Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lld/COFF/InputFiles.cpp
34879 views
1
//===- InputFiles.cpp -----------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "InputFiles.h"
10
#include "COFFLinkerContext.h"
11
#include "Chunks.h"
12
#include "Config.h"
13
#include "DebugTypes.h"
14
#include "Driver.h"
15
#include "SymbolTable.h"
16
#include "Symbols.h"
17
#include "lld/Common/DWARF.h"
18
#include "llvm-c/lto.h"
19
#include "llvm/ADT/SmallVector.h"
20
#include "llvm/ADT/Twine.h"
21
#include "llvm/BinaryFormat/COFF.h"
22
#include "llvm/DebugInfo/CodeView/DebugSubsectionRecord.h"
23
#include "llvm/DebugInfo/CodeView/SymbolDeserializer.h"
24
#include "llvm/DebugInfo/CodeView/SymbolRecord.h"
25
#include "llvm/DebugInfo/CodeView/TypeDeserializer.h"
26
#include "llvm/DebugInfo/PDB/Native/NativeSession.h"
27
#include "llvm/DebugInfo/PDB/Native/PDBFile.h"
28
#include "llvm/LTO/LTO.h"
29
#include "llvm/Object/Binary.h"
30
#include "llvm/Object/COFF.h"
31
#include "llvm/Support/Casting.h"
32
#include "llvm/Support/Endian.h"
33
#include "llvm/Support/Error.h"
34
#include "llvm/Support/ErrorOr.h"
35
#include "llvm/Support/FileSystem.h"
36
#include "llvm/Support/Path.h"
37
#include "llvm/Target/TargetOptions.h"
38
#include "llvm/TargetParser/Triple.h"
39
#include <cstring>
40
#include <optional>
41
#include <system_error>
42
#include <utility>
43
44
using namespace llvm;
45
using namespace llvm::COFF;
46
using namespace llvm::codeview;
47
using namespace llvm::object;
48
using namespace llvm::support::endian;
49
using namespace lld;
50
using namespace lld::coff;
51
52
using llvm::Triple;
53
using llvm::support::ulittle32_t;
54
55
// Returns the last element of a path, which is supposed to be a filename.
56
static StringRef getBasename(StringRef path) {
57
return sys::path::filename(path, sys::path::Style::windows);
58
}
59
60
// Returns a string in the format of "foo.obj" or "foo.obj(bar.lib)".
61
std::string lld::toString(const coff::InputFile *file) {
62
if (!file)
63
return "<internal>";
64
if (file->parentName.empty() || file->kind() == coff::InputFile::ImportKind)
65
return std::string(file->getName());
66
67
return (getBasename(file->parentName) + "(" + getBasename(file->getName()) +
68
")")
69
.str();
70
}
71
72
/// Checks that Source is compatible with being a weak alias to Target.
73
/// If Source is Undefined and has no weak alias set, makes it a weak
74
/// alias to Target.
75
static void checkAndSetWeakAlias(COFFLinkerContext &ctx, InputFile *f,
76
Symbol *source, Symbol *target) {
77
if (auto *u = dyn_cast<Undefined>(source)) {
78
if (u->weakAlias && u->weakAlias != target) {
79
// Weak aliases as produced by GCC are named in the form
80
// .weak.<weaksymbol>.<othersymbol>, where <othersymbol> is the name
81
// of another symbol emitted near the weak symbol.
82
// Just use the definition from the first object file that defined
83
// this weak symbol.
84
if (ctx.config.allowDuplicateWeak)
85
return;
86
ctx.symtab.reportDuplicate(source, f);
87
}
88
u->weakAlias = target;
89
}
90
}
91
92
static bool ignoredSymbolName(StringRef name) {
93
return name == "@feat.00" || name == "@comp.id";
94
}
95
96
ArchiveFile::ArchiveFile(COFFLinkerContext &ctx, MemoryBufferRef m)
97
: InputFile(ctx, ArchiveKind, m) {}
98
99
void ArchiveFile::parse() {
100
// Parse a MemoryBufferRef as an archive file.
101
file = CHECK(Archive::create(mb), this);
102
103
// Read the symbol table to construct Lazy objects.
104
for (const Archive::Symbol &sym : file->symbols())
105
ctx.symtab.addLazyArchive(this, sym);
106
}
107
108
// Returns a buffer pointing to a member file containing a given symbol.
109
void ArchiveFile::addMember(const Archive::Symbol &sym) {
110
const Archive::Child &c =
111
CHECK(sym.getMember(),
112
"could not get the member for symbol " + toCOFFString(ctx, sym));
113
114
// Return an empty buffer if we have already returned the same buffer.
115
if (!seen.insert(c.getChildOffset()).second)
116
return;
117
118
ctx.driver.enqueueArchiveMember(c, sym, getName());
119
}
120
121
std::vector<MemoryBufferRef> lld::coff::getArchiveMembers(Archive *file) {
122
std::vector<MemoryBufferRef> v;
123
Error err = Error::success();
124
for (const Archive::Child &c : file->children(err)) {
125
MemoryBufferRef mbref =
126
CHECK(c.getMemoryBufferRef(),
127
file->getFileName() +
128
": could not get the buffer for a child of the archive");
129
v.push_back(mbref);
130
}
131
if (err)
132
fatal(file->getFileName() +
133
": Archive::children failed: " + toString(std::move(err)));
134
return v;
135
}
136
137
void ObjFile::parseLazy() {
138
// Native object file.
139
std::unique_ptr<Binary> coffObjPtr = CHECK(createBinary(mb), this);
140
COFFObjectFile *coffObj = cast<COFFObjectFile>(coffObjPtr.get());
141
uint32_t numSymbols = coffObj->getNumberOfSymbols();
142
for (uint32_t i = 0; i < numSymbols; ++i) {
143
COFFSymbolRef coffSym = check(coffObj->getSymbol(i));
144
if (coffSym.isUndefined() || !coffSym.isExternal() ||
145
coffSym.isWeakExternal())
146
continue;
147
StringRef name = check(coffObj->getSymbolName(coffSym));
148
if (coffSym.isAbsolute() && ignoredSymbolName(name))
149
continue;
150
ctx.symtab.addLazyObject(this, name);
151
i += coffSym.getNumberOfAuxSymbols();
152
}
153
}
154
155
struct ECMapEntry {
156
ulittle32_t src;
157
ulittle32_t dst;
158
ulittle32_t type;
159
};
160
161
void ObjFile::initializeECThunks() {
162
for (SectionChunk *chunk : hybmpChunks) {
163
if (chunk->getContents().size() % sizeof(ECMapEntry)) {
164
error("Invalid .hybmp chunk size " + Twine(chunk->getContents().size()));
165
continue;
166
}
167
168
const uint8_t *end =
169
chunk->getContents().data() + chunk->getContents().size();
170
for (const uint8_t *iter = chunk->getContents().data(); iter != end;
171
iter += sizeof(ECMapEntry)) {
172
auto entry = reinterpret_cast<const ECMapEntry *>(iter);
173
switch (entry->type) {
174
case Arm64ECThunkType::Entry:
175
ctx.symtab.addEntryThunk(getSymbol(entry->src), getSymbol(entry->dst));
176
break;
177
case Arm64ECThunkType::Exit:
178
case Arm64ECThunkType::GuestExit:
179
break;
180
default:
181
warn("Ignoring unknown EC thunk type " + Twine(entry->type));
182
}
183
}
184
}
185
}
186
187
void ObjFile::parse() {
188
// Parse a memory buffer as a COFF file.
189
std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this);
190
191
if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) {
192
bin.release();
193
coffObj.reset(obj);
194
} else {
195
fatal(toString(this) + " is not a COFF file");
196
}
197
198
// Read section and symbol tables.
199
initializeChunks();
200
initializeSymbols();
201
initializeFlags();
202
initializeDependencies();
203
initializeECThunks();
204
}
205
206
const coff_section *ObjFile::getSection(uint32_t i) {
207
auto sec = coffObj->getSection(i);
208
if (!sec)
209
fatal("getSection failed: #" + Twine(i) + ": " + toString(sec.takeError()));
210
return *sec;
211
}
212
213
// We set SectionChunk pointers in the SparseChunks vector to this value
214
// temporarily to mark comdat sections as having an unknown resolution. As we
215
// walk the object file's symbol table, once we visit either a leader symbol or
216
// an associative section definition together with the parent comdat's leader,
217
// we set the pointer to either nullptr (to mark the section as discarded) or a
218
// valid SectionChunk for that section.
219
static SectionChunk *const pendingComdat = reinterpret_cast<SectionChunk *>(1);
220
221
void ObjFile::initializeChunks() {
222
uint32_t numSections = coffObj->getNumberOfSections();
223
sparseChunks.resize(numSections + 1);
224
for (uint32_t i = 1; i < numSections + 1; ++i) {
225
const coff_section *sec = getSection(i);
226
if (sec->Characteristics & IMAGE_SCN_LNK_COMDAT)
227
sparseChunks[i] = pendingComdat;
228
else
229
sparseChunks[i] = readSection(i, nullptr, "");
230
}
231
}
232
233
SectionChunk *ObjFile::readSection(uint32_t sectionNumber,
234
const coff_aux_section_definition *def,
235
StringRef leaderName) {
236
const coff_section *sec = getSection(sectionNumber);
237
238
StringRef name;
239
if (Expected<StringRef> e = coffObj->getSectionName(sec))
240
name = *e;
241
else
242
fatal("getSectionName failed: #" + Twine(sectionNumber) + ": " +
243
toString(e.takeError()));
244
245
if (name == ".drectve") {
246
ArrayRef<uint8_t> data;
247
cantFail(coffObj->getSectionContents(sec, data));
248
directives = StringRef((const char *)data.data(), data.size());
249
return nullptr;
250
}
251
252
if (name == ".llvm_addrsig") {
253
addrsigSec = sec;
254
return nullptr;
255
}
256
257
if (name == ".llvm.call-graph-profile") {
258
callgraphSec = sec;
259
return nullptr;
260
}
261
262
// Object files may have DWARF debug info or MS CodeView debug info
263
// (or both).
264
//
265
// DWARF sections don't need any special handling from the perspective
266
// of the linker; they are just a data section containing relocations.
267
// We can just link them to complete debug info.
268
//
269
// CodeView needs linker support. We need to interpret debug info,
270
// and then write it to a separate .pdb file.
271
272
// Ignore DWARF debug info unless requested to be included.
273
if (!ctx.config.includeDwarfChunks && name.starts_with(".debug_"))
274
return nullptr;
275
276
if (sec->Characteristics & llvm::COFF::IMAGE_SCN_LNK_REMOVE)
277
return nullptr;
278
SectionChunk *c;
279
if (isArm64EC(getMachineType()))
280
c = make<SectionChunkEC>(this, sec);
281
else
282
c = make<SectionChunk>(this, sec);
283
if (def)
284
c->checksum = def->CheckSum;
285
286
// CodeView sections are stored to a different vector because they are not
287
// linked in the regular manner.
288
if (c->isCodeView())
289
debugChunks.push_back(c);
290
else if (name == ".gfids$y")
291
guardFidChunks.push_back(c);
292
else if (name == ".giats$y")
293
guardIATChunks.push_back(c);
294
else if (name == ".gljmp$y")
295
guardLJmpChunks.push_back(c);
296
else if (name == ".gehcont$y")
297
guardEHContChunks.push_back(c);
298
else if (name == ".sxdata")
299
sxDataChunks.push_back(c);
300
else if (isArm64EC(getMachineType()) && name == ".hybmp$x")
301
hybmpChunks.push_back(c);
302
else if (ctx.config.tailMerge && sec->NumberOfRelocations == 0 &&
303
name == ".rdata" && leaderName.starts_with("??_C@"))
304
// COFF sections that look like string literal sections (i.e. no
305
// relocations, in .rdata, leader symbol name matches the MSVC name mangling
306
// for string literals) are subject to string tail merging.
307
MergeChunk::addSection(ctx, c);
308
else if (name == ".rsrc" || name.starts_with(".rsrc$"))
309
resourceChunks.push_back(c);
310
else
311
chunks.push_back(c);
312
313
return c;
314
}
315
316
void ObjFile::includeResourceChunks() {
317
chunks.insert(chunks.end(), resourceChunks.begin(), resourceChunks.end());
318
}
319
320
void ObjFile::readAssociativeDefinition(
321
COFFSymbolRef sym, const coff_aux_section_definition *def) {
322
readAssociativeDefinition(sym, def, def->getNumber(sym.isBigObj()));
323
}
324
325
void ObjFile::readAssociativeDefinition(COFFSymbolRef sym,
326
const coff_aux_section_definition *def,
327
uint32_t parentIndex) {
328
SectionChunk *parent = sparseChunks[parentIndex];
329
int32_t sectionNumber = sym.getSectionNumber();
330
331
auto diag = [&]() {
332
StringRef name = check(coffObj->getSymbolName(sym));
333
334
StringRef parentName;
335
const coff_section *parentSec = getSection(parentIndex);
336
if (Expected<StringRef> e = coffObj->getSectionName(parentSec))
337
parentName = *e;
338
error(toString(this) + ": associative comdat " + name + " (sec " +
339
Twine(sectionNumber) + ") has invalid reference to section " +
340
parentName + " (sec " + Twine(parentIndex) + ")");
341
};
342
343
if (parent == pendingComdat) {
344
// This can happen if an associative comdat refers to another associative
345
// comdat that appears after it (invalid per COFF spec) or to a section
346
// without any symbols.
347
diag();
348
return;
349
}
350
351
// Check whether the parent is prevailing. If it is, so are we, and we read
352
// the section; otherwise mark it as discarded.
353
if (parent) {
354
SectionChunk *c = readSection(sectionNumber, def, "");
355
sparseChunks[sectionNumber] = c;
356
if (c) {
357
c->selection = IMAGE_COMDAT_SELECT_ASSOCIATIVE;
358
parent->addAssociative(c);
359
}
360
} else {
361
sparseChunks[sectionNumber] = nullptr;
362
}
363
}
364
365
void ObjFile::recordPrevailingSymbolForMingw(
366
COFFSymbolRef sym, DenseMap<StringRef, uint32_t> &prevailingSectionMap) {
367
// For comdat symbols in executable sections, where this is the copy
368
// of the section chunk we actually include instead of discarding it,
369
// add the symbol to a map to allow using it for implicitly
370
// associating .[px]data$<func> sections to it.
371
// Use the suffix from the .text$<func> instead of the leader symbol
372
// name, for cases where the names differ (i386 mangling/decorations,
373
// cases where the leader is a weak symbol named .weak.func.default*).
374
int32_t sectionNumber = sym.getSectionNumber();
375
SectionChunk *sc = sparseChunks[sectionNumber];
376
if (sc && sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE) {
377
StringRef name = sc->getSectionName().split('$').second;
378
prevailingSectionMap[name] = sectionNumber;
379
}
380
}
381
382
void ObjFile::maybeAssociateSEHForMingw(
383
COFFSymbolRef sym, const coff_aux_section_definition *def,
384
const DenseMap<StringRef, uint32_t> &prevailingSectionMap) {
385
StringRef name = check(coffObj->getSymbolName(sym));
386
if (name.consume_front(".pdata$") || name.consume_front(".xdata$") ||
387
name.consume_front(".eh_frame$")) {
388
// For MinGW, treat .[px]data$<func> and .eh_frame$<func> as implicitly
389
// associative to the symbol <func>.
390
auto parentSym = prevailingSectionMap.find(name);
391
if (parentSym != prevailingSectionMap.end())
392
readAssociativeDefinition(sym, def, parentSym->second);
393
}
394
}
395
396
Symbol *ObjFile::createRegular(COFFSymbolRef sym) {
397
SectionChunk *sc = sparseChunks[sym.getSectionNumber()];
398
if (sym.isExternal()) {
399
StringRef name = check(coffObj->getSymbolName(sym));
400
if (sc)
401
return ctx.symtab.addRegular(this, name, sym.getGeneric(), sc,
402
sym.getValue());
403
// For MinGW symbols named .weak.* that point to a discarded section,
404
// don't create an Undefined symbol. If nothing ever refers to the symbol,
405
// everything should be fine. If something actually refers to the symbol
406
// (e.g. the undefined weak alias), linking will fail due to undefined
407
// references at the end.
408
if (ctx.config.mingw && name.starts_with(".weak."))
409
return nullptr;
410
return ctx.symtab.addUndefined(name, this, false);
411
}
412
if (sc)
413
return make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false,
414
/*IsExternal*/ false, sym.getGeneric(), sc);
415
return nullptr;
416
}
417
418
void ObjFile::initializeSymbols() {
419
uint32_t numSymbols = coffObj->getNumberOfSymbols();
420
symbols.resize(numSymbols);
421
422
SmallVector<std::pair<Symbol *, uint32_t>, 8> weakAliases;
423
std::vector<uint32_t> pendingIndexes;
424
pendingIndexes.reserve(numSymbols);
425
426
DenseMap<StringRef, uint32_t> prevailingSectionMap;
427
std::vector<const coff_aux_section_definition *> comdatDefs(
428
coffObj->getNumberOfSections() + 1);
429
430
for (uint32_t i = 0; i < numSymbols; ++i) {
431
COFFSymbolRef coffSym = check(coffObj->getSymbol(i));
432
bool prevailingComdat;
433
if (coffSym.isUndefined()) {
434
symbols[i] = createUndefined(coffSym);
435
} else if (coffSym.isWeakExternal()) {
436
symbols[i] = createUndefined(coffSym);
437
uint32_t tagIndex = coffSym.getAux<coff_aux_weak_external>()->TagIndex;
438
weakAliases.emplace_back(symbols[i], tagIndex);
439
} else if (std::optional<Symbol *> optSym =
440
createDefined(coffSym, comdatDefs, prevailingComdat)) {
441
symbols[i] = *optSym;
442
if (ctx.config.mingw && prevailingComdat)
443
recordPrevailingSymbolForMingw(coffSym, prevailingSectionMap);
444
} else {
445
// createDefined() returns std::nullopt if a symbol belongs to a section
446
// that was pending at the point when the symbol was read. This can happen
447
// in two cases:
448
// 1) section definition symbol for a comdat leader;
449
// 2) symbol belongs to a comdat section associated with another section.
450
// In both of these cases, we can expect the section to be resolved by
451
// the time we finish visiting the remaining symbols in the symbol
452
// table. So we postpone the handling of this symbol until that time.
453
pendingIndexes.push_back(i);
454
}
455
i += coffSym.getNumberOfAuxSymbols();
456
}
457
458
for (uint32_t i : pendingIndexes) {
459
COFFSymbolRef sym = check(coffObj->getSymbol(i));
460
if (const coff_aux_section_definition *def = sym.getSectionDefinition()) {
461
if (def->Selection == IMAGE_COMDAT_SELECT_ASSOCIATIVE)
462
readAssociativeDefinition(sym, def);
463
else if (ctx.config.mingw)
464
maybeAssociateSEHForMingw(sym, def, prevailingSectionMap);
465
}
466
if (sparseChunks[sym.getSectionNumber()] == pendingComdat) {
467
StringRef name = check(coffObj->getSymbolName(sym));
468
log("comdat section " + name +
469
" without leader and unassociated, discarding");
470
continue;
471
}
472
symbols[i] = createRegular(sym);
473
}
474
475
for (auto &kv : weakAliases) {
476
Symbol *sym = kv.first;
477
uint32_t idx = kv.second;
478
checkAndSetWeakAlias(ctx, this, sym, symbols[idx]);
479
}
480
481
// Free the memory used by sparseChunks now that symbol loading is finished.
482
decltype(sparseChunks)().swap(sparseChunks);
483
}
484
485
Symbol *ObjFile::createUndefined(COFFSymbolRef sym) {
486
StringRef name = check(coffObj->getSymbolName(sym));
487
return ctx.symtab.addUndefined(name, this, sym.isWeakExternal());
488
}
489
490
static const coff_aux_section_definition *findSectionDef(COFFObjectFile *obj,
491
int32_t section) {
492
uint32_t numSymbols = obj->getNumberOfSymbols();
493
for (uint32_t i = 0; i < numSymbols; ++i) {
494
COFFSymbolRef sym = check(obj->getSymbol(i));
495
if (sym.getSectionNumber() != section)
496
continue;
497
if (const coff_aux_section_definition *def = sym.getSectionDefinition())
498
return def;
499
}
500
return nullptr;
501
}
502
503
void ObjFile::handleComdatSelection(
504
COFFSymbolRef sym, COMDATType &selection, bool &prevailing,
505
DefinedRegular *leader,
506
const llvm::object::coff_aux_section_definition *def) {
507
if (prevailing)
508
return;
509
// There's already an existing comdat for this symbol: `Leader`.
510
// Use the comdats's selection field to determine if the new
511
// symbol in `Sym` should be discarded, produce a duplicate symbol
512
// error, etc.
513
514
SectionChunk *leaderChunk = leader->getChunk();
515
COMDATType leaderSelection = leaderChunk->selection;
516
517
assert(leader->data && "Comdat leader without SectionChunk?");
518
if (isa<BitcodeFile>(leader->file)) {
519
// If the leader is only a LTO symbol, we don't know e.g. its final size
520
// yet, so we can't do the full strict comdat selection checking yet.
521
selection = leaderSelection = IMAGE_COMDAT_SELECT_ANY;
522
}
523
524
if ((selection == IMAGE_COMDAT_SELECT_ANY &&
525
leaderSelection == IMAGE_COMDAT_SELECT_LARGEST) ||
526
(selection == IMAGE_COMDAT_SELECT_LARGEST &&
527
leaderSelection == IMAGE_COMDAT_SELECT_ANY)) {
528
// cl.exe picks "any" for vftables when building with /GR- and
529
// "largest" when building with /GR. To be able to link object files
530
// compiled with each flag, "any" and "largest" are merged as "largest".
531
leaderSelection = selection = IMAGE_COMDAT_SELECT_LARGEST;
532
}
533
534
// GCCs __declspec(selectany) doesn't actually pick "any" but "same size as".
535
// Clang on the other hand picks "any". To be able to link two object files
536
// with a __declspec(selectany) declaration, one compiled with gcc and the
537
// other with clang, we merge them as proper "same size as"
538
if (ctx.config.mingw && ((selection == IMAGE_COMDAT_SELECT_ANY &&
539
leaderSelection == IMAGE_COMDAT_SELECT_SAME_SIZE) ||
540
(selection == IMAGE_COMDAT_SELECT_SAME_SIZE &&
541
leaderSelection == IMAGE_COMDAT_SELECT_ANY))) {
542
leaderSelection = selection = IMAGE_COMDAT_SELECT_SAME_SIZE;
543
}
544
545
// Other than that, comdat selections must match. This is a bit more
546
// strict than link.exe which allows merging "any" and "largest" if "any"
547
// is the first symbol the linker sees, and it allows merging "largest"
548
// with everything (!) if "largest" is the first symbol the linker sees.
549
// Making this symmetric independent of which selection is seen first
550
// seems better though.
551
// (This behavior matches ModuleLinker::getComdatResult().)
552
if (selection != leaderSelection) {
553
log(("conflicting comdat type for " + toString(ctx, *leader) + ": " +
554
Twine((int)leaderSelection) + " in " + toString(leader->getFile()) +
555
" and " + Twine((int)selection) + " in " + toString(this))
556
.str());
557
ctx.symtab.reportDuplicate(leader, this);
558
return;
559
}
560
561
switch (selection) {
562
case IMAGE_COMDAT_SELECT_NODUPLICATES:
563
ctx.symtab.reportDuplicate(leader, this);
564
break;
565
566
case IMAGE_COMDAT_SELECT_ANY:
567
// Nothing to do.
568
break;
569
570
case IMAGE_COMDAT_SELECT_SAME_SIZE:
571
if (leaderChunk->getSize() != getSection(sym)->SizeOfRawData) {
572
if (!ctx.config.mingw) {
573
ctx.symtab.reportDuplicate(leader, this);
574
} else {
575
const coff_aux_section_definition *leaderDef = nullptr;
576
if (leaderChunk->file)
577
leaderDef = findSectionDef(leaderChunk->file->getCOFFObj(),
578
leaderChunk->getSectionNumber());
579
if (!leaderDef || leaderDef->Length != def->Length)
580
ctx.symtab.reportDuplicate(leader, this);
581
}
582
}
583
break;
584
585
case IMAGE_COMDAT_SELECT_EXACT_MATCH: {
586
SectionChunk newChunk(this, getSection(sym));
587
// link.exe only compares section contents here and doesn't complain
588
// if the two comdat sections have e.g. different alignment.
589
// Match that.
590
if (leaderChunk->getContents() != newChunk.getContents())
591
ctx.symtab.reportDuplicate(leader, this, &newChunk, sym.getValue());
592
break;
593
}
594
595
case IMAGE_COMDAT_SELECT_ASSOCIATIVE:
596
// createDefined() is never called for IMAGE_COMDAT_SELECT_ASSOCIATIVE.
597
// (This means lld-link doesn't produce duplicate symbol errors for
598
// associative comdats while link.exe does, but associate comdats
599
// are never extern in practice.)
600
llvm_unreachable("createDefined not called for associative comdats");
601
602
case IMAGE_COMDAT_SELECT_LARGEST:
603
if (leaderChunk->getSize() < getSection(sym)->SizeOfRawData) {
604
// Replace the existing comdat symbol with the new one.
605
StringRef name = check(coffObj->getSymbolName(sym));
606
// FIXME: This is incorrect: With /opt:noref, the previous sections
607
// make it into the final executable as well. Correct handling would
608
// be to undo reading of the whole old section that's being replaced,
609
// or doing one pass that determines what the final largest comdat
610
// is for all IMAGE_COMDAT_SELECT_LARGEST comdats and then reading
611
// only the largest one.
612
replaceSymbol<DefinedRegular>(leader, this, name, /*IsCOMDAT*/ true,
613
/*IsExternal*/ true, sym.getGeneric(),
614
nullptr);
615
prevailing = true;
616
}
617
break;
618
619
case IMAGE_COMDAT_SELECT_NEWEST:
620
llvm_unreachable("should have been rejected earlier");
621
}
622
}
623
624
std::optional<Symbol *> ObjFile::createDefined(
625
COFFSymbolRef sym,
626
std::vector<const coff_aux_section_definition *> &comdatDefs,
627
bool &prevailing) {
628
prevailing = false;
629
auto getName = [&]() { return check(coffObj->getSymbolName(sym)); };
630
631
if (sym.isCommon()) {
632
auto *c = make<CommonChunk>(sym);
633
chunks.push_back(c);
634
return ctx.symtab.addCommon(this, getName(), sym.getValue(),
635
sym.getGeneric(), c);
636
}
637
638
if (sym.isAbsolute()) {
639
StringRef name = getName();
640
641
if (name == "@feat.00")
642
feat00Flags = sym.getValue();
643
// Skip special symbols.
644
if (ignoredSymbolName(name))
645
return nullptr;
646
647
if (sym.isExternal())
648
return ctx.symtab.addAbsolute(name, sym);
649
return make<DefinedAbsolute>(ctx, name, sym);
650
}
651
652
int32_t sectionNumber = sym.getSectionNumber();
653
if (sectionNumber == llvm::COFF::IMAGE_SYM_DEBUG)
654
return nullptr;
655
656
if (llvm::COFF::isReservedSectionNumber(sectionNumber))
657
fatal(toString(this) + ": " + getName() +
658
" should not refer to special section " + Twine(sectionNumber));
659
660
if ((uint32_t)sectionNumber >= sparseChunks.size())
661
fatal(toString(this) + ": " + getName() +
662
" should not refer to non-existent section " + Twine(sectionNumber));
663
664
// Comdat handling.
665
// A comdat symbol consists of two symbol table entries.
666
// The first symbol entry has the name of the section (e.g. .text), fixed
667
// values for the other fields, and one auxiliary record.
668
// The second symbol entry has the name of the comdat symbol, called the
669
// "comdat leader".
670
// When this function is called for the first symbol entry of a comdat,
671
// it sets comdatDefs and returns std::nullopt, and when it's called for the
672
// second symbol entry it reads comdatDefs and then sets it back to nullptr.
673
674
// Handle comdat leader.
675
if (const coff_aux_section_definition *def = comdatDefs[sectionNumber]) {
676
comdatDefs[sectionNumber] = nullptr;
677
DefinedRegular *leader;
678
679
if (sym.isExternal()) {
680
std::tie(leader, prevailing) =
681
ctx.symtab.addComdat(this, getName(), sym.getGeneric());
682
} else {
683
leader = make<DefinedRegular>(this, /*Name*/ "", /*IsCOMDAT*/ false,
684
/*IsExternal*/ false, sym.getGeneric());
685
prevailing = true;
686
}
687
688
if (def->Selection < (int)IMAGE_COMDAT_SELECT_NODUPLICATES ||
689
// Intentionally ends at IMAGE_COMDAT_SELECT_LARGEST: link.exe
690
// doesn't understand IMAGE_COMDAT_SELECT_NEWEST either.
691
def->Selection > (int)IMAGE_COMDAT_SELECT_LARGEST) {
692
fatal("unknown comdat type " + std::to_string((int)def->Selection) +
693
" for " + getName() + " in " + toString(this));
694
}
695
COMDATType selection = (COMDATType)def->Selection;
696
697
if (leader->isCOMDAT)
698
handleComdatSelection(sym, selection, prevailing, leader, def);
699
700
if (prevailing) {
701
SectionChunk *c = readSection(sectionNumber, def, getName());
702
sparseChunks[sectionNumber] = c;
703
if (!c)
704
return nullptr;
705
c->sym = cast<DefinedRegular>(leader);
706
c->selection = selection;
707
cast<DefinedRegular>(leader)->data = &c->repl;
708
} else {
709
sparseChunks[sectionNumber] = nullptr;
710
}
711
return leader;
712
}
713
714
// Prepare to handle the comdat leader symbol by setting the section's
715
// ComdatDefs pointer if we encounter a non-associative comdat.
716
if (sparseChunks[sectionNumber] == pendingComdat) {
717
if (const coff_aux_section_definition *def = sym.getSectionDefinition()) {
718
if (def->Selection != IMAGE_COMDAT_SELECT_ASSOCIATIVE)
719
comdatDefs[sectionNumber] = def;
720
}
721
return std::nullopt;
722
}
723
724
return createRegular(sym);
725
}
726
727
MachineTypes ObjFile::getMachineType() {
728
if (coffObj)
729
return static_cast<MachineTypes>(coffObj->getMachine());
730
return IMAGE_FILE_MACHINE_UNKNOWN;
731
}
732
733
ArrayRef<uint8_t> ObjFile::getDebugSection(StringRef secName) {
734
if (SectionChunk *sec = SectionChunk::findByName(debugChunks, secName))
735
return sec->consumeDebugMagic();
736
return {};
737
}
738
739
// OBJ files systematically store critical information in a .debug$S stream,
740
// even if the TU was compiled with no debug info. At least two records are
741
// always there. S_OBJNAME stores a 32-bit signature, which is loaded into the
742
// PCHSignature member. S_COMPILE3 stores compile-time cmd-line flags. This is
743
// currently used to initialize the hotPatchable member.
744
void ObjFile::initializeFlags() {
745
ArrayRef<uint8_t> data = getDebugSection(".debug$S");
746
if (data.empty())
747
return;
748
749
DebugSubsectionArray subsections;
750
751
BinaryStreamReader reader(data, llvm::endianness::little);
752
ExitOnError exitOnErr;
753
exitOnErr(reader.readArray(subsections, data.size()));
754
755
for (const DebugSubsectionRecord &ss : subsections) {
756
if (ss.kind() != DebugSubsectionKind::Symbols)
757
continue;
758
759
unsigned offset = 0;
760
761
// Only parse the first two records. We are only looking for S_OBJNAME
762
// and S_COMPILE3, and they usually appear at the beginning of the
763
// stream.
764
for (unsigned i = 0; i < 2; ++i) {
765
Expected<CVSymbol> sym = readSymbolFromStream(ss.getRecordData(), offset);
766
if (!sym) {
767
consumeError(sym.takeError());
768
return;
769
}
770
if (sym->kind() == SymbolKind::S_COMPILE3) {
771
auto cs =
772
cantFail(SymbolDeserializer::deserializeAs<Compile3Sym>(sym.get()));
773
hotPatchable =
774
(cs.Flags & CompileSym3Flags::HotPatch) != CompileSym3Flags::None;
775
}
776
if (sym->kind() == SymbolKind::S_OBJNAME) {
777
auto objName = cantFail(SymbolDeserializer::deserializeAs<ObjNameSym>(
778
sym.get()));
779
if (objName.Signature)
780
pchSignature = objName.Signature;
781
}
782
offset += sym->length();
783
}
784
}
785
}
786
787
// Depending on the compilation flags, OBJs can refer to external files,
788
// necessary to merge this OBJ into the final PDB. We currently support two
789
// types of external files: Precomp/PCH OBJs, when compiling with /Yc and /Yu.
790
// And PDB type servers, when compiling with /Zi. This function extracts these
791
// dependencies and makes them available as a TpiSource interface (see
792
// DebugTypes.h). Both cases only happen with cl.exe: clang-cl produces regular
793
// output even with /Yc and /Yu and with /Zi.
794
void ObjFile::initializeDependencies() {
795
if (!ctx.config.debug)
796
return;
797
798
bool isPCH = false;
799
800
ArrayRef<uint8_t> data = getDebugSection(".debug$P");
801
if (!data.empty())
802
isPCH = true;
803
else
804
data = getDebugSection(".debug$T");
805
806
// symbols but no types, make a plain, empty TpiSource anyway, because it
807
// simplifies adding the symbols later.
808
if (data.empty()) {
809
if (!debugChunks.empty())
810
debugTypesObj = makeTpiSource(ctx, this);
811
return;
812
}
813
814
// Get the first type record. It will indicate if this object uses a type
815
// server (/Zi) or a PCH file (/Yu).
816
CVTypeArray types;
817
BinaryStreamReader reader(data, llvm::endianness::little);
818
cantFail(reader.readArray(types, reader.getLength()));
819
CVTypeArray::Iterator firstType = types.begin();
820
if (firstType == types.end())
821
return;
822
823
// Remember the .debug$T or .debug$P section.
824
debugTypes = data;
825
826
// This object file is a PCH file that others will depend on.
827
if (isPCH) {
828
debugTypesObj = makePrecompSource(ctx, this);
829
return;
830
}
831
832
// This object file was compiled with /Zi. Enqueue the PDB dependency.
833
if (firstType->kind() == LF_TYPESERVER2) {
834
TypeServer2Record ts = cantFail(
835
TypeDeserializer::deserializeAs<TypeServer2Record>(firstType->data()));
836
debugTypesObj = makeUseTypeServerSource(ctx, this, ts);
837
enqueuePdbFile(ts.getName(), this);
838
return;
839
}
840
841
// This object was compiled with /Yu. It uses types from another object file
842
// with a matching signature.
843
if (firstType->kind() == LF_PRECOMP) {
844
PrecompRecord precomp = cantFail(
845
TypeDeserializer::deserializeAs<PrecompRecord>(firstType->data()));
846
// We're better off trusting the LF_PRECOMP signature. In some cases the
847
// S_OBJNAME record doesn't contain a valid PCH signature.
848
if (precomp.Signature)
849
pchSignature = precomp.Signature;
850
debugTypesObj = makeUsePrecompSource(ctx, this, precomp);
851
// Drop the LF_PRECOMP record from the input stream.
852
debugTypes = debugTypes.drop_front(firstType->RecordData.size());
853
return;
854
}
855
856
// This is a plain old object file.
857
debugTypesObj = makeTpiSource(ctx, this);
858
}
859
860
// The casing of the PDB path stamped in the OBJ can differ from the actual path
861
// on disk. With this, we ensure to always use lowercase as a key for the
862
// pdbInputFileInstances map, at least on Windows.
863
static std::string normalizePdbPath(StringRef path) {
864
#if defined(_WIN32)
865
return path.lower();
866
#else // LINUX
867
return std::string(path);
868
#endif
869
}
870
871
// If existing, return the actual PDB path on disk.
872
static std::optional<std::string>
873
findPdbPath(StringRef pdbPath, ObjFile *dependentFile, StringRef outputPath) {
874
// Ensure the file exists before anything else. In some cases, if the path
875
// points to a removable device, Driver::enqueuePath() would fail with an
876
// error (EAGAIN, "resource unavailable try again") which we want to skip
877
// silently.
878
if (llvm::sys::fs::exists(pdbPath))
879
return normalizePdbPath(pdbPath);
880
881
StringRef objPath = !dependentFile->parentName.empty()
882
? dependentFile->parentName
883
: dependentFile->getName();
884
885
// Currently, type server PDBs are only created by MSVC cl, which only runs
886
// on Windows, so we can assume type server paths are Windows style.
887
StringRef pdbName = sys::path::filename(pdbPath, sys::path::Style::windows);
888
889
// Check if the PDB is in the same folder as the OBJ.
890
SmallString<128> path;
891
sys::path::append(path, sys::path::parent_path(objPath), pdbName);
892
if (llvm::sys::fs::exists(path))
893
return normalizePdbPath(path);
894
895
// Check if the PDB is in the output folder.
896
path.clear();
897
sys::path::append(path, sys::path::parent_path(outputPath), pdbName);
898
if (llvm::sys::fs::exists(path))
899
return normalizePdbPath(path);
900
901
return std::nullopt;
902
}
903
904
PDBInputFile::PDBInputFile(COFFLinkerContext &ctx, MemoryBufferRef m)
905
: InputFile(ctx, PDBKind, m) {}
906
907
PDBInputFile::~PDBInputFile() = default;
908
909
PDBInputFile *PDBInputFile::findFromRecordPath(const COFFLinkerContext &ctx,
910
StringRef path,
911
ObjFile *fromFile) {
912
auto p = findPdbPath(path.str(), fromFile, ctx.config.outputFile);
913
if (!p)
914
return nullptr;
915
auto it = ctx.pdbInputFileInstances.find(*p);
916
if (it != ctx.pdbInputFileInstances.end())
917
return it->second;
918
return nullptr;
919
}
920
921
void PDBInputFile::parse() {
922
ctx.pdbInputFileInstances[mb.getBufferIdentifier().str()] = this;
923
924
std::unique_ptr<pdb::IPDBSession> thisSession;
925
Error E = pdb::NativeSession::createFromPdb(
926
MemoryBuffer::getMemBuffer(mb, false), thisSession);
927
if (E) {
928
loadErrorStr.emplace(toString(std::move(E)));
929
return; // fail silently at this point - the error will be handled later,
930
// when merging the debug type stream
931
}
932
933
session.reset(static_cast<pdb::NativeSession *>(thisSession.release()));
934
935
pdb::PDBFile &pdbFile = session->getPDBFile();
936
auto expectedInfo = pdbFile.getPDBInfoStream();
937
// All PDB Files should have an Info stream.
938
if (!expectedInfo) {
939
loadErrorStr.emplace(toString(expectedInfo.takeError()));
940
return;
941
}
942
debugTypesObj = makeTypeServerSource(ctx, this);
943
}
944
945
// Used only for DWARF debug info, which is not common (except in MinGW
946
// environments). This returns an optional pair of file name and line
947
// number for where the variable was defined.
948
std::optional<std::pair<StringRef, uint32_t>>
949
ObjFile::getVariableLocation(StringRef var) {
950
if (!dwarf) {
951
dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj()));
952
if (!dwarf)
953
return std::nullopt;
954
}
955
if (ctx.config.machine == I386)
956
var.consume_front("_");
957
std::optional<std::pair<std::string, unsigned>> ret =
958
dwarf->getVariableLoc(var);
959
if (!ret)
960
return std::nullopt;
961
return std::make_pair(saver().save(ret->first), ret->second);
962
}
963
964
// Used only for DWARF debug info, which is not common (except in MinGW
965
// environments).
966
std::optional<DILineInfo> ObjFile::getDILineInfo(uint32_t offset,
967
uint32_t sectionIndex) {
968
if (!dwarf) {
969
dwarf = make<DWARFCache>(DWARFContext::create(*getCOFFObj()));
970
if (!dwarf)
971
return std::nullopt;
972
}
973
974
return dwarf->getDILineInfo(offset, sectionIndex);
975
}
976
977
void ObjFile::enqueuePdbFile(StringRef path, ObjFile *fromFile) {
978
auto p = findPdbPath(path.str(), fromFile, ctx.config.outputFile);
979
if (!p)
980
return;
981
auto it = ctx.pdbInputFileInstances.emplace(*p, nullptr);
982
if (!it.second)
983
return; // already scheduled for load
984
ctx.driver.enqueuePDB(*p);
985
}
986
987
ImportFile::ImportFile(COFFLinkerContext &ctx, MemoryBufferRef m)
988
: InputFile(ctx, ImportKind, m), live(!ctx.config.doGC), thunkLive(live) {}
989
990
void ImportFile::parse() {
991
const auto *hdr =
992
reinterpret_cast<const coff_import_header *>(mb.getBufferStart());
993
994
// Check if the total size is valid.
995
if (mb.getBufferSize() < sizeof(*hdr) ||
996
mb.getBufferSize() != sizeof(*hdr) + hdr->SizeOfData)
997
fatal("broken import library");
998
999
// Read names and create an __imp_ symbol.
1000
StringRef buf = mb.getBuffer().substr(sizeof(*hdr));
1001
StringRef name = saver().save(buf.split('\0').first);
1002
StringRef impName = saver().save("__imp_" + name);
1003
buf = buf.substr(name.size() + 1);
1004
dllName = buf.split('\0').first;
1005
StringRef extName;
1006
switch (hdr->getNameType()) {
1007
case IMPORT_ORDINAL:
1008
extName = "";
1009
break;
1010
case IMPORT_NAME:
1011
extName = name;
1012
break;
1013
case IMPORT_NAME_NOPREFIX:
1014
extName = ltrim1(name, "?@_");
1015
break;
1016
case IMPORT_NAME_UNDECORATE:
1017
extName = ltrim1(name, "?@_");
1018
extName = extName.substr(0, extName.find('@'));
1019
break;
1020
case IMPORT_NAME_EXPORTAS:
1021
extName = buf.substr(dllName.size() + 1).split('\0').first;
1022
break;
1023
}
1024
1025
this->hdr = hdr;
1026
externalName = extName;
1027
1028
impSym = ctx.symtab.addImportData(impName, this);
1029
// If this was a duplicate, we logged an error but may continue;
1030
// in this case, impSym is nullptr.
1031
if (!impSym)
1032
return;
1033
1034
if (hdr->getType() == llvm::COFF::IMPORT_CONST)
1035
static_cast<void>(ctx.symtab.addImportData(name, this));
1036
1037
// If type is function, we need to create a thunk which jump to an
1038
// address pointed by the __imp_ symbol. (This allows you to call
1039
// DLL functions just like regular non-DLL functions.)
1040
if (hdr->getType() == llvm::COFF::IMPORT_CODE)
1041
thunkSym = ctx.symtab.addImportThunk(
1042
name, cast_or_null<DefinedImportData>(impSym), hdr->Machine);
1043
}
1044
1045
BitcodeFile::BitcodeFile(COFFLinkerContext &ctx, MemoryBufferRef mb,
1046
StringRef archiveName, uint64_t offsetInArchive,
1047
bool lazy)
1048
: InputFile(ctx, BitcodeKind, mb, lazy) {
1049
std::string path = mb.getBufferIdentifier().str();
1050
if (ctx.config.thinLTOIndexOnly)
1051
path = replaceThinLTOSuffix(mb.getBufferIdentifier(),
1052
ctx.config.thinLTOObjectSuffixReplace.first,
1053
ctx.config.thinLTOObjectSuffixReplace.second);
1054
1055
// ThinLTO assumes that all MemoryBufferRefs given to it have a unique
1056
// name. If two archives define two members with the same name, this
1057
// causes a collision which result in only one of the objects being taken
1058
// into consideration at LTO time (which very likely causes undefined
1059
// symbols later in the link stage). So we append file offset to make
1060
// filename unique.
1061
MemoryBufferRef mbref(mb.getBuffer(),
1062
saver().save(archiveName.empty()
1063
? path
1064
: archiveName +
1065
sys::path::filename(path) +
1066
utostr(offsetInArchive)));
1067
1068
obj = check(lto::InputFile::create(mbref));
1069
}
1070
1071
BitcodeFile::~BitcodeFile() = default;
1072
1073
void BitcodeFile::parse() {
1074
llvm::StringSaver &saver = lld::saver();
1075
1076
std::vector<std::pair<Symbol *, bool>> comdat(obj->getComdatTable().size());
1077
for (size_t i = 0; i != obj->getComdatTable().size(); ++i)
1078
// FIXME: Check nodeduplicate
1079
comdat[i] =
1080
ctx.symtab.addComdat(this, saver.save(obj->getComdatTable()[i].first));
1081
for (const lto::InputFile::Symbol &objSym : obj->symbols()) {
1082
StringRef symName = saver.save(objSym.getName());
1083
int comdatIndex = objSym.getComdatIndex();
1084
Symbol *sym;
1085
SectionChunk *fakeSC = nullptr;
1086
if (objSym.isExecutable())
1087
fakeSC = &ctx.ltoTextSectionChunk.chunk;
1088
else
1089
fakeSC = &ctx.ltoDataSectionChunk.chunk;
1090
if (objSym.isUndefined()) {
1091
sym = ctx.symtab.addUndefined(symName, this, false);
1092
if (objSym.isWeak())
1093
sym->deferUndefined = true;
1094
// If one LTO object file references (i.e. has an undefined reference to)
1095
// a symbol with an __imp_ prefix, the LTO compilation itself sees it
1096
// as unprefixed but with a dllimport attribute instead, and doesn't
1097
// understand the relation to a concrete IR symbol with the __imp_ prefix.
1098
//
1099
// For such cases, mark the symbol as used in a regular object (i.e. the
1100
// symbol must be retained) so that the linker can associate the
1101
// references in the end. If the symbol is defined in an import library
1102
// or in a regular object file, this has no effect, but if it is defined
1103
// in another LTO object file, this makes sure it is kept, to fulfill
1104
// the reference when linking the output of the LTO compilation.
1105
if (symName.starts_with("__imp_"))
1106
sym->isUsedInRegularObj = true;
1107
} else if (objSym.isCommon()) {
1108
sym = ctx.symtab.addCommon(this, symName, objSym.getCommonSize());
1109
} else if (objSym.isWeak() && objSym.isIndirect()) {
1110
// Weak external.
1111
sym = ctx.symtab.addUndefined(symName, this, true);
1112
std::string fallback = std::string(objSym.getCOFFWeakExternalFallback());
1113
Symbol *alias = ctx.symtab.addUndefined(saver.save(fallback));
1114
checkAndSetWeakAlias(ctx, this, sym, alias);
1115
} else if (comdatIndex != -1) {
1116
if (symName == obj->getComdatTable()[comdatIndex].first) {
1117
sym = comdat[comdatIndex].first;
1118
if (cast<DefinedRegular>(sym)->data == nullptr)
1119
cast<DefinedRegular>(sym)->data = &fakeSC->repl;
1120
} else if (comdat[comdatIndex].second) {
1121
sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC);
1122
} else {
1123
sym = ctx.symtab.addUndefined(symName, this, false);
1124
}
1125
} else {
1126
sym = ctx.symtab.addRegular(this, symName, nullptr, fakeSC, 0,
1127
objSym.isWeak());
1128
}
1129
symbols.push_back(sym);
1130
if (objSym.isUsed())
1131
ctx.config.gcroot.push_back(sym);
1132
}
1133
directives = saver.save(obj->getCOFFLinkerOpts());
1134
}
1135
1136
void BitcodeFile::parseLazy() {
1137
for (const lto::InputFile::Symbol &sym : obj->symbols())
1138
if (!sym.isUndefined())
1139
ctx.symtab.addLazyObject(this, sym.getName());
1140
}
1141
1142
MachineTypes BitcodeFile::getMachineType() {
1143
switch (Triple(obj->getTargetTriple()).getArch()) {
1144
case Triple::x86_64:
1145
return AMD64;
1146
case Triple::x86:
1147
return I386;
1148
case Triple::arm:
1149
case Triple::thumb:
1150
return ARMNT;
1151
case Triple::aarch64:
1152
return ARM64;
1153
default:
1154
return IMAGE_FILE_MACHINE_UNKNOWN;
1155
}
1156
}
1157
1158
std::string lld::coff::replaceThinLTOSuffix(StringRef path, StringRef suffix,
1159
StringRef repl) {
1160
if (path.consume_back(suffix))
1161
return (path + repl).str();
1162
return std::string(path);
1163
}
1164
1165
static bool isRVACode(COFFObjectFile *coffObj, uint64_t rva, InputFile *file) {
1166
for (size_t i = 1, e = coffObj->getNumberOfSections(); i <= e; i++) {
1167
const coff_section *sec = CHECK(coffObj->getSection(i), file);
1168
if (rva >= sec->VirtualAddress &&
1169
rva <= sec->VirtualAddress + sec->VirtualSize) {
1170
return (sec->Characteristics & COFF::IMAGE_SCN_CNT_CODE) != 0;
1171
}
1172
}
1173
return false;
1174
}
1175
1176
void DLLFile::parse() {
1177
// Parse a memory buffer as a PE-COFF executable.
1178
std::unique_ptr<Binary> bin = CHECK(createBinary(mb), this);
1179
1180
if (auto *obj = dyn_cast<COFFObjectFile>(bin.get())) {
1181
bin.release();
1182
coffObj.reset(obj);
1183
} else {
1184
error(toString(this) + " is not a COFF file");
1185
return;
1186
}
1187
1188
if (!coffObj->getPE32Header() && !coffObj->getPE32PlusHeader()) {
1189
error(toString(this) + " is not a PE-COFF executable");
1190
return;
1191
}
1192
1193
for (const auto &exp : coffObj->export_directories()) {
1194
StringRef dllName, symbolName;
1195
uint32_t exportRVA;
1196
checkError(exp.getDllName(dllName));
1197
checkError(exp.getSymbolName(symbolName));
1198
checkError(exp.getExportRVA(exportRVA));
1199
1200
if (symbolName.empty())
1201
continue;
1202
1203
bool code = isRVACode(coffObj.get(), exportRVA, this);
1204
1205
Symbol *s = make<Symbol>();
1206
s->dllName = dllName;
1207
s->symbolName = symbolName;
1208
s->importType = code ? ImportType::IMPORT_CODE : ImportType::IMPORT_DATA;
1209
s->nameType = ImportNameType::IMPORT_NAME;
1210
1211
if (coffObj->getMachine() == I386) {
1212
s->symbolName = symbolName = saver().save("_" + symbolName);
1213
s->nameType = ImportNameType::IMPORT_NAME_NOPREFIX;
1214
}
1215
1216
StringRef impName = saver().save("__imp_" + symbolName);
1217
ctx.symtab.addLazyDLLSymbol(this, s, impName);
1218
if (code)
1219
ctx.symtab.addLazyDLLSymbol(this, s, symbolName);
1220
}
1221
}
1222
1223
MachineTypes DLLFile::getMachineType() {
1224
if (coffObj)
1225
return static_cast<MachineTypes>(coffObj->getMachine());
1226
return IMAGE_FILE_MACHINE_UNKNOWN;
1227
}
1228
1229
void DLLFile::makeImport(DLLFile::Symbol *s) {
1230
if (!seen.insert(s->symbolName).second)
1231
return;
1232
1233
size_t impSize = s->dllName.size() + s->symbolName.size() + 2; // +2 for NULs
1234
size_t size = sizeof(coff_import_header) + impSize;
1235
char *buf = bAlloc().Allocate<char>(size);
1236
memset(buf, 0, size);
1237
char *p = buf;
1238
auto *imp = reinterpret_cast<coff_import_header *>(p);
1239
p += sizeof(*imp);
1240
imp->Sig2 = 0xFFFF;
1241
imp->Machine = coffObj->getMachine();
1242
imp->SizeOfData = impSize;
1243
imp->OrdinalHint = 0; // Only linking by name
1244
imp->TypeInfo = (s->nameType << 2) | s->importType;
1245
1246
// Write symbol name and DLL name.
1247
memcpy(p, s->symbolName.data(), s->symbolName.size());
1248
p += s->symbolName.size() + 1;
1249
memcpy(p, s->dllName.data(), s->dllName.size());
1250
MemoryBufferRef mbref = MemoryBufferRef(StringRef(buf, size), s->dllName);
1251
ImportFile *impFile = make<ImportFile>(ctx, mbref);
1252
ctx.symtab.addFile(impFile);
1253
}
1254
1255