_info.gp = 0;
2286
_info.flags = flags;
2287
_info.format = 0;
2288
_info.unwind_info = reinterpret_cast<unw_word_t>(TBTable);
2289
_info.unwind_info_size = 0;
2290
_info.extra = registers.getRegister(2);
2291
2292
return true;
2293
}
2294
2295
// Step back up the stack following the frame back link.
2296
template <typename A, typename R>
2297
int UnwindCursor<A, R>::stepWithTBTable(pint_t pc, tbtable *TBTable,
2298
R &registers, bool &isSignalFrame) {
2299
if (_LIBUNWIND_TRACING_UNWINDING) {
2300
char functionBuf[512];
2301
const char *functionName = functionBuf;
2302
unw_word_t offset;
2303
if (!getFunctionName(functionBuf, sizeof(functionBuf), &offset)) {
2304
functionName = ".anonymous.";
2305
}
2306
_LIBUNWIND_TRACE_UNWINDING(
2307
"%s: Look up traceback table of func=%s at %p, pc=%p, "
2308
"SP=%p, saves_lr=%d, stores_bc=%d",
2309
__func__, functionName, reinterpret_cast<void *>(TBTable),
2310
reinterpret_cast<void *>(pc),
2311
reinterpret_cast<void *>(registers.getSP()), TBTable->tb.saves_lr,
2312
TBTable->tb.stores_bc);
2313
}
2314
2315
#if defined(__powerpc64__)
2316
// Instruction to reload TOC register "ld r2,40(r1)"
2317
const uint32_t loadTOCRegInst = 0xe8410028;
2318
const int32_t unwPPCF0Index = UNW_PPC64_F0;
2319
const int32_t unwPPCV0Index = UNW_PPC64_V0;
2320
#else
2321
// Instruction to reload TOC register "lwz r2,20(r1)"
2322
const uint32_t loadTOCRegInst = 0x80410014;
2323
const int32_t unwPPCF0Index = UNW_PPC_F0;
2324
const int32_t unwPPCV0Index = UNW_PPC_V0;
2325
#endif
2326
2327
// lastStack points to the stack frame of the next routine up.
2328
pint_t curStack = static_cast<pint_t>(registers.getSP());
2329
pint_t lastStack = *reinterpret_cast<pint_t *>(curStack);
2330
2331
if (lastStack == 0)
2332
return UNW_STEP_END;
2333
2334
R newRegisters = registers;
2335
2336
// If backchain is not stored, use the current stack frame.
2337
if (!TBTable->tb.stores_bc)
2338
lastStack = curStack;
2339
2340
// Return address is the address after call site instruction.
2341
pint_t returnAddress;
2342
2343
if (isSignalFrame) {
2344
_LIBUNWIND_TRACE_UNWINDING("Possible signal handler frame: lastStack=%p",
2345
reinterpret_cast<void *>(lastStack));
2346
2347
sigcontext *sigContext = reinterpret_cast<sigcontext *>(
2348
reinterpret_cast<char *>(lastStack) + STKMINALIGN);
2349
returnAddress = sigContext->sc_jmpbuf.jmp_context.iar;
2350
2351
bool useSTKMIN = false;
2352
if (returnAddress < 0x10000000) {
2353
// Try again using STKMIN.
2354
sigContext = reinterpret_cast<sigcontext *>(
2355
reinterpret_cast<char *>(lastStack) + STKMIN);
2356
returnAddress = sigContext->sc_jmpbuf.jmp_context.iar;
2357
if (returnAddress < 0x10000000) {
2358
_LIBUNWIND_TRACE_UNWINDING("Bad returnAddress=%p from sigcontext=%p",
2359
reinterpret_cast<void *>(returnAddress),
2360
reinterpret_cast<void *>(sigContext));
2361
return UNW_EBADFRAME;
2362
}
2363
useSTKMIN = true;
2364
}
2365
_LIBUNWIND_TRACE_UNWINDING("Returning from a signal handler %s: "
2366
"sigContext=%p, returnAddress=%p. "
2367
"Seems to be a valid address",
2368
useSTKMIN ? "STKMIN" : "STKMINALIGN",
2369
reinterpret_cast<void *>(sigContext),
2370
reinterpret_cast<void *>(returnAddress));
2371
2372
// Restore the condition register from sigcontext.
2373
newRegisters.setCR(sigContext->sc_jmpbuf.jmp_context.cr);
2374
2375
// Save the LR in sigcontext for stepping up when the function that
2376
// raised the signal is a leaf function. This LR has the return address
2377
// to the caller of the leaf function.
2378
newRegisters.setLR(sigContext->sc_jmpbuf.jmp_context.lr);
2379
_LIBUNWIND_TRACE_UNWINDING(
2380
"Save LR=%p from sigcontext",
2381
reinterpret_cast<void *>(sigContext->sc_jmpbuf.jmp_context.lr));
2382
2383
// Restore GPRs from sigcontext.
2384
for (int i = 0; i < 32; ++i)
2385
newRegisters.setRegister(i, sigContext->sc_jmpbuf.jmp_context.gpr[i]);
2386
2387
// Restore FPRs from sigcontext.
2388
for (int i = 0; i < 32; ++i)
2389
newRegisters.setFloatRegister(i + unwPPCF0Index,
2390
sigContext->sc_jmpbuf.jmp_context.fpr[i]);
2391
2392
// Restore vector registers if there is an associated extended context
2393
// structure.
2394
if (sigContext->sc_jmpbuf.jmp_context.msr & __EXTCTX) {
2395
ucontext_t *uContext = reinterpret_cast<ucontext_t *>(sigContext);
2396
if (uContext->__extctx->__extctx_magic == __EXTCTX_MAGIC) {
2397
for (int i = 0; i < 32; ++i)
2398
newRegisters.setVectorRegister(
2399
i + unwPPCV0Index, *(reinterpret_cast<v128 *>(
2400
&(uContext->__extctx->__vmx.__vr[i]))));
2401
}
2402
}
2403
} else {
2404
// Step up a normal frame.
2405
2406
if (!TBTable->tb.saves_lr && registers.getLR()) {
2407
// This case should only occur if we were called from a signal handler
2408
// and the signal occurred in a function that doesn't save the LR.
2409
returnAddress = static_cast<pint_t>(registers.getLR());
2410
_LIBUNWIND_TRACE_UNWINDING("Use saved LR=%p",
2411
reinterpret_cast<void *>(returnAddress));
2412
} else {
2413
// Otherwise, use the LR value in the stack link area.
2414
returnAddress = reinterpret_cast<pint_t *>(lastStack)[2];
2415
}
2416
2417
// Reset LR in the current context.
2418
newRegisters.setLR(static_cast<uintptr_t>(NULL));
2419
2420
_LIBUNWIND_TRACE_UNWINDING(
2421
"Extract info from lastStack=%p, returnAddress=%p",
2422
reinterpret_cast<void *>(lastStack),
2423
reinterpret_cast<void *>(returnAddress));
2424
_LIBUNWIND_TRACE_UNWINDING("fpr_regs=%d, gpr_regs=%d, saves_cr=%d",
2425
TBTable->tb.fpr_saved, TBTable->tb.gpr_saved,
2426
TBTable->tb.saves_cr);
2427
2428
// Restore FP registers.
2429
char *ptrToRegs = reinterpret_cast<char *>(lastStack);
2430
double *FPRegs = reinterpret_cast<double *>(
2431
ptrToRegs - (TBTable->tb.fpr_saved * sizeof(double)));
2432
for (int i = 0; i < TBTable->tb.fpr_saved; ++i)
2433
newRegisters.setFloatRegister(
2434
32 - TBTable->tb.fpr_saved + i + unwPPCF0Index, FPRegs[i]);
2435
2436
// Restore GP registers.
2437
ptrToRegs = reinterpret_cast<char *>(FPRegs);
2438
uintptr_t *GPRegs = reinterpret_cast<uintptr_t *>(
2439
ptrToRegs - (TBTable->tb.gpr_saved * sizeof(uintptr_t)));
2440
for (int i = 0; i < TBTable->tb.gpr_saved; ++i)
2441
newRegisters.setRegister(32 - TBTable->tb.gpr_saved + i, GPRegs[i]);
2442
2443
// Restore Vector registers.
2444
ptrToRegs = reinterpret_cast<char *>(GPRegs);
2445
2446
// Restore vector registers only if this is a Clang frame. Also
2447
// check if traceback table bit has_vec is set. If it is, structure
2448
// vec_ext is available.
2449
if (_info.flags == frameType::frameWithEHInfo && TBTable->tb.has_vec) {
2450
2451
// Get to the vec_ext structure to check if vector registers are saved.
2452
uint32_t *p = reinterpret_cast<uint32_t *>(&TBTable->tb_ext);
2453
2454
// Skip field parminfo if exists.
2455
if (TBTable->tb.fixedparms || TBTable->tb.floatparms)
2456
++p;
2457
2458
// Skip field tb_offset if exists.
2459
if (TBTable->tb.has_tboff)
2460
++p;
2461
2462
// Skip field hand_mask if exists.
2463
if (TBTable->tb.int_hndl)
2464
++p;
2465
2466
// Skip fields ctl_info and ctl_info_disp if exist.
2467
if (TBTable->tb.has_ctl) {
2468
// Skip field ctl_info.
2469
++p;
2470
// Skip field ctl_info_disp.
2471
++p;
2472
}
2473
2474
// Skip fields name_len and name if exist.
2475
// p is supposed to point to field name_len now.
2476
uint8_t *charPtr = reinterpret_cast<uint8_t *>(p);
2477
if (TBTable->tb.name_present) {
2478
const uint16_t name_len = *(reinterpret_cast<uint16_t *>(charPtr));
2479
charPtr = charPtr + name_len + sizeof(uint16_t);
2480
}
2481
2482
// Skip field alloc_reg if it exists.
2483
if (TBTable->tb.uses_alloca)
2484
++charPtr;
2485
2486
struct vec_ext *vec_ext = reinterpret_cast<struct vec_ext *>(charPtr);
2487
2488
_LIBUNWIND_TRACE_UNWINDING("vr_saved=%d", vec_ext->vr_saved);
2489
2490
// Restore vector register(s) if saved on the stack.
2491
if (vec_ext->vr_saved) {
2492
// Saved vector registers are 16-byte aligned.
2493
if (reinterpret_cast<uintptr_t>(ptrToRegs) % 16)
2494
ptrToRegs -= reinterpret_cast<uintptr_t>(ptrToRegs) % 16;
2495
v128 *VecRegs = reinterpret_cast<v128 *>(ptrToRegs - vec_ext->vr_saved *
2496
sizeof(v128));
2497
for (int i = 0; i < vec_ext->vr_saved; ++i) {
2498
newRegisters.setVectorRegister(
2499
32 - vec_ext->vr_saved + i + unwPPCV0Index, VecRegs[i]);
2500
}
2501
}
2502
}
2503
if (TBTable->tb.saves_cr) {
2504
// Get the saved condition register. The condition register is only
2505
// a single word.
2506
newRegisters.setCR(
2507
*(reinterpret_cast<uint32_t *>(lastStack + sizeof(uintptr_t))));
2508
}
2509
2510
// Restore the SP.
2511
newRegisters.setSP(lastStack);
2512
2513
// The first instruction after return.
2514
uint32_t firstInstruction = *(reinterpret_cast<uint32_t *>(returnAddress));
2515
2516
// Do we need to set the TOC register?
2517
_LIBUNWIND_TRACE_UNWINDING(
2518
"Current gpr2=%p",
2519
reinterpret_cast<void *>(newRegisters.getRegister(2)));
2520
if (firstInstruction == loadTOCRegInst) {
2521
_LIBUNWIND_TRACE_UNWINDING(
2522
"Set gpr2=%p from frame",
2523
reinterpret_cast<void *>(reinterpret_cast<pint_t *>(lastStack)[5]));
2524
newRegisters.setRegister(2, reinterpret_cast<pint_t *>(lastStack)[5]);
2525
}
2526
}
2527
_LIBUNWIND_TRACE_UNWINDING("lastStack=%p, returnAddress=%p, pc=%p\n",
2528
reinterpret_cast<void *>(lastStack),
2529
reinterpret_cast<void *>(returnAddress),
2530
reinterpret_cast<void *>(pc));
2531
2532
// The return address is the address after call site instruction, so
2533
// setting IP to that simulates a return.
2534
newRegisters.setIP(reinterpret_cast<uintptr_t>(returnAddress));
2535
2536
// Simulate the step by replacing the register set with the new ones.
2537
registers = newRegisters;
2538
2539
// Check if the next frame is a signal frame.
2540
pint_t nextStack = *(reinterpret_cast<pint_t *>(registers.getSP()));
2541
2542
// Return address is the address after call site instruction.
2543
pint_t nextReturnAddress = reinterpret_cast<pint_t *>(nextStack)[2];
2544
2545
if (nextReturnAddress > 0x01 && nextReturnAddress < 0x10000) {
2546
_LIBUNWIND_TRACE_UNWINDING("The next is a signal handler frame: "
2547
"nextStack=%p, next return address=%p\n",
2548
reinterpret_cast<void *>(nextStack),
2549
reinterpret_cast<void *>(nextReturnAddress));
2550
isSignalFrame = true;
2551
} else {
2552
isSignalFrame = false;
2553
}
2554
return UNW_STEP_SUCCESS;
2555
}
2556
#endif // defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
2557
2558
template <typename A, typename R>
2559
void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) {
2560
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
2561
_isSigReturn = false;
2562
#endif
2563
2564
pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP));
2565
#if defined(_LIBUNWIND_ARM_EHABI)
2566
// Remove the thumb bit so the IP represents the actual instruction address.
2567
// This matches the behaviour of _Unwind_GetIP on arm.
2568
pc &= (pint_t)~0x1;
2569
#endif
2570
2571
// Exit early if at the top of the stack.
2572
if (pc == 0) {
2573
_unwindInfoMissing = true;
2574
return;
2575
}
2576
2577
// If the last line of a function is a "throw" the compiler sometimes
2578
// emits no instructions after the call to __cxa_throw. This means
2579
// the return address is actually the start of the next function.
2580
// To disambiguate this, back up the pc when we know it is a return
2581
// address.
2582
if (isReturnAddress)
2583
#if defined(_AIX)
2584
// PC needs to be a 4-byte aligned address to be able to look for a
2585
// word of 0 that indicates the start of the traceback table at the end
2586
// of a function on AIX.
2587
pc -= 4;
2588
#else
2589
--pc;
2590
#endif
2591
2592
#if !(defined(_LIBUNWIND_SUPPORT_SEH_UNWIND) && defined(_WIN32)) && \
2593
!defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
2594
// In case of this is frame of signal handler, the IP saved in the signal
2595
// handler points to first non-executed instruction, while FDE/CIE expects IP
2596
// to be after the first non-executed instruction.
2597
if (_isSignalFrame)
2598
++pc;
2599
#endif
2600
2601
// Ask address space object to find unwind sections for this pc.
2602
UnwindInfoSections sects;
2603
if (_addressSpace.findUnwindSections(pc, sects)) {
2604
#if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
2605
// If there is a compact unwind encoding table, look there first.
2606
if (sects.compact_unwind_section != 0) {
2607
if (this->getInfoFromCompactEncodingSection(pc, sects)) {
2608
#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
2609
// Found info in table, done unless encoding says to use dwarf.
2610
uint32_t dwarfOffset;
2611
if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) {
2612
if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) {
2613
// found info in dwarf, done
2614
return;
2615
}
2616
}
2617
#endif
2618
// If unwind table has entry, but entry says there is no unwind info,
2619
// record that we have no unwind info.
2620
if (_info.format == 0)
2621
_unwindInfoMissing = true;
2622
return;
2623
}
2624
}
2625
#endif // defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
2626
2627
#if defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
2628
// If there is SEH unwind info, look there next.
2629
if (this->getInfoFromSEH(pc))
2630
return;
2631
#endif
2632
2633
#if defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
2634
// If there is unwind info in the traceback table, look there next.
2635
if (this->getInfoFromTBTable(pc, _registers))
2636
return;
2637
#endif
2638
2639
#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
2640
// If there is dwarf unwind info, look there next.
2641
if (sects.dwarf_section != 0) {
2642
if (this->getInfoFromDwarfSection(pc, sects)) {
2643
// found info in dwarf, done
2644
return;
2645
}
2646
}
2647
#endif
2648
2649
#if defined(_LIBUNWIND_ARM_EHABI)
2650
// If there is ARM EHABI unwind info, look there next.
2651
if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects))
2652
return;
2653
#endif
2654
}
2655
2656
#if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
2657
// There is no static unwind info for this pc. Look to see if an FDE was
2658
// dynamically registered for it.
2659
pint_t cachedFDE = DwarfFDECache<A>::findFDE(DwarfFDECache<A>::kSearchAll,
2660
pc);
2661
if (cachedFDE != 0) {
2662
typename CFI_Parser<A>::FDE_Info fdeInfo;
2663
typename CFI_Parser<A>::CIE_Info cieInfo;
2664
if (!CFI_Parser<A>::decodeFDE(_addressSpace, cachedFDE, &fdeInfo, &cieInfo))
2665
if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, 0))
2666
return;
2667
}
2668
2669
// Lastly, ask AddressSpace object about platform specific ways to locate
2670
// other FDEs.
2671
pint_t fde;
2672
if (_addressSpace.findOtherFDE(pc, fde)) {
2673
typename CFI_Parser<A>::FDE_Info fdeInfo;
2674
typename CFI_Parser<A>::CIE_Info cieInfo;
2675
if (!CFI_Parser<A>::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) {
2676
// Double check this FDE is for a function that includes the pc.
2677
if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd))
2678
if (getInfoFromFdeCie(fdeInfo, cieInfo, pc, 0))
2679
return;
2680
}
2681
}
2682
#endif // #if defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
2683
2684
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
2685
if (setInfoForSigReturn())
2686
return;
2687
#endif
2688
2689
// no unwind info, flag that we can't reliably unwind
2690
_unwindInfoMissing = true;
2691
}
2692
2693
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && \
2694
defined(_LIBUNWIND_TARGET_AARCH64)
2695
template <typename A, typename R>
2696
bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_arm64 &) {
2697
// Look for the sigreturn trampoline. The trampoline's body is two
2698
// specific instructions (see below). Typically the trampoline comes from the
2699
// vDSO[1] (i.e. the __kernel_rt_sigreturn function). A libc might provide its
2700
// own restorer function, though, or user-mode QEMU might write a trampoline
2701
// onto the stack.
2702
//
2703
// This special code path is a fallback that is only used if the trampoline
2704
// lacks proper (e.g. DWARF) unwind info. On AArch64, a new DWARF register
2705
// constant for the PC needs to be defined before DWARF can handle a signal
2706
// trampoline. This code may segfault if the target PC is unreadable, e.g.:
2707
// - The PC points at a function compiled without unwind info, and which is
2708
// part of an execute-only mapping (e.g. using -Wl,--execute-only).
2709
// - The PC is invalid and happens to point to unreadable or unmapped memory.
2710
//
2711
// [1] https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/vdso/sigreturn.S
2712
const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP));
2713
// The PC might contain an invalid address if the unwind info is bad, so
2714
// directly accessing it could cause a SIGSEGV.
2715
if (!isReadableAddr(pc))
2716
return false;
2717
auto *instructions = reinterpret_cast<const uint32_t *>(pc);
2718
// Look for instructions: mov x8, #0x8b; svc #0x0
2719
if (instructions[0] != 0xd2801168 || instructions[1] != 0xd4000001)
2720
return false;
2721
2722
_info = {};
2723
_info.start_ip = pc;
2724
_info.end_ip = pc + 4;
2725
_isSigReturn = true;
2726
return true;
2727
}
2728
2729
template <typename A, typename R>
2730
int UnwindCursor<A, R>::stepThroughSigReturn(Registers_arm64 &) {
2731
// In the signal trampoline frame, sp points to an rt_sigframe[1], which is:
2732
// - 128-byte siginfo struct
2733
// - ucontext struct:
2734
// - 8-byte long (uc_flags)
2735
// - 8-byte pointer (uc_link)
2736
// - 24-byte stack_t
2737
// - 128-byte signal set
2738
// - 8 bytes of padding because sigcontext has 16-byte alignment
2739
// - sigcontext/mcontext_t
2740
// [1] https://github.com/torvalds/linux/blob/master/arch/arm64/kernel/signal.c
2741
const pint_t kOffsetSpToSigcontext = (128 + 8 + 8 + 24 + 128 + 8); // 304
2742
2743
// Offsets from sigcontext to each register.
2744
const pint_t kOffsetGprs = 8; // offset to "__u64 regs[31]" field
2745
const pint_t kOffsetSp = 256; // offset to "__u64 sp" field
2746
const pint_t kOffsetPc = 264; // offset to "__u64 pc" field
2747
2748
pint_t sigctx = _registers.getSP() + kOffsetSpToSigcontext;
2749
2750
for (int i = 0; i <= 30; ++i) {
2751
uint64_t value = _addressSpace.get64(sigctx + kOffsetGprs +
2752
static_cast<pint_t>(i * 8));
2753
_registers.setRegister(UNW_AARCH64_X0 + i, value);
2754
}
2755
_registers.setSP(_addressSpace.get64(sigctx + kOffsetSp));
2756
_registers.setIP(_addressSpace.get64(sigctx + kOffsetPc));
2757
_isSignalFrame = true;
2758
return UNW_STEP_SUCCESS;
2759
}
2760
#endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&
2761
// defined(_LIBUNWIND_TARGET_AARCH64)
2762
2763
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && \
2764
defined(_LIBUNWIND_TARGET_RISCV)
2765
template <typename A, typename R>
2766
bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_riscv &) {
2767
const pint_t pc = static_cast<pint_t>(getReg(UNW_REG_IP));
2768
// The PC might contain an invalid address if the unwind info is bad, so
2769
// directly accessing it could cause a SIGSEGV.
2770
if (!isReadableAddr(pc))
2771
return false;
2772
const auto *instructions = reinterpret_cast<const uint32_t *>(pc);
2773
// Look for the two instructions used in the sigreturn trampoline
2774
// __vdso_rt_sigreturn:
2775
//
2776
// 0x08b00893 li a7,0x8b
2777
// 0x00000073 ecall
2778
if (instructions[0] != 0x08b00893 || instructions[1] != 0x00000073)
2779
return false;
2780
2781
_info = {};
2782
_info.start_ip = pc;
2783
_info.end_ip = pc + 4;
2784
_isSigReturn = true;
2785
return true;
2786
}
2787
2788
template <typename A, typename R>
2789
int UnwindCursor<A, R>::stepThroughSigReturn(Registers_riscv &) {
2790
// In the signal trampoline frame, sp points to an rt_sigframe[1], which is:
2791
// - 128-byte siginfo struct
2792
// - ucontext_t struct:
2793
// - 8-byte long (__uc_flags)
2794
// - 8-byte pointer (*uc_link)
2795
// - 24-byte uc_stack
2796
// - 8-byte uc_sigmask
2797
// - 120-byte of padding to allow sigset_t to be expanded in the future
2798
// - 8 bytes of padding because sigcontext has 16-byte alignment
2799
// - struct sigcontext uc_mcontext
2800
// [1]
2801
// https://github.com/torvalds/linux/blob/master/arch/riscv/kernel/signal.c
2802
const pint_t kOffsetSpToSigcontext = 128 + 8 + 8 + 24 + 8 + 128;
2803
2804
const pint_t sigctx = _registers.getSP() + kOffsetSpToSigcontext;
2805
_registers.setIP(_addressSpace.get64(sigctx));
2806
for (int i = UNW_RISCV_X1; i <= UNW_RISCV_X31; ++i) {
2807
uint64_t value = _addressSpace.get64(sigctx + static_cast<pint_t>(i * 8));
2808
_registers.setRegister(i, value);
2809
}
2810
_isSignalFrame = true;
2811
return UNW_STEP_SUCCESS;
2812
}
2813
#endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&
2814
// defined(_LIBUNWIND_TARGET_RISCV)
2815
2816
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) && \
2817
defined(_LIBUNWIND_TARGET_S390X)
2818
template <typename A, typename R>
2819
bool UnwindCursor<A, R>::setInfoForSigReturn(Registers_s390x &) {
2820
// Look for the sigreturn trampoline. The trampoline's body is a
2821
// specific instruction (see below). Typically the trampoline comes from the
2822
// vDSO (i.e. the __kernel_[rt_]sigreturn function). A libc might provide its
2823
// own restorer function, though, or user-mode QEMU might write a trampoline
2824
// onto the stack.
2825
const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP));
2826
// The PC might contain an invalid address if the unwind info is bad, so
2827
// directly accessing it could cause a SIGSEGV.
2828
if (!isReadableAddr(pc))
2829
return false;
2830
const auto inst = *reinterpret_cast<const uint16_t *>(pc);
2831
if (inst == 0x0a77 || inst == 0x0aad) {
2832
_info = {};
2833
_info.start_ip = pc;
2834
_info.end_ip = pc + 2;
2835
_isSigReturn = true;
2836
return true;
2837
}
2838
return false;
2839
}
2840
2841
template <typename A, typename R>
2842
int UnwindCursor<A, R>::stepThroughSigReturn(Registers_s390x &) {
2843
// Determine current SP.
2844
const pint_t sp = static_cast<pint_t>(this->getReg(UNW_REG_SP));
2845
// According to the s390x ABI, the CFA is at (incoming) SP + 160.
2846
const pint_t cfa = sp + 160;
2847
2848
// Determine current PC and instruction there (this must be either
2849
// a "svc __NR_sigreturn" or "svc __NR_rt_sigreturn").
2850
const pint_t pc = static_cast<pint_t>(this->getReg(UNW_REG_IP));
2851
const uint16_t inst = _addressSpace.get16(pc);
2852
2853
// Find the addresses of the signo and sigcontext in the frame.
2854
pint_t pSigctx = 0;
2855
pint_t pSigno = 0;
2856
2857
// "svc __NR_sigreturn" uses a non-RT signal trampoline frame.
2858
if (inst == 0x0a77) {
2859
// Layout of a non-RT signal trampoline frame, starting at the CFA:
2860
// - 8-byte signal mask
2861
// - 8-byte pointer to sigcontext, followed by signo
2862
// - 4-byte signo
2863
pSigctx = _addressSpace.get64(cfa + 8);
2864
pSigno = pSigctx + 344;
2865
}
2866
2867
// "svc __NR_rt_sigreturn" uses a RT signal trampoline frame.
2868
if (inst == 0x0aad) {
2869
// Layout of a RT signal trampoline frame, starting at the CFA:
2870
// - 8-byte retcode (+ alignment)
2871
// - 128-byte siginfo struct (starts with signo)
2872
// - ucontext struct:
2873
// - 8-byte long (uc_flags)
2874
// - 8-byte pointer (uc_link)
2875
// - 24-byte stack_t
2876
// - 8 bytes of padding because sigcontext has 16-byte alignment
2877
// - sigcontext/mcontext_t
2878
pSigctx = cfa + 8 + 128 + 8 + 8 + 24 + 8;
2879
pSigno = cfa + 8;
2880
}
2881
2882
assert(pSigctx != 0);
2883
assert(pSigno != 0);
2884
2885
// Offsets from sigcontext to each register.
2886
const pint_t kOffsetPc = 8;
2887
const pint_t kOffsetGprs = 16;
2888
const pint_t kOffsetFprs = 216;
2889
2890
// Restore all registers.
2891
for (int i = 0; i < 16; ++i) {
2892
uint64_t value = _addressSpace.get64(pSigctx + kOffsetGprs +
2893
static_cast<pint_t>(i * 8));
2894
_registers.setRegister(UNW_S390X_R0 + i, value);
2895
}
2896
for (int i = 0; i < 16; ++i) {
2897
static const int fpr[16] = {
2898
UNW_S390X_F0, UNW_S390X_F1, UNW_S390X_F2, UNW_S390X_F3,
2899
UNW_S390X_F4, UNW_S390X_F5, UNW_S390X_F6, UNW_S390X_F7,
2900
UNW_S390X_F8, UNW_S390X_F9, UNW_S390X_F10, UNW_S390X_F11,
2901
UNW_S390X_F12, UNW_S390X_F13, UNW_S390X_F14, UNW_S390X_F15
2902
};
2903
double value = _addressSpace.getDouble(pSigctx + kOffsetFprs +
2904
static_cast<pint_t>(i * 8));
2905
_registers.setFloatRegister(fpr[i], value);
2906
}
2907
_registers.setIP(_addressSpace.get64(pSigctx + kOffsetPc));
2908
2909
// SIGILL, SIGFPE and SIGTRAP are delivered with psw_addr
2910
// after the faulting instruction rather than before it.
2911
// Do not set _isSignalFrame in that case.
2912
uint32_t signo = _addressSpace.get32(pSigno);
2913
_isSignalFrame = (signo != 4 && signo != 5 && signo != 8);
2914
2915
return UNW_STEP_SUCCESS;
2916
}
2917
#endif // defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN) &&
2918
// defined(_LIBUNWIND_TARGET_S390X)
2919
2920
template <typename A, typename R> int UnwindCursor<A, R>::step(bool stage2) {
2921
(void)stage2;
2922
// Bottom of stack is defined is when unwind info cannot be found.
2923
if (_unwindInfoMissing)
2924
return UNW_STEP_END;
2925
2926
// Use unwinding info to modify register set as if function returned.
2927
int result;
2928
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
2929
if (_isSigReturn) {
2930
result = this->stepThroughSigReturn();
2931
} else
2932
#endif
2933
{
2934
#if defined(_LIBUNWIND_SUPPORT_COMPACT_UNWIND)
2935
result = this->stepWithCompactEncoding(stage2);
2936
#elif defined(_LIBUNWIND_SUPPORT_SEH_UNWIND)
2937
result = this->stepWithSEHData();
2938
#elif defined(_LIBUNWIND_SUPPORT_TBTAB_UNWIND)
2939
result = this->stepWithTBTableData();
2940
#elif defined(_LIBUNWIND_SUPPORT_DWARF_UNWIND)
2941
result = this->stepWithDwarfFDE(stage2);
2942
#elif defined(_LIBUNWIND_ARM_EHABI)
2943
result = this->stepWithEHABI();
2944
#else
2945
#error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \
2946
_LIBUNWIND_SUPPORT_SEH_UNWIND or \
2947
_LIBUNWIND_SUPPORT_DWARF_UNWIND or \
2948
_LIBUNWIND_ARM_EHABI
2949
#endif
2950
}
2951
2952
// update info based on new PC
2953
if (result == UNW_STEP_SUCCESS) {
2954
this->setInfoBasedOnIPRegister(true);
2955
if (_unwindInfoMissing)
2956
return UNW_STEP_END;
2957
}
2958
2959
return result;
2960
}
2961
2962
template <typename A, typename R>
2963
void UnwindCursor<A, R>::getInfo(unw_proc_info_t *info) {
2964
if (_unwindInfoMissing)
2965
memset(info, 0, sizeof(*info));
2966
else
2967
*info = _info;
2968
}
2969
2970
template <typename A, typename R>
2971
bool UnwindCursor<A, R>::getFunctionName(char *buf, size_t bufLen,
2972
unw_word_t *offset) {
2973
return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP),
2974
buf, bufLen, offset);
2975
}
2976
2977
#if defined(_LIBUNWIND_CHECK_LINUX_SIGRETURN)
2978
template <typename A, typename R>
2979
bool UnwindCursor<A, R>::isReadableAddr(const pint_t addr) const {
2980
// We use SYS_rt_sigprocmask, inspired by Abseil's AddressIsReadable.
2981
2982
const auto sigsetAddr = reinterpret_cast<sigset_t *>(addr);
2983
// We have to check that addr is nullptr because sigprocmask allows that
2984
// as an argument without failure.
2985
if (!sigsetAddr)
2986
return false;
2987
const auto saveErrno = errno;
2988
// We MUST use a raw syscall here, as wrappers may try to access
2989
// sigsetAddr which may cause a SIGSEGV. A raw syscall however is
2990
// safe. Additionally, we need to pass the kernel_sigset_size, which is
2991
// different from libc sizeof(sigset_t). For the majority of architectures,
2992
// it's 64 bits (_NSIG), and libc NSIG is _NSIG + 1.
2993
const auto kernelSigsetSize = NSIG / 8;
2994
[[maybe_unused]] const int Result = syscall(
2995
SYS_rt_sigprocmask, /*how=*/~0, sigsetAddr, nullptr, kernelSigsetSize);
2996
// Because our "how" is invalid, this syscall should always fail, and our
2997
// errno should always be EINVAL or an EFAULT. This relies on the Linux
2998
// kernel to check copy_from_user before checking if the "how" argument is
2999
// invalid.
3000
assert(Result == -1);
3001
assert(errno == EFAULT || errno == EINVAL);
3002
const auto readable = errno != EFAULT;
3003
errno = saveErrno;
3004
return readable;
3005
}
3006
#endif
3007
3008
#if defined(_LIBUNWIND_USE_CET) || defined(_LIBUNWIND_USE_GCS)
3009
extern "C" void *__libunwind_cet_get_registers(unw_cursor_t *cursor) {
3010
AbstractUnwindCursor *co = (AbstractUnwindCursor *)cursor;
3011
return co->get_registers();
3012
}
3013
#endif
3014
} // namespace libunwind
3015
3016
#endif // __UNWINDCURSOR_HPP__
3017
3018