Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lld/ELF/ARMErrataFix.cpp
34878 views
1
//===- ARMErrataFix.cpp ---------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
// This file implements Section Patching for the purpose of working around the
9
// Cortex-a8 erratum 657417 "A 32bit branch instruction that spans 2 4K regions
10
// can result in an incorrect instruction fetch or processor deadlock." The
11
// erratum affects all but r1p7, r2p5, r2p6, r3p1 and r3p2 revisions of the
12
// Cortex-A8. A high level description of the patching technique is given in
13
// the opening comment of AArch64ErrataFix.cpp.
14
//===----------------------------------------------------------------------===//
15
16
#include "ARMErrataFix.h"
17
#include "InputFiles.h"
18
#include "LinkerScript.h"
19
#include "OutputSections.h"
20
#include "Relocations.h"
21
#include "Symbols.h"
22
#include "SyntheticSections.h"
23
#include "Target.h"
24
#include "lld/Common/CommonLinkerContext.h"
25
#include "lld/Common/Strings.h"
26
#include "llvm/Support/Endian.h"
27
#include <algorithm>
28
29
using namespace llvm;
30
using namespace llvm::ELF;
31
using namespace llvm::object;
32
using namespace llvm::support;
33
using namespace llvm::support::endian;
34
using namespace lld;
35
using namespace lld::elf;
36
37
// The documented title for Erratum 657417 is:
38
// "A 32bit branch instruction that spans two 4K regions can result in an
39
// incorrect instruction fetch or processor deadlock". Graphically using a
40
// 32-bit B.w instruction encoded as a pair of halfwords 0xf7fe 0xbfff
41
// xxxxxx000 // Memory region 1 start
42
// target:
43
// ...
44
// xxxxxxffe f7fe // First halfword of branch to target:
45
// xxxxxx000 // Memory region 2 start
46
// xxxxxx002 bfff // Second halfword of branch to target:
47
//
48
// The specific trigger conditions that can be detected at link time are:
49
// - There is a 32-bit Thumb-2 branch instruction with an address of the form
50
// xxxxxxFFE. The first 2 bytes of the instruction are in 4KiB region 1, the
51
// second 2 bytes are in region 2.
52
// - The branch instruction is one of BLX, BL, B.w BCC.w
53
// - The instruction preceding the branch is a 32-bit non-branch instruction.
54
// - The target of the branch is in region 1.
55
//
56
// The linker mitigation for the fix is to redirect any branch that meets the
57
// erratum conditions to a patch section containing a branch to the target.
58
//
59
// As adding patch sections may move branches onto region boundaries the patch
60
// must iterate until no more patches are added.
61
//
62
// Example, before:
63
// 00000FFA func: NOP.w // 32-bit Thumb function
64
// 00000FFE B.W func // 32-bit branch spanning 2 regions, dest in 1st.
65
// Example, after:
66
// 00000FFA func: NOP.w // 32-bit Thumb function
67
// 00000FFE B.w __CortexA8657417_00000FFE
68
// 00001002 2 - bytes padding
69
// 00001004 __CortexA8657417_00000FFE: B.w func
70
71
class elf::Patch657417Section final : public SyntheticSection {
72
public:
73
Patch657417Section(InputSection *p, uint64_t off, uint32_t instr, bool isARM);
74
75
void writeTo(uint8_t *buf) override;
76
77
size_t getSize() const override { return 4; }
78
79
// Get the virtual address of the branch instruction at patcheeOffset.
80
uint64_t getBranchAddr() const;
81
82
static bool classof(const SectionBase *d) {
83
return d->kind() == InputSectionBase::Synthetic && d->name ==".text.patch";
84
}
85
86
// The Section we are patching.
87
const InputSection *patchee;
88
// The offset of the instruction in the Patchee section we are patching.
89
uint64_t patcheeOffset;
90
// A label for the start of the Patch that we can use as a relocation target.
91
Symbol *patchSym;
92
// A decoding of the branch instruction at patcheeOffset.
93
uint32_t instr;
94
// True If the patch is to be written in ARM state, otherwise the patch will
95
// be written in Thumb state.
96
bool isARM;
97
};
98
99
// Return true if the half-word, when taken as the first of a pair of halfwords
100
// is the first half of a 32-bit instruction.
101
// Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
102
// section A6.3: 32-bit Thumb instruction encoding
103
// | HW1 | HW2 |
104
// | 1 1 1 | op1 (2) | op2 (7) | x (4) |op| x (15) |
105
// With op1 == 0b00, a 16-bit instruction is encoded.
106
//
107
// We test only the first halfword, looking for op != 0b00.
108
static bool is32bitInstruction(uint16_t hw) {
109
return (hw & 0xe000) == 0xe000 && (hw & 0x1800) != 0x0000;
110
}
111
112
// Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
113
// section A6.3.4 Branches and miscellaneous control.
114
// | HW1 | HW2 |
115
// | 1 1 1 | 1 0 | op (7) | x (4) | 1 | op1 (3) | op2 (4) | imm8 (8) |
116
// op1 == 0x0 op != x111xxx | Conditional branch (Bcc.W)
117
// op1 == 0x1 | Branch (B.W)
118
// op1 == 1x0 | Branch with Link and Exchange (BLX.w)
119
// op1 == 1x1 | Branch with Link (BL.W)
120
121
static bool isBcc(uint32_t instr) {
122
return (instr & 0xf800d000) == 0xf0008000 &&
123
(instr & 0x03800000) != 0x03800000;
124
}
125
126
static bool isB(uint32_t instr) { return (instr & 0xf800d000) == 0xf0009000; }
127
128
static bool isBLX(uint32_t instr) { return (instr & 0xf800d000) == 0xf000c000; }
129
130
static bool isBL(uint32_t instr) { return (instr & 0xf800d000) == 0xf000d000; }
131
132
static bool is32bitBranch(uint32_t instr) {
133
return isBcc(instr) || isB(instr) || isBL(instr) || isBLX(instr);
134
}
135
136
Patch657417Section::Patch657417Section(InputSection *p, uint64_t off,
137
uint32_t instr, bool isARM)
138
: SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
139
".text.patch"),
140
patchee(p), patcheeOffset(off), instr(instr), isARM(isARM) {
141
parent = p->getParent();
142
patchSym = addSyntheticLocal(
143
saver().save("__CortexA8657417_" + utohexstr(getBranchAddr())), STT_FUNC,
144
isARM ? 0 : 1, getSize(), *this);
145
addSyntheticLocal(saver().save(isARM ? "$a" : "$t"), STT_NOTYPE, 0, 0, *this);
146
}
147
148
uint64_t Patch657417Section::getBranchAddr() const {
149
return patchee->getVA(patcheeOffset);
150
}
151
152
// Given a branch instruction instr at sourceAddr work out its destination
153
// address. This is only used when the branch instruction has no relocation.
154
static uint64_t getThumbDestAddr(uint64_t sourceAddr, uint32_t instr) {
155
uint8_t buf[4];
156
write16le(buf, instr >> 16);
157
write16le(buf + 2, instr & 0x0000ffff);
158
int64_t offset;
159
if (isBcc(instr))
160
offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP19);
161
else if (isB(instr))
162
offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP24);
163
else
164
offset = target->getImplicitAddend(buf, R_ARM_THM_CALL);
165
// A BLX instruction from Thumb to Arm may have an address that is
166
// not 4-byte aligned. As Arm instructions are always 4-byte aligned
167
// the instruction is calculated (from Arm ARM):
168
// targetAddress = Align(PC, 4) + imm32
169
// where
170
// Align(x, y) = y * (x Div y)
171
// which corresponds to alignDown.
172
if (isBLX(instr))
173
sourceAddr = alignDown(sourceAddr, 4);
174
return sourceAddr + offset + 4;
175
}
176
177
void Patch657417Section::writeTo(uint8_t *buf) {
178
// The base instruction of the patch is always a 32-bit unconditional branch.
179
if (isARM)
180
write32le(buf, 0xea000000);
181
else
182
write32le(buf, 0x9000f000);
183
// If we have a relocation then apply it.
184
if (!relocs().empty()) {
185
target->relocateAlloc(*this, buf);
186
return;
187
}
188
189
// If we don't have a relocation then we must calculate and write the offset
190
// ourselves.
191
// Get the destination offset from the addend in the branch instruction.
192
// We cannot use the instruction in the patchee section as this will have
193
// been altered to point to us!
194
uint64_t s = getThumbDestAddr(getBranchAddr(), instr);
195
// A BLX changes the state of the branch in the patch to Arm state, which
196
// has a PC Bias of 8, whereas in all other cases the branch is in Thumb
197
// state with a PC Bias of 4.
198
uint64_t pcBias = isBLX(instr) ? 8 : 4;
199
uint64_t p = getVA(pcBias);
200
target->relocateNoSym(buf, isARM ? R_ARM_JUMP24 : R_ARM_THM_JUMP24, s - p);
201
}
202
203
// Given a branch instruction spanning two 4KiB regions, at offset off from the
204
// start of isec, return true if the destination of the branch is within the
205
// first of the two 4Kib regions.
206
static bool branchDestInFirstRegion(const InputSection *isec, uint64_t off,
207
uint32_t instr, const Relocation *r) {
208
uint64_t sourceAddr = isec->getVA(0) + off;
209
assert((sourceAddr & 0xfff) == 0xffe);
210
uint64_t destAddr;
211
// If there is a branch relocation at the same offset we must use this to
212
// find the destination address as the branch could be indirected via a thunk
213
// or the PLT.
214
if (r) {
215
uint64_t dst = (r->expr == R_PLT_PC) ? r->sym->getPltVA() : r->sym->getVA();
216
// Account for Thumb PC bias, usually cancelled to 0 by addend of -4.
217
destAddr = dst + r->addend + 4;
218
} else {
219
// If there is no relocation, we must have an intra-section branch
220
// We must extract the offset from the addend manually.
221
destAddr = getThumbDestAddr(sourceAddr, instr);
222
}
223
224
return (destAddr & 0xfffff000) == (sourceAddr & 0xfffff000);
225
}
226
227
// Return true if a branch can reach a patch section placed after isec.
228
// The Bcc.w instruction has a range of 1 MiB, all others have 16 MiB.
229
static bool patchInRange(const InputSection *isec, uint64_t off,
230
uint32_t instr) {
231
232
// We need the branch at source to reach a patch section placed immediately
233
// after isec. As there can be more than one patch in the patch section we
234
// add 0x100 as contingency to account for worst case of 1 branch every 4KiB
235
// for a 1 MiB range.
236
return target->inBranchRange(
237
isBcc(instr) ? R_ARM_THM_JUMP19 : R_ARM_THM_JUMP24, isec->getVA(off),
238
isec->getVA() + isec->getSize() + 0x100);
239
}
240
241
struct ScanResult {
242
// Offset of branch within its InputSection.
243
uint64_t off;
244
// Cached decoding of the branch instruction.
245
uint32_t instr;
246
// Branch relocation at off. Will be nullptr if no relocation exists.
247
Relocation *rel;
248
};
249
250
// Detect the erratum sequence, returning the offset of the branch instruction
251
// and a decoding of the branch. If the erratum sequence is not found then
252
// return an offset of 0 for the branch. 0 is a safe value to use for no patch
253
// as there must be at least one 32-bit non-branch instruction before the
254
// branch so the minimum offset for a patch is 4.
255
static ScanResult scanCortexA8Errata657417(InputSection *isec, uint64_t &off,
256
uint64_t limit) {
257
uint64_t isecAddr = isec->getVA(0);
258
// Advance Off so that (isecAddr + off) modulo 0x1000 is at least 0xffa. We
259
// need to check for a 32-bit instruction immediately before a 32-bit branch
260
// at 0xffe modulo 0x1000.
261
off = alignTo(isecAddr + off, 0x1000, 0xffa) - isecAddr;
262
if (off >= limit || limit - off < 8) {
263
// Need at least 2 4-byte sized instructions to trigger erratum.
264
off = limit;
265
return {0, 0, nullptr};
266
}
267
268
ScanResult scanRes = {0, 0, nullptr};
269
const uint8_t *buf = isec->content().begin();
270
// ARMv7-A Thumb 32-bit instructions are encoded 2 consecutive
271
// little-endian halfwords.
272
const ulittle16_t *instBuf = reinterpret_cast<const ulittle16_t *>(buf + off);
273
uint16_t hw11 = *instBuf++;
274
uint16_t hw12 = *instBuf++;
275
uint16_t hw21 = *instBuf++;
276
uint16_t hw22 = *instBuf++;
277
if (is32bitInstruction(hw11) && is32bitInstruction(hw21)) {
278
uint32_t instr1 = (hw11 << 16) | hw12;
279
uint32_t instr2 = (hw21 << 16) | hw22;
280
if (!is32bitBranch(instr1) && is32bitBranch(instr2)) {
281
// Find a relocation for the branch if it exists. This will be used
282
// to determine the target.
283
uint64_t branchOff = off + 4;
284
auto relIt = llvm::find_if(isec->relocs(), [=](const Relocation &r) {
285
return r.offset == branchOff &&
286
(r.type == R_ARM_THM_JUMP19 || r.type == R_ARM_THM_JUMP24 ||
287
r.type == R_ARM_THM_CALL);
288
});
289
if (relIt != isec->relocs().end())
290
scanRes.rel = &(*relIt);
291
if (branchDestInFirstRegion(isec, branchOff, instr2, scanRes.rel)) {
292
if (patchInRange(isec, branchOff, instr2)) {
293
scanRes.off = branchOff;
294
scanRes.instr = instr2;
295
} else {
296
warn(toString(isec->file) +
297
": skipping cortex-a8 657417 erratum sequence, section " +
298
isec->name + " is too large to patch");
299
}
300
}
301
}
302
}
303
off += 0x1000;
304
return scanRes;
305
}
306
307
void ARMErr657417Patcher::init() {
308
// The Arm ABI permits a mix of ARM, Thumb and Data in the same
309
// InputSection. We must only scan Thumb instructions to avoid false
310
// matches. We use the mapping symbols in the InputObjects to identify this
311
// data, caching the results in sectionMap so we don't have to recalculate
312
// it each pass.
313
314
// The ABI Section 4.5.5 Mapping symbols; defines local symbols that describe
315
// half open intervals [Symbol Value, Next Symbol Value) of code and data
316
// within sections. If there is no next symbol then the half open interval is
317
// [Symbol Value, End of section). The type, code or data, is determined by
318
// the mapping symbol name, $a for Arm code, $t for Thumb code, $d for data.
319
auto isArmMapSymbol = [](const Symbol *s) {
320
return s->getName() == "$a" || s->getName().starts_with("$a.");
321
};
322
auto isThumbMapSymbol = [](const Symbol *s) {
323
return s->getName() == "$t" || s->getName().starts_with("$t.");
324
};
325
auto isDataMapSymbol = [](const Symbol *s) {
326
return s->getName() == "$d" || s->getName().starts_with("$d.");
327
};
328
329
// Collect mapping symbols for every executable InputSection.
330
for (ELFFileBase *file : ctx.objectFiles) {
331
for (Symbol *s : file->getLocalSymbols()) {
332
auto *def = dyn_cast<Defined>(s);
333
if (!def)
334
continue;
335
if (!isArmMapSymbol(def) && !isThumbMapSymbol(def) &&
336
!isDataMapSymbol(def))
337
continue;
338
if (auto *sec = dyn_cast_or_null<InputSection>(def->section))
339
if (sec->flags & SHF_EXECINSTR)
340
sectionMap[sec].push_back(def);
341
}
342
}
343
// For each InputSection make sure the mapping symbols are in sorted in
344
// ascending order and are in alternating Thumb, non-Thumb order.
345
for (auto &kv : sectionMap) {
346
std::vector<const Defined *> &mapSyms = kv.second;
347
llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
348
return a->value < b->value;
349
});
350
mapSyms.erase(std::unique(mapSyms.begin(), mapSyms.end(),
351
[=](const Defined *a, const Defined *b) {
352
return (isThumbMapSymbol(a) ==
353
isThumbMapSymbol(b));
354
}),
355
mapSyms.end());
356
// Always start with a Thumb Mapping Symbol
357
if (!mapSyms.empty() && !isThumbMapSymbol(mapSyms.front()))
358
mapSyms.erase(mapSyms.begin());
359
}
360
initialized = true;
361
}
362
363
void ARMErr657417Patcher::insertPatches(
364
InputSectionDescription &isd, std::vector<Patch657417Section *> &patches) {
365
uint64_t spacing = 0x100000 - 0x7500;
366
uint64_t isecLimit;
367
uint64_t prevIsecLimit = isd.sections.front()->outSecOff;
368
uint64_t patchUpperBound = prevIsecLimit + spacing;
369
uint64_t outSecAddr = isd.sections.front()->getParent()->addr;
370
371
// Set the outSecOff of patches to the place where we want to insert them.
372
// We use a similar strategy to initial thunk placement, using 1 MiB as the
373
// range of the Thumb-2 conditional branch with a contingency accounting for
374
// thunk generation.
375
auto patchIt = patches.begin();
376
auto patchEnd = patches.end();
377
for (const InputSection *isec : isd.sections) {
378
isecLimit = isec->outSecOff + isec->getSize();
379
if (isecLimit > patchUpperBound) {
380
for (; patchIt != patchEnd; ++patchIt) {
381
if ((*patchIt)->getBranchAddr() - outSecAddr >= prevIsecLimit)
382
break;
383
(*patchIt)->outSecOff = prevIsecLimit;
384
}
385
patchUpperBound = prevIsecLimit + spacing;
386
}
387
prevIsecLimit = isecLimit;
388
}
389
for (; patchIt != patchEnd; ++patchIt)
390
(*patchIt)->outSecOff = isecLimit;
391
392
// Merge all patch sections. We use the outSecOff assigned above to
393
// determine the insertion point. This is ok as we only merge into an
394
// InputSectionDescription once per pass, and at the end of the pass
395
// assignAddresses() will recalculate all the outSecOff values.
396
SmallVector<InputSection *, 0> tmp;
397
tmp.reserve(isd.sections.size() + patches.size());
398
auto mergeCmp = [](const InputSection *a, const InputSection *b) {
399
if (a->outSecOff != b->outSecOff)
400
return a->outSecOff < b->outSecOff;
401
return isa<Patch657417Section>(a) && !isa<Patch657417Section>(b);
402
};
403
std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(),
404
patches.end(), std::back_inserter(tmp), mergeCmp);
405
isd.sections = std::move(tmp);
406
}
407
408
// Given a branch instruction described by ScanRes redirect it to a patch
409
// section containing an unconditional branch instruction to the target.
410
// Ensure that this patch section is 4-byte aligned so that the branch cannot
411
// span two 4 KiB regions. Place the patch section so that it is always after
412
// isec so the branch we are patching always goes forwards.
413
static void implementPatch(ScanResult sr, InputSection *isec,
414
std::vector<Patch657417Section *> &patches) {
415
416
log("detected cortex-a8-657419 erratum sequence starting at " +
417
utohexstr(isec->getVA(sr.off)) + " in unpatched output.");
418
Patch657417Section *psec;
419
// We have two cases to deal with.
420
// Case 1. There is a relocation at patcheeOffset to a symbol. The
421
// unconditional branch in the patch must have a relocation so that any
422
// further redirection via the PLT or a Thunk happens as normal. At
423
// patcheeOffset we redirect the existing relocation to a Symbol defined at
424
// the start of the patch section.
425
//
426
// Case 2. There is no relocation at patcheeOffset. We are unlikely to have
427
// a symbol that we can use as a target for a relocation in the patch section.
428
// Luckily we know that the destination cannot be indirected via the PLT or
429
// a Thunk so we can just write the destination directly.
430
if (sr.rel) {
431
// Case 1. We have an existing relocation to redirect to patch and a
432
// Symbol target.
433
434
// Create a branch relocation for the unconditional branch in the patch.
435
// This can be redirected via the PLT or Thunks.
436
RelType patchRelType = R_ARM_THM_JUMP24;
437
int64_t patchRelAddend = sr.rel->addend;
438
bool destIsARM = false;
439
if (isBL(sr.instr) || isBLX(sr.instr)) {
440
// The final target of the branch may be ARM or Thumb, if the target
441
// is ARM then we write the patch in ARM state to avoid a state change
442
// Thunk from the patch to the target.
443
uint64_t dstSymAddr = (sr.rel->expr == R_PLT_PC) ? sr.rel->sym->getPltVA()
444
: sr.rel->sym->getVA();
445
destIsARM = (dstSymAddr & 1) == 0;
446
}
447
psec = make<Patch657417Section>(isec, sr.off, sr.instr, destIsARM);
448
if (destIsARM) {
449
// The patch will be in ARM state. Use an ARM relocation and account for
450
// the larger ARM PC-bias of 8 rather than Thumb's 4.
451
patchRelType = R_ARM_JUMP24;
452
patchRelAddend -= 4;
453
}
454
psec->addReloc(
455
Relocation{sr.rel->expr, patchRelType, 0, patchRelAddend, sr.rel->sym});
456
// Redirect the existing branch relocation to the patch.
457
sr.rel->expr = R_PC;
458
sr.rel->addend = -4;
459
sr.rel->sym = psec->patchSym;
460
} else {
461
// Case 2. We do not have a relocation to the patch. Add a relocation of the
462
// appropriate type to the patch at patcheeOffset.
463
464
// The destination is ARM if we have a BLX.
465
psec = make<Patch657417Section>(isec, sr.off, sr.instr, isBLX(sr.instr));
466
RelType type;
467
if (isBcc(sr.instr))
468
type = R_ARM_THM_JUMP19;
469
else if (isB(sr.instr))
470
type = R_ARM_THM_JUMP24;
471
else
472
type = R_ARM_THM_CALL;
473
isec->addReloc(Relocation{R_PC, type, sr.off, -4, psec->patchSym});
474
}
475
patches.push_back(psec);
476
}
477
478
// Scan all the instructions in InputSectionDescription, for each instance of
479
// the erratum sequence create a Patch657417Section. We return the list of
480
// Patch657417Sections that need to be applied to the InputSectionDescription.
481
std::vector<Patch657417Section *>
482
ARMErr657417Patcher::patchInputSectionDescription(
483
InputSectionDescription &isd) {
484
std::vector<Patch657417Section *> patches;
485
for (InputSection *isec : isd.sections) {
486
// LLD doesn't use the erratum sequence in SyntheticSections.
487
if (isa<SyntheticSection>(isec))
488
continue;
489
// Use sectionMap to make sure we only scan Thumb code and not Arm or inline
490
// data. We have already sorted mapSyms in ascending order and removed
491
// consecutive mapping symbols of the same type. Our range of executable
492
// instructions to scan is therefore [thumbSym->value, nonThumbSym->value)
493
// or [thumbSym->value, section size).
494
std::vector<const Defined *> &mapSyms = sectionMap[isec];
495
496
auto thumbSym = mapSyms.begin();
497
while (thumbSym != mapSyms.end()) {
498
auto nonThumbSym = std::next(thumbSym);
499
uint64_t off = (*thumbSym)->value;
500
uint64_t limit = nonThumbSym == mapSyms.end() ? isec->content().size()
501
: (*nonThumbSym)->value;
502
503
while (off < limit) {
504
ScanResult sr = scanCortexA8Errata657417(isec, off, limit);
505
if (sr.off)
506
implementPatch(sr, isec, patches);
507
}
508
if (nonThumbSym == mapSyms.end())
509
break;
510
thumbSym = std::next(nonThumbSym);
511
}
512
}
513
return patches;
514
}
515
516
bool ARMErr657417Patcher::createFixes() {
517
if (!initialized)
518
init();
519
520
bool addressesChanged = false;
521
for (OutputSection *os : outputSections) {
522
if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
523
continue;
524
for (SectionCommand *cmd : os->commands)
525
if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
526
std::vector<Patch657417Section *> patches =
527
patchInputSectionDescription(*isd);
528
if (!patches.empty()) {
529
insertPatches(*isd, patches);
530
addressesChanged = true;
531
}
532
}
533
}
534
return addressesChanged;
535
}
536
537