Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lld/ELF/AArch64ErrataFix.cpp
34879 views
1
//===- AArch64ErrataFix.cpp -----------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
// This file implements Section Patching for the purpose of working around
9
// the AArch64 Cortex-53 errata 843419 that affects r0p0, r0p1, r0p2 and r0p4
10
// versions of the core.
11
//
12
// The general principle is that an erratum sequence of one or
13
// more instructions is detected in the instruction stream, one of the
14
// instructions in the sequence is replaced with a branch to a patch sequence
15
// of replacement instructions. At the end of the replacement sequence the
16
// patch branches back to the instruction stream.
17
18
// This technique is only suitable for fixing an erratum when:
19
// - There is a set of necessary conditions required to trigger the erratum that
20
// can be detected at static link time.
21
// - There is a set of replacement instructions that can be used to remove at
22
// least one of the necessary conditions that trigger the erratum.
23
// - We can overwrite an instruction in the erratum sequence with a branch to
24
// the replacement sequence.
25
// - We can place the replacement sequence within range of the branch.
26
//===----------------------------------------------------------------------===//
27
28
#include "AArch64ErrataFix.h"
29
#include "InputFiles.h"
30
#include "LinkerScript.h"
31
#include "OutputSections.h"
32
#include "Relocations.h"
33
#include "Symbols.h"
34
#include "SyntheticSections.h"
35
#include "Target.h"
36
#include "lld/Common/CommonLinkerContext.h"
37
#include "lld/Common/Strings.h"
38
#include "llvm/ADT/StringExtras.h"
39
#include "llvm/Support/Endian.h"
40
#include <algorithm>
41
42
using namespace llvm;
43
using namespace llvm::ELF;
44
using namespace llvm::object;
45
using namespace llvm::support;
46
using namespace llvm::support::endian;
47
using namespace lld;
48
using namespace lld::elf;
49
50
// Helper functions to identify instructions and conditions needed to trigger
51
// the Cortex-A53-843419 erratum.
52
53
// ADRP
54
// | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) |
55
static bool isADRP(uint32_t instr) {
56
return (instr & 0x9f000000) == 0x90000000;
57
}
58
59
// Load and store bit patterns from ARMv8-A.
60
// Instructions appear in order of appearance starting from table in
61
// C4.1.3 Loads and Stores.
62
63
// All loads and stores have 1 (at bit position 27), (0 at bit position 25).
64
// | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) |
65
static bool isLoadStoreClass(uint32_t instr) {
66
return (instr & 0x0a000000) == 0x08000000;
67
}
68
69
// LDN/STN multiple no offset
70
// | 0 Q 00 | 1100 | 0 L 00 | 0000 | opcode (4) | size (2) | Rn (5) | Rt (5) |
71
// LDN/STN multiple post-indexed
72
// | 0 Q 00 | 1100 | 1 L 0 | Rm (5)| opcode (4) | size (2) | Rn (5) | Rt (5) |
73
// L == 0 for stores.
74
75
// Utility routine to decode opcode field of LDN/STN multiple structure
76
// instructions to find the ST1 instructions.
77
// opcode == 0010 ST1 4 registers.
78
// opcode == 0110 ST1 3 registers.
79
// opcode == 0111 ST1 1 register.
80
// opcode == 1010 ST1 2 registers.
81
static bool isST1MultipleOpcode(uint32_t instr) {
82
return (instr & 0x0000f000) == 0x00002000 ||
83
(instr & 0x0000f000) == 0x00006000 ||
84
(instr & 0x0000f000) == 0x00007000 ||
85
(instr & 0x0000f000) == 0x0000a000;
86
}
87
88
static bool isST1Multiple(uint32_t instr) {
89
return (instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(instr);
90
}
91
92
// Writes to Rn (writeback).
93
static bool isST1MultiplePost(uint32_t instr) {
94
return (instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(instr);
95
}
96
97
// LDN/STN single no offset
98
// | 0 Q 00 | 1101 | 0 L R 0 | 0000 | opc (3) S | size (2) | Rn (5) | Rt (5)|
99
// LDN/STN single post-indexed
100
// | 0 Q 00 | 1101 | 1 L R | Rm (5) | opc (3) S | size (2) | Rn (5) | Rt (5)|
101
// L == 0 for stores
102
103
// Utility routine to decode opcode field of LDN/STN single structure
104
// instructions to find the ST1 instructions.
105
// R == 0 for ST1 and ST3, R == 1 for ST2 and ST4.
106
// opcode == 000 ST1 8-bit.
107
// opcode == 010 ST1 16-bit.
108
// opcode == 100 ST1 32 or 64-bit (Size determines which).
109
static bool isST1SingleOpcode(uint32_t instr) {
110
return (instr & 0x0040e000) == 0x00000000 ||
111
(instr & 0x0040e000) == 0x00004000 ||
112
(instr & 0x0040e000) == 0x00008000;
113
}
114
115
static bool isST1Single(uint32_t instr) {
116
return (instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(instr);
117
}
118
119
// Writes to Rn (writeback).
120
static bool isST1SinglePost(uint32_t instr) {
121
return (instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(instr);
122
}
123
124
static bool isST1(uint32_t instr) {
125
return isST1Multiple(instr) || isST1MultiplePost(instr) ||
126
isST1Single(instr) || isST1SinglePost(instr);
127
}
128
129
// Load/store exclusive
130
// | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) |
131
// L == 0 for Stores.
132
static bool isLoadStoreExclusive(uint32_t instr) {
133
return (instr & 0x3f000000) == 0x08000000;
134
}
135
136
static bool isLoadExclusive(uint32_t instr) {
137
return (instr & 0x3f400000) == 0x08400000;
138
}
139
140
// Load register literal
141
// | opc (2) 01 | 1 V 00 | imm19 | Rt (5) |
142
static bool isLoadLiteral(uint32_t instr) {
143
return (instr & 0x3b000000) == 0x18000000;
144
}
145
146
// Load/store no-allocate pair
147
// (offset)
148
// | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
149
// L == 0 for stores.
150
// Never writes to register
151
static bool isSTNP(uint32_t instr) {
152
return (instr & 0x3bc00000) == 0x28000000;
153
}
154
155
// Load/store register pair
156
// (post-indexed)
157
// | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
158
// L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP
159
// Writes to Rn.
160
static bool isSTPPost(uint32_t instr) {
161
return (instr & 0x3bc00000) == 0x28800000;
162
}
163
164
// (offset)
165
// | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
166
static bool isSTPOffset(uint32_t instr) {
167
return (instr & 0x3bc00000) == 0x29000000;
168
}
169
170
// (pre-index)
171
// | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
172
// Writes to Rn.
173
static bool isSTPPre(uint32_t instr) {
174
return (instr & 0x3bc00000) == 0x29800000;
175
}
176
177
static bool isSTP(uint32_t instr) {
178
return isSTPPost(instr) || isSTPOffset(instr) || isSTPPre(instr);
179
}
180
181
// Load/store register (unscaled immediate)
182
// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) |
183
// V == 0 for Scalar, V == 1 for Simd/FP.
184
static bool isLoadStoreUnscaled(uint32_t instr) {
185
return (instr & 0x3b000c00) == 0x38000000;
186
}
187
188
// Load/store register (immediate post-indexed)
189
// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) |
190
static bool isLoadStoreImmediatePost(uint32_t instr) {
191
return (instr & 0x3b200c00) == 0x38000400;
192
}
193
194
// Load/store register (unprivileged)
195
// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) |
196
static bool isLoadStoreUnpriv(uint32_t instr) {
197
return (instr & 0x3b200c00) == 0x38000800;
198
}
199
200
// Load/store register (immediate pre-indexed)
201
// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) |
202
static bool isLoadStoreImmediatePre(uint32_t instr) {
203
return (instr & 0x3b200c00) == 0x38000c00;
204
}
205
206
// Load/store register (register offset)
207
// | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt |
208
static bool isLoadStoreRegisterOff(uint32_t instr) {
209
return (instr & 0x3b200c00) == 0x38200800;
210
}
211
212
// Load/store register (unsigned immediate)
213
// | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) |
214
static bool isLoadStoreRegisterUnsigned(uint32_t instr) {
215
return (instr & 0x3b000000) == 0x39000000;
216
}
217
218
// Rt is always in bit position 0 - 4.
219
static uint32_t getRt(uint32_t instr) { return (instr & 0x1f); }
220
221
// Rn is always in bit position 5 - 9.
222
static uint32_t getRn(uint32_t instr) { return (instr >> 5) & 0x1f; }
223
224
// C4.1.2 Branches, Exception Generating and System instructions
225
// | op0 (3) 1 | 01 op1 (4) | x (22) |
226
// op0 == 010 101 op1 == 0xxx Conditional Branch.
227
// op0 == 110 101 op1 == 1xxx Unconditional Branch Register.
228
// op0 == x00 101 op1 == xxxx Unconditional Branch immediate.
229
// op0 == x01 101 op1 == 0xxx Compare and branch immediate.
230
// op0 == x01 101 op1 == 1xxx Test and branch immediate.
231
static bool isBranch(uint32_t instr) {
232
return ((instr & 0xfe000000) == 0xd6000000) || // Cond branch.
233
((instr & 0xfe000000) == 0x54000000) || // Uncond branch reg.
234
((instr & 0x7c000000) == 0x14000000) || // Uncond branch imm.
235
((instr & 0x7c000000) == 0x34000000); // Compare and test branch.
236
}
237
238
static bool isV8SingleRegisterNonStructureLoadStore(uint32_t instr) {
239
return isLoadStoreUnscaled(instr) || isLoadStoreImmediatePost(instr) ||
240
isLoadStoreUnpriv(instr) || isLoadStoreImmediatePre(instr) ||
241
isLoadStoreRegisterOff(instr) || isLoadStoreRegisterUnsigned(instr);
242
}
243
244
// Note that this function refers to v8.0 only and does not include the
245
// additional load and store instructions added for in later revisions of
246
// the architecture such as the Atomic memory operations introduced
247
// in v8.1.
248
static bool isV8NonStructureLoad(uint32_t instr) {
249
if (isLoadExclusive(instr))
250
return true;
251
if (isLoadLiteral(instr))
252
return true;
253
else if (isV8SingleRegisterNonStructureLoadStore(instr)) {
254
// For Load and Store single register, Loads are derived from a
255
// combination of the Size, V and Opc fields.
256
uint32_t size = (instr >> 30) & 0xff;
257
uint32_t v = (instr >> 26) & 0x1;
258
uint32_t opc = (instr >> 22) & 0x3;
259
// For the load and store instructions that we are decoding.
260
// Opc == 0 are all stores.
261
// Opc == 1 with a couple of exceptions are loads. The exceptions are:
262
// Size == 00 (0), V == 1, Opc == 10 (2) which is a store and
263
// Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch.
264
return opc != 0 && !(size == 0 && v == 1 && opc == 2) &&
265
!(size == 3 && v == 0 && opc == 2);
266
}
267
return false;
268
}
269
270
// The following decode instructions are only complete up to the instructions
271
// needed for errata 843419.
272
273
// Instruction with writeback updates the index register after the load/store.
274
static bool hasWriteback(uint32_t instr) {
275
return isLoadStoreImmediatePre(instr) || isLoadStoreImmediatePost(instr) ||
276
isSTPPre(instr) || isSTPPost(instr) || isST1SinglePost(instr) ||
277
isST1MultiplePost(instr);
278
}
279
280
// For the load and store class of instructions, a load can write to the
281
// destination register, a load and a store can write to the base register when
282
// the instruction has writeback.
283
static bool doesLoadStoreWriteToReg(uint32_t instr, uint32_t reg) {
284
return (isV8NonStructureLoad(instr) && getRt(instr) == reg) ||
285
(hasWriteback(instr) && getRn(instr) == reg);
286
}
287
288
// Scanner for Cortex-A53 errata 843419
289
// Full details are available in the Cortex A53 MPCore revision 0 Software
290
// Developers Errata Notice (ARM-EPM-048406).
291
//
292
// The instruction sequence that triggers the erratum is common in compiled
293
// AArch64 code, however it is sensitive to the offset of the sequence within
294
// a 4k page. This means that by scanning and fixing the patch after we have
295
// assigned addresses we only need to disassemble and fix instances of the
296
// sequence in the range of affected offsets.
297
//
298
// In summary the erratum conditions are a series of 4 instructions:
299
// 1.) An ADRP instruction that writes to register Rn with low 12 bits of
300
// address of instruction either 0xff8 or 0xffc.
301
// 2.) A load or store instruction that can be:
302
// - A single register load or store, of either integer or vector registers.
303
// - An STP or STNP, of either integer or vector registers.
304
// - An Advanced SIMD ST1 store instruction.
305
// - Must not write to Rn, but may optionally read from it.
306
// 3.) An optional instruction that is not a branch and does not write to Rn.
307
// 4.) A load or store from the Load/store register (unsigned immediate) class
308
// that uses Rn as the base address register.
309
//
310
// Note that we do not attempt to scan for Sequence 2 as described in the
311
// Software Developers Errata Notice as this has been assessed to be extremely
312
// unlikely to occur in compiled code. This matches gold and ld.bfd behavior.
313
314
// Return true if the Instruction sequence Adrp, Instr2, and Instr4 match
315
// the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.),
316
// and 4.) in the Scanner for Cortex-A53 errata comment above.
317
static bool is843419ErratumSequence(uint32_t instr1, uint32_t instr2,
318
uint32_t instr4) {
319
if (!isADRP(instr1))
320
return false;
321
322
uint32_t rn = getRt(instr1);
323
return isLoadStoreClass(instr2) &&
324
(isLoadStoreExclusive(instr2) || isLoadLiteral(instr2) ||
325
isV8SingleRegisterNonStructureLoadStore(instr2) || isSTP(instr2) ||
326
isSTNP(instr2) || isST1(instr2)) &&
327
!doesLoadStoreWriteToReg(instr2, rn) &&
328
isLoadStoreRegisterUnsigned(instr4) && getRn(instr4) == rn;
329
}
330
331
// Scan the instruction sequence starting at Offset Off from the base of
332
// InputSection isec. We update Off in this function rather than in the caller
333
// as we can skip ahead much further into the section when we know how many
334
// instructions we've scanned.
335
// Return the offset of the load or store instruction in isec that we want to
336
// patch or 0 if no patch required.
337
static uint64_t scanCortexA53Errata843419(InputSection *isec, uint64_t &off,
338
uint64_t limit) {
339
uint64_t isecAddr = isec->getVA(0);
340
341
// Advance Off so that (isecAddr + Off) modulo 0x1000 is at least 0xff8.
342
uint64_t initialPageOff = (isecAddr + off) & 0xfff;
343
if (initialPageOff < 0xff8)
344
off += 0xff8 - initialPageOff;
345
346
bool optionalAllowed = limit - off > 12;
347
if (off >= limit || limit - off < 12) {
348
// Need at least 3 4-byte sized instructions to trigger erratum.
349
off = limit;
350
return 0;
351
}
352
353
uint64_t patchOff = 0;
354
const uint8_t *buf = isec->content().begin();
355
const ulittle32_t *instBuf = reinterpret_cast<const ulittle32_t *>(buf + off);
356
uint32_t instr1 = *instBuf++;
357
uint32_t instr2 = *instBuf++;
358
uint32_t instr3 = *instBuf++;
359
if (is843419ErratumSequence(instr1, instr2, instr3)) {
360
patchOff = off + 8;
361
} else if (optionalAllowed && !isBranch(instr3)) {
362
uint32_t instr4 = *instBuf++;
363
if (is843419ErratumSequence(instr1, instr2, instr4))
364
patchOff = off + 12;
365
}
366
if (((isecAddr + off) & 0xfff) == 0xff8)
367
off += 4;
368
else
369
off += 0xffc;
370
return patchOff;
371
}
372
373
class elf::Patch843419Section final : public SyntheticSection {
374
public:
375
Patch843419Section(InputSection *p, uint64_t off);
376
377
void writeTo(uint8_t *buf) override;
378
379
size_t getSize() const override { return 8; }
380
381
uint64_t getLDSTAddr() const;
382
383
static bool classof(const SectionBase *d) {
384
return d->kind() == InputSectionBase::Synthetic && d->name == ".text.patch";
385
}
386
387
// The Section we are patching.
388
const InputSection *patchee;
389
// The offset of the instruction in the patchee section we are patching.
390
uint64_t patcheeOffset;
391
// A label for the start of the Patch that we can use as a relocation target.
392
Symbol *patchSym;
393
};
394
395
Patch843419Section::Patch843419Section(InputSection *p, uint64_t off)
396
: SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
397
".text.patch"),
398
patchee(p), patcheeOffset(off) {
399
this->parent = p->getParent();
400
patchSym = addSyntheticLocal(
401
saver().save("__CortexA53843419_" + utohexstr(getLDSTAddr())), STT_FUNC,
402
0, getSize(), *this);
403
addSyntheticLocal(saver().save("$x"), STT_NOTYPE, 0, 0, *this);
404
}
405
406
uint64_t Patch843419Section::getLDSTAddr() const {
407
return patchee->getVA(patcheeOffset);
408
}
409
410
void Patch843419Section::writeTo(uint8_t *buf) {
411
// Copy the instruction that we will be replacing with a branch in the
412
// patchee Section.
413
write32le(buf, read32le(patchee->content().begin() + patcheeOffset));
414
415
// Apply any relocation transferred from the original patchee section.
416
target->relocateAlloc(*this, buf);
417
418
// Return address is the next instruction after the one we have just copied.
419
uint64_t s = getLDSTAddr() + 4;
420
uint64_t p = patchSym->getVA() + 4;
421
target->relocateNoSym(buf + 4, R_AARCH64_JUMP26, s - p);
422
}
423
424
void AArch64Err843419Patcher::init() {
425
// The AArch64 ABI permits data in executable sections. We must avoid scanning
426
// this data as if it were instructions to avoid false matches. We use the
427
// mapping symbols in the InputObjects to identify this data, caching the
428
// results in sectionMap so we don't have to recalculate it each pass.
429
430
// The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe
431
// half open intervals [Symbol Value, Next Symbol Value) of code and data
432
// within sections. If there is no next symbol then the half open interval is
433
// [Symbol Value, End of section). The type, code or data, is determined by
434
// the mapping symbol name, $x for code, $d for data.
435
auto isCodeMapSymbol = [](const Symbol *b) {
436
return b->getName() == "$x" || b->getName().starts_with("$x.");
437
};
438
auto isDataMapSymbol = [](const Symbol *b) {
439
return b->getName() == "$d" || b->getName().starts_with("$d.");
440
};
441
442
// Collect mapping symbols for every executable InputSection.
443
for (ELFFileBase *file : ctx.objectFiles) {
444
for (Symbol *b : file->getLocalSymbols()) {
445
auto *def = dyn_cast<Defined>(b);
446
if (!def)
447
continue;
448
if (!isCodeMapSymbol(def) && !isDataMapSymbol(def))
449
continue;
450
if (auto *sec = dyn_cast_or_null<InputSection>(def->section))
451
if (sec->flags & SHF_EXECINSTR)
452
sectionMap[sec].push_back(def);
453
}
454
}
455
// For each InputSection make sure the mapping symbols are in sorted in
456
// ascending order and free from consecutive runs of mapping symbols with
457
// the same type. For example we must remove the redundant $d.1 from $x.0
458
// $d.0 $d.1 $x.1.
459
for (auto &kv : sectionMap) {
460
std::vector<const Defined *> &mapSyms = kv.second;
461
llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
462
return a->value < b->value;
463
});
464
mapSyms.erase(
465
std::unique(mapSyms.begin(), mapSyms.end(),
466
[=](const Defined *a, const Defined *b) {
467
return isCodeMapSymbol(a) == isCodeMapSymbol(b);
468
}),
469
mapSyms.end());
470
// Always start with a Code Mapping Symbol.
471
if (!mapSyms.empty() && !isCodeMapSymbol(mapSyms.front()))
472
mapSyms.erase(mapSyms.begin());
473
}
474
initialized = true;
475
}
476
477
// Insert the PatchSections we have created back into the
478
// InputSectionDescription. As inserting patches alters the addresses of
479
// InputSections that follow them, we try and place the patches after all the
480
// executable sections, although we may need to insert them earlier if the
481
// InputSectionDescription is larger than the maximum branch range.
482
void AArch64Err843419Patcher::insertPatches(
483
InputSectionDescription &isd, std::vector<Patch843419Section *> &patches) {
484
uint64_t isecLimit;
485
uint64_t prevIsecLimit = isd.sections.front()->outSecOff;
486
uint64_t patchUpperBound = prevIsecLimit + target->getThunkSectionSpacing();
487
uint64_t outSecAddr = isd.sections.front()->getParent()->addr;
488
489
// Set the outSecOff of patches to the place where we want to insert them.
490
// We use a similar strategy to Thunk placement. Place patches roughly
491
// every multiple of maximum branch range.
492
auto patchIt = patches.begin();
493
auto patchEnd = patches.end();
494
for (const InputSection *isec : isd.sections) {
495
isecLimit = isec->outSecOff + isec->getSize();
496
if (isecLimit > patchUpperBound) {
497
while (patchIt != patchEnd) {
498
if ((*patchIt)->getLDSTAddr() - outSecAddr >= prevIsecLimit)
499
break;
500
(*patchIt)->outSecOff = prevIsecLimit;
501
++patchIt;
502
}
503
patchUpperBound = prevIsecLimit + target->getThunkSectionSpacing();
504
}
505
prevIsecLimit = isecLimit;
506
}
507
for (; patchIt != patchEnd; ++patchIt) {
508
(*patchIt)->outSecOff = isecLimit;
509
}
510
511
// Merge all patch sections. We use the outSecOff assigned above to
512
// determine the insertion point. This is ok as we only merge into an
513
// InputSectionDescription once per pass, and at the end of the pass
514
// assignAddresses() will recalculate all the outSecOff values.
515
SmallVector<InputSection *, 0> tmp;
516
tmp.reserve(isd.sections.size() + patches.size());
517
auto mergeCmp = [](const InputSection *a, const InputSection *b) {
518
if (a->outSecOff != b->outSecOff)
519
return a->outSecOff < b->outSecOff;
520
return isa<Patch843419Section>(a) && !isa<Patch843419Section>(b);
521
};
522
std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(),
523
patches.end(), std::back_inserter(tmp), mergeCmp);
524
isd.sections = std::move(tmp);
525
}
526
527
// Given an erratum sequence that starts at address adrpAddr, with an
528
// instruction that we need to patch at patcheeOffset from the start of
529
// InputSection isec, create a Patch843419 Section and add it to the
530
// Patches that we need to insert.
531
static void implementPatch(uint64_t adrpAddr, uint64_t patcheeOffset,
532
InputSection *isec,
533
std::vector<Patch843419Section *> &patches) {
534
// There may be a relocation at the same offset that we are patching. There
535
// are four cases that we need to consider.
536
// Case 1: R_AARCH64_JUMP26 branch relocation. We have already patched this
537
// instance of the erratum on a previous patch and altered the relocation. We
538
// have nothing more to do.
539
// Case 2: A TLS Relaxation R_RELAX_TLS_IE_TO_LE. In this case the ADRP that
540
// we read will be transformed into a MOVZ later so we actually don't match
541
// the sequence and have nothing more to do.
542
// Case 3: A load/store register (unsigned immediate) class relocation. There
543
// are two of these R_AARCH_LD64_ABS_LO12_NC and R_AARCH_LD64_GOT_LO12_NC and
544
// they are both absolute. We need to add the same relocation to the patch,
545
// and replace the relocation with a R_AARCH_JUMP26 branch relocation.
546
// Case 4: No relocation. We must create a new R_AARCH64_JUMP26 branch
547
// relocation at the offset.
548
auto relIt = llvm::find_if(isec->relocs(), [=](const Relocation &r) {
549
return r.offset == patcheeOffset;
550
});
551
if (relIt != isec->relocs().end() &&
552
(relIt->type == R_AARCH64_JUMP26 || relIt->expr == R_RELAX_TLS_IE_TO_LE))
553
return;
554
555
log("detected cortex-a53-843419 erratum sequence starting at " +
556
utohexstr(adrpAddr) + " in unpatched output.");
557
558
auto *ps = make<Patch843419Section>(isec, patcheeOffset);
559
patches.push_back(ps);
560
561
auto makeRelToPatch = [](uint64_t offset, Symbol *patchSym) {
562
return Relocation{R_PC, R_AARCH64_JUMP26, offset, 0, patchSym};
563
};
564
565
if (relIt != isec->relocs().end()) {
566
ps->addReloc({relIt->expr, relIt->type, 0, relIt->addend, relIt->sym});
567
*relIt = makeRelToPatch(patcheeOffset, ps->patchSym);
568
} else
569
isec->addReloc(makeRelToPatch(patcheeOffset, ps->patchSym));
570
}
571
572
// Scan all the instructions in InputSectionDescription, for each instance of
573
// the erratum sequence create a Patch843419Section. We return the list of
574
// Patch843419Sections that need to be applied to the InputSectionDescription.
575
std::vector<Patch843419Section *>
576
AArch64Err843419Patcher::patchInputSectionDescription(
577
InputSectionDescription &isd) {
578
std::vector<Patch843419Section *> patches;
579
for (InputSection *isec : isd.sections) {
580
// LLD doesn't use the erratum sequence in SyntheticSections.
581
if (isa<SyntheticSection>(isec))
582
continue;
583
// Use sectionMap to make sure we only scan code and not inline data.
584
// We have already sorted MapSyms in ascending order and removed consecutive
585
// mapping symbols of the same type. Our range of executable instructions to
586
// scan is therefore [codeSym->value, dataSym->value) or [codeSym->value,
587
// section size).
588
std::vector<const Defined *> &mapSyms = sectionMap[isec];
589
590
auto codeSym = mapSyms.begin();
591
while (codeSym != mapSyms.end()) {
592
auto dataSym = std::next(codeSym);
593
uint64_t off = (*codeSym)->value;
594
uint64_t limit = (dataSym == mapSyms.end()) ? isec->content().size()
595
: (*dataSym)->value;
596
597
while (off < limit) {
598
uint64_t startAddr = isec->getVA(off);
599
if (uint64_t patcheeOffset =
600
scanCortexA53Errata843419(isec, off, limit))
601
implementPatch(startAddr, patcheeOffset, isec, patches);
602
}
603
if (dataSym == mapSyms.end())
604
break;
605
codeSym = std::next(dataSym);
606
}
607
}
608
return patches;
609
}
610
611
// For each InputSectionDescription make one pass over the executable sections
612
// looking for the erratum sequence; creating a synthetic Patch843419Section
613
// for each instance found. We insert these synthetic patch sections after the
614
// executable code in each InputSectionDescription.
615
//
616
// PreConditions:
617
// The Output and Input Sections have had their final addresses assigned.
618
//
619
// PostConditions:
620
// Returns true if at least one patch was added. The addresses of the
621
// Output and Input Sections may have been changed.
622
// Returns false if no patches were required and no changes were made.
623
bool AArch64Err843419Patcher::createFixes() {
624
if (!initialized)
625
init();
626
627
bool addressesChanged = false;
628
for (OutputSection *os : outputSections) {
629
if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
630
continue;
631
for (SectionCommand *cmd : os->commands)
632
if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
633
std::vector<Patch843419Section *> patches =
634
patchInputSectionDescription(*isd);
635
if (!patches.empty()) {
636
insertPatches(*isd, patches);
637
addressesChanged = true;
638
}
639
}
640
}
641
return addressesChanged;
642
}
643
644