Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lld/COFF/ICF.cpp
34870 views
1
//===- ICF.cpp ------------------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// ICF is short for Identical Code Folding. That is a size optimization to
10
// identify and merge two or more read-only sections (typically functions)
11
// that happened to have the same contents. It usually reduces output size
12
// by a few percent.
13
//
14
// On Windows, ICF is enabled by default.
15
//
16
// See ELF/ICF.cpp for the details about the algorithm.
17
//
18
//===----------------------------------------------------------------------===//
19
20
#include "ICF.h"
21
#include "COFFLinkerContext.h"
22
#include "Chunks.h"
23
#include "Symbols.h"
24
#include "lld/Common/ErrorHandler.h"
25
#include "lld/Common/Timer.h"
26
#include "llvm/ADT/Hashing.h"
27
#include "llvm/Support/Debug.h"
28
#include "llvm/Support/Parallel.h"
29
#include "llvm/Support/TimeProfiler.h"
30
#include "llvm/Support/raw_ostream.h"
31
#include "llvm/Support/xxhash.h"
32
#include <algorithm>
33
#include <atomic>
34
#include <vector>
35
36
using namespace llvm;
37
38
namespace lld::coff {
39
40
class ICF {
41
public:
42
ICF(COFFLinkerContext &c) : ctx(c){};
43
void run();
44
45
private:
46
void segregate(size_t begin, size_t end, bool constant);
47
48
bool assocEquals(const SectionChunk *a, const SectionChunk *b);
49
50
bool equalsConstant(const SectionChunk *a, const SectionChunk *b);
51
bool equalsVariable(const SectionChunk *a, const SectionChunk *b);
52
53
bool isEligible(SectionChunk *c);
54
55
size_t findBoundary(size_t begin, size_t end);
56
57
void forEachClassRange(size_t begin, size_t end,
58
std::function<void(size_t, size_t)> fn);
59
60
void forEachClass(std::function<void(size_t, size_t)> fn);
61
62
std::vector<SectionChunk *> chunks;
63
int cnt = 0;
64
std::atomic<bool> repeat = {false};
65
66
COFFLinkerContext &ctx;
67
};
68
69
// Returns true if section S is subject of ICF.
70
//
71
// Microsoft's documentation
72
// (https://msdn.microsoft.com/en-us/library/bxwfs976.aspx; visited April
73
// 2017) says that /opt:icf folds both functions and read-only data.
74
// Despite that, the MSVC linker folds only functions. We found
75
// a few instances of programs that are not safe for data merging.
76
// Therefore, we merge only functions just like the MSVC tool. However, we also
77
// merge read-only sections in a couple of cases where the address of the
78
// section is insignificant to the user program and the behaviour matches that
79
// of the Visual C++ linker.
80
bool ICF::isEligible(SectionChunk *c) {
81
// Non-comdat chunks, dead chunks, and writable chunks are not eligible.
82
bool writable = c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_WRITE;
83
if (!c->isCOMDAT() || !c->live || writable)
84
return false;
85
86
// Under regular (not safe) ICF, all code sections are eligible.
87
if ((ctx.config.doICF == ICFLevel::All) &&
88
c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_EXECUTE)
89
return true;
90
91
// .pdata and .xdata unwind info sections are eligible.
92
StringRef outSecName = c->getSectionName().split('$').first;
93
if (outSecName == ".pdata" || outSecName == ".xdata")
94
return true;
95
96
// So are vtables.
97
const char *itaniumVtablePrefix =
98
ctx.config.machine == I386 ? "__ZTV" : "_ZTV";
99
if (c->sym && (c->sym->getName().starts_with("??_7") ||
100
c->sym->getName().starts_with(itaniumVtablePrefix)))
101
return true;
102
103
// Anything else not in an address-significance table is eligible.
104
return !c->keepUnique;
105
}
106
107
// Split an equivalence class into smaller classes.
108
void ICF::segregate(size_t begin, size_t end, bool constant) {
109
while (begin < end) {
110
// Divide [Begin, End) into two. Let Mid be the start index of the
111
// second group.
112
auto bound = std::stable_partition(
113
chunks.begin() + begin + 1, chunks.begin() + end, [&](SectionChunk *s) {
114
if (constant)
115
return equalsConstant(chunks[begin], s);
116
return equalsVariable(chunks[begin], s);
117
});
118
size_t mid = bound - chunks.begin();
119
120
// Split [Begin, End) into [Begin, Mid) and [Mid, End). We use Mid as an
121
// equivalence class ID because every group ends with a unique index.
122
for (size_t i = begin; i < mid; ++i)
123
chunks[i]->eqClass[(cnt + 1) % 2] = mid;
124
125
// If we created a group, we need to iterate the main loop again.
126
if (mid != end)
127
repeat = true;
128
129
begin = mid;
130
}
131
}
132
133
// Returns true if two sections' associative children are equal.
134
bool ICF::assocEquals(const SectionChunk *a, const SectionChunk *b) {
135
// Ignore associated metadata sections that don't participate in ICF, such as
136
// debug info and CFGuard metadata.
137
auto considerForICF = [](const SectionChunk &assoc) {
138
StringRef Name = assoc.getSectionName();
139
return !(Name.starts_with(".debug") || Name == ".gfids$y" ||
140
Name == ".giats$y" || Name == ".gljmp$y");
141
};
142
auto ra = make_filter_range(a->children(), considerForICF);
143
auto rb = make_filter_range(b->children(), considerForICF);
144
return std::equal(ra.begin(), ra.end(), rb.begin(), rb.end(),
145
[&](const SectionChunk &ia, const SectionChunk &ib) {
146
return ia.eqClass[cnt % 2] == ib.eqClass[cnt % 2];
147
});
148
}
149
150
// Compare "non-moving" part of two sections, namely everything
151
// except relocation targets.
152
bool ICF::equalsConstant(const SectionChunk *a, const SectionChunk *b) {
153
if (a->relocsSize != b->relocsSize)
154
return false;
155
156
// Compare relocations.
157
auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
158
if (r1.Type != r2.Type ||
159
r1.VirtualAddress != r2.VirtualAddress) {
160
return false;
161
}
162
Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
163
Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
164
if (b1 == b2)
165
return true;
166
if (auto *d1 = dyn_cast<DefinedRegular>(b1))
167
if (auto *d2 = dyn_cast<DefinedRegular>(b2))
168
return d1->getValue() == d2->getValue() &&
169
d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
170
return false;
171
};
172
if (!std::equal(a->getRelocs().begin(), a->getRelocs().end(),
173
b->getRelocs().begin(), eq))
174
return false;
175
176
// Compare section attributes and contents.
177
return a->getOutputCharacteristics() == b->getOutputCharacteristics() &&
178
a->getSectionName() == b->getSectionName() &&
179
a->header->SizeOfRawData == b->header->SizeOfRawData &&
180
a->checksum == b->checksum && a->getContents() == b->getContents() &&
181
a->getMachine() == b->getMachine() && assocEquals(a, b);
182
}
183
184
// Compare "moving" part of two sections, namely relocation targets.
185
bool ICF::equalsVariable(const SectionChunk *a, const SectionChunk *b) {
186
// Compare relocations.
187
auto eqSym = [&](Symbol *b1, Symbol *b2) {
188
if (b1 == b2)
189
return true;
190
if (auto *d1 = dyn_cast<DefinedRegular>(b1))
191
if (auto *d2 = dyn_cast<DefinedRegular>(b2))
192
return d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
193
return false;
194
};
195
auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
196
Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
197
Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
198
return eqSym(b1, b2);
199
};
200
201
Symbol *e1 = a->getEntryThunk();
202
Symbol *e2 = b->getEntryThunk();
203
if ((e1 || e2) && (!e1 || !e2 || !eqSym(e1, e2)))
204
return false;
205
206
return std::equal(a->getRelocs().begin(), a->getRelocs().end(),
207
b->getRelocs().begin(), eq) &&
208
assocEquals(a, b);
209
}
210
211
// Find the first Chunk after Begin that has a different class from Begin.
212
size_t ICF::findBoundary(size_t begin, size_t end) {
213
for (size_t i = begin + 1; i < end; ++i)
214
if (chunks[begin]->eqClass[cnt % 2] != chunks[i]->eqClass[cnt % 2])
215
return i;
216
return end;
217
}
218
219
void ICF::forEachClassRange(size_t begin, size_t end,
220
std::function<void(size_t, size_t)> fn) {
221
while (begin < end) {
222
size_t mid = findBoundary(begin, end);
223
fn(begin, mid);
224
begin = mid;
225
}
226
}
227
228
// Call Fn on each class group.
229
void ICF::forEachClass(std::function<void(size_t, size_t)> fn) {
230
// If the number of sections are too small to use threading,
231
// call Fn sequentially.
232
if (chunks.size() < 1024) {
233
forEachClassRange(0, chunks.size(), fn);
234
++cnt;
235
return;
236
}
237
238
// Shard into non-overlapping intervals, and call Fn in parallel.
239
// The sharding must be completed before any calls to Fn are made
240
// so that Fn can modify the Chunks in its shard without causing data
241
// races.
242
const size_t numShards = 256;
243
size_t step = chunks.size() / numShards;
244
size_t boundaries[numShards + 1];
245
boundaries[0] = 0;
246
boundaries[numShards] = chunks.size();
247
parallelFor(1, numShards, [&](size_t i) {
248
boundaries[i] = findBoundary((i - 1) * step, chunks.size());
249
});
250
parallelFor(1, numShards + 1, [&](size_t i) {
251
if (boundaries[i - 1] < boundaries[i]) {
252
forEachClassRange(boundaries[i - 1], boundaries[i], fn);
253
}
254
});
255
++cnt;
256
}
257
258
// Merge identical COMDAT sections.
259
// Two sections are considered the same if their section headers,
260
// contents and relocations are all the same.
261
void ICF::run() {
262
llvm::TimeTraceScope timeScope("ICF");
263
ScopedTimer t(ctx.icfTimer);
264
265
// Collect only mergeable sections and group by hash value.
266
uint32_t nextId = 1;
267
for (Chunk *c : ctx.symtab.getChunks()) {
268
if (auto *sc = dyn_cast<SectionChunk>(c)) {
269
if (isEligible(sc))
270
chunks.push_back(sc);
271
else
272
sc->eqClass[0] = nextId++;
273
}
274
}
275
276
// Make sure that ICF doesn't merge sections that are being handled by string
277
// tail merging.
278
for (MergeChunk *mc : ctx.mergeChunkInstances)
279
if (mc)
280
for (SectionChunk *sc : mc->sections)
281
sc->eqClass[0] = nextId++;
282
283
// Initially, we use hash values to partition sections.
284
parallelForEach(chunks, [&](SectionChunk *sc) {
285
sc->eqClass[0] = xxh3_64bits(sc->getContents());
286
});
287
288
// Combine the hashes of the sections referenced by each section into its
289
// hash.
290
for (unsigned cnt = 0; cnt != 2; ++cnt) {
291
parallelForEach(chunks, [&](SectionChunk *sc) {
292
uint32_t hash = sc->eqClass[cnt % 2];
293
for (Symbol *b : sc->symbols())
294
if (auto *sym = dyn_cast_or_null<DefinedRegular>(b))
295
hash += sym->getChunk()->eqClass[cnt % 2];
296
// Set MSB to 1 to avoid collisions with non-hash classes.
297
sc->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
298
});
299
}
300
301
// From now on, sections in Chunks are ordered so that sections in
302
// the same group are consecutive in the vector.
303
llvm::stable_sort(chunks, [](const SectionChunk *a, const SectionChunk *b) {
304
return a->eqClass[0] < b->eqClass[0];
305
});
306
307
// Compare static contents and assign unique IDs for each static content.
308
forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); });
309
310
// Split groups by comparing relocations until convergence is obtained.
311
do {
312
repeat = false;
313
forEachClass(
314
[&](size_t begin, size_t end) { segregate(begin, end, false); });
315
} while (repeat);
316
317
log("ICF needed " + Twine(cnt) + " iterations");
318
319
// Merge sections in the same classes.
320
forEachClass([&](size_t begin, size_t end) {
321
if (end - begin == 1)
322
return;
323
324
log("Selected " + chunks[begin]->getDebugName());
325
for (size_t i = begin + 1; i < end; ++i) {
326
log(" Removed " + chunks[i]->getDebugName());
327
chunks[begin]->replace(chunks[i]);
328
}
329
});
330
}
331
332
// Entry point to ICF.
333
void doICF(COFFLinkerContext &ctx) { ICF(ctx).run(); }
334
335
} // namespace lld::coff
336
337