Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lld/ELF/Arch/X86_64.cpp
34879 views
1
//===- X86_64.cpp ---------------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "OutputSections.h"
10
#include "Relocations.h"
11
#include "Symbols.h"
12
#include "SyntheticSections.h"
13
#include "Target.h"
14
#include "lld/Common/ErrorHandler.h"
15
#include "llvm/BinaryFormat/ELF.h"
16
#include "llvm/Support/Endian.h"
17
#include "llvm/Support/MathExtras.h"
18
19
using namespace llvm;
20
using namespace llvm::object;
21
using namespace llvm::support::endian;
22
using namespace llvm::ELF;
23
using namespace lld;
24
using namespace lld::elf;
25
26
namespace {
27
class X86_64 : public TargetInfo {
28
public:
29
X86_64();
30
int getTlsGdRelaxSkip(RelType type) const override;
31
RelExpr getRelExpr(RelType type, const Symbol &s,
32
const uint8_t *loc) const override;
33
RelType getDynRel(RelType type) const override;
34
void writeGotPltHeader(uint8_t *buf) const override;
35
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
36
void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
37
void writePltHeader(uint8_t *buf) const override;
38
void writePlt(uint8_t *buf, const Symbol &sym,
39
uint64_t pltEntryAddr) const override;
40
void relocate(uint8_t *loc, const Relocation &rel,
41
uint64_t val) const override;
42
int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
43
void applyJumpInstrMod(uint8_t *loc, JumpModType type,
44
unsigned size) const override;
45
RelExpr adjustGotPcExpr(RelType type, int64_t addend,
46
const uint8_t *loc) const override;
47
void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
48
bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
49
uint8_t stOther) const override;
50
bool deleteFallThruJmpInsn(InputSection &is, InputFile *file,
51
InputSection *nextIS) const override;
52
bool relaxOnce(int pass) const override;
53
};
54
} // namespace
55
56
// This is vector of NOP instructions of sizes from 1 to 8 bytes. The
57
// appropriately sized instructions are used to fill the gaps between sections
58
// which are executed during fall through.
59
static const std::vector<std::vector<uint8_t>> nopInstructions = {
60
{0x90},
61
{0x66, 0x90},
62
{0x0f, 0x1f, 0x00},
63
{0x0f, 0x1f, 0x40, 0x00},
64
{0x0f, 0x1f, 0x44, 0x00, 0x00},
65
{0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00},
66
{0x0F, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00},
67
{0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00},
68
{0x66, 0x0F, 0x1F, 0x84, 0x00, 0x00, 0x00, 0x00, 0x00}};
69
70
X86_64::X86_64() {
71
copyRel = R_X86_64_COPY;
72
gotRel = R_X86_64_GLOB_DAT;
73
pltRel = R_X86_64_JUMP_SLOT;
74
relativeRel = R_X86_64_RELATIVE;
75
iRelativeRel = R_X86_64_IRELATIVE;
76
symbolicRel = R_X86_64_64;
77
tlsDescRel = R_X86_64_TLSDESC;
78
tlsGotRel = R_X86_64_TPOFF64;
79
tlsModuleIndexRel = R_X86_64_DTPMOD64;
80
tlsOffsetRel = R_X86_64_DTPOFF64;
81
gotBaseSymInGotPlt = true;
82
gotEntrySize = 8;
83
pltHeaderSize = 16;
84
pltEntrySize = 16;
85
ipltEntrySize = 16;
86
trapInstr = {0xcc, 0xcc, 0xcc, 0xcc}; // 0xcc = INT3
87
nopInstrs = nopInstructions;
88
89
// Align to the large page size (known as a superpage or huge page).
90
// FreeBSD automatically promotes large, superpage-aligned allocations.
91
defaultImageBase = 0x200000;
92
}
93
94
int X86_64::getTlsGdRelaxSkip(RelType type) const {
95
// TLSDESC relocations are processed separately. See relaxTlsGdToLe below.
96
return type == R_X86_64_GOTPC32_TLSDESC || type == R_X86_64_TLSDESC_CALL ? 1
97
: 2;
98
}
99
100
// Opcodes for the different X86_64 jmp instructions.
101
enum JmpInsnOpcode : uint32_t {
102
J_JMP_32,
103
J_JNE_32,
104
J_JE_32,
105
J_JG_32,
106
J_JGE_32,
107
J_JB_32,
108
J_JBE_32,
109
J_JL_32,
110
J_JLE_32,
111
J_JA_32,
112
J_JAE_32,
113
J_UNKNOWN,
114
};
115
116
// Given the first (optional) and second byte of the insn's opcode, this
117
// returns the corresponding enum value.
118
static JmpInsnOpcode getJmpInsnType(const uint8_t *first,
119
const uint8_t *second) {
120
if (*second == 0xe9)
121
return J_JMP_32;
122
123
if (first == nullptr)
124
return J_UNKNOWN;
125
126
if (*first == 0x0f) {
127
switch (*second) {
128
case 0x84:
129
return J_JE_32;
130
case 0x85:
131
return J_JNE_32;
132
case 0x8f:
133
return J_JG_32;
134
case 0x8d:
135
return J_JGE_32;
136
case 0x82:
137
return J_JB_32;
138
case 0x86:
139
return J_JBE_32;
140
case 0x8c:
141
return J_JL_32;
142
case 0x8e:
143
return J_JLE_32;
144
case 0x87:
145
return J_JA_32;
146
case 0x83:
147
return J_JAE_32;
148
}
149
}
150
return J_UNKNOWN;
151
}
152
153
// Return the relocation index for input section IS with a specific Offset.
154
// Returns the maximum size of the vector if no such relocation is found.
155
static unsigned getRelocationWithOffset(const InputSection &is,
156
uint64_t offset) {
157
unsigned size = is.relocs().size();
158
for (unsigned i = size - 1; i + 1 > 0; --i) {
159
if (is.relocs()[i].offset == offset && is.relocs()[i].expr != R_NONE)
160
return i;
161
}
162
return size;
163
}
164
165
// Returns true if R corresponds to a relocation used for a jump instruction.
166
// TODO: Once special relocations for relaxable jump instructions are available,
167
// this should be modified to use those relocations.
168
static bool isRelocationForJmpInsn(Relocation &R) {
169
return R.type == R_X86_64_PLT32 || R.type == R_X86_64_PC32 ||
170
R.type == R_X86_64_PC8;
171
}
172
173
// Return true if Relocation R points to the first instruction in the
174
// next section.
175
// TODO: Delete this once psABI reserves a new relocation type for fall thru
176
// jumps.
177
static bool isFallThruRelocation(InputSection &is, InputFile *file,
178
InputSection *nextIS, Relocation &r) {
179
if (!isRelocationForJmpInsn(r))
180
return false;
181
182
uint64_t addrLoc = is.getOutputSection()->addr + is.outSecOff + r.offset;
183
uint64_t targetOffset = InputSectionBase::getRelocTargetVA(
184
file, r.type, r.addend, addrLoc, *r.sym, r.expr);
185
186
// If this jmp is a fall thru, the target offset is the beginning of the
187
// next section.
188
uint64_t nextSectionOffset =
189
nextIS->getOutputSection()->addr + nextIS->outSecOff;
190
return (addrLoc + 4 + targetOffset) == nextSectionOffset;
191
}
192
193
// Return the jmp instruction opcode that is the inverse of the given
194
// opcode. For example, JE inverted is JNE.
195
static JmpInsnOpcode invertJmpOpcode(const JmpInsnOpcode opcode) {
196
switch (opcode) {
197
case J_JE_32:
198
return J_JNE_32;
199
case J_JNE_32:
200
return J_JE_32;
201
case J_JG_32:
202
return J_JLE_32;
203
case J_JGE_32:
204
return J_JL_32;
205
case J_JB_32:
206
return J_JAE_32;
207
case J_JBE_32:
208
return J_JA_32;
209
case J_JL_32:
210
return J_JGE_32;
211
case J_JLE_32:
212
return J_JG_32;
213
case J_JA_32:
214
return J_JBE_32;
215
case J_JAE_32:
216
return J_JB_32;
217
default:
218
return J_UNKNOWN;
219
}
220
}
221
222
// Deletes direct jump instruction in input sections that jumps to the
223
// following section as it is not required. If there are two consecutive jump
224
// instructions, it checks if they can be flipped and one can be deleted.
225
// For example:
226
// .section .text
227
// a.BB.foo:
228
// ...
229
// 10: jne aa.BB.foo
230
// 16: jmp bar
231
// aa.BB.foo:
232
// ...
233
//
234
// can be converted to:
235
// a.BB.foo:
236
// ...
237
// 10: je bar #jne flipped to je and the jmp is deleted.
238
// aa.BB.foo:
239
// ...
240
bool X86_64::deleteFallThruJmpInsn(InputSection &is, InputFile *file,
241
InputSection *nextIS) const {
242
const unsigned sizeOfDirectJmpInsn = 5;
243
244
if (nextIS == nullptr)
245
return false;
246
247
if (is.getSize() < sizeOfDirectJmpInsn)
248
return false;
249
250
// If this jmp insn can be removed, it is the last insn and the
251
// relocation is 4 bytes before the end.
252
unsigned rIndex = getRelocationWithOffset(is, is.getSize() - 4);
253
if (rIndex == is.relocs().size())
254
return false;
255
256
Relocation &r = is.relocs()[rIndex];
257
258
// Check if the relocation corresponds to a direct jmp.
259
const uint8_t *secContents = is.content().data();
260
// If it is not a direct jmp instruction, there is nothing to do here.
261
if (*(secContents + r.offset - 1) != 0xe9)
262
return false;
263
264
if (isFallThruRelocation(is, file, nextIS, r)) {
265
// This is a fall thru and can be deleted.
266
r.expr = R_NONE;
267
r.offset = 0;
268
is.drop_back(sizeOfDirectJmpInsn);
269
is.nopFiller = true;
270
return true;
271
}
272
273
// Now, check if flip and delete is possible.
274
const unsigned sizeOfJmpCCInsn = 6;
275
// To flip, there must be at least one JmpCC and one direct jmp.
276
if (is.getSize() < sizeOfDirectJmpInsn + sizeOfJmpCCInsn)
277
return false;
278
279
unsigned rbIndex =
280
getRelocationWithOffset(is, (is.getSize() - sizeOfDirectJmpInsn - 4));
281
if (rbIndex == is.relocs().size())
282
return false;
283
284
Relocation &rB = is.relocs()[rbIndex];
285
286
const uint8_t *jmpInsnB = secContents + rB.offset - 1;
287
JmpInsnOpcode jmpOpcodeB = getJmpInsnType(jmpInsnB - 1, jmpInsnB);
288
if (jmpOpcodeB == J_UNKNOWN)
289
return false;
290
291
if (!isFallThruRelocation(is, file, nextIS, rB))
292
return false;
293
294
// jmpCC jumps to the fall thru block, the branch can be flipped and the
295
// jmp can be deleted.
296
JmpInsnOpcode jInvert = invertJmpOpcode(jmpOpcodeB);
297
if (jInvert == J_UNKNOWN)
298
return false;
299
is.jumpInstrMod = make<JumpInstrMod>();
300
*is.jumpInstrMod = {rB.offset - 1, jInvert, 4};
301
// Move R's values to rB except the offset.
302
rB = {r.expr, r.type, rB.offset, r.addend, r.sym};
303
// Cancel R
304
r.expr = R_NONE;
305
r.offset = 0;
306
is.drop_back(sizeOfDirectJmpInsn);
307
is.nopFiller = true;
308
return true;
309
}
310
311
bool X86_64::relaxOnce(int pass) const {
312
uint64_t minVA = UINT64_MAX, maxVA = 0;
313
for (OutputSection *osec : outputSections) {
314
minVA = std::min(minVA, osec->addr);
315
maxVA = std::max(maxVA, osec->addr + osec->size);
316
}
317
// If the max VA is under 2^31, GOTPCRELX relocations cannot overfow. In
318
// -pie/-shared, the condition can be relaxed to test the max VA difference as
319
// there is no R_RELAX_GOT_PC_NOPIC.
320
if (isUInt<31>(maxVA) || (isUInt<31>(maxVA - minVA) && config->isPic))
321
return false;
322
323
SmallVector<InputSection *, 0> storage;
324
bool changed = false;
325
for (OutputSection *osec : outputSections) {
326
if (!(osec->flags & SHF_EXECINSTR))
327
continue;
328
for (InputSection *sec : getInputSections(*osec, storage)) {
329
for (Relocation &rel : sec->relocs()) {
330
if (rel.expr != R_RELAX_GOT_PC && rel.expr != R_RELAX_GOT_PC_NOPIC)
331
continue;
332
assert(rel.addend == -4);
333
334
uint64_t v = sec->getRelocTargetVA(
335
sec->file, rel.type, rel.expr == R_RELAX_GOT_PC_NOPIC ? 0 : -4,
336
sec->getOutputSection()->addr + sec->outSecOff + rel.offset,
337
*rel.sym, rel.expr);
338
if (isInt<32>(v))
339
continue;
340
if (rel.sym->auxIdx == 0) {
341
rel.sym->allocateAux();
342
addGotEntry(*rel.sym);
343
changed = true;
344
}
345
rel.expr = R_GOT_PC;
346
}
347
}
348
}
349
return changed;
350
}
351
352
RelExpr X86_64::getRelExpr(RelType type, const Symbol &s,
353
const uint8_t *loc) const {
354
switch (type) {
355
case R_X86_64_8:
356
case R_X86_64_16:
357
case R_X86_64_32:
358
case R_X86_64_32S:
359
case R_X86_64_64:
360
return R_ABS;
361
case R_X86_64_DTPOFF32:
362
case R_X86_64_DTPOFF64:
363
return R_DTPREL;
364
case R_X86_64_TPOFF32:
365
case R_X86_64_TPOFF64:
366
return R_TPREL;
367
case R_X86_64_TLSDESC_CALL:
368
return R_TLSDESC_CALL;
369
case R_X86_64_TLSLD:
370
return R_TLSLD_PC;
371
case R_X86_64_TLSGD:
372
return R_TLSGD_PC;
373
case R_X86_64_SIZE32:
374
case R_X86_64_SIZE64:
375
return R_SIZE;
376
case R_X86_64_PLT32:
377
return R_PLT_PC;
378
case R_X86_64_PC8:
379
case R_X86_64_PC16:
380
case R_X86_64_PC32:
381
case R_X86_64_PC64:
382
return R_PC;
383
case R_X86_64_GOT32:
384
case R_X86_64_GOT64:
385
return R_GOTPLT;
386
case R_X86_64_GOTPC32_TLSDESC:
387
return R_TLSDESC_PC;
388
case R_X86_64_GOTPCREL:
389
case R_X86_64_GOTPCRELX:
390
case R_X86_64_REX_GOTPCRELX:
391
case R_X86_64_GOTTPOFF:
392
return R_GOT_PC;
393
case R_X86_64_GOTOFF64:
394
return R_GOTPLTREL;
395
case R_X86_64_PLTOFF64:
396
return R_PLT_GOTPLT;
397
case R_X86_64_GOTPC32:
398
case R_X86_64_GOTPC64:
399
return R_GOTPLTONLY_PC;
400
case R_X86_64_NONE:
401
return R_NONE;
402
default:
403
error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
404
") against symbol " + toString(s));
405
return R_NONE;
406
}
407
}
408
409
void X86_64::writeGotPltHeader(uint8_t *buf) const {
410
// The first entry holds the link-time address of _DYNAMIC. It is documented
411
// in the psABI and glibc before Aug 2021 used the entry to compute run-time
412
// load address of the shared object (note that this is relevant for linking
413
// ld.so, not any other program).
414
write64le(buf, mainPart->dynamic->getVA());
415
}
416
417
void X86_64::writeGotPlt(uint8_t *buf, const Symbol &s) const {
418
// See comments in X86::writeGotPlt.
419
write64le(buf, s.getPltVA() + 6);
420
}
421
422
void X86_64::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
423
// An x86 entry is the address of the ifunc resolver function (for -z rel).
424
if (config->writeAddends)
425
write64le(buf, s.getVA());
426
}
427
428
void X86_64::writePltHeader(uint8_t *buf) const {
429
const uint8_t pltData[] = {
430
0xff, 0x35, 0, 0, 0, 0, // pushq GOTPLT+8(%rip)
431
0xff, 0x25, 0, 0, 0, 0, // jmp *GOTPLT+16(%rip)
432
0x0f, 0x1f, 0x40, 0x00, // nop
433
};
434
memcpy(buf, pltData, sizeof(pltData));
435
uint64_t gotPlt = in.gotPlt->getVA();
436
uint64_t plt = in.ibtPlt ? in.ibtPlt->getVA() : in.plt->getVA();
437
write32le(buf + 2, gotPlt - plt + 2); // GOTPLT+8
438
write32le(buf + 8, gotPlt - plt + 4); // GOTPLT+16
439
}
440
441
void X86_64::writePlt(uint8_t *buf, const Symbol &sym,
442
uint64_t pltEntryAddr) const {
443
const uint8_t inst[] = {
444
0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
445
0x68, 0, 0, 0, 0, // pushq <relocation index>
446
0xe9, 0, 0, 0, 0, // jmpq plt[0]
447
};
448
memcpy(buf, inst, sizeof(inst));
449
450
write32le(buf + 2, sym.getGotPltVA() - pltEntryAddr - 6);
451
write32le(buf + 7, sym.getPltIdx());
452
write32le(buf + 12, in.plt->getVA() - pltEntryAddr - 16);
453
}
454
455
RelType X86_64::getDynRel(RelType type) const {
456
if (type == R_X86_64_64 || type == R_X86_64_PC64 || type == R_X86_64_SIZE32 ||
457
type == R_X86_64_SIZE64)
458
return type;
459
return R_X86_64_NONE;
460
}
461
462
static void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) {
463
if (rel.type == R_X86_64_TLSGD) {
464
// Convert
465
// .byte 0x66
466
// leaq x@tlsgd(%rip), %rdi
467
// .word 0x6666
468
// rex64
469
// call __tls_get_addr@plt
470
// to the following two instructions.
471
const uint8_t inst[] = {
472
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
473
0x00, 0x00, // mov %fs:0x0,%rax
474
0x48, 0x8d, 0x80, 0, 0, 0, 0, // lea x@tpoff,%rax
475
};
476
memcpy(loc - 4, inst, sizeof(inst));
477
478
// The original code used a pc relative relocation and so we have to
479
// compensate for the -4 in had in the addend.
480
write32le(loc + 8, val + 4);
481
} else if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
482
// Convert leaq x@tlsdesc(%rip), %REG to movq $x@tpoff, %REG.
483
if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
484
(loc[-1] & 0xc7) != 0x05) {
485
errorOrWarn(getErrorLocation(loc - 3) +
486
"R_X86_64_GOTPC32_TLSDESC must be used "
487
"in leaq x@tlsdesc(%rip), %REG");
488
return;
489
}
490
loc[-3] = 0x48 | ((loc[-3] >> 2) & 1);
491
loc[-2] = 0xc7;
492
loc[-1] = 0xc0 | ((loc[-1] >> 3) & 7);
493
write32le(loc, val + 4);
494
} else {
495
// Convert call *x@tlsdesc(%REG) to xchg ax, ax.
496
assert(rel.type == R_X86_64_TLSDESC_CALL);
497
loc[0] = 0x66;
498
loc[1] = 0x90;
499
}
500
}
501
502
static void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) {
503
if (rel.type == R_X86_64_TLSGD) {
504
// Convert
505
// .byte 0x66
506
// leaq x@tlsgd(%rip), %rdi
507
// .word 0x6666
508
// rex64
509
// call __tls_get_addr@plt
510
// to the following two instructions.
511
const uint8_t inst[] = {
512
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00,
513
0x00, 0x00, // mov %fs:0x0,%rax
514
0x48, 0x03, 0x05, 0, 0, 0, 0, // addq x@gottpoff(%rip),%rax
515
};
516
memcpy(loc - 4, inst, sizeof(inst));
517
518
// Both code sequences are PC relatives, but since we are moving the
519
// constant forward by 8 bytes we have to subtract the value by 8.
520
write32le(loc + 8, val - 8);
521
} else if (rel.type == R_X86_64_GOTPC32_TLSDESC) {
522
// Convert leaq x@tlsdesc(%rip), %REG to movq x@gottpoff(%rip), %REG.
523
assert(rel.type == R_X86_64_GOTPC32_TLSDESC);
524
if ((loc[-3] & 0xfb) != 0x48 || loc[-2] != 0x8d ||
525
(loc[-1] & 0xc7) != 0x05) {
526
errorOrWarn(getErrorLocation(loc - 3) +
527
"R_X86_64_GOTPC32_TLSDESC must be used "
528
"in leaq x@tlsdesc(%rip), %REG");
529
return;
530
}
531
loc[-2] = 0x8b;
532
write32le(loc, val);
533
} else {
534
// Convert call *x@tlsdesc(%rax) to xchg ax, ax.
535
assert(rel.type == R_X86_64_TLSDESC_CALL);
536
loc[0] = 0x66;
537
loc[1] = 0x90;
538
}
539
}
540
541
// In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
542
// R_X86_64_TPOFF32 so that it does not use GOT.
543
static void relaxTlsIeToLe(uint8_t *loc, const Relocation &, uint64_t val) {
544
uint8_t *inst = loc - 3;
545
uint8_t reg = loc[-1] >> 3;
546
uint8_t *regSlot = loc - 1;
547
548
// Note that ADD with RSP or R12 is converted to ADD instead of LEA
549
// because LEA with these registers needs 4 bytes to encode and thus
550
// wouldn't fit the space.
551
552
if (memcmp(inst, "\x48\x03\x25", 3) == 0) {
553
// "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
554
memcpy(inst, "\x48\x81\xc4", 3);
555
} else if (memcmp(inst, "\x4c\x03\x25", 3) == 0) {
556
// "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
557
memcpy(inst, "\x49\x81\xc4", 3);
558
} else if (memcmp(inst, "\x4c\x03", 2) == 0) {
559
// "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
560
memcpy(inst, "\x4d\x8d", 2);
561
*regSlot = 0x80 | (reg << 3) | reg;
562
} else if (memcmp(inst, "\x48\x03", 2) == 0) {
563
// "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
564
memcpy(inst, "\x48\x8d", 2);
565
*regSlot = 0x80 | (reg << 3) | reg;
566
} else if (memcmp(inst, "\x4c\x8b", 2) == 0) {
567
// "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
568
memcpy(inst, "\x49\xc7", 2);
569
*regSlot = 0xc0 | reg;
570
} else if (memcmp(inst, "\x48\x8b", 2) == 0) {
571
// "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
572
memcpy(inst, "\x48\xc7", 2);
573
*regSlot = 0xc0 | reg;
574
} else {
575
error(getErrorLocation(loc - 3) +
576
"R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
577
}
578
579
// The original code used a PC relative relocation.
580
// Need to compensate for the -4 it had in the addend.
581
write32le(loc, val + 4);
582
}
583
584
static void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) {
585
const uint8_t inst[] = {
586
0x66, 0x66, // .word 0x6666
587
0x66, // .byte 0x66
588
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0,%rax
589
};
590
591
if (loc[4] == 0xe8) {
592
// Convert
593
// leaq bar@tlsld(%rip), %rdi # 48 8d 3d <Loc>
594
// callq __tls_get_addr@PLT # e8 <disp32>
595
// leaq bar@dtpoff(%rax), %rcx
596
// to
597
// .word 0x6666
598
// .byte 0x66
599
// mov %fs:0,%rax
600
// leaq bar@tpoff(%rax), %rcx
601
memcpy(loc - 3, inst, sizeof(inst));
602
return;
603
}
604
605
if (loc[4] == 0xff && loc[5] == 0x15) {
606
// Convert
607
// leaq x@tlsld(%rip),%rdi # 48 8d 3d <Loc>
608
// call *__tls_get_addr@GOTPCREL(%rip) # ff 15 <disp32>
609
// to
610
// .long 0x66666666
611
// movq %fs:0,%rax
612
// See "Table 11.9: LD -> LE Code Transition (LP64)" in
613
// https://raw.githubusercontent.com/wiki/hjl-tools/x86-psABI/x86-64-psABI-1.0.pdf
614
loc[-3] = 0x66;
615
memcpy(loc - 2, inst, sizeof(inst));
616
return;
617
}
618
619
error(getErrorLocation(loc - 3) +
620
"expected R_X86_64_PLT32 or R_X86_64_GOTPCRELX after R_X86_64_TLSLD");
621
}
622
623
// A JumpInstrMod at a specific offset indicates that the jump instruction
624
// opcode at that offset must be modified. This is specifically used to relax
625
// jump instructions with basic block sections. This function looks at the
626
// JumpMod and effects the change.
627
void X86_64::applyJumpInstrMod(uint8_t *loc, JumpModType type,
628
unsigned size) const {
629
switch (type) {
630
case J_JMP_32:
631
if (size == 4)
632
*loc = 0xe9;
633
else
634
*loc = 0xeb;
635
break;
636
case J_JE_32:
637
if (size == 4) {
638
loc[-1] = 0x0f;
639
*loc = 0x84;
640
} else
641
*loc = 0x74;
642
break;
643
case J_JNE_32:
644
if (size == 4) {
645
loc[-1] = 0x0f;
646
*loc = 0x85;
647
} else
648
*loc = 0x75;
649
break;
650
case J_JG_32:
651
if (size == 4) {
652
loc[-1] = 0x0f;
653
*loc = 0x8f;
654
} else
655
*loc = 0x7f;
656
break;
657
case J_JGE_32:
658
if (size == 4) {
659
loc[-1] = 0x0f;
660
*loc = 0x8d;
661
} else
662
*loc = 0x7d;
663
break;
664
case J_JB_32:
665
if (size == 4) {
666
loc[-1] = 0x0f;
667
*loc = 0x82;
668
} else
669
*loc = 0x72;
670
break;
671
case J_JBE_32:
672
if (size == 4) {
673
loc[-1] = 0x0f;
674
*loc = 0x86;
675
} else
676
*loc = 0x76;
677
break;
678
case J_JL_32:
679
if (size == 4) {
680
loc[-1] = 0x0f;
681
*loc = 0x8c;
682
} else
683
*loc = 0x7c;
684
break;
685
case J_JLE_32:
686
if (size == 4) {
687
loc[-1] = 0x0f;
688
*loc = 0x8e;
689
} else
690
*loc = 0x7e;
691
break;
692
case J_JA_32:
693
if (size == 4) {
694
loc[-1] = 0x0f;
695
*loc = 0x87;
696
} else
697
*loc = 0x77;
698
break;
699
case J_JAE_32:
700
if (size == 4) {
701
loc[-1] = 0x0f;
702
*loc = 0x83;
703
} else
704
*loc = 0x73;
705
break;
706
case J_UNKNOWN:
707
llvm_unreachable("Unknown Jump Relocation");
708
}
709
}
710
711
int64_t X86_64::getImplicitAddend(const uint8_t *buf, RelType type) const {
712
switch (type) {
713
case R_X86_64_8:
714
case R_X86_64_PC8:
715
return SignExtend64<8>(*buf);
716
case R_X86_64_16:
717
case R_X86_64_PC16:
718
return SignExtend64<16>(read16le(buf));
719
case R_X86_64_32:
720
case R_X86_64_32S:
721
case R_X86_64_TPOFF32:
722
case R_X86_64_GOT32:
723
case R_X86_64_GOTPC32:
724
case R_X86_64_GOTPC32_TLSDESC:
725
case R_X86_64_GOTPCREL:
726
case R_X86_64_GOTPCRELX:
727
case R_X86_64_REX_GOTPCRELX:
728
case R_X86_64_PC32:
729
case R_X86_64_GOTTPOFF:
730
case R_X86_64_PLT32:
731
case R_X86_64_TLSGD:
732
case R_X86_64_TLSLD:
733
case R_X86_64_DTPOFF32:
734
case R_X86_64_SIZE32:
735
return SignExtend64<32>(read32le(buf));
736
case R_X86_64_64:
737
case R_X86_64_TPOFF64:
738
case R_X86_64_DTPOFF64:
739
case R_X86_64_DTPMOD64:
740
case R_X86_64_PC64:
741
case R_X86_64_SIZE64:
742
case R_X86_64_GLOB_DAT:
743
case R_X86_64_GOT64:
744
case R_X86_64_GOTOFF64:
745
case R_X86_64_GOTPC64:
746
case R_X86_64_PLTOFF64:
747
case R_X86_64_IRELATIVE:
748
case R_X86_64_RELATIVE:
749
return read64le(buf);
750
case R_X86_64_TLSDESC:
751
return read64le(buf + 8);
752
case R_X86_64_JUMP_SLOT:
753
case R_X86_64_NONE:
754
// These relocations are defined as not having an implicit addend.
755
return 0;
756
default:
757
internalLinkerError(getErrorLocation(buf),
758
"cannot read addend for relocation " + toString(type));
759
return 0;
760
}
761
}
762
763
static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val);
764
765
void X86_64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
766
switch (rel.type) {
767
case R_X86_64_8:
768
checkIntUInt(loc, val, 8, rel);
769
*loc = val;
770
break;
771
case R_X86_64_PC8:
772
checkInt(loc, val, 8, rel);
773
*loc = val;
774
break;
775
case R_X86_64_16:
776
checkIntUInt(loc, val, 16, rel);
777
write16le(loc, val);
778
break;
779
case R_X86_64_PC16:
780
checkInt(loc, val, 16, rel);
781
write16le(loc, val);
782
break;
783
case R_X86_64_32:
784
checkUInt(loc, val, 32, rel);
785
write32le(loc, val);
786
break;
787
case R_X86_64_32S:
788
case R_X86_64_GOT32:
789
case R_X86_64_GOTPC32:
790
case R_X86_64_GOTPCREL:
791
case R_X86_64_PC32:
792
case R_X86_64_PLT32:
793
case R_X86_64_DTPOFF32:
794
case R_X86_64_SIZE32:
795
checkInt(loc, val, 32, rel);
796
write32le(loc, val);
797
break;
798
case R_X86_64_64:
799
case R_X86_64_TPOFF64:
800
case R_X86_64_DTPOFF64:
801
case R_X86_64_PC64:
802
case R_X86_64_SIZE64:
803
case R_X86_64_GOT64:
804
case R_X86_64_GOTOFF64:
805
case R_X86_64_GOTPC64:
806
case R_X86_64_PLTOFF64:
807
write64le(loc, val);
808
break;
809
case R_X86_64_GOTPCRELX:
810
case R_X86_64_REX_GOTPCRELX:
811
if (rel.expr != R_GOT_PC) {
812
relaxGot(loc, rel, val);
813
} else {
814
checkInt(loc, val, 32, rel);
815
write32le(loc, val);
816
}
817
break;
818
case R_X86_64_GOTPC32_TLSDESC:
819
case R_X86_64_TLSDESC_CALL:
820
case R_X86_64_TLSGD:
821
if (rel.expr == R_RELAX_TLS_GD_TO_LE) {
822
relaxTlsGdToLe(loc, rel, val);
823
} else if (rel.expr == R_RELAX_TLS_GD_TO_IE) {
824
relaxTlsGdToIe(loc, rel, val);
825
} else {
826
checkInt(loc, val, 32, rel);
827
write32le(loc, val);
828
}
829
break;
830
case R_X86_64_TLSLD:
831
if (rel.expr == R_RELAX_TLS_LD_TO_LE) {
832
relaxTlsLdToLe(loc, rel, val);
833
} else {
834
checkInt(loc, val, 32, rel);
835
write32le(loc, val);
836
}
837
break;
838
case R_X86_64_GOTTPOFF:
839
if (rel.expr == R_RELAX_TLS_IE_TO_LE) {
840
relaxTlsIeToLe(loc, rel, val);
841
} else {
842
checkInt(loc, val, 32, rel);
843
write32le(loc, val);
844
}
845
break;
846
case R_X86_64_TPOFF32:
847
checkInt(loc, val, 32, rel);
848
write32le(loc, val);
849
break;
850
851
case R_X86_64_TLSDESC:
852
// The addend is stored in the second 64-bit word.
853
write64le(loc + 8, val);
854
break;
855
default:
856
llvm_unreachable("unknown relocation");
857
}
858
}
859
860
RelExpr X86_64::adjustGotPcExpr(RelType type, int64_t addend,
861
const uint8_t *loc) const {
862
// Only R_X86_64_[REX_]GOTPCRELX can be relaxed. GNU as may emit GOTPCRELX
863
// with addend != -4. Such an instruction does not load the full GOT entry, so
864
// we cannot relax the relocation. E.g. movl x@GOTPCREL+4(%rip), %rax
865
// (addend=0) loads the high 32 bits of the GOT entry.
866
if (!config->relax || addend != -4 ||
867
(type != R_X86_64_GOTPCRELX && type != R_X86_64_REX_GOTPCRELX))
868
return R_GOT_PC;
869
const uint8_t op = loc[-2];
870
const uint8_t modRm = loc[-1];
871
872
// FIXME: When PIC is disabled and foo is defined locally in the
873
// lower 32 bit address space, memory operand in mov can be converted into
874
// immediate operand. Otherwise, mov must be changed to lea. We support only
875
// latter relaxation at this moment.
876
if (op == 0x8b)
877
return R_RELAX_GOT_PC;
878
879
// Relax call and jmp.
880
if (op == 0xff && (modRm == 0x15 || modRm == 0x25))
881
return R_RELAX_GOT_PC;
882
883
// We don't support test/binop instructions without a REX prefix.
884
if (type == R_X86_64_GOTPCRELX)
885
return R_GOT_PC;
886
887
// Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
888
// If PIC then no relaxation is available.
889
return config->isPic ? R_GOT_PC : R_RELAX_GOT_PC_NOPIC;
890
}
891
892
// A subset of relaxations can only be applied for no-PIC. This method
893
// handles such relaxations. Instructions encoding information was taken from:
894
// "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
895
// (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
896
// 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
897
static void relaxGotNoPic(uint8_t *loc, uint64_t val, uint8_t op,
898
uint8_t modRm) {
899
const uint8_t rex = loc[-3];
900
// Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
901
if (op == 0x85) {
902
// See "TEST-Logical Compare" (4-428 Vol. 2B),
903
// TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
904
905
// ModR/M byte has form XX YYY ZZZ, where
906
// YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
907
// XX has different meanings:
908
// 00: The operand's memory address is in reg1.
909
// 01: The operand's memory address is reg1 + a byte-sized displacement.
910
// 10: The operand's memory address is reg1 + a word-sized displacement.
911
// 11: The operand is reg1 itself.
912
// If an instruction requires only one operand, the unused reg2 field
913
// holds extra opcode bits rather than a register code
914
// 0xC0 == 11 000 000 binary.
915
// 0x38 == 00 111 000 binary.
916
// We transfer reg2 to reg1 here as operand.
917
// See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
918
loc[-1] = 0xc0 | (modRm & 0x38) >> 3; // ModR/M byte.
919
920
// Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
921
// See "TEST-Logical Compare" (4-428 Vol. 2B).
922
loc[-2] = 0xf7;
923
924
// Move R bit to the B bit in REX byte.
925
// REX byte is encoded as 0100WRXB, where
926
// 0100 is 4bit fixed pattern.
927
// REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
928
// default operand size is used (which is 32-bit for most but not all
929
// instructions).
930
// REX.R This 1-bit value is an extension to the MODRM.reg field.
931
// REX.X This 1-bit value is an extension to the SIB.index field.
932
// REX.B This 1-bit value is an extension to the MODRM.rm field or the
933
// SIB.base field.
934
// See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
935
loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
936
write32le(loc, val);
937
return;
938
}
939
940
// If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
941
// or xor operations.
942
943
// Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
944
// Logic is close to one for test instruction above, but we also
945
// write opcode extension here, see below for details.
946
loc[-1] = 0xc0 | (modRm & 0x38) >> 3 | (op & 0x3c); // ModR/M byte.
947
948
// Primary opcode is 0x81, opcode extension is one of:
949
// 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
950
// 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
951
// This value was wrote to MODRM.reg in a line above.
952
// See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
953
// "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
954
// descriptions about each operation.
955
loc[-2] = 0x81;
956
loc[-3] = (rex & ~0x4) | (rex & 0x4) >> 2;
957
write32le(loc, val);
958
}
959
960
static void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) {
961
assert(isInt<32>(val) &&
962
"GOTPCRELX should not have been relaxed if it overflows");
963
const uint8_t op = loc[-2];
964
const uint8_t modRm = loc[-1];
965
966
// Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
967
if (op == 0x8b) {
968
loc[-2] = 0x8d;
969
write32le(loc, val);
970
return;
971
}
972
973
if (op != 0xff) {
974
// We are relaxing a rip relative to an absolute, so compensate
975
// for the old -4 addend.
976
assert(!config->isPic);
977
relaxGotNoPic(loc, val + 4, op, modRm);
978
return;
979
}
980
981
// Convert call/jmp instructions.
982
if (modRm == 0x15) {
983
// ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
984
// Instead we convert to "addr32 call foo" where addr32 is an instruction
985
// prefix. That makes result expression to be a single instruction.
986
loc[-2] = 0x67; // addr32 prefix
987
loc[-1] = 0xe8; // call
988
write32le(loc, val);
989
return;
990
}
991
992
// Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
993
// jmp doesn't return, so it is fine to use nop here, it is just a stub.
994
assert(modRm == 0x25);
995
loc[-2] = 0xe9; // jmp
996
loc[3] = 0x90; // nop
997
write32le(loc - 1, val + 1);
998
}
999
1000
// A split-stack prologue starts by checking the amount of stack remaining
1001
// in one of two ways:
1002
// A) Comparing of the stack pointer to a field in the tcb.
1003
// B) Or a load of a stack pointer offset with an lea to r10 or r11.
1004
bool X86_64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
1005
uint8_t stOther) const {
1006
if (!config->is64) {
1007
error("target doesn't support split stacks");
1008
return false;
1009
}
1010
1011
if (loc + 8 >= end)
1012
return false;
1013
1014
// Replace "cmp %fs:0x70,%rsp" and subsequent branch
1015
// with "stc, nopl 0x0(%rax,%rax,1)"
1016
if (memcmp(loc, "\x64\x48\x3b\x24\x25", 5) == 0) {
1017
memcpy(loc, "\xf9\x0f\x1f\x84\x00\x00\x00\x00", 8);
1018
return true;
1019
}
1020
1021
// Adjust "lea X(%rsp),%rYY" to lea "(X - 0x4000)(%rsp),%rYY" where rYY could
1022
// be r10 or r11. The lea instruction feeds a subsequent compare which checks
1023
// if there is X available stack space. Making X larger effectively reserves
1024
// that much additional space. The stack grows downward so subtract the value.
1025
if (memcmp(loc, "\x4c\x8d\x94\x24", 4) == 0 ||
1026
memcmp(loc, "\x4c\x8d\x9c\x24", 4) == 0) {
1027
// The offset bytes are encoded four bytes after the start of the
1028
// instruction.
1029
write32le(loc + 4, read32le(loc + 4) - 0x4000);
1030
return true;
1031
}
1032
return false;
1033
}
1034
1035
void X86_64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
1036
uint64_t secAddr = sec.getOutputSection()->addr;
1037
if (auto *s = dyn_cast<InputSection>(&sec))
1038
secAddr += s->outSecOff;
1039
else if (auto *ehIn = dyn_cast<EhInputSection>(&sec))
1040
secAddr += ehIn->getParent()->outSecOff;
1041
for (const Relocation &rel : sec.relocs()) {
1042
if (rel.expr == R_NONE) // See deleteFallThruJmpInsn
1043
continue;
1044
uint8_t *loc = buf + rel.offset;
1045
const uint64_t val =
1046
sec.getRelocTargetVA(sec.file, rel.type, rel.addend,
1047
secAddr + rel.offset, *rel.sym, rel.expr);
1048
relocate(loc, rel, val);
1049
}
1050
if (sec.jumpInstrMod) {
1051
applyJumpInstrMod(buf + sec.jumpInstrMod->offset,
1052
sec.jumpInstrMod->original, sec.jumpInstrMod->size);
1053
}
1054
}
1055
1056
// If Intel Indirect Branch Tracking is enabled, we have to emit special PLT
1057
// entries containing endbr64 instructions. A PLT entry will be split into two
1058
// parts, one in .plt.sec (writePlt), and the other in .plt (writeIBTPlt).
1059
namespace {
1060
class IntelIBT : public X86_64 {
1061
public:
1062
IntelIBT();
1063
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
1064
void writePlt(uint8_t *buf, const Symbol &sym,
1065
uint64_t pltEntryAddr) const override;
1066
void writeIBTPlt(uint8_t *buf, size_t numEntries) const override;
1067
1068
static const unsigned IBTPltHeaderSize = 16;
1069
};
1070
} // namespace
1071
1072
IntelIBT::IntelIBT() { pltHeaderSize = 0; }
1073
1074
void IntelIBT::writeGotPlt(uint8_t *buf, const Symbol &s) const {
1075
uint64_t va =
1076
in.ibtPlt->getVA() + IBTPltHeaderSize + s.getPltIdx() * pltEntrySize;
1077
write64le(buf, va);
1078
}
1079
1080
void IntelIBT::writePlt(uint8_t *buf, const Symbol &sym,
1081
uint64_t pltEntryAddr) const {
1082
const uint8_t Inst[] = {
1083
0xf3, 0x0f, 0x1e, 0xfa, // endbr64
1084
0xff, 0x25, 0, 0, 0, 0, // jmpq *got(%rip)
1085
0x66, 0x0f, 0x1f, 0x44, 0, 0, // nop
1086
};
1087
memcpy(buf, Inst, sizeof(Inst));
1088
write32le(buf + 6, sym.getGotPltVA() - pltEntryAddr - 10);
1089
}
1090
1091
void IntelIBT::writeIBTPlt(uint8_t *buf, size_t numEntries) const {
1092
writePltHeader(buf);
1093
buf += IBTPltHeaderSize;
1094
1095
const uint8_t inst[] = {
1096
0xf3, 0x0f, 0x1e, 0xfa, // endbr64
1097
0x68, 0, 0, 0, 0, // pushq <relocation index>
1098
0xe9, 0, 0, 0, 0, // jmpq plt[0]
1099
0x66, 0x90, // nop
1100
};
1101
1102
for (size_t i = 0; i < numEntries; ++i) {
1103
memcpy(buf, inst, sizeof(inst));
1104
write32le(buf + 5, i);
1105
write32le(buf + 10, -pltHeaderSize - sizeof(inst) * i - 30);
1106
buf += sizeof(inst);
1107
}
1108
}
1109
1110
// These nonstandard PLT entries are to migtigate Spectre v2 security
1111
// vulnerability. In order to mitigate Spectre v2, we want to avoid indirect
1112
// branch instructions such as `jmp *GOTPLT(%rip)`. So, in the following PLT
1113
// entries, we use a CALL followed by MOV and RET to do the same thing as an
1114
// indirect jump. That instruction sequence is so-called "retpoline".
1115
//
1116
// We have two types of retpoline PLTs as a size optimization. If `-z now`
1117
// is specified, all dynamic symbols are resolved at load-time. Thus, when
1118
// that option is given, we can omit code for symbol lazy resolution.
1119
namespace {
1120
class Retpoline : public X86_64 {
1121
public:
1122
Retpoline();
1123
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
1124
void writePltHeader(uint8_t *buf) const override;
1125
void writePlt(uint8_t *buf, const Symbol &sym,
1126
uint64_t pltEntryAddr) const override;
1127
};
1128
1129
class RetpolineZNow : public X86_64 {
1130
public:
1131
RetpolineZNow();
1132
void writeGotPlt(uint8_t *buf, const Symbol &s) const override {}
1133
void writePltHeader(uint8_t *buf) const override;
1134
void writePlt(uint8_t *buf, const Symbol &sym,
1135
uint64_t pltEntryAddr) const override;
1136
};
1137
} // namespace
1138
1139
Retpoline::Retpoline() {
1140
pltHeaderSize = 48;
1141
pltEntrySize = 32;
1142
ipltEntrySize = 32;
1143
}
1144
1145
void Retpoline::writeGotPlt(uint8_t *buf, const Symbol &s) const {
1146
write64le(buf, s.getPltVA() + 17);
1147
}
1148
1149
void Retpoline::writePltHeader(uint8_t *buf) const {
1150
const uint8_t insn[] = {
1151
0xff, 0x35, 0, 0, 0, 0, // 0: pushq GOTPLT+8(%rip)
1152
0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 6: mov GOTPLT+16(%rip), %r11
1153
0xe8, 0x0e, 0x00, 0x00, 0x00, // d: callq next
1154
0xf3, 0x90, // 12: loop: pause
1155
0x0f, 0xae, 0xe8, // 14: lfence
1156
0xeb, 0xf9, // 17: jmp loop
1157
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 19: int3; .align 16
1158
0x4c, 0x89, 0x1c, 0x24, // 20: next: mov %r11, (%rsp)
1159
0xc3, // 24: ret
1160
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 25: int3; padding
1161
0xcc, 0xcc, 0xcc, 0xcc, // 2c: int3; padding
1162
};
1163
memcpy(buf, insn, sizeof(insn));
1164
1165
uint64_t gotPlt = in.gotPlt->getVA();
1166
uint64_t plt = in.plt->getVA();
1167
write32le(buf + 2, gotPlt - plt - 6 + 8);
1168
write32le(buf + 9, gotPlt - plt - 13 + 16);
1169
}
1170
1171
void Retpoline::writePlt(uint8_t *buf, const Symbol &sym,
1172
uint64_t pltEntryAddr) const {
1173
const uint8_t insn[] = {
1174
0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // 0: mov foo@GOTPLT(%rip), %r11
1175
0xe8, 0, 0, 0, 0, // 7: callq plt+0x20
1176
0xe9, 0, 0, 0, 0, // c: jmp plt+0x12
1177
0x68, 0, 0, 0, 0, // 11: pushq <relocation index>
1178
0xe9, 0, 0, 0, 0, // 16: jmp plt+0
1179
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1b: int3; padding
1180
};
1181
memcpy(buf, insn, sizeof(insn));
1182
1183
uint64_t off = pltEntryAddr - in.plt->getVA();
1184
1185
write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1186
write32le(buf + 8, -off - 12 + 32);
1187
write32le(buf + 13, -off - 17 + 18);
1188
write32le(buf + 18, sym.getPltIdx());
1189
write32le(buf + 23, -off - 27);
1190
}
1191
1192
RetpolineZNow::RetpolineZNow() {
1193
pltHeaderSize = 32;
1194
pltEntrySize = 16;
1195
ipltEntrySize = 16;
1196
}
1197
1198
void RetpolineZNow::writePltHeader(uint8_t *buf) const {
1199
const uint8_t insn[] = {
1200
0xe8, 0x0b, 0x00, 0x00, 0x00, // 0: call next
1201
0xf3, 0x90, // 5: loop: pause
1202
0x0f, 0xae, 0xe8, // 7: lfence
1203
0xeb, 0xf9, // a: jmp loop
1204
0xcc, 0xcc, 0xcc, 0xcc, // c: int3; .align 16
1205
0x4c, 0x89, 0x1c, 0x24, // 10: next: mov %r11, (%rsp)
1206
0xc3, // 14: ret
1207
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 15: int3; padding
1208
0xcc, 0xcc, 0xcc, 0xcc, 0xcc, // 1a: int3; padding
1209
0xcc, // 1f: int3; padding
1210
};
1211
memcpy(buf, insn, sizeof(insn));
1212
}
1213
1214
void RetpolineZNow::writePlt(uint8_t *buf, const Symbol &sym,
1215
uint64_t pltEntryAddr) const {
1216
const uint8_t insn[] = {
1217
0x4c, 0x8b, 0x1d, 0, 0, 0, 0, // mov foo@GOTPLT(%rip), %r11
1218
0xe9, 0, 0, 0, 0, // jmp plt+0
1219
0xcc, 0xcc, 0xcc, 0xcc, // int3; padding
1220
};
1221
memcpy(buf, insn, sizeof(insn));
1222
1223
write32le(buf + 3, sym.getGotPltVA() - pltEntryAddr - 7);
1224
write32le(buf + 8, in.plt->getVA() - pltEntryAddr - 12);
1225
}
1226
1227
static TargetInfo *getTargetInfo() {
1228
if (config->zRetpolineplt) {
1229
if (config->zNow) {
1230
static RetpolineZNow t;
1231
return &t;
1232
}
1233
static Retpoline t;
1234
return &t;
1235
}
1236
1237
if (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT) {
1238
static IntelIBT t;
1239
return &t;
1240
}
1241
1242
static X86_64 t;
1243
return &t;
1244
}
1245
1246
TargetInfo *elf::getX86_64TargetInfo() { return getTargetInfo(); }
1247
1248