Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lld/ELF/CallGraphSort.cpp
34869 views
1
//===- CallGraphSort.cpp --------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
///
9
/// The file is responsible for sorting sections using LLVM call graph profile
10
/// data by placing frequently executed code sections together. The goal of the
11
/// placement is to improve the runtime performance of the final executable by
12
/// arranging code sections so that i-TLB misses and i-cache misses are reduced.
13
///
14
/// The algorithm first builds a call graph based on the profile data and then
15
/// iteratively merges "chains" (ordered lists) of input sections which will be
16
/// laid out as a unit. There are two implementations for deciding how to
17
/// merge a pair of chains:
18
/// - a simpler one, referred to as Call-Chain Clustering (C^3), that follows
19
/// "Optimizing Function Placement for Large-Scale Data-Center Applications"
20
/// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf
21
/// - a more advanced one, referred to as Cache-Directed-Sort (CDSort), which
22
/// typically produces layouts with higher locality, and hence, yields fewer
23
/// instruction cache misses on large binaries.
24
//===----------------------------------------------------------------------===//
25
26
#include "CallGraphSort.h"
27
#include "InputFiles.h"
28
#include "InputSection.h"
29
#include "Symbols.h"
30
#include "llvm/Support/FileSystem.h"
31
#include "llvm/Transforms/Utils/CodeLayout.h"
32
33
#include <numeric>
34
35
using namespace llvm;
36
using namespace lld;
37
using namespace lld::elf;
38
39
namespace {
40
struct Edge {
41
int from;
42
uint64_t weight;
43
};
44
45
struct Cluster {
46
Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {}
47
48
double getDensity() const {
49
if (size == 0)
50
return 0;
51
return double(weight) / double(size);
52
}
53
54
int next;
55
int prev;
56
uint64_t size;
57
uint64_t weight = 0;
58
uint64_t initialWeight = 0;
59
Edge bestPred = {-1, 0};
60
};
61
62
/// Implementation of the Call-Chain Clustering (C^3). The goal of this
63
/// algorithm is to improve runtime performance of the executable by arranging
64
/// code sections such that page table and i-cache misses are minimized.
65
///
66
/// Definitions:
67
/// * Cluster
68
/// * An ordered list of input sections which are laid out as a unit. At the
69
/// beginning of the algorithm each input section has its own cluster and
70
/// the weight of the cluster is the sum of the weight of all incoming
71
/// edges.
72
/// * Call-Chain Clustering (C³) Heuristic
73
/// * Defines when and how clusters are combined. Pick the highest weighted
74
/// input section then add it to its most likely predecessor if it wouldn't
75
/// penalize it too much.
76
/// * Density
77
/// * The weight of the cluster divided by the size of the cluster. This is a
78
/// proxy for the amount of execution time spent per byte of the cluster.
79
///
80
/// It does so given a call graph profile by the following:
81
/// * Build a weighted call graph from the call graph profile
82
/// * Sort input sections by weight
83
/// * For each input section starting with the highest weight
84
/// * Find its most likely predecessor cluster
85
/// * Check if the combined cluster would be too large, or would have too low
86
/// a density.
87
/// * If not, then combine the clusters.
88
/// * Sort non-empty clusters by density
89
class CallGraphSort {
90
public:
91
CallGraphSort();
92
93
DenseMap<const InputSectionBase *, int> run();
94
95
private:
96
std::vector<Cluster> clusters;
97
std::vector<const InputSectionBase *> sections;
98
};
99
100
// Maximum amount the combined cluster density can be worse than the original
101
// cluster to consider merging.
102
constexpr int MAX_DENSITY_DEGRADATION = 8;
103
104
// Maximum cluster size in bytes.
105
constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024;
106
} // end anonymous namespace
107
108
using SectionPair =
109
std::pair<const InputSectionBase *, const InputSectionBase *>;
110
111
// Take the edge list in Config->CallGraphProfile, resolve symbol names to
112
// Symbols, and generate a graph between InputSections with the provided
113
// weights.
114
CallGraphSort::CallGraphSort() {
115
MapVector<SectionPair, uint64_t> &profile = config->callGraphProfile;
116
DenseMap<const InputSectionBase *, int> secToCluster;
117
118
auto getOrCreateNode = [&](const InputSectionBase *isec) -> int {
119
auto res = secToCluster.try_emplace(isec, clusters.size());
120
if (res.second) {
121
sections.push_back(isec);
122
clusters.emplace_back(clusters.size(), isec->getSize());
123
}
124
return res.first->second;
125
};
126
127
// Create the graph.
128
for (std::pair<SectionPair, uint64_t> &c : profile) {
129
const auto *fromSB = cast<InputSectionBase>(c.first.first);
130
const auto *toSB = cast<InputSectionBase>(c.first.second);
131
uint64_t weight = c.second;
132
133
// Ignore edges between input sections belonging to different output
134
// sections. This is done because otherwise we would end up with clusters
135
// containing input sections that can't actually be placed adjacently in the
136
// output. This messes with the cluster size and density calculations. We
137
// would also end up moving input sections in other output sections without
138
// moving them closer to what calls them.
139
if (fromSB->getOutputSection() != toSB->getOutputSection())
140
continue;
141
142
int from = getOrCreateNode(fromSB);
143
int to = getOrCreateNode(toSB);
144
145
clusters[to].weight += weight;
146
147
if (from == to)
148
continue;
149
150
// Remember the best edge.
151
Cluster &toC = clusters[to];
152
if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) {
153
toC.bestPred.from = from;
154
toC.bestPred.weight = weight;
155
}
156
}
157
for (Cluster &c : clusters)
158
c.initialWeight = c.weight;
159
}
160
161
// It's bad to merge clusters which would degrade the density too much.
162
static bool isNewDensityBad(Cluster &a, Cluster &b) {
163
double newDensity = double(a.weight + b.weight) / double(a.size + b.size);
164
return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION;
165
}
166
167
// Find the leader of V's belonged cluster (represented as an equivalence
168
// class). We apply union-find path-halving technique (simple to implement) in
169
// the meantime as it decreases depths and the time complexity.
170
static int getLeader(int *leaders, int v) {
171
while (leaders[v] != v) {
172
leaders[v] = leaders[leaders[v]];
173
v = leaders[v];
174
}
175
return v;
176
}
177
178
static void mergeClusters(std::vector<Cluster> &cs, Cluster &into, int intoIdx,
179
Cluster &from, int fromIdx) {
180
int tail1 = into.prev, tail2 = from.prev;
181
into.prev = tail2;
182
cs[tail2].next = intoIdx;
183
from.prev = tail1;
184
cs[tail1].next = fromIdx;
185
into.size += from.size;
186
into.weight += from.weight;
187
from.size = 0;
188
from.weight = 0;
189
}
190
191
// Group InputSections into clusters using the Call-Chain Clustering heuristic
192
// then sort the clusters by density.
193
DenseMap<const InputSectionBase *, int> CallGraphSort::run() {
194
std::vector<int> sorted(clusters.size());
195
std::unique_ptr<int[]> leaders(new int[clusters.size()]);
196
197
std::iota(leaders.get(), leaders.get() + clusters.size(), 0);
198
std::iota(sorted.begin(), sorted.end(), 0);
199
llvm::stable_sort(sorted, [&](int a, int b) {
200
return clusters[a].getDensity() > clusters[b].getDensity();
201
});
202
203
for (int l : sorted) {
204
// The cluster index is the same as the index of its leader here because
205
// clusters[L] has not been merged into another cluster yet.
206
Cluster &c = clusters[l];
207
208
// Don't consider merging if the edge is unlikely.
209
if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight)
210
continue;
211
212
int predL = getLeader(leaders.get(), c.bestPred.from);
213
if (l == predL)
214
continue;
215
216
Cluster *predC = &clusters[predL];
217
if (c.size + predC->size > MAX_CLUSTER_SIZE)
218
continue;
219
220
if (isNewDensityBad(*predC, c))
221
continue;
222
223
leaders[l] = predL;
224
mergeClusters(clusters, *predC, predL, c, l);
225
}
226
227
// Sort remaining non-empty clusters by density.
228
sorted.clear();
229
for (int i = 0, e = (int)clusters.size(); i != e; ++i)
230
if (clusters[i].size > 0)
231
sorted.push_back(i);
232
llvm::stable_sort(sorted, [&](int a, int b) {
233
return clusters[a].getDensity() > clusters[b].getDensity();
234
});
235
236
DenseMap<const InputSectionBase *, int> orderMap;
237
int curOrder = 1;
238
for (int leader : sorted) {
239
for (int i = leader;;) {
240
orderMap[sections[i]] = curOrder++;
241
i = clusters[i].next;
242
if (i == leader)
243
break;
244
}
245
}
246
if (!config->printSymbolOrder.empty()) {
247
std::error_code ec;
248
raw_fd_ostream os(config->printSymbolOrder, ec, sys::fs::OF_None);
249
if (ec) {
250
error("cannot open " + config->printSymbolOrder + ": " + ec.message());
251
return orderMap;
252
}
253
254
// Print the symbols ordered by C3, in the order of increasing curOrder
255
// Instead of sorting all the orderMap, just repeat the loops above.
256
for (int leader : sorted)
257
for (int i = leader;;) {
258
// Search all the symbols in the file of the section
259
// and find out a Defined symbol with name that is within the section.
260
for (Symbol *sym : sections[i]->file->getSymbols())
261
if (!sym->isSection()) // Filter out section-type symbols here.
262
if (auto *d = dyn_cast<Defined>(sym))
263
if (sections[i] == d->section)
264
os << sym->getName() << "\n";
265
i = clusters[i].next;
266
if (i == leader)
267
break;
268
}
269
}
270
271
return orderMap;
272
}
273
274
// Sort sections by the profile data using the Cache-Directed Sort algorithm.
275
// The placement is done by optimizing the locality by co-locating frequently
276
// executed code sections together.
277
DenseMap<const InputSectionBase *, int> elf::computeCacheDirectedSortOrder() {
278
SmallVector<uint64_t, 0> funcSizes;
279
SmallVector<uint64_t, 0> funcCounts;
280
SmallVector<codelayout::EdgeCount, 0> callCounts;
281
SmallVector<uint64_t, 0> callOffsets;
282
SmallVector<const InputSectionBase *, 0> sections;
283
DenseMap<const InputSectionBase *, size_t> secToTargetId;
284
285
auto getOrCreateNode = [&](const InputSectionBase *inSec) -> size_t {
286
auto res = secToTargetId.try_emplace(inSec, sections.size());
287
if (res.second) {
288
// inSec does not appear before in the graph.
289
sections.push_back(inSec);
290
funcSizes.push_back(inSec->getSize());
291
funcCounts.push_back(0);
292
}
293
return res.first->second;
294
};
295
296
// Create the graph.
297
for (std::pair<SectionPair, uint64_t> &c : config->callGraphProfile) {
298
const InputSectionBase *fromSB = cast<InputSectionBase>(c.first.first);
299
const InputSectionBase *toSB = cast<InputSectionBase>(c.first.second);
300
// Ignore edges between input sections belonging to different sections.
301
if (fromSB->getOutputSection() != toSB->getOutputSection())
302
continue;
303
304
uint64_t weight = c.second;
305
// Ignore edges with zero weight.
306
if (weight == 0)
307
continue;
308
309
size_t from = getOrCreateNode(fromSB);
310
size_t to = getOrCreateNode(toSB);
311
// Ignore self-edges (recursive calls).
312
if (from == to)
313
continue;
314
315
callCounts.push_back({from, to, weight});
316
// Assume that the jump is at the middle of the input section. The profile
317
// data does not contain jump offsets.
318
callOffsets.push_back((funcSizes[from] + 1) / 2);
319
funcCounts[to] += weight;
320
}
321
322
// Run the layout algorithm.
323
std::vector<uint64_t> sortedSections = codelayout::computeCacheDirectedLayout(
324
funcSizes, funcCounts, callCounts, callOffsets);
325
326
// Create the final order.
327
DenseMap<const InputSectionBase *, int> orderMap;
328
int curOrder = 1;
329
for (uint64_t secIdx : sortedSections)
330
orderMap[sections[secIdx]] = curOrder++;
331
332
return orderMap;
333
}
334
335
// Sort sections by the profile data provided by --callgraph-profile-file.
336
//
337
// This first builds a call graph based on the profile data then merges sections
338
// according either to the C³ or Cache-Directed-Sort ordering algorithm.
339
DenseMap<const InputSectionBase *, int> elf::computeCallGraphProfileOrder() {
340
if (config->callGraphProfileSort == CGProfileSortKind::Cdsort)
341
return computeCacheDirectedSortOrder();
342
return CallGraphSort().run();
343
}
344
345