Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lld/ELF/Arch/PPC64.cpp
34878 views
1
//===- PPC64.cpp ----------------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "InputFiles.h"
10
#include "OutputSections.h"
11
#include "SymbolTable.h"
12
#include "Symbols.h"
13
#include "SyntheticSections.h"
14
#include "Target.h"
15
#include "Thunks.h"
16
#include "lld/Common/CommonLinkerContext.h"
17
#include "llvm/Support/Endian.h"
18
19
using namespace llvm;
20
using namespace llvm::object;
21
using namespace llvm::support::endian;
22
using namespace llvm::ELF;
23
using namespace lld;
24
using namespace lld::elf;
25
26
constexpr uint64_t ppc64TocOffset = 0x8000;
27
constexpr uint64_t dynamicThreadPointerOffset = 0x8000;
28
29
namespace {
30
// The instruction encoding of bits 21-30 from the ISA for the Xform and Dform
31
// instructions that can be used as part of the initial exec TLS sequence.
32
enum XFormOpcd {
33
LBZX = 87,
34
LHZX = 279,
35
LWZX = 23,
36
LDX = 21,
37
STBX = 215,
38
STHX = 407,
39
STWX = 151,
40
STDX = 149,
41
LHAX = 343,
42
LWAX = 341,
43
LFSX = 535,
44
LFDX = 599,
45
STFSX = 663,
46
STFDX = 727,
47
ADD = 266,
48
};
49
50
enum DFormOpcd {
51
LBZ = 34,
52
LBZU = 35,
53
LHZ = 40,
54
LHZU = 41,
55
LHAU = 43,
56
LWZ = 32,
57
LWZU = 33,
58
LFSU = 49,
59
LFDU = 51,
60
STB = 38,
61
STBU = 39,
62
STH = 44,
63
STHU = 45,
64
STW = 36,
65
STWU = 37,
66
STFSU = 53,
67
STFDU = 55,
68
LHA = 42,
69
LFS = 48,
70
LFD = 50,
71
STFS = 52,
72
STFD = 54,
73
ADDI = 14
74
};
75
76
enum DSFormOpcd {
77
LD = 58,
78
LWA = 58,
79
STD = 62
80
};
81
82
constexpr uint32_t NOP = 0x60000000;
83
84
enum class PPCLegacyInsn : uint32_t {
85
NOINSN = 0,
86
// Loads.
87
LBZ = 0x88000000,
88
LHZ = 0xa0000000,
89
LWZ = 0x80000000,
90
LHA = 0xa8000000,
91
LWA = 0xe8000002,
92
LD = 0xe8000000,
93
LFS = 0xC0000000,
94
LXSSP = 0xe4000003,
95
LFD = 0xc8000000,
96
LXSD = 0xe4000002,
97
LXV = 0xf4000001,
98
LXVP = 0x18000000,
99
100
// Stores.
101
STB = 0x98000000,
102
STH = 0xb0000000,
103
STW = 0x90000000,
104
STD = 0xf8000000,
105
STFS = 0xd0000000,
106
STXSSP = 0xf4000003,
107
STFD = 0xd8000000,
108
STXSD = 0xf4000002,
109
STXV = 0xf4000005,
110
STXVP = 0x18000001
111
};
112
enum class PPCPrefixedInsn : uint64_t {
113
NOINSN = 0,
114
PREFIX_MLS = 0x0610000000000000,
115
PREFIX_8LS = 0x0410000000000000,
116
117
// Loads.
118
PLBZ = PREFIX_MLS,
119
PLHZ = PREFIX_MLS,
120
PLWZ = PREFIX_MLS,
121
PLHA = PREFIX_MLS,
122
PLWA = PREFIX_8LS | 0xa4000000,
123
PLD = PREFIX_8LS | 0xe4000000,
124
PLFS = PREFIX_MLS,
125
PLXSSP = PREFIX_8LS | 0xac000000,
126
PLFD = PREFIX_MLS,
127
PLXSD = PREFIX_8LS | 0xa8000000,
128
PLXV = PREFIX_8LS | 0xc8000000,
129
PLXVP = PREFIX_8LS | 0xe8000000,
130
131
// Stores.
132
PSTB = PREFIX_MLS,
133
PSTH = PREFIX_MLS,
134
PSTW = PREFIX_MLS,
135
PSTD = PREFIX_8LS | 0xf4000000,
136
PSTFS = PREFIX_MLS,
137
PSTXSSP = PREFIX_8LS | 0xbc000000,
138
PSTFD = PREFIX_MLS,
139
PSTXSD = PREFIX_8LS | 0xb8000000,
140
PSTXV = PREFIX_8LS | 0xd8000000,
141
PSTXVP = PREFIX_8LS | 0xf8000000
142
};
143
144
static bool checkPPCLegacyInsn(uint32_t encoding) {
145
PPCLegacyInsn insn = static_cast<PPCLegacyInsn>(encoding);
146
if (insn == PPCLegacyInsn::NOINSN)
147
return false;
148
#define PCREL_OPT(Legacy, PCRel, InsnMask) \
149
if (insn == PPCLegacyInsn::Legacy) \
150
return true;
151
#include "PPCInsns.def"
152
#undef PCREL_OPT
153
return false;
154
}
155
156
// Masks to apply to legacy instructions when converting them to prefixed,
157
// pc-relative versions. For the most part, the primary opcode is shared
158
// between the legacy instruction and the suffix of its prefixed version.
159
// However, there are some instances where that isn't the case (DS-Form and
160
// DQ-form instructions).
161
enum class LegacyToPrefixMask : uint64_t {
162
NOMASK = 0x0,
163
OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10).
164
ONLY_RST = 0x3e00000, // [RS]T (6-10).
165
ST_STX28_TO5 =
166
0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5.
167
};
168
169
class PPC64 final : public TargetInfo {
170
public:
171
PPC64();
172
int getTlsGdRelaxSkip(RelType type) const override;
173
uint32_t calcEFlags() const override;
174
RelExpr getRelExpr(RelType type, const Symbol &s,
175
const uint8_t *loc) const override;
176
RelType getDynRel(RelType type) const override;
177
int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
178
void writePltHeader(uint8_t *buf) const override;
179
void writePlt(uint8_t *buf, const Symbol &sym,
180
uint64_t pltEntryAddr) const override;
181
void writeIplt(uint8_t *buf, const Symbol &sym,
182
uint64_t pltEntryAddr) const override;
183
void relocate(uint8_t *loc, const Relocation &rel,
184
uint64_t val) const override;
185
void writeGotHeader(uint8_t *buf) const override;
186
bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
187
uint64_t branchAddr, const Symbol &s,
188
int64_t a) const override;
189
uint32_t getThunkSectionSpacing() const override;
190
bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
191
RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
192
RelExpr adjustGotPcExpr(RelType type, int64_t addend,
193
const uint8_t *loc) const override;
194
void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const;
195
void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
196
197
bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
198
uint8_t stOther) const override;
199
200
private:
201
void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
202
void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
203
void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
204
void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
205
};
206
} // namespace
207
208
uint64_t elf::getPPC64TocBase() {
209
// The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
210
// TOC starts where the first of these sections starts. We always create a
211
// .got when we see a relocation that uses it, so for us the start is always
212
// the .got.
213
uint64_t tocVA = in.got->getVA();
214
215
// Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
216
// thus permitting a full 64 Kbytes segment. Note that the glibc startup
217
// code (crt1.o) assumes that you can get from the TOC base to the
218
// start of the .toc section with only a single (signed) 16-bit relocation.
219
return tocVA + ppc64TocOffset;
220
}
221
222
unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) {
223
// The offset is encoded into the 3 most significant bits of the st_other
224
// field, with some special values described in section 3.4.1 of the ABI:
225
// 0 --> Zero offset between the GEP and LEP, and the function does NOT use
226
// the TOC pointer (r2). r2 will hold the same value on returning from
227
// the function as it did on entering the function.
228
// 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a
229
// caller-saved register for all callers.
230
// 2-6 --> The binary logarithm of the offset eg:
231
// 2 --> 2^2 = 4 bytes --> 1 instruction.
232
// 6 --> 2^6 = 64 bytes --> 16 instructions.
233
// 7 --> Reserved.
234
uint8_t gepToLep = (stOther >> 5) & 7;
235
if (gepToLep < 2)
236
return 0;
237
238
// The value encoded in the st_other bits is the
239
// log-base-2(offset).
240
if (gepToLep < 7)
241
return 1 << gepToLep;
242
243
error("reserved value of 7 in the 3 most-significant-bits of st_other");
244
return 0;
245
}
246
247
void elf::writePrefixedInstruction(uint8_t *loc, uint64_t insn) {
248
insn = config->isLE ? insn << 32 | insn >> 32 : insn;
249
write64(loc, insn);
250
}
251
252
static bool addOptional(StringRef name, uint64_t value,
253
std::vector<Defined *> &defined) {
254
Symbol *sym = symtab.find(name);
255
if (!sym || sym->isDefined())
256
return false;
257
sym->resolve(Defined{ctx.internalFile, StringRef(), STB_GLOBAL, STV_HIDDEN,
258
STT_FUNC, value,
259
/*size=*/0, /*section=*/nullptr});
260
defined.push_back(cast<Defined>(sym));
261
return true;
262
}
263
264
// If from is 14, write ${prefix}14: firstInsn; ${prefix}15:
265
// firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail
266
// The labels are defined only if they exist in the symbol table.
267
static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix,
268
int from, uint32_t firstInsn,
269
ArrayRef<uint32_t> tail) {
270
std::vector<Defined *> defined;
271
char name[16];
272
int first;
273
uint32_t *ptr = buf.data();
274
for (int r = from; r < 32; ++r) {
275
format("%s%d", prefix, r).snprint(name, sizeof(name));
276
if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1)
277
first = r - from;
278
write32(ptr++, firstInsn + 0x200008 * (r - from));
279
}
280
for (uint32_t insn : tail)
281
write32(ptr++, insn);
282
assert(ptr == &*buf.end());
283
284
if (defined.empty())
285
return;
286
// The full section content has the extent of [begin, end). We drop unused
287
// instructions and write [first,end).
288
auto *sec = make<InputSection>(
289
ctx.internalFile, SHF_ALLOC, SHT_PROGBITS, 4,
290
ArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first),
291
4 * (buf.size() - first)),
292
".text");
293
ctx.inputSections.push_back(sec);
294
for (Defined *sym : defined) {
295
sym->section = sec;
296
sym->value -= 4 * first;
297
}
298
}
299
300
// Implements some save and restore functions as described by ELF V2 ABI to be
301
// compatible with GCC. With GCC -Os, when the number of call-saved registers
302
// exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and
303
// expects the linker to define them. See
304
// https://sourceware.org/pipermail/binutils/2002-February/017444.html and
305
// https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is
306
// weird because libgcc.a would be the natural place. The linker generation
307
// approach has the advantage that the linker can generate multiple copies to
308
// avoid long branch thunks. However, we don't consider the advantage
309
// significant enough to complicate our trunk implementation, so we take the
310
// simple approach and synthesize .text sections providing the implementation.
311
void elf::addPPC64SaveRestore() {
312
static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19];
313
constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6;
314
315
// _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ...
316
// Tail: ld 0, 16(1); mtlr 0; blr
317
writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70,
318
{0xe8010010, mtlr_0, blr});
319
// _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ...
320
// Tail: blr
321
writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr});
322
// _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ...
323
// Tail: std 0, 16(1); blr
324
writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr});
325
// _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ...
326
// Tail: blr
327
writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr});
328
}
329
330
// Find the R_PPC64_ADDR64 in .rela.toc with matching offset.
331
template <typename ELFT>
332
static std::pair<Defined *, int64_t>
333
getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) {
334
// .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by
335
// r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the
336
// relocation index in most cases.
337
//
338
// In rare cases a TOC entry may store a constant that doesn't need an
339
// R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8
340
// points to a relocation with larger r_offset. Do a linear probe then.
341
// Constants are extremely uncommon in .toc and the extra number of array
342
// accesses can be seen as a small constant.
343
ArrayRef<typename ELFT::Rela> relas =
344
tocSec->template relsOrRelas<ELFT>().relas;
345
if (relas.empty())
346
return {};
347
uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1);
348
for (;;) {
349
if (relas[index].r_offset == offset) {
350
Symbol &sym = tocSec->file->getRelocTargetSym(relas[index]);
351
return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])};
352
}
353
if (relas[index].r_offset < offset || index == 0)
354
break;
355
--index;
356
}
357
return {};
358
}
359
360
// When accessing a symbol defined in another translation unit, compilers
361
// reserve a .toc entry, allocate a local label and generate toc-indirect
362
// instructions:
363
//
364
// addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA
365
// ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
366
// ld/lwa 3, 0(3) # load the value from the address
367
//
368
// .section .toc,"aw",@progbits
369
// .LC0: .tc var[TC],var
370
//
371
// If var is defined, non-preemptable and addressable with a 32-bit signed
372
// offset from the toc base, the address of var can be computed by adding an
373
// offset to the toc base, saving a load.
374
//
375
// addis 3,2,var@toc@ha # this may be relaxed to a nop,
376
// addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc
377
// ld/lwa 3, 0(3) # load the value from the address
378
//
379
// Returns true if the relaxation is performed.
380
static bool tryRelaxPPC64TocIndirection(const Relocation &rel,
381
uint8_t *bufLoc) {
382
assert(config->tocOptimize);
383
if (rel.addend < 0)
384
return false;
385
386
// If the symbol is not the .toc section, this isn't a toc-indirection.
387
Defined *defSym = dyn_cast<Defined>(rel.sym);
388
if (!defSym || !defSym->isSection() || defSym->section->name != ".toc")
389
return false;
390
391
Defined *d;
392
int64_t addend;
393
auto *tocISB = cast<InputSectionBase>(defSym->section);
394
std::tie(d, addend) =
395
config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend)
396
: getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend);
397
398
// Only non-preemptable defined symbols can be relaxed.
399
if (!d || d->isPreemptible)
400
return false;
401
402
// R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable
403
// ifunc and changed its type to STT_FUNC.
404
assert(!d->isGnuIFunc());
405
406
// Two instructions can materialize a 32-bit signed offset from the toc base.
407
uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase();
408
if (!isInt<32>(tocRelative))
409
return false;
410
411
// Add PPC64TocOffset that will be subtracted by PPC64::relocate().
412
static_cast<const PPC64 &>(*target).relaxGot(bufLoc, rel,
413
tocRelative + ppc64TocOffset);
414
return true;
415
}
416
417
// Relocation masks following the #lo(value), #hi(value), #ha(value),
418
// #higher(value), #highera(value), #highest(value), and #highesta(value)
419
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
420
// document.
421
static uint16_t lo(uint64_t v) { return v; }
422
static uint16_t hi(uint64_t v) { return v >> 16; }
423
static uint64_t ha(uint64_t v) { return (v + 0x8000) >> 16; }
424
static uint16_t higher(uint64_t v) { return v >> 32; }
425
static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; }
426
static uint16_t highest(uint64_t v) { return v >> 48; }
427
static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; }
428
429
// Extracts the 'PO' field of an instruction encoding.
430
static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); }
431
432
static bool isDQFormInstruction(uint32_t encoding) {
433
switch (getPrimaryOpCode(encoding)) {
434
default:
435
return false;
436
case 6: // Power10 paired loads/stores (lxvp, stxvp).
437
case 56:
438
// The only instruction with a primary opcode of 56 is `lq`.
439
return true;
440
case 61:
441
// There are both DS and DQ instruction forms with this primary opcode.
442
// Namely `lxv` and `stxv` are the DQ-forms that use it.
443
// The DS 'XO' bits being set to 01 is restricted to DQ form.
444
return (encoding & 3) == 0x1;
445
}
446
}
447
448
static bool isDSFormInstruction(PPCLegacyInsn insn) {
449
switch (insn) {
450
default:
451
return false;
452
case PPCLegacyInsn::LWA:
453
case PPCLegacyInsn::LD:
454
case PPCLegacyInsn::LXSD:
455
case PPCLegacyInsn::LXSSP:
456
case PPCLegacyInsn::STD:
457
case PPCLegacyInsn::STXSD:
458
case PPCLegacyInsn::STXSSP:
459
return true;
460
}
461
}
462
463
static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) {
464
uint32_t opc = encoding & 0xfc000000;
465
466
// If the primary opcode is shared between multiple instructions, we need to
467
// fix it up to match the actual instruction we are after.
468
if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 ||
469
opc == 0xf8000000) &&
470
!isDQFormInstruction(encoding))
471
opc = encoding & 0xfc000003;
472
else if (opc == 0xf4000000)
473
opc = encoding & 0xfc000007;
474
else if (opc == 0x18000000)
475
opc = encoding & 0xfc00000f;
476
477
// If the value is not one of the enumerators in PPCLegacyInsn, we want to
478
// return PPCLegacyInsn::NOINSN.
479
if (!checkPPCLegacyInsn(opc))
480
return PPCLegacyInsn::NOINSN;
481
return static_cast<PPCLegacyInsn>(opc);
482
}
483
484
static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) {
485
switch (insn) {
486
#define PCREL_OPT(Legacy, PCRel, InsnMask) \
487
case PPCLegacyInsn::Legacy: \
488
return PPCPrefixedInsn::PCRel
489
#include "PPCInsns.def"
490
#undef PCREL_OPT
491
}
492
return PPCPrefixedInsn::NOINSN;
493
}
494
495
static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) {
496
switch (insn) {
497
#define PCREL_OPT(Legacy, PCRel, InsnMask) \
498
case PPCLegacyInsn::Legacy: \
499
return LegacyToPrefixMask::InsnMask
500
#include "PPCInsns.def"
501
#undef PCREL_OPT
502
}
503
return LegacyToPrefixMask::NOMASK;
504
}
505
static uint64_t getPCRelativeForm(uint32_t encoding) {
506
PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding);
507
PPCPrefixedInsn pcrelInsn = getPCRelativeForm(origInsn);
508
if (pcrelInsn == PPCPrefixedInsn::NOINSN)
509
return UINT64_C(-1);
510
LegacyToPrefixMask origInsnMask = getInsnMask(origInsn);
511
uint64_t pcrelEncoding =
512
(uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask);
513
514
// If the mask requires moving bit 28 to bit 5, do that now.
515
if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5)
516
pcrelEncoding |= (encoding & 0x8) << 23;
517
return pcrelEncoding;
518
}
519
520
static bool isInstructionUpdateForm(uint32_t encoding) {
521
switch (getPrimaryOpCode(encoding)) {
522
default:
523
return false;
524
case LBZU:
525
case LHAU:
526
case LHZU:
527
case LWZU:
528
case LFSU:
529
case LFDU:
530
case STBU:
531
case STHU:
532
case STWU:
533
case STFSU:
534
case STFDU:
535
return true;
536
// LWA has the same opcode as LD, and the DS bits is what differentiates
537
// between LD/LDU/LWA
538
case LD:
539
case STD:
540
return (encoding & 3) == 1;
541
}
542
}
543
544
// Compute the total displacement between the prefixed instruction that gets
545
// to the start of the data and the load/store instruction that has the offset
546
// into the data structure.
547
// For example:
548
// paddi 3, 0, 1000, 1
549
// lwz 3, 20(3)
550
// Should add up to 1020 for total displacement.
551
static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) {
552
int64_t disp34 = llvm::SignExtend64(
553
((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), 34);
554
int32_t disp16 = llvm::SignExtend32(accessInsn & 0xffff, 16);
555
// For DS and DQ form instructions, we need to mask out the XO bits.
556
if (isDQFormInstruction(accessInsn))
557
disp16 &= ~0xf;
558
else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn)))
559
disp16 &= ~0x3;
560
return disp34 + disp16;
561
}
562
563
// There are a number of places when we either want to read or write an
564
// instruction when handling a half16 relocation type. On big-endian the buffer
565
// pointer is pointing into the middle of the word we want to extract, and on
566
// little-endian it is pointing to the start of the word. These 2 helpers are to
567
// simplify reading and writing in that context.
568
static void writeFromHalf16(uint8_t *loc, uint32_t insn) {
569
write32(config->isLE ? loc : loc - 2, insn);
570
}
571
572
static uint32_t readFromHalf16(const uint8_t *loc) {
573
return read32(config->isLE ? loc : loc - 2);
574
}
575
576
static uint64_t readPrefixedInstruction(const uint8_t *loc) {
577
uint64_t fullInstr = read64(loc);
578
return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr;
579
}
580
581
PPC64::PPC64() {
582
copyRel = R_PPC64_COPY;
583
gotRel = R_PPC64_GLOB_DAT;
584
pltRel = R_PPC64_JMP_SLOT;
585
relativeRel = R_PPC64_RELATIVE;
586
iRelativeRel = R_PPC64_IRELATIVE;
587
symbolicRel = R_PPC64_ADDR64;
588
pltHeaderSize = 60;
589
pltEntrySize = 4;
590
ipltEntrySize = 16; // PPC64PltCallStub::size
591
gotHeaderEntriesNum = 1;
592
gotPltHeaderEntriesNum = 2;
593
needsThunks = true;
594
595
tlsModuleIndexRel = R_PPC64_DTPMOD64;
596
tlsOffsetRel = R_PPC64_DTPREL64;
597
598
tlsGotRel = R_PPC64_TPREL64;
599
600
needsMoreStackNonSplit = false;
601
602
// We need 64K pages (at least under glibc/Linux, the loader won't
603
// set different permissions on a finer granularity than that).
604
defaultMaxPageSize = 65536;
605
606
// The PPC64 ELF ABI v1 spec, says:
607
//
608
// It is normally desirable to put segments with different characteristics
609
// in separate 256 Mbyte portions of the address space, to give the
610
// operating system full paging flexibility in the 64-bit address space.
611
//
612
// And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
613
// use 0x10000000 as the starting address.
614
defaultImageBase = 0x10000000;
615
616
write32(trapInstr.data(), 0x7fe00008);
617
}
618
619
int PPC64::getTlsGdRelaxSkip(RelType type) const {
620
// A __tls_get_addr call instruction is marked with 2 relocations:
621
//
622
// R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation
623
// R_PPC64_REL24: __tls_get_addr
624
//
625
// After the relaxation we no longer call __tls_get_addr and should skip both
626
// relocations to not create a false dependence on __tls_get_addr being
627
// defined.
628
if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD)
629
return 2;
630
return 1;
631
}
632
633
static uint32_t getEFlags(InputFile *file) {
634
if (file->ekind == ELF64BEKind)
635
return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader().e_flags;
636
return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader().e_flags;
637
}
638
639
// This file implements v2 ABI. This function makes sure that all
640
// object files have v2 or an unspecified version as an ABI version.
641
uint32_t PPC64::calcEFlags() const {
642
for (InputFile *f : ctx.objectFiles) {
643
uint32_t flag = getEFlags(f);
644
if (flag == 1)
645
error(toString(f) + ": ABI version 1 is not supported");
646
else if (flag > 2)
647
error(toString(f) + ": unrecognized e_flags: " + Twine(flag));
648
}
649
return 2;
650
}
651
652
void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const {
653
switch (rel.type) {
654
case R_PPC64_TOC16_HA:
655
// Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop".
656
relocate(loc, rel, val);
657
break;
658
case R_PPC64_TOC16_LO_DS: {
659
// Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or
660
// "addi reg, 2, var@toc".
661
uint32_t insn = readFromHalf16(loc);
662
if (getPrimaryOpCode(insn) != LD)
663
error("expected a 'ld' for got-indirect to toc-relative relaxing");
664
writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000);
665
relocateNoSym(loc, R_PPC64_TOC16_LO, val);
666
break;
667
}
668
case R_PPC64_GOT_PCREL34: {
669
// Clear the first 8 bits of the prefix and the first 6 bits of the
670
// instruction (the primary opcode).
671
uint64_t insn = readPrefixedInstruction(loc);
672
if ((insn & 0xfc000000) != 0xe4000000)
673
error("expected a 'pld' for got-indirect to pc-relative relaxing");
674
insn &= ~0xff000000fc000000;
675
676
// Replace the cleared bits with the values for PADDI (0x600000038000000);
677
insn |= 0x600000038000000;
678
writePrefixedInstruction(loc, insn);
679
relocate(loc, rel, val);
680
break;
681
}
682
case R_PPC64_PCREL_OPT: {
683
// We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can
684
// be relaxed. The eligibility for the relaxation needs to be determined
685
// on that relocation since this one does not relocate a symbol.
686
uint64_t insn = readPrefixedInstruction(loc);
687
uint32_t accessInsn = read32(loc + rel.addend);
688
uint64_t pcRelInsn = getPCRelativeForm(accessInsn);
689
690
// This error is not necessary for correctness but is emitted for now
691
// to ensure we don't miss these opportunities in real code. It can be
692
// removed at a later date.
693
if (pcRelInsn == UINT64_C(-1)) {
694
errorOrWarn(
695
"unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" +
696
Twine::utohexstr(accessInsn));
697
break;
698
}
699
700
int64_t totalDisp = getTotalDisp(insn, accessInsn);
701
if (!isInt<34>(totalDisp))
702
break; // Displacement doesn't fit.
703
// Convert the PADDI to the prefixed version of accessInsn and convert
704
// accessInsn to a nop.
705
writePrefixedInstruction(loc, pcRelInsn |
706
((totalDisp & 0x3ffff0000) << 16) |
707
(totalDisp & 0xffff));
708
write32(loc + rel.addend, NOP); // nop accessInsn.
709
break;
710
}
711
default:
712
llvm_unreachable("unexpected relocation type");
713
}
714
}
715
716
void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
717
uint64_t val) const {
718
// Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement.
719
// The general dynamic code sequence for a global `x` will look like:
720
// Instruction Relocation Symbol
721
// addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
722
// addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x
723
// bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
724
// R_PPC64_REL24 __tls_get_addr
725
// nop None None
726
727
// Relaxing to local exec entails converting:
728
// addis r3, r2, x@got@tlsgd@ha into nop
729
// addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha
730
// bl __tls_get_addr(x@tlsgd) into nop
731
// nop into addi r3, r3, x@tprel@l
732
733
switch (rel.type) {
734
case R_PPC64_GOT_TLSGD16_HA:
735
writeFromHalf16(loc, NOP);
736
break;
737
case R_PPC64_GOT_TLSGD16:
738
case R_PPC64_GOT_TLSGD16_LO:
739
writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13
740
relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
741
break;
742
case R_PPC64_GOT_TLSGD_PCREL34:
743
// Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to
744
// paddi r3, r13, x@tprel, 0
745
writePrefixedInstruction(loc, 0x06000000386d0000);
746
relocateNoSym(loc, R_PPC64_TPREL34, val);
747
break;
748
case R_PPC64_TLSGD: {
749
// PC Relative Relaxation:
750
// Relax from bl __tls_get_addr@notoc(x@tlsgd) to
751
// nop
752
// TOC Relaxation:
753
// Relax from bl __tls_get_addr(x@tlsgd)
754
// nop
755
// to
756
// nop
757
// addi r3, r3, x@tprel@l
758
const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
759
if (locAsInt % 4 == 0) {
760
write32(loc, NOP); // nop
761
write32(loc + 4, 0x38630000); // addi r3, r3
762
// Since we are relocating a half16 type relocation and Loc + 4 points to
763
// the start of an instruction we need to advance the buffer by an extra
764
// 2 bytes on BE.
765
relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0),
766
R_PPC64_TPREL16_LO, val);
767
} else if (locAsInt % 4 == 1) {
768
write32(loc - 1, NOP);
769
} else {
770
errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
771
}
772
break;
773
}
774
default:
775
llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
776
}
777
}
778
779
void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
780
uint64_t val) const {
781
// Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement.
782
// The local dynamic code sequence for a global `x` will look like:
783
// Instruction Relocation Symbol
784
// addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x
785
// addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x
786
// bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x
787
// R_PPC64_REL24 __tls_get_addr
788
// nop None None
789
790
// Relaxing to local exec entails converting:
791
// addis r3, r2, x@got@tlsld@ha into nop
792
// addi r3, r3, x@got@tlsld@l into addis r3, r13, 0
793
// bl __tls_get_addr(x@tlsgd) into nop
794
// nop into addi r3, r3, 4096
795
796
switch (rel.type) {
797
case R_PPC64_GOT_TLSLD16_HA:
798
writeFromHalf16(loc, NOP);
799
break;
800
case R_PPC64_GOT_TLSLD16_LO:
801
writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0
802
break;
803
case R_PPC64_GOT_TLSLD_PCREL34:
804
// Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to
805
// paddi r3, r13, 0x1000, 0
806
writePrefixedInstruction(loc, 0x06000000386d1000);
807
break;
808
case R_PPC64_TLSLD: {
809
// PC Relative Relaxation:
810
// Relax from bl __tls_get_addr@notoc(x@tlsld)
811
// to
812
// nop
813
// TOC Relaxation:
814
// Relax from bl __tls_get_addr(x@tlsld)
815
// nop
816
// to
817
// nop
818
// addi r3, r3, 4096
819
const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
820
if (locAsInt % 4 == 0) {
821
write32(loc, NOP);
822
write32(loc + 4, 0x38631000); // addi r3, r3, 4096
823
} else if (locAsInt % 4 == 1) {
824
write32(loc - 1, NOP);
825
} else {
826
errorOrWarn("R_PPC64_TLSLD has unexpected byte alignment");
827
}
828
break;
829
}
830
case R_PPC64_DTPREL16:
831
case R_PPC64_DTPREL16_HA:
832
case R_PPC64_DTPREL16_HI:
833
case R_PPC64_DTPREL16_DS:
834
case R_PPC64_DTPREL16_LO:
835
case R_PPC64_DTPREL16_LO_DS:
836
case R_PPC64_DTPREL34:
837
relocate(loc, rel, val);
838
break;
839
default:
840
llvm_unreachable("unsupported relocation for TLS LD to LE relaxation");
841
}
842
}
843
844
// Map X-Form instructions to their DS-Form counterparts, if applicable.
845
// The full encoding is returned here to distinguish between the different
846
// DS-Form instructions.
847
unsigned elf::getPPCDSFormOp(unsigned secondaryOp) {
848
switch (secondaryOp) {
849
case LWAX:
850
return (LWA << 26) | 0x2;
851
case LDX:
852
return LD << 26;
853
case STDX:
854
return STD << 26;
855
default:
856
return 0;
857
}
858
}
859
860
unsigned elf::getPPCDFormOp(unsigned secondaryOp) {
861
switch (secondaryOp) {
862
case LBZX:
863
return LBZ << 26;
864
case LHZX:
865
return LHZ << 26;
866
case LWZX:
867
return LWZ << 26;
868
case STBX:
869
return STB << 26;
870
case STHX:
871
return STH << 26;
872
case STWX:
873
return STW << 26;
874
case LHAX:
875
return LHA << 26;
876
case LFSX:
877
return LFS << 26;
878
case LFDX:
879
return LFD << 26;
880
case STFSX:
881
return STFS << 26;
882
case STFDX:
883
return STFD << 26;
884
case ADD:
885
return ADDI << 26;
886
default:
887
return 0;
888
}
889
}
890
891
void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
892
uint64_t val) const {
893
// The initial exec code sequence for a global `x` will look like:
894
// Instruction Relocation Symbol
895
// addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x
896
// ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x
897
// add r9, r9, x@tls R_PPC64_TLS x
898
899
// Relaxing to local exec entails converting:
900
// addis r9, r2, x@got@tprel@ha into nop
901
// ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha
902
// add r9, r9, x@tls into addi r9, r9, x@tprel@l
903
904
// x@tls R_PPC64_TLS is a relocation which does not compute anything,
905
// it is replaced with r13 (thread pointer).
906
907
// The add instruction in the initial exec sequence has multiple variations
908
// that need to be handled. If we are building an address it will use an add
909
// instruction, if we are accessing memory it will use any of the X-form
910
// indexed load or store instructions.
911
912
unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0;
913
switch (rel.type) {
914
case R_PPC64_GOT_TPREL16_HA:
915
write32(loc - offset, NOP);
916
break;
917
case R_PPC64_GOT_TPREL16_LO_DS:
918
case R_PPC64_GOT_TPREL16_DS: {
919
uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10
920
write32(loc - offset, 0x3C0D0000 | regNo); // addis RegNo, r13
921
relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
922
break;
923
}
924
case R_PPC64_GOT_TPREL_PCREL34: {
925
const uint64_t pldRT = readPrefixedInstruction(loc) & 0x0000000003e00000;
926
// paddi RT(from pld), r13, symbol@tprel, 0
927
writePrefixedInstruction(loc, 0x06000000380d0000 | pldRT);
928
relocateNoSym(loc, R_PPC64_TPREL34, val);
929
break;
930
}
931
case R_PPC64_TLS: {
932
const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
933
if (locAsInt % 4 == 0) {
934
uint32_t primaryOp = getPrimaryOpCode(read32(loc));
935
if (primaryOp != 31)
936
error("unrecognized instruction for IE to LE R_PPC64_TLS");
937
uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30
938
uint32_t dFormOp = getPPCDFormOp(secondaryOp);
939
uint32_t finalReloc;
940
if (dFormOp == 0) { // Expecting a DS-Form instruction.
941
dFormOp = getPPCDSFormOp(secondaryOp);
942
if (dFormOp == 0)
943
error("unrecognized instruction for IE to LE R_PPC64_TLS");
944
finalReloc = R_PPC64_TPREL16_LO_DS;
945
} else
946
finalReloc = R_PPC64_TPREL16_LO;
947
write32(loc, dFormOp | (read32(loc) & 0x03ff0000));
948
relocateNoSym(loc + offset, finalReloc, val);
949
} else if (locAsInt % 4 == 1) {
950
// If the offset is not 4 byte aligned then we have a PCRel type reloc.
951
// This version of the relocation is offset by one byte from the
952
// instruction it references.
953
uint32_t tlsInstr = read32(loc - 1);
954
uint32_t primaryOp = getPrimaryOpCode(tlsInstr);
955
if (primaryOp != 31)
956
errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
957
uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30
958
// The add is a special case and should be turned into a nop. The paddi
959
// that comes before it will already have computed the address of the
960
// symbol.
961
if (secondaryOp == 266) {
962
// Check if the add uses the same result register as the input register.
963
uint32_t rt = (tlsInstr & 0x03E00000) >> 21; // bits 6-10
964
uint32_t ra = (tlsInstr & 0x001F0000) >> 16; // bits 11-15
965
if (ra == rt) {
966
write32(loc - 1, NOP);
967
} else {
968
// mr rt, ra
969
write32(loc - 1, 0x7C000378 | (rt << 16) | (ra << 21) | (ra << 11));
970
}
971
} else {
972
uint32_t dFormOp = getPPCDFormOp(secondaryOp);
973
if (dFormOp == 0) { // Expecting a DS-Form instruction.
974
dFormOp = getPPCDSFormOp(secondaryOp);
975
if (dFormOp == 0)
976
errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
977
}
978
write32(loc - 1, (dFormOp | (tlsInstr & 0x03ff0000)));
979
}
980
} else {
981
errorOrWarn("R_PPC64_TLS must be either 4 byte aligned or one byte "
982
"offset from 4 byte aligned");
983
}
984
break;
985
}
986
default:
987
llvm_unreachable("unknown relocation for IE to LE");
988
break;
989
}
990
}
991
992
RelExpr PPC64::getRelExpr(RelType type, const Symbol &s,
993
const uint8_t *loc) const {
994
switch (type) {
995
case R_PPC64_NONE:
996
return R_NONE;
997
case R_PPC64_ADDR16:
998
case R_PPC64_ADDR16_DS:
999
case R_PPC64_ADDR16_HA:
1000
case R_PPC64_ADDR16_HI:
1001
case R_PPC64_ADDR16_HIGH:
1002
case R_PPC64_ADDR16_HIGHER:
1003
case R_PPC64_ADDR16_HIGHERA:
1004
case R_PPC64_ADDR16_HIGHEST:
1005
case R_PPC64_ADDR16_HIGHESTA:
1006
case R_PPC64_ADDR16_LO:
1007
case R_PPC64_ADDR16_LO_DS:
1008
case R_PPC64_ADDR32:
1009
case R_PPC64_ADDR64:
1010
return R_ABS;
1011
case R_PPC64_GOT16:
1012
case R_PPC64_GOT16_DS:
1013
case R_PPC64_GOT16_HA:
1014
case R_PPC64_GOT16_HI:
1015
case R_PPC64_GOT16_LO:
1016
case R_PPC64_GOT16_LO_DS:
1017
return R_GOT_OFF;
1018
case R_PPC64_TOC16:
1019
case R_PPC64_TOC16_DS:
1020
case R_PPC64_TOC16_HI:
1021
case R_PPC64_TOC16_LO:
1022
return R_GOTREL;
1023
case R_PPC64_GOT_PCREL34:
1024
case R_PPC64_GOT_TPREL_PCREL34:
1025
case R_PPC64_PCREL_OPT:
1026
return R_GOT_PC;
1027
case R_PPC64_TOC16_HA:
1028
case R_PPC64_TOC16_LO_DS:
1029
return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL;
1030
case R_PPC64_TOC:
1031
return R_PPC64_TOCBASE;
1032
case R_PPC64_REL14:
1033
case R_PPC64_REL24:
1034
return R_PPC64_CALL_PLT;
1035
case R_PPC64_REL24_NOTOC:
1036
return R_PLT_PC;
1037
case R_PPC64_REL16_LO:
1038
case R_PPC64_REL16_HA:
1039
case R_PPC64_REL16_HI:
1040
case R_PPC64_REL32:
1041
case R_PPC64_REL64:
1042
case R_PPC64_PCREL34:
1043
return R_PC;
1044
case R_PPC64_GOT_TLSGD16:
1045
case R_PPC64_GOT_TLSGD16_HA:
1046
case R_PPC64_GOT_TLSGD16_HI:
1047
case R_PPC64_GOT_TLSGD16_LO:
1048
return R_TLSGD_GOT;
1049
case R_PPC64_GOT_TLSGD_PCREL34:
1050
return R_TLSGD_PC;
1051
case R_PPC64_GOT_TLSLD16:
1052
case R_PPC64_GOT_TLSLD16_HA:
1053
case R_PPC64_GOT_TLSLD16_HI:
1054
case R_PPC64_GOT_TLSLD16_LO:
1055
return R_TLSLD_GOT;
1056
case R_PPC64_GOT_TLSLD_PCREL34:
1057
return R_TLSLD_PC;
1058
case R_PPC64_GOT_TPREL16_HA:
1059
case R_PPC64_GOT_TPREL16_LO_DS:
1060
case R_PPC64_GOT_TPREL16_DS:
1061
case R_PPC64_GOT_TPREL16_HI:
1062
return R_GOT_OFF;
1063
case R_PPC64_GOT_DTPREL16_HA:
1064
case R_PPC64_GOT_DTPREL16_LO_DS:
1065
case R_PPC64_GOT_DTPREL16_DS:
1066
case R_PPC64_GOT_DTPREL16_HI:
1067
return R_TLSLD_GOT_OFF;
1068
case R_PPC64_TPREL16:
1069
case R_PPC64_TPREL16_HA:
1070
case R_PPC64_TPREL16_LO:
1071
case R_PPC64_TPREL16_HI:
1072
case R_PPC64_TPREL16_DS:
1073
case R_PPC64_TPREL16_LO_DS:
1074
case R_PPC64_TPREL16_HIGHER:
1075
case R_PPC64_TPREL16_HIGHERA:
1076
case R_PPC64_TPREL16_HIGHEST:
1077
case R_PPC64_TPREL16_HIGHESTA:
1078
case R_PPC64_TPREL34:
1079
return R_TPREL;
1080
case R_PPC64_DTPREL16:
1081
case R_PPC64_DTPREL16_DS:
1082
case R_PPC64_DTPREL16_HA:
1083
case R_PPC64_DTPREL16_HI:
1084
case R_PPC64_DTPREL16_HIGHER:
1085
case R_PPC64_DTPREL16_HIGHERA:
1086
case R_PPC64_DTPREL16_HIGHEST:
1087
case R_PPC64_DTPREL16_HIGHESTA:
1088
case R_PPC64_DTPREL16_LO:
1089
case R_PPC64_DTPREL16_LO_DS:
1090
case R_PPC64_DTPREL64:
1091
case R_PPC64_DTPREL34:
1092
return R_DTPREL;
1093
case R_PPC64_TLSGD:
1094
return R_TLSDESC_CALL;
1095
case R_PPC64_TLSLD:
1096
return R_TLSLD_HINT;
1097
case R_PPC64_TLS:
1098
return R_TLSIE_HINT;
1099
default:
1100
error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
1101
") against symbol " + toString(s));
1102
return R_NONE;
1103
}
1104
}
1105
1106
RelType PPC64::getDynRel(RelType type) const {
1107
if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC)
1108
return R_PPC64_ADDR64;
1109
return R_PPC64_NONE;
1110
}
1111
1112
int64_t PPC64::getImplicitAddend(const uint8_t *buf, RelType type) const {
1113
switch (type) {
1114
case R_PPC64_NONE:
1115
case R_PPC64_GLOB_DAT:
1116
case R_PPC64_JMP_SLOT:
1117
return 0;
1118
case R_PPC64_REL32:
1119
return SignExtend64<32>(read32(buf));
1120
case R_PPC64_ADDR64:
1121
case R_PPC64_REL64:
1122
case R_PPC64_RELATIVE:
1123
case R_PPC64_IRELATIVE:
1124
case R_PPC64_DTPMOD64:
1125
case R_PPC64_DTPREL64:
1126
case R_PPC64_TPREL64:
1127
return read64(buf);
1128
default:
1129
internalLinkerError(getErrorLocation(buf),
1130
"cannot read addend for relocation " + toString(type));
1131
return 0;
1132
}
1133
}
1134
1135
void PPC64::writeGotHeader(uint8_t *buf) const {
1136
write64(buf, getPPC64TocBase());
1137
}
1138
1139
void PPC64::writePltHeader(uint8_t *buf) const {
1140
// The generic resolver stub goes first.
1141
write32(buf + 0, 0x7c0802a6); // mflr r0
1142
write32(buf + 4, 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8>
1143
write32(buf + 8, 0x7d6802a6); // mflr r11
1144
write32(buf + 12, 0x7c0803a6); // mtlr r0
1145
write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12
1146
write32(buf + 20, 0x380cffcc); // subi r0,r12,52
1147
write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2
1148
write32(buf + 28, 0xe98b002c); // ld r12,44(r11)
1149
write32(buf + 32, 0x7d6c5a14); // add r11,r12,r11
1150
write32(buf + 36, 0xe98b0000); // ld r12,0(r11)
1151
write32(buf + 40, 0xe96b0008); // ld r11,8(r11)
1152
write32(buf + 44, 0x7d8903a6); // mtctr r12
1153
write32(buf + 48, 0x4e800420); // bctr
1154
1155
// The 'bcl' instruction will set the link register to the address of the
1156
// following instruction ('mflr r11'). Here we store the offset from that
1157
// instruction to the first entry in the GotPlt section.
1158
int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8);
1159
write64(buf + 52, gotPltOffset);
1160
}
1161
1162
void PPC64::writePlt(uint8_t *buf, const Symbol &sym,
1163
uint64_t /*pltEntryAddr*/) const {
1164
int32_t offset = pltHeaderSize + sym.getPltIdx() * pltEntrySize;
1165
// bl __glink_PLTresolve
1166
write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc));
1167
}
1168
1169
void PPC64::writeIplt(uint8_t *buf, const Symbol &sym,
1170
uint64_t /*pltEntryAddr*/) const {
1171
writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase());
1172
}
1173
1174
static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) {
1175
// Relocations relative to the toc-base need to be adjusted by the Toc offset.
1176
uint64_t tocBiasedVal = val - ppc64TocOffset;
1177
// Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset.
1178
uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset;
1179
1180
switch (type) {
1181
// TOC biased relocation.
1182
case R_PPC64_GOT16:
1183
case R_PPC64_GOT_TLSGD16:
1184
case R_PPC64_GOT_TLSLD16:
1185
case R_PPC64_TOC16:
1186
return {R_PPC64_ADDR16, tocBiasedVal};
1187
case R_PPC64_GOT16_DS:
1188
case R_PPC64_TOC16_DS:
1189
case R_PPC64_GOT_TPREL16_DS:
1190
case R_PPC64_GOT_DTPREL16_DS:
1191
return {R_PPC64_ADDR16_DS, tocBiasedVal};
1192
case R_PPC64_GOT16_HA:
1193
case R_PPC64_GOT_TLSGD16_HA:
1194
case R_PPC64_GOT_TLSLD16_HA:
1195
case R_PPC64_GOT_TPREL16_HA:
1196
case R_PPC64_GOT_DTPREL16_HA:
1197
case R_PPC64_TOC16_HA:
1198
return {R_PPC64_ADDR16_HA, tocBiasedVal};
1199
case R_PPC64_GOT16_HI:
1200
case R_PPC64_GOT_TLSGD16_HI:
1201
case R_PPC64_GOT_TLSLD16_HI:
1202
case R_PPC64_GOT_TPREL16_HI:
1203
case R_PPC64_GOT_DTPREL16_HI:
1204
case R_PPC64_TOC16_HI:
1205
return {R_PPC64_ADDR16_HI, tocBiasedVal};
1206
case R_PPC64_GOT16_LO:
1207
case R_PPC64_GOT_TLSGD16_LO:
1208
case R_PPC64_GOT_TLSLD16_LO:
1209
case R_PPC64_TOC16_LO:
1210
return {R_PPC64_ADDR16_LO, tocBiasedVal};
1211
case R_PPC64_GOT16_LO_DS:
1212
case R_PPC64_TOC16_LO_DS:
1213
case R_PPC64_GOT_TPREL16_LO_DS:
1214
case R_PPC64_GOT_DTPREL16_LO_DS:
1215
return {R_PPC64_ADDR16_LO_DS, tocBiasedVal};
1216
1217
// Dynamic Thread pointer biased relocation types.
1218
case R_PPC64_DTPREL16:
1219
return {R_PPC64_ADDR16, dtpBiasedVal};
1220
case R_PPC64_DTPREL16_DS:
1221
return {R_PPC64_ADDR16_DS, dtpBiasedVal};
1222
case R_PPC64_DTPREL16_HA:
1223
return {R_PPC64_ADDR16_HA, dtpBiasedVal};
1224
case R_PPC64_DTPREL16_HI:
1225
return {R_PPC64_ADDR16_HI, dtpBiasedVal};
1226
case R_PPC64_DTPREL16_HIGHER:
1227
return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal};
1228
case R_PPC64_DTPREL16_HIGHERA:
1229
return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal};
1230
case R_PPC64_DTPREL16_HIGHEST:
1231
return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal};
1232
case R_PPC64_DTPREL16_HIGHESTA:
1233
return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal};
1234
case R_PPC64_DTPREL16_LO:
1235
return {R_PPC64_ADDR16_LO, dtpBiasedVal};
1236
case R_PPC64_DTPREL16_LO_DS:
1237
return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal};
1238
case R_PPC64_DTPREL64:
1239
return {R_PPC64_ADDR64, dtpBiasedVal};
1240
1241
default:
1242
return {type, val};
1243
}
1244
}
1245
1246
static bool isTocOptType(RelType type) {
1247
switch (type) {
1248
case R_PPC64_GOT16_HA:
1249
case R_PPC64_GOT16_LO_DS:
1250
case R_PPC64_TOC16_HA:
1251
case R_PPC64_TOC16_LO_DS:
1252
case R_PPC64_TOC16_LO:
1253
return true;
1254
default:
1255
return false;
1256
}
1257
}
1258
1259
void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
1260
RelType type = rel.type;
1261
bool shouldTocOptimize = isTocOptType(type);
1262
// For dynamic thread pointer relative, toc-relative, and got-indirect
1263
// relocations, proceed in terms of the corresponding ADDR16 relocation type.
1264
std::tie(type, val) = toAddr16Rel(type, val);
1265
1266
switch (type) {
1267
case R_PPC64_ADDR14: {
1268
checkAlignment(loc, val, 4, rel);
1269
// Preserve the AA/LK bits in the branch instruction
1270
uint8_t aalk = loc[3];
1271
write16(loc + 2, (aalk & 3) | (val & 0xfffc));
1272
break;
1273
}
1274
case R_PPC64_ADDR16:
1275
checkIntUInt(loc, val, 16, rel);
1276
write16(loc, val);
1277
break;
1278
case R_PPC64_ADDR32:
1279
checkIntUInt(loc, val, 32, rel);
1280
write32(loc, val);
1281
break;
1282
case R_PPC64_ADDR16_DS:
1283
case R_PPC64_TPREL16_DS: {
1284
checkInt(loc, val, 16, rel);
1285
// DQ-form instructions use bits 28-31 as part of the instruction encoding
1286
// DS-form instructions only use bits 30-31.
1287
uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3;
1288
checkAlignment(loc, lo(val), mask + 1, rel);
1289
write16(loc, (read16(loc) & mask) | lo(val));
1290
} break;
1291
case R_PPC64_ADDR16_HA:
1292
case R_PPC64_REL16_HA:
1293
case R_PPC64_TPREL16_HA:
1294
if (config->tocOptimize && shouldTocOptimize && ha(val) == 0)
1295
writeFromHalf16(loc, NOP);
1296
else {
1297
checkInt(loc, val + 0x8000, 32, rel);
1298
write16(loc, ha(val));
1299
}
1300
break;
1301
case R_PPC64_ADDR16_HI:
1302
case R_PPC64_REL16_HI:
1303
case R_PPC64_TPREL16_HI:
1304
checkInt(loc, val, 32, rel);
1305
write16(loc, hi(val));
1306
break;
1307
case R_PPC64_ADDR16_HIGH:
1308
write16(loc, hi(val));
1309
break;
1310
case R_PPC64_ADDR16_HIGHER:
1311
case R_PPC64_TPREL16_HIGHER:
1312
write16(loc, higher(val));
1313
break;
1314
case R_PPC64_ADDR16_HIGHERA:
1315
case R_PPC64_TPREL16_HIGHERA:
1316
write16(loc, highera(val));
1317
break;
1318
case R_PPC64_ADDR16_HIGHEST:
1319
case R_PPC64_TPREL16_HIGHEST:
1320
write16(loc, highest(val));
1321
break;
1322
case R_PPC64_ADDR16_HIGHESTA:
1323
case R_PPC64_TPREL16_HIGHESTA:
1324
write16(loc, highesta(val));
1325
break;
1326
case R_PPC64_ADDR16_LO:
1327
case R_PPC64_REL16_LO:
1328
case R_PPC64_TPREL16_LO:
1329
// When the high-adjusted part of a toc relocation evaluates to 0, it is
1330
// changed into a nop. The lo part then needs to be updated to use the
1331
// toc-pointer register r2, as the base register.
1332
if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
1333
uint32_t insn = readFromHalf16(loc);
1334
if (isInstructionUpdateForm(insn))
1335
error(getErrorLocation(loc) +
1336
"can't toc-optimize an update instruction: 0x" +
1337
utohexstr(insn));
1338
writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val));
1339
} else {
1340
write16(loc, lo(val));
1341
}
1342
break;
1343
case R_PPC64_ADDR16_LO_DS:
1344
case R_PPC64_TPREL16_LO_DS: {
1345
// DQ-form instructions use bits 28-31 as part of the instruction encoding
1346
// DS-form instructions only use bits 30-31.
1347
uint32_t insn = readFromHalf16(loc);
1348
uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3;
1349
checkAlignment(loc, lo(val), mask + 1, rel);
1350
if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
1351
// When the high-adjusted part of a toc relocation evaluates to 0, it is
1352
// changed into a nop. The lo part then needs to be updated to use the toc
1353
// pointer register r2, as the base register.
1354
if (isInstructionUpdateForm(insn))
1355
error(getErrorLocation(loc) +
1356
"Can't toc-optimize an update instruction: 0x" +
1357
Twine::utohexstr(insn));
1358
insn &= 0xffe00000 | mask;
1359
writeFromHalf16(loc, insn | 0x00020000 | lo(val));
1360
} else {
1361
write16(loc, (read16(loc) & mask) | lo(val));
1362
}
1363
} break;
1364
case R_PPC64_TPREL16:
1365
checkInt(loc, val, 16, rel);
1366
write16(loc, val);
1367
break;
1368
case R_PPC64_REL32:
1369
checkInt(loc, val, 32, rel);
1370
write32(loc, val);
1371
break;
1372
case R_PPC64_ADDR64:
1373
case R_PPC64_REL64:
1374
case R_PPC64_TOC:
1375
write64(loc, val);
1376
break;
1377
case R_PPC64_REL14: {
1378
uint32_t mask = 0x0000FFFC;
1379
checkInt(loc, val, 16, rel);
1380
checkAlignment(loc, val, 4, rel);
1381
write32(loc, (read32(loc) & ~mask) | (val & mask));
1382
break;
1383
}
1384
case R_PPC64_REL24:
1385
case R_PPC64_REL24_NOTOC: {
1386
uint32_t mask = 0x03FFFFFC;
1387
checkInt(loc, val, 26, rel);
1388
checkAlignment(loc, val, 4, rel);
1389
write32(loc, (read32(loc) & ~mask) | (val & mask));
1390
break;
1391
}
1392
case R_PPC64_DTPREL64:
1393
write64(loc, val - dynamicThreadPointerOffset);
1394
break;
1395
case R_PPC64_DTPREL34:
1396
// The Dynamic Thread Vector actually points 0x8000 bytes past the start
1397
// of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first
1398
// need to subtract that value then fallthrough to the general case.
1399
val -= dynamicThreadPointerOffset;
1400
[[fallthrough]];
1401
case R_PPC64_PCREL34:
1402
case R_PPC64_GOT_PCREL34:
1403
case R_PPC64_GOT_TLSGD_PCREL34:
1404
case R_PPC64_GOT_TLSLD_PCREL34:
1405
case R_PPC64_GOT_TPREL_PCREL34:
1406
case R_PPC64_TPREL34: {
1407
const uint64_t si0Mask = 0x00000003ffff0000;
1408
const uint64_t si1Mask = 0x000000000000ffff;
1409
const uint64_t fullMask = 0x0003ffff0000ffff;
1410
checkInt(loc, val, 34, rel);
1411
1412
uint64_t instr = readPrefixedInstruction(loc) & ~fullMask;
1413
writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) |
1414
(val & si1Mask));
1415
break;
1416
}
1417
// If we encounter a PCREL_OPT relocation that we won't optimize.
1418
case R_PPC64_PCREL_OPT:
1419
break;
1420
default:
1421
llvm_unreachable("unknown relocation");
1422
}
1423
}
1424
1425
bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
1426
uint64_t branchAddr, const Symbol &s, int64_t a) const {
1427
if (type != R_PPC64_REL14 && type != R_PPC64_REL24 &&
1428
type != R_PPC64_REL24_NOTOC)
1429
return false;
1430
1431
// If a function is in the Plt it needs to be called with a call-stub.
1432
if (s.isInPlt())
1433
return true;
1434
1435
// This check looks at the st_other bits of the callee with relocation
1436
// R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee
1437
// clobbers the TOC and we need an R2 save stub.
1438
if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1)
1439
return true;
1440
1441
if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1)
1442
return true;
1443
1444
// An undefined weak symbol not in a PLT does not need a thunk. If it is
1445
// hidden, its binding has been converted to local, so we just check
1446
// isUndefined() here. A undefined non-weak symbol has been errored.
1447
if (s.isUndefined())
1448
return false;
1449
1450
// If the offset exceeds the range of the branch type then it will need
1451
// a range-extending thunk.
1452
// See the comment in getRelocTargetVA() about R_PPC64_CALL.
1453
return !inBranchRange(type, branchAddr,
1454
s.getVA(a) +
1455
getPPC64GlobalEntryToLocalEntryOffset(s.stOther));
1456
}
1457
1458
uint32_t PPC64::getThunkSectionSpacing() const {
1459
// See comment in Arch/ARM.cpp for a more detailed explanation of
1460
// getThunkSectionSpacing(). For PPC64 we pick the constant here based on
1461
// R_PPC64_REL24, which is used by unconditional branch instructions.
1462
// 0x2000000 = (1 << 24-1) * 4
1463
return 0x2000000;
1464
}
1465
1466
bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
1467
int64_t offset = dst - src;
1468
if (type == R_PPC64_REL14)
1469
return isInt<16>(offset);
1470
if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC)
1471
return isInt<26>(offset);
1472
llvm_unreachable("unsupported relocation type used in branch");
1473
}
1474
1475
RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const {
1476
if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE)
1477
return R_RELAX_TLS_GD_TO_IE_GOT_OFF;
1478
if (expr == R_RELAX_TLS_LD_TO_LE)
1479
return R_RELAX_TLS_LD_TO_LE_ABS;
1480
return expr;
1481
}
1482
1483
RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend,
1484
const uint8_t *loc) const {
1485
if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) &&
1486
config->pcRelOptimize) {
1487
// It only makes sense to optimize pld since paddi means that the address
1488
// of the object in the GOT is required rather than the object itself.
1489
if ((readPrefixedInstruction(loc) & 0xfc000000) == 0xe4000000)
1490
return R_PPC64_RELAX_GOT_PC;
1491
}
1492
return R_GOT_PC;
1493
}
1494
1495
// Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement.
1496
// The general dynamic code sequence for a global `x` uses 4 instructions.
1497
// Instruction Relocation Symbol
1498
// addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
1499
// addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x
1500
// bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
1501
// R_PPC64_REL24 __tls_get_addr
1502
// nop None None
1503
//
1504
// Relaxing to initial-exec entails:
1505
// 1) Convert the addis/addi pair that builds the address of the tls_index
1506
// struct for 'x' to an addis/ld pair that loads an offset from a got-entry.
1507
// 2) Convert the call to __tls_get_addr to a nop.
1508
// 3) Convert the nop following the call to an add of the loaded offset to the
1509
// thread pointer.
1510
// Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is
1511
// used as the relaxation hint for both steps 2 and 3.
1512
void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
1513
uint64_t val) const {
1514
switch (rel.type) {
1515
case R_PPC64_GOT_TLSGD16_HA:
1516
// This is relaxed from addis rT, r2, sym@got@tlsgd@ha to
1517
// addis rT, r2, sym@got@tprel@ha.
1518
relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val);
1519
return;
1520
case R_PPC64_GOT_TLSGD16:
1521
case R_PPC64_GOT_TLSGD16_LO: {
1522
// Relax from addi r3, rA, sym@got@tlsgd@l to
1523
// ld r3, sym@got@tprel@l(rA)
1524
uint32_t ra = (readFromHalf16(loc) & (0x1f << 16));
1525
writeFromHalf16(loc, 0xe8600000 | ra);
1526
relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val);
1527
return;
1528
}
1529
case R_PPC64_GOT_TLSGD_PCREL34: {
1530
// Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to
1531
// pld r3, sym@got@tprel@pcrel
1532
writePrefixedInstruction(loc, 0x04100000e4600000);
1533
relocateNoSym(loc, R_PPC64_GOT_TPREL_PCREL34, val);
1534
return;
1535
}
1536
case R_PPC64_TLSGD: {
1537
// PC Relative Relaxation:
1538
// Relax from bl __tls_get_addr@notoc(x@tlsgd) to
1539
// nop
1540
// TOC Relaxation:
1541
// Relax from bl __tls_get_addr(x@tlsgd)
1542
// nop
1543
// to
1544
// nop
1545
// add r3, r3, r13
1546
const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
1547
if (locAsInt % 4 == 0) {
1548
write32(loc, NOP); // bl __tls_get_addr(sym@tlsgd) --> nop
1549
write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13
1550
} else if (locAsInt % 4 == 1) {
1551
// bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13
1552
write32(loc - 1, 0x7c636a14);
1553
} else {
1554
errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
1555
}
1556
return;
1557
}
1558
default:
1559
llvm_unreachable("unsupported relocation for TLS GD to IE relaxation");
1560
}
1561
}
1562
1563
void PPC64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
1564
uint64_t secAddr = sec.getOutputSection()->addr;
1565
if (auto *s = dyn_cast<InputSection>(&sec))
1566
secAddr += s->outSecOff;
1567
else if (auto *ehIn = dyn_cast<EhInputSection>(&sec))
1568
secAddr += ehIn->getParent()->outSecOff;
1569
uint64_t lastPPCRelaxedRelocOff = -1;
1570
for (const Relocation &rel : sec.relocs()) {
1571
uint8_t *loc = buf + rel.offset;
1572
const uint64_t val =
1573
sec.getRelocTargetVA(sec.file, rel.type, rel.addend,
1574
secAddr + rel.offset, *rel.sym, rel.expr);
1575
switch (rel.expr) {
1576
case R_PPC64_RELAX_GOT_PC: {
1577
// The R_PPC64_PCREL_OPT relocation must appear immediately after
1578
// R_PPC64_GOT_PCREL34 in the relocations table at the same offset.
1579
// We can only relax R_PPC64_PCREL_OPT if we have also relaxed
1580
// the associated R_PPC64_GOT_PCREL34 since only the latter has an
1581
// associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34
1582
// and only relax the other if the saved offset matches.
1583
if (rel.type == R_PPC64_GOT_PCREL34)
1584
lastPPCRelaxedRelocOff = rel.offset;
1585
if (rel.type == R_PPC64_PCREL_OPT && rel.offset != lastPPCRelaxedRelocOff)
1586
break;
1587
relaxGot(loc, rel, val);
1588
break;
1589
}
1590
case R_PPC64_RELAX_TOC:
1591
// rel.sym refers to the STT_SECTION symbol associated to the .toc input
1592
// section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC
1593
// entry, there may be R_PPC64_TOC16_HA not paired with
1594
// R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation
1595
// opportunities but is safe.
1596
if (ppc64noTocRelax.count({rel.sym, rel.addend}) ||
1597
!tryRelaxPPC64TocIndirection(rel, loc))
1598
relocate(loc, rel, val);
1599
break;
1600
case R_PPC64_CALL:
1601
// If this is a call to __tls_get_addr, it may be part of a TLS
1602
// sequence that has been relaxed and turned into a nop. In this
1603
// case, we don't want to handle it as a call.
1604
if (read32(loc) == 0x60000000) // nop
1605
break;
1606
1607
// Patch a nop (0x60000000) to a ld.
1608
if (rel.sym->needsTocRestore()) {
1609
// gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for
1610
// recursive calls even if the function is preemptible. This is not
1611
// wrong in the common case where the function is not preempted at
1612
// runtime. Just ignore.
1613
if ((rel.offset + 8 > sec.content().size() ||
1614
read32(loc + 4) != 0x60000000) &&
1615
rel.sym->file != sec.file) {
1616
// Use substr(6) to remove the "__plt_" prefix.
1617
errorOrWarn(getErrorLocation(loc) + "call to " +
1618
lld::toString(*rel.sym).substr(6) +
1619
" lacks nop, can't restore toc");
1620
break;
1621
}
1622
write32(loc + 4, 0xe8410018); // ld %r2, 24(%r1)
1623
}
1624
relocate(loc, rel, val);
1625
break;
1626
case R_RELAX_TLS_GD_TO_IE:
1627
case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
1628
relaxTlsGdToIe(loc, rel, val);
1629
break;
1630
case R_RELAX_TLS_GD_TO_LE:
1631
relaxTlsGdToLe(loc, rel, val);
1632
break;
1633
case R_RELAX_TLS_LD_TO_LE_ABS:
1634
relaxTlsLdToLe(loc, rel, val);
1635
break;
1636
case R_RELAX_TLS_IE_TO_LE:
1637
relaxTlsIeToLe(loc, rel, val);
1638
break;
1639
default:
1640
relocate(loc, rel, val);
1641
break;
1642
}
1643
}
1644
}
1645
1646
// The prologue for a split-stack function is expected to look roughly
1647
// like this:
1648
// .Lglobal_entry_point:
1649
// # TOC pointer initialization.
1650
// ...
1651
// .Llocal_entry_point:
1652
// # load the __private_ss member of the threads tcbhead.
1653
// ld r0,-0x7000-64(r13)
1654
// # subtract the functions stack size from the stack pointer.
1655
// addis r12, r1, ha(-stack-frame size)
1656
// addi r12, r12, l(-stack-frame size)
1657
// # compare needed to actual and branch to allocate_more_stack if more
1658
// # space is needed, otherwise fallthrough to 'normal' function body.
1659
// cmpld cr7,r12,r0
1660
// blt- cr7, .Lallocate_more_stack
1661
//
1662
// -) The allocate_more_stack block might be placed after the split-stack
1663
// prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body`
1664
// instead.
1665
// -) If either the addis or addi is not needed due to the stack size being
1666
// smaller then 32K or a multiple of 64K they will be replaced with a nop,
1667
// but there will always be 2 instructions the linker can overwrite for the
1668
// adjusted stack size.
1669
//
1670
// The linkers job here is to increase the stack size used in the addis/addi
1671
// pair by split-stack-size-adjust.
1672
// addis r12, r1, ha(-stack-frame size - split-stack-adjust-size)
1673
// addi r12, r12, l(-stack-frame size - split-stack-adjust-size)
1674
bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
1675
uint8_t stOther) const {
1676
// If the caller has a global entry point adjust the buffer past it. The start
1677
// of the split-stack prologue will be at the local entry point.
1678
loc += getPPC64GlobalEntryToLocalEntryOffset(stOther);
1679
1680
// At the very least we expect to see a load of some split-stack data from the
1681
// tcb, and 2 instructions that calculate the ending stack address this
1682
// function will require. If there is not enough room for at least 3
1683
// instructions it can't be a split-stack prologue.
1684
if (loc + 12 >= end)
1685
return false;
1686
1687
// First instruction must be `ld r0, -0x7000-64(r13)`
1688
if (read32(loc) != 0xe80d8fc0)
1689
return false;
1690
1691
int16_t hiImm = 0;
1692
int16_t loImm = 0;
1693
// First instruction can be either an addis if the frame size is larger then
1694
// 32K, or an addi if the size is less then 32K.
1695
int32_t firstInstr = read32(loc + 4);
1696
if (getPrimaryOpCode(firstInstr) == 15) {
1697
hiImm = firstInstr & 0xFFFF;
1698
} else if (getPrimaryOpCode(firstInstr) == 14) {
1699
loImm = firstInstr & 0xFFFF;
1700
} else {
1701
return false;
1702
}
1703
1704
// Second instruction is either an addi or a nop. If the first instruction was
1705
// an addi then LoImm is set and the second instruction must be a nop.
1706
uint32_t secondInstr = read32(loc + 8);
1707
if (!loImm && getPrimaryOpCode(secondInstr) == 14) {
1708
loImm = secondInstr & 0xFFFF;
1709
} else if (secondInstr != NOP) {
1710
return false;
1711
}
1712
1713
// The register operands of the first instruction should be the stack-pointer
1714
// (r1) as the input (RA) and r12 as the output (RT). If the second
1715
// instruction is not a nop, then it should use r12 as both input and output.
1716
auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT,
1717
uint8_t expectedRA) {
1718
return ((instr & 0x3E00000) >> 21 == expectedRT) &&
1719
((instr & 0x1F0000) >> 16 == expectedRA);
1720
};
1721
if (!checkRegOperands(firstInstr, 12, 1))
1722
return false;
1723
if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12))
1724
return false;
1725
1726
int32_t stackFrameSize = (hiImm * 65536) + loImm;
1727
// Check that the adjusted size doesn't overflow what we can represent with 2
1728
// instructions.
1729
if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) {
1730
error(getErrorLocation(loc) + "split-stack prologue adjustment overflows");
1731
return false;
1732
}
1733
1734
int32_t adjustedStackFrameSize =
1735
stackFrameSize - config->splitStackAdjustSize;
1736
1737
loImm = adjustedStackFrameSize & 0xFFFF;
1738
hiImm = (adjustedStackFrameSize + 0x8000) >> 16;
1739
if (hiImm) {
1740
write32(loc + 4, 0x3D810000 | (uint16_t)hiImm);
1741
// If the low immediate is zero the second instruction will be a nop.
1742
secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP;
1743
write32(loc + 8, secondInstr);
1744
} else {
1745
// addi r12, r1, imm
1746
write32(loc + 4, (0x39810000) | (uint16_t)loImm);
1747
write32(loc + 8, NOP);
1748
}
1749
1750
return true;
1751
}
1752
1753
TargetInfo *elf::getPPC64TargetInfo() {
1754
static PPC64 target;
1755
return &target;
1756
}
1757
1758