Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lld/ELF/ICF.cpp
34878 views
1
//===- ICF.cpp ------------------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// ICF is short for Identical Code Folding. This is a size optimization to
10
// identify and merge two or more read-only sections (typically functions)
11
// that happened to have the same contents. It usually reduces output size
12
// by a few percent.
13
//
14
// In ICF, two sections are considered identical if they have the same
15
// section flags, section data, and relocations. Relocations are tricky,
16
// because two relocations are considered the same if they have the same
17
// relocation types, values, and if they point to the same sections *in
18
// terms of ICF*.
19
//
20
// Here is an example. If foo and bar defined below are compiled to the
21
// same machine instructions, ICF can and should merge the two, although
22
// their relocations point to each other.
23
//
24
// void foo() { bar(); }
25
// void bar() { foo(); }
26
//
27
// If you merge the two, their relocations point to the same section and
28
// thus you know they are mergeable, but how do you know they are
29
// mergeable in the first place? This is not an easy problem to solve.
30
//
31
// What we are doing in LLD is to partition sections into equivalence
32
// classes. Sections in the same equivalence class when the algorithm
33
// terminates are considered identical. Here are details:
34
//
35
// 1. First, we partition sections using their hash values as keys. Hash
36
// values contain section types, section contents and numbers of
37
// relocations. During this step, relocation targets are not taken into
38
// account. We just put sections that apparently differ into different
39
// equivalence classes.
40
//
41
// 2. Next, for each equivalence class, we visit sections to compare
42
// relocation targets. Relocation targets are considered equivalent if
43
// their targets are in the same equivalence class. Sections with
44
// different relocation targets are put into different equivalence
45
// classes.
46
//
47
// 3. If we split an equivalence class in step 2, two relocations
48
// previously target the same equivalence class may now target
49
// different equivalence classes. Therefore, we repeat step 2 until a
50
// convergence is obtained.
51
//
52
// 4. For each equivalence class C, pick an arbitrary section in C, and
53
// merge all the other sections in C with it.
54
//
55
// For small programs, this algorithm needs 3-5 iterations. For large
56
// programs such as Chromium, it takes more than 20 iterations.
57
//
58
// This algorithm was mentioned as an "optimistic algorithm" in [1],
59
// though gold implements a different algorithm than this.
60
//
61
// We parallelize each step so that multiple threads can work on different
62
// equivalence classes concurrently. That gave us a large performance
63
// boost when applying ICF on large programs. For example, MSVC link.exe
64
// or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
65
// size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
66
// 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
67
// faster than MSVC or gold though.
68
//
69
// [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
70
// in the Gold Linker
71
// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
72
//
73
//===----------------------------------------------------------------------===//
74
75
#include "ICF.h"
76
#include "Config.h"
77
#include "InputFiles.h"
78
#include "LinkerScript.h"
79
#include "OutputSections.h"
80
#include "SymbolTable.h"
81
#include "Symbols.h"
82
#include "SyntheticSections.h"
83
#include "llvm/BinaryFormat/ELF.h"
84
#include "llvm/Object/ELF.h"
85
#include "llvm/Support/Parallel.h"
86
#include "llvm/Support/TimeProfiler.h"
87
#include "llvm/Support/xxhash.h"
88
#include <algorithm>
89
#include <atomic>
90
91
using namespace llvm;
92
using namespace llvm::ELF;
93
using namespace llvm::object;
94
using namespace lld;
95
using namespace lld::elf;
96
97
namespace {
98
template <class ELFT> class ICF {
99
public:
100
void run();
101
102
private:
103
void segregate(size_t begin, size_t end, uint32_t eqClassBase, bool constant);
104
105
template <class RelTy>
106
bool constantEq(const InputSection *a, Relocs<RelTy> relsA,
107
const InputSection *b, Relocs<RelTy> relsB);
108
109
template <class RelTy>
110
bool variableEq(const InputSection *a, Relocs<RelTy> relsA,
111
const InputSection *b, Relocs<RelTy> relsB);
112
113
bool equalsConstant(const InputSection *a, const InputSection *b);
114
bool equalsVariable(const InputSection *a, const InputSection *b);
115
116
size_t findBoundary(size_t begin, size_t end);
117
118
void forEachClassRange(size_t begin, size_t end,
119
llvm::function_ref<void(size_t, size_t)> fn);
120
121
void forEachClass(llvm::function_ref<void(size_t, size_t)> fn);
122
123
SmallVector<InputSection *, 0> sections;
124
125
// We repeat the main loop while `Repeat` is true.
126
std::atomic<bool> repeat;
127
128
// The main loop counter.
129
int cnt = 0;
130
131
// We have two locations for equivalence classes. On the first iteration
132
// of the main loop, Class[0] has a valid value, and Class[1] contains
133
// garbage. We read equivalence classes from slot 0 and write to slot 1.
134
// So, Class[0] represents the current class, and Class[1] represents
135
// the next class. On each iteration, we switch their roles and use them
136
// alternately.
137
//
138
// Why are we doing this? Recall that other threads may be working on
139
// other equivalence classes in parallel. They may read sections that we
140
// are updating. We cannot update equivalence classes in place because
141
// it breaks the invariance that all possibly-identical sections must be
142
// in the same equivalence class at any moment. In other words, the for
143
// loop to update equivalence classes is not atomic, and that is
144
// observable from other threads. By writing new classes to other
145
// places, we can keep the invariance.
146
//
147
// Below, `Current` has the index of the current class, and `Next` has
148
// the index of the next class. If threading is enabled, they are either
149
// (0, 1) or (1, 0).
150
//
151
// Note on single-thread: if that's the case, they are always (0, 0)
152
// because we can safely read the next class without worrying about race
153
// conditions. Using the same location makes this algorithm converge
154
// faster because it uses results of the same iteration earlier.
155
int current = 0;
156
int next = 0;
157
};
158
}
159
160
// Returns true if section S is subject of ICF.
161
static bool isEligible(InputSection *s) {
162
if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC))
163
return false;
164
165
// Don't merge writable sections. .data.rel.ro sections are marked as writable
166
// but are semantically read-only.
167
if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" &&
168
!s->name.starts_with(".data.rel.ro."))
169
return false;
170
171
// SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections,
172
// so we don't consider them for ICF individually.
173
if (s->flags & SHF_LINK_ORDER)
174
return false;
175
176
// Don't merge synthetic sections as their Data member is not valid and empty.
177
// The Data member needs to be valid for ICF as it is used by ICF to determine
178
// the equality of section contents.
179
if (isa<SyntheticSection>(s))
180
return false;
181
182
// .init and .fini contains instructions that must be executed to initialize
183
// and finalize the process. They cannot and should not be merged.
184
if (s->name == ".init" || s->name == ".fini")
185
return false;
186
187
// A user program may enumerate sections named with a C identifier using
188
// __start_* and __stop_* symbols. We cannot ICF any such sections because
189
// that could change program semantics.
190
if (isValidCIdentifier(s->name))
191
return false;
192
193
return true;
194
}
195
196
// Split an equivalence class into smaller classes.
197
template <class ELFT>
198
void ICF<ELFT>::segregate(size_t begin, size_t end, uint32_t eqClassBase,
199
bool constant) {
200
// This loop rearranges sections in [Begin, End) so that all sections
201
// that are equal in terms of equals{Constant,Variable} are contiguous
202
// in [Begin, End).
203
//
204
// The algorithm is quadratic in the worst case, but that is not an
205
// issue in practice because the number of the distinct sections in
206
// each range is usually very small.
207
208
while (begin < end) {
209
// Divide [Begin, End) into two. Let Mid be the start index of the
210
// second group.
211
auto bound =
212
std::stable_partition(sections.begin() + begin + 1,
213
sections.begin() + end, [&](InputSection *s) {
214
if (constant)
215
return equalsConstant(sections[begin], s);
216
return equalsVariable(sections[begin], s);
217
});
218
size_t mid = bound - sections.begin();
219
220
// Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
221
// updating the sections in [Begin, Mid). We use Mid as the basis for
222
// the equivalence class ID because every group ends with a unique index.
223
// Add this to eqClassBase to avoid equality with unique IDs.
224
for (size_t i = begin; i < mid; ++i)
225
sections[i]->eqClass[next] = eqClassBase + mid;
226
227
// If we created a group, we need to iterate the main loop again.
228
if (mid != end)
229
repeat = true;
230
231
begin = mid;
232
}
233
}
234
235
// Compare two lists of relocations.
236
template <class ELFT>
237
template <class RelTy>
238
bool ICF<ELFT>::constantEq(const InputSection *secA, Relocs<RelTy> ra,
239
const InputSection *secB, Relocs<RelTy> rb) {
240
if (ra.size() != rb.size())
241
return false;
242
auto rai = ra.begin(), rae = ra.end(), rbi = rb.begin();
243
for (; rai != rae; ++rai, ++rbi) {
244
if (rai->r_offset != rbi->r_offset ||
245
rai->getType(config->isMips64EL) != rbi->getType(config->isMips64EL))
246
return false;
247
248
uint64_t addA = getAddend<ELFT>(*rai);
249
uint64_t addB = getAddend<ELFT>(*rbi);
250
251
Symbol &sa = secA->file->getRelocTargetSym(*rai);
252
Symbol &sb = secB->file->getRelocTargetSym(*rbi);
253
if (&sa == &sb) {
254
if (addA == addB)
255
continue;
256
return false;
257
}
258
259
auto *da = dyn_cast<Defined>(&sa);
260
auto *db = dyn_cast<Defined>(&sb);
261
262
// Placeholder symbols generated by linker scripts look the same now but
263
// may have different values later.
264
if (!da || !db || da->scriptDefined || db->scriptDefined)
265
return false;
266
267
// When comparing a pair of relocations, if they refer to different symbols,
268
// and either symbol is preemptible, the containing sections should be
269
// considered different. This is because even if the sections are identical
270
// in this DSO, they may not be after preemption.
271
if (da->isPreemptible || db->isPreemptible)
272
return false;
273
274
// Relocations referring to absolute symbols are constant-equal if their
275
// values are equal.
276
if (!da->section && !db->section && da->value + addA == db->value + addB)
277
continue;
278
if (!da->section || !db->section)
279
return false;
280
281
if (da->section->kind() != db->section->kind())
282
return false;
283
284
// Relocations referring to InputSections are constant-equal if their
285
// section offsets are equal.
286
if (isa<InputSection>(da->section)) {
287
if (da->value + addA == db->value + addB)
288
continue;
289
return false;
290
}
291
292
// Relocations referring to MergeInputSections are constant-equal if their
293
// offsets in the output section are equal.
294
auto *x = dyn_cast<MergeInputSection>(da->section);
295
if (!x)
296
return false;
297
auto *y = cast<MergeInputSection>(db->section);
298
if (x->getParent() != y->getParent())
299
return false;
300
301
uint64_t offsetA =
302
sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA;
303
uint64_t offsetB =
304
sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB;
305
if (offsetA != offsetB)
306
return false;
307
}
308
309
return true;
310
}
311
312
// Compare "non-moving" part of two InputSections, namely everything
313
// except relocation targets.
314
template <class ELFT>
315
bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) {
316
if (a->flags != b->flags || a->getSize() != b->getSize() ||
317
a->content() != b->content())
318
return false;
319
320
// If two sections have different output sections, we cannot merge them.
321
assert(a->getParent() && b->getParent());
322
if (a->getParent() != b->getParent())
323
return false;
324
325
const RelsOrRelas<ELFT> ra = a->template relsOrRelas<ELFT>();
326
const RelsOrRelas<ELFT> rb = b->template relsOrRelas<ELFT>();
327
if (ra.areRelocsCrel() || rb.areRelocsCrel())
328
return constantEq(a, ra.crels, b, rb.crels);
329
return ra.areRelocsRel() || rb.areRelocsRel()
330
? constantEq(a, ra.rels, b, rb.rels)
331
: constantEq(a, ra.relas, b, rb.relas);
332
}
333
334
// Compare two lists of relocations. Returns true if all pairs of
335
// relocations point to the same section in terms of ICF.
336
template <class ELFT>
337
template <class RelTy>
338
bool ICF<ELFT>::variableEq(const InputSection *secA, Relocs<RelTy> ra,
339
const InputSection *secB, Relocs<RelTy> rb) {
340
assert(ra.size() == rb.size());
341
342
auto rai = ra.begin(), rae = ra.end(), rbi = rb.begin();
343
for (; rai != rae; ++rai, ++rbi) {
344
// The two sections must be identical.
345
Symbol &sa = secA->file->getRelocTargetSym(*rai);
346
Symbol &sb = secB->file->getRelocTargetSym(*rbi);
347
if (&sa == &sb)
348
continue;
349
350
auto *da = cast<Defined>(&sa);
351
auto *db = cast<Defined>(&sb);
352
353
// We already dealt with absolute and non-InputSection symbols in
354
// constantEq, and for InputSections we have already checked everything
355
// except the equivalence class.
356
if (!da->section)
357
continue;
358
auto *x = dyn_cast<InputSection>(da->section);
359
if (!x)
360
continue;
361
auto *y = cast<InputSection>(db->section);
362
363
// Sections that are in the special equivalence class 0, can never be the
364
// same in terms of the equivalence class.
365
if (x->eqClass[current] == 0)
366
return false;
367
if (x->eqClass[current] != y->eqClass[current])
368
return false;
369
};
370
371
return true;
372
}
373
374
// Compare "moving" part of two InputSections, namely relocation targets.
375
template <class ELFT>
376
bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) {
377
const RelsOrRelas<ELFT> ra = a->template relsOrRelas<ELFT>();
378
const RelsOrRelas<ELFT> rb = b->template relsOrRelas<ELFT>();
379
if (ra.areRelocsCrel() || rb.areRelocsCrel())
380
return variableEq(a, ra.crels, b, rb.crels);
381
return ra.areRelocsRel() || rb.areRelocsRel()
382
? variableEq(a, ra.rels, b, rb.rels)
383
: variableEq(a, ra.relas, b, rb.relas);
384
}
385
386
template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) {
387
uint32_t eqClass = sections[begin]->eqClass[current];
388
for (size_t i = begin + 1; i < end; ++i)
389
if (eqClass != sections[i]->eqClass[current])
390
return i;
391
return end;
392
}
393
394
// Sections in the same equivalence class are contiguous in Sections
395
// vector. Therefore, Sections vector can be considered as contiguous
396
// groups of sections, grouped by the class.
397
//
398
// This function calls Fn on every group within [Begin, End).
399
template <class ELFT>
400
void ICF<ELFT>::forEachClassRange(size_t begin, size_t end,
401
llvm::function_ref<void(size_t, size_t)> fn) {
402
while (begin < end) {
403
size_t mid = findBoundary(begin, end);
404
fn(begin, mid);
405
begin = mid;
406
}
407
}
408
409
// Call Fn on each equivalence class.
410
template <class ELFT>
411
void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) {
412
// If threading is disabled or the number of sections are
413
// too small to use threading, call Fn sequentially.
414
if (parallel::strategy.ThreadsRequested == 1 || sections.size() < 1024) {
415
forEachClassRange(0, sections.size(), fn);
416
++cnt;
417
return;
418
}
419
420
current = cnt % 2;
421
next = (cnt + 1) % 2;
422
423
// Shard into non-overlapping intervals, and call Fn in parallel.
424
// The sharding must be completed before any calls to Fn are made
425
// so that Fn can modify the Chunks in its shard without causing data
426
// races.
427
const size_t numShards = 256;
428
size_t step = sections.size() / numShards;
429
size_t boundaries[numShards + 1];
430
boundaries[0] = 0;
431
boundaries[numShards] = sections.size();
432
433
parallelFor(1, numShards, [&](size_t i) {
434
boundaries[i] = findBoundary((i - 1) * step, sections.size());
435
});
436
437
parallelFor(1, numShards + 1, [&](size_t i) {
438
if (boundaries[i - 1] < boundaries[i])
439
forEachClassRange(boundaries[i - 1], boundaries[i], fn);
440
});
441
++cnt;
442
}
443
444
// Combine the hashes of the sections referenced by the given section into its
445
// hash.
446
template <class RelTy>
447
static void combineRelocHashes(unsigned cnt, InputSection *isec,
448
Relocs<RelTy> rels) {
449
uint32_t hash = isec->eqClass[cnt % 2];
450
for (RelTy rel : rels) {
451
Symbol &s = isec->file->getRelocTargetSym(rel);
452
if (auto *d = dyn_cast<Defined>(&s))
453
if (auto *relSec = dyn_cast_or_null<InputSection>(d->section))
454
hash += relSec->eqClass[cnt % 2];
455
}
456
// Set MSB to 1 to avoid collisions with unique IDs.
457
isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
458
}
459
460
static void print(const Twine &s) {
461
if (config->printIcfSections)
462
message(s);
463
}
464
465
// The main function of ICF.
466
template <class ELFT> void ICF<ELFT>::run() {
467
// Compute isPreemptible early. We may add more symbols later, so this loop
468
// cannot be merged with the later computeIsPreemptible() pass which is used
469
// by scanRelocations().
470
if (config->hasDynSymTab)
471
for (Symbol *sym : symtab.getSymbols())
472
sym->isPreemptible = computeIsPreemptible(*sym);
473
474
// Two text sections may have identical content and relocations but different
475
// LSDA, e.g. the two functions may have catch blocks of different types. If a
476
// text section is referenced by a .eh_frame FDE with LSDA, it is not
477
// eligible. This is implemented by iterating over CIE/FDE and setting
478
// eqClass[0] to the referenced text section from a live FDE.
479
//
480
// If two .gcc_except_table have identical semantics (usually identical
481
// content with PC-relative encoding), we will lose folding opportunity.
482
uint32_t uniqueId = 0;
483
for (Partition &part : partitions)
484
part.ehFrame->iterateFDEWithLSDA<ELFT>(
485
[&](InputSection &s) { s.eqClass[0] = s.eqClass[1] = ++uniqueId; });
486
487
// Collect sections to merge.
488
for (InputSectionBase *sec : ctx.inputSections) {
489
auto *s = dyn_cast<InputSection>(sec);
490
if (s && s->eqClass[0] == 0) {
491
if (isEligible(s))
492
sections.push_back(s);
493
else
494
// Ineligible sections are assigned unique IDs, i.e. each section
495
// belongs to an equivalence class of its own.
496
s->eqClass[0] = s->eqClass[1] = ++uniqueId;
497
}
498
}
499
500
// Initially, we use hash values to partition sections.
501
parallelForEach(sections, [&](InputSection *s) {
502
// Set MSB to 1 to avoid collisions with unique IDs.
503
s->eqClass[0] = xxh3_64bits(s->content()) | (1U << 31);
504
});
505
506
// Perform 2 rounds of relocation hash propagation. 2 is an empirical value to
507
// reduce the average sizes of equivalence classes, i.e. segregate() which has
508
// a large time complexity will have less work to do.
509
for (unsigned cnt = 0; cnt != 2; ++cnt) {
510
parallelForEach(sections, [&](InputSection *s) {
511
const RelsOrRelas<ELFT> rels = s->template relsOrRelas<ELFT>();
512
if (rels.areRelocsCrel())
513
combineRelocHashes(cnt, s, rels.crels);
514
else if (rels.areRelocsRel())
515
combineRelocHashes(cnt, s, rels.rels);
516
else
517
combineRelocHashes(cnt, s, rels.relas);
518
});
519
}
520
521
// From now on, sections in Sections vector are ordered so that sections
522
// in the same equivalence class are consecutive in the vector.
523
llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) {
524
return a->eqClass[0] < b->eqClass[0];
525
});
526
527
// Compare static contents and assign unique equivalence class IDs for each
528
// static content. Use a base offset for these IDs to ensure no overlap with
529
// the unique IDs already assigned.
530
uint32_t eqClassBase = ++uniqueId;
531
forEachClass([&](size_t begin, size_t end) {
532
segregate(begin, end, eqClassBase, true);
533
});
534
535
// Split groups by comparing relocations until convergence is obtained.
536
do {
537
repeat = false;
538
forEachClass([&](size_t begin, size_t end) {
539
segregate(begin, end, eqClassBase, false);
540
});
541
} while (repeat);
542
543
log("ICF needed " + Twine(cnt) + " iterations");
544
545
// Merge sections by the equivalence class.
546
forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) {
547
if (end - begin == 1)
548
return;
549
print("selected section " + toString(sections[begin]));
550
for (size_t i = begin + 1; i < end; ++i) {
551
print(" removing identical section " + toString(sections[i]));
552
sections[begin]->replace(sections[i]);
553
554
// At this point we know sections merged are fully identical and hence
555
// we want to remove duplicate implicit dependencies such as link order
556
// and relocation sections.
557
for (InputSection *isec : sections[i]->dependentSections)
558
isec->markDead();
559
}
560
});
561
562
// Change Defined symbol's section field to the canonical one.
563
auto fold = [](Symbol *sym) {
564
if (auto *d = dyn_cast<Defined>(sym))
565
if (auto *sec = dyn_cast_or_null<InputSection>(d->section))
566
if (sec->repl != d->section) {
567
d->section = sec->repl;
568
d->folded = true;
569
}
570
};
571
for (Symbol *sym : symtab.getSymbols())
572
fold(sym);
573
parallelForEach(ctx.objectFiles, [&](ELFFileBase *file) {
574
for (Symbol *sym : file->getLocalSymbols())
575
fold(sym);
576
});
577
578
// InputSectionDescription::sections is populated by processSectionCommands().
579
// ICF may fold some input sections assigned to output sections. Remove them.
580
for (SectionCommand *cmd : script->sectionCommands)
581
if (auto *osd = dyn_cast<OutputDesc>(cmd))
582
for (SectionCommand *subCmd : osd->osec.commands)
583
if (auto *isd = dyn_cast<InputSectionDescription>(subCmd))
584
llvm::erase_if(isd->sections,
585
[](InputSection *isec) { return !isec->isLive(); });
586
}
587
588
// ICF entry point function.
589
template <class ELFT> void elf::doIcf() {
590
llvm::TimeTraceScope timeScope("ICF");
591
ICF<ELFT>().run();
592
}
593
594
template void elf::doIcf<ELF32LE>();
595
template void elf::doIcf<ELF32BE>();
596
template void elf::doIcf<ELF64LE>();
597
template void elf::doIcf<ELF64BE>();
598
599