Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lld/ELF/LinkerScript.cpp
34869 views
1
//===- LinkerScript.cpp ---------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains the parser/evaluator of the linker script.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "LinkerScript.h"
14
#include "Config.h"
15
#include "InputFiles.h"
16
#include "InputSection.h"
17
#include "OutputSections.h"
18
#include "SymbolTable.h"
19
#include "Symbols.h"
20
#include "SyntheticSections.h"
21
#include "Target.h"
22
#include "Writer.h"
23
#include "lld/Common/CommonLinkerContext.h"
24
#include "lld/Common/Strings.h"
25
#include "llvm/ADT/STLExtras.h"
26
#include "llvm/ADT/StringRef.h"
27
#include "llvm/BinaryFormat/ELF.h"
28
#include "llvm/Support/Casting.h"
29
#include "llvm/Support/Endian.h"
30
#include "llvm/Support/ErrorHandling.h"
31
#include "llvm/Support/TimeProfiler.h"
32
#include <algorithm>
33
#include <cassert>
34
#include <cstddef>
35
#include <cstdint>
36
#include <limits>
37
#include <string>
38
#include <vector>
39
40
using namespace llvm;
41
using namespace llvm::ELF;
42
using namespace llvm::object;
43
using namespace llvm::support::endian;
44
using namespace lld;
45
using namespace lld::elf;
46
47
ScriptWrapper elf::script;
48
49
static bool isSectionPrefix(StringRef prefix, StringRef name) {
50
return name.consume_front(prefix) && (name.empty() || name[0] == '.');
51
}
52
53
static StringRef getOutputSectionName(const InputSectionBase *s) {
54
// This is for --emit-relocs and -r. If .text.foo is emitted as .text.bar, we
55
// want to emit .rela.text.foo as .rela.text.bar for consistency (this is not
56
// technically required, but not doing it is odd). This code guarantees that.
57
if (auto *isec = dyn_cast<InputSection>(s)) {
58
if (InputSectionBase *rel = isec->getRelocatedSection()) {
59
OutputSection *out = rel->getOutputSection();
60
if (!out) {
61
assert(config->relocatable && (rel->flags & SHF_LINK_ORDER));
62
return s->name;
63
}
64
if (s->type == SHT_CREL)
65
return saver().save(".crel" + out->name);
66
if (s->type == SHT_RELA)
67
return saver().save(".rela" + out->name);
68
return saver().save(".rel" + out->name);
69
}
70
}
71
72
if (config->relocatable)
73
return s->name;
74
75
// A BssSection created for a common symbol is identified as "COMMON" in
76
// linker scripts. It should go to .bss section.
77
if (s->name == "COMMON")
78
return ".bss";
79
80
if (script->hasSectionsCommand)
81
return s->name;
82
83
// When no SECTIONS is specified, emulate GNU ld's internal linker scripts
84
// by grouping sections with certain prefixes.
85
86
// GNU ld places text sections with prefix ".text.hot.", ".text.unknown.",
87
// ".text.unlikely.", ".text.startup." or ".text.exit." before others.
88
// We provide an option -z keep-text-section-prefix to group such sections
89
// into separate output sections. This is more flexible. See also
90
// sortISDBySectionOrder().
91
// ".text.unknown" means the hotness of the section is unknown. When
92
// SampleFDO is used, if a function doesn't have sample, it could be very
93
// cold or it could be a new function never being sampled. Those functions
94
// will be kept in the ".text.unknown" section.
95
// ".text.split." holds symbols which are split out from functions in other
96
// input sections. For example, with -fsplit-machine-functions, placing the
97
// cold parts in .text.split instead of .text.unlikely mitigates against poor
98
// profile inaccuracy. Techniques such as hugepage remapping can make
99
// conservative decisions at the section granularity.
100
if (isSectionPrefix(".text", s->name)) {
101
if (config->zKeepTextSectionPrefix)
102
for (StringRef v : {".text.hot", ".text.unknown", ".text.unlikely",
103
".text.startup", ".text.exit", ".text.split"})
104
if (isSectionPrefix(v.substr(5), s->name.substr(5)))
105
return v;
106
return ".text";
107
}
108
109
for (StringRef v :
110
{".data.rel.ro", ".data", ".rodata", ".bss.rel.ro", ".bss", ".ldata",
111
".lrodata", ".lbss", ".gcc_except_table", ".init_array", ".fini_array",
112
".tbss", ".tdata", ".ARM.exidx", ".ARM.extab", ".ctors", ".dtors"})
113
if (isSectionPrefix(v, s->name))
114
return v;
115
116
return s->name;
117
}
118
119
uint64_t ExprValue::getValue() const {
120
if (sec)
121
return alignToPowerOf2(sec->getOutputSection()->addr + sec->getOffset(val),
122
alignment);
123
return alignToPowerOf2(val, alignment);
124
}
125
126
uint64_t ExprValue::getSecAddr() const {
127
return sec ? sec->getOutputSection()->addr + sec->getOffset(0) : 0;
128
}
129
130
uint64_t ExprValue::getSectionOffset() const {
131
return getValue() - getSecAddr();
132
}
133
134
OutputDesc *LinkerScript::createOutputSection(StringRef name,
135
StringRef location) {
136
OutputDesc *&secRef = nameToOutputSection[CachedHashStringRef(name)];
137
OutputDesc *sec;
138
if (secRef && secRef->osec.location.empty()) {
139
// There was a forward reference.
140
sec = secRef;
141
} else {
142
sec = make<OutputDesc>(name, SHT_PROGBITS, 0);
143
if (!secRef)
144
secRef = sec;
145
}
146
sec->osec.location = std::string(location);
147
return sec;
148
}
149
150
OutputDesc *LinkerScript::getOrCreateOutputSection(StringRef name) {
151
OutputDesc *&cmdRef = nameToOutputSection[CachedHashStringRef(name)];
152
if (!cmdRef)
153
cmdRef = make<OutputDesc>(name, SHT_PROGBITS, 0);
154
return cmdRef;
155
}
156
157
// Expands the memory region by the specified size.
158
static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size,
159
StringRef secName) {
160
memRegion->curPos += size;
161
}
162
163
void LinkerScript::expandMemoryRegions(uint64_t size) {
164
if (state->memRegion)
165
expandMemoryRegion(state->memRegion, size, state->outSec->name);
166
// Only expand the LMARegion if it is different from memRegion.
167
if (state->lmaRegion && state->memRegion != state->lmaRegion)
168
expandMemoryRegion(state->lmaRegion, size, state->outSec->name);
169
}
170
171
void LinkerScript::expandOutputSection(uint64_t size) {
172
state->outSec->size += size;
173
expandMemoryRegions(size);
174
}
175
176
void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) {
177
uint64_t val = e().getValue();
178
// If val is smaller and we are in an output section, record the error and
179
// report it if this is the last assignAddresses iteration. dot may be smaller
180
// if there is another assignAddresses iteration.
181
if (val < dot && inSec) {
182
recordError(loc + ": unable to move location counter (0x" +
183
Twine::utohexstr(dot) + ") backward to 0x" +
184
Twine::utohexstr(val) + " for section '" + state->outSec->name +
185
"'");
186
}
187
188
// Update to location counter means update to section size.
189
if (inSec)
190
expandOutputSection(val - dot);
191
192
dot = val;
193
}
194
195
// Used for handling linker symbol assignments, for both finalizing
196
// their values and doing early declarations. Returns true if symbol
197
// should be defined from linker script.
198
static bool shouldDefineSym(SymbolAssignment *cmd) {
199
if (cmd->name == ".")
200
return false;
201
202
return !cmd->provide || LinkerScript::shouldAddProvideSym(cmd->name);
203
}
204
205
// Called by processSymbolAssignments() to assign definitions to
206
// linker-script-defined symbols.
207
void LinkerScript::addSymbol(SymbolAssignment *cmd) {
208
if (!shouldDefineSym(cmd))
209
return;
210
211
// Define a symbol.
212
ExprValue value = cmd->expression();
213
SectionBase *sec = value.isAbsolute() ? nullptr : value.sec;
214
uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
215
216
// When this function is called, section addresses have not been
217
// fixed yet. So, we may or may not know the value of the RHS
218
// expression.
219
//
220
// For example, if an expression is `x = 42`, we know x is always 42.
221
// However, if an expression is `x = .`, there's no way to know its
222
// value at the moment.
223
//
224
// We want to set symbol values early if we can. This allows us to
225
// use symbols as variables in linker scripts. Doing so allows us to
226
// write expressions like this: `alignment = 16; . = ALIGN(., alignment)`.
227
uint64_t symValue = value.sec ? 0 : value.getValue();
228
229
Defined newSym(createInternalFile(cmd->location), cmd->name, STB_GLOBAL,
230
visibility, value.type, symValue, 0, sec);
231
232
Symbol *sym = symtab.insert(cmd->name);
233
sym->mergeProperties(newSym);
234
newSym.overwrite(*sym);
235
sym->isUsedInRegularObj = true;
236
cmd->sym = cast<Defined>(sym);
237
}
238
239
// This function is called from LinkerScript::declareSymbols.
240
// It creates a placeholder symbol if needed.
241
static void declareSymbol(SymbolAssignment *cmd) {
242
if (!shouldDefineSym(cmd))
243
return;
244
245
uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT;
246
Defined newSym(ctx.internalFile, cmd->name, STB_GLOBAL, visibility,
247
STT_NOTYPE, 0, 0, nullptr);
248
249
// If the symbol is already defined, its order is 0 (with absence indicating
250
// 0); otherwise it's assigned the order of the SymbolAssignment.
251
Symbol *sym = symtab.insert(cmd->name);
252
if (!sym->isDefined())
253
ctx.scriptSymOrder.insert({sym, cmd->symOrder});
254
255
// We can't calculate final value right now.
256
sym->mergeProperties(newSym);
257
newSym.overwrite(*sym);
258
259
cmd->sym = cast<Defined>(sym);
260
cmd->provide = false;
261
sym->isUsedInRegularObj = true;
262
sym->scriptDefined = true;
263
}
264
265
using SymbolAssignmentMap =
266
DenseMap<const Defined *, std::pair<SectionBase *, uint64_t>>;
267
268
// Collect section/value pairs of linker-script-defined symbols. This is used to
269
// check whether symbol values converge.
270
static SymbolAssignmentMap
271
getSymbolAssignmentValues(ArrayRef<SectionCommand *> sectionCommands) {
272
SymbolAssignmentMap ret;
273
for (SectionCommand *cmd : sectionCommands) {
274
if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) {
275
if (assign->sym) // sym is nullptr for dot.
276
ret.try_emplace(assign->sym, std::make_pair(assign->sym->section,
277
assign->sym->value));
278
continue;
279
}
280
for (SectionCommand *subCmd : cast<OutputDesc>(cmd)->osec.commands)
281
if (auto *assign = dyn_cast<SymbolAssignment>(subCmd))
282
if (assign->sym)
283
ret.try_emplace(assign->sym, std::make_pair(assign->sym->section,
284
assign->sym->value));
285
}
286
return ret;
287
}
288
289
// Returns the lexicographical smallest (for determinism) Defined whose
290
// section/value has changed.
291
static const Defined *
292
getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) {
293
const Defined *changed = nullptr;
294
for (auto &it : oldValues) {
295
const Defined *sym = it.first;
296
if (std::make_pair(sym->section, sym->value) != it.second &&
297
(!changed || sym->getName() < changed->getName()))
298
changed = sym;
299
}
300
return changed;
301
}
302
303
// Process INSERT [AFTER|BEFORE] commands. For each command, we move the
304
// specified output section to the designated place.
305
void LinkerScript::processInsertCommands() {
306
SmallVector<OutputDesc *, 0> moves;
307
for (const InsertCommand &cmd : insertCommands) {
308
if (config->enableNonContiguousRegions)
309
error("INSERT cannot be used with --enable-non-contiguous-regions");
310
311
for (StringRef name : cmd.names) {
312
// If base is empty, it may have been discarded by
313
// adjustOutputSections(). We do not handle such output sections.
314
auto from = llvm::find_if(sectionCommands, [&](SectionCommand *subCmd) {
315
return isa<OutputDesc>(subCmd) &&
316
cast<OutputDesc>(subCmd)->osec.name == name;
317
});
318
if (from == sectionCommands.end())
319
continue;
320
moves.push_back(cast<OutputDesc>(*from));
321
sectionCommands.erase(from);
322
}
323
324
auto insertPos =
325
llvm::find_if(sectionCommands, [&cmd](SectionCommand *subCmd) {
326
auto *to = dyn_cast<OutputDesc>(subCmd);
327
return to != nullptr && to->osec.name == cmd.where;
328
});
329
if (insertPos == sectionCommands.end()) {
330
error("unable to insert " + cmd.names[0] +
331
(cmd.isAfter ? " after " : " before ") + cmd.where);
332
} else {
333
if (cmd.isAfter)
334
++insertPos;
335
sectionCommands.insert(insertPos, moves.begin(), moves.end());
336
}
337
moves.clear();
338
}
339
}
340
341
// Symbols defined in script should not be inlined by LTO. At the same time
342
// we don't know their final values until late stages of link. Here we scan
343
// over symbol assignment commands and create placeholder symbols if needed.
344
void LinkerScript::declareSymbols() {
345
assert(!state);
346
for (SectionCommand *cmd : sectionCommands) {
347
if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) {
348
declareSymbol(assign);
349
continue;
350
}
351
352
// If the output section directive has constraints,
353
// we can't say for sure if it is going to be included or not.
354
// Skip such sections for now. Improve the checks if we ever
355
// need symbols from that sections to be declared early.
356
const OutputSection &sec = cast<OutputDesc>(cmd)->osec;
357
if (sec.constraint != ConstraintKind::NoConstraint)
358
continue;
359
for (SectionCommand *cmd : sec.commands)
360
if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
361
declareSymbol(assign);
362
}
363
}
364
365
// This function is called from assignAddresses, while we are
366
// fixing the output section addresses. This function is supposed
367
// to set the final value for a given symbol assignment.
368
void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) {
369
if (cmd->name == ".") {
370
setDot(cmd->expression, cmd->location, inSec);
371
return;
372
}
373
374
if (!cmd->sym)
375
return;
376
377
ExprValue v = cmd->expression();
378
if (v.isAbsolute()) {
379
cmd->sym->section = nullptr;
380
cmd->sym->value = v.getValue();
381
} else {
382
cmd->sym->section = v.sec;
383
cmd->sym->value = v.getSectionOffset();
384
}
385
cmd->sym->type = v.type;
386
}
387
388
static inline StringRef getFilename(const InputFile *file) {
389
return file ? file->getNameForScript() : StringRef();
390
}
391
392
bool InputSectionDescription::matchesFile(const InputFile *file) const {
393
if (filePat.isTrivialMatchAll())
394
return true;
395
396
if (!matchesFileCache || matchesFileCache->first != file)
397
matchesFileCache.emplace(file, filePat.match(getFilename(file)));
398
399
return matchesFileCache->second;
400
}
401
402
bool SectionPattern::excludesFile(const InputFile *file) const {
403
if (excludedFilePat.empty())
404
return false;
405
406
if (!excludesFileCache || excludesFileCache->first != file)
407
excludesFileCache.emplace(file, excludedFilePat.match(getFilename(file)));
408
409
return excludesFileCache->second;
410
}
411
412
bool LinkerScript::shouldKeep(InputSectionBase *s) {
413
for (InputSectionDescription *id : keptSections)
414
if (id->matchesFile(s->file))
415
for (SectionPattern &p : id->sectionPatterns)
416
if (p.sectionPat.match(s->name) &&
417
(s->flags & id->withFlags) == id->withFlags &&
418
(s->flags & id->withoutFlags) == 0)
419
return true;
420
return false;
421
}
422
423
// A helper function for the SORT() command.
424
static bool matchConstraints(ArrayRef<InputSectionBase *> sections,
425
ConstraintKind kind) {
426
if (kind == ConstraintKind::NoConstraint)
427
return true;
428
429
bool isRW = llvm::any_of(
430
sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; });
431
432
return (isRW && kind == ConstraintKind::ReadWrite) ||
433
(!isRW && kind == ConstraintKind::ReadOnly);
434
}
435
436
static void sortSections(MutableArrayRef<InputSectionBase *> vec,
437
SortSectionPolicy k) {
438
auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) {
439
// ">" is not a mistake. Sections with larger alignments are placed
440
// before sections with smaller alignments in order to reduce the
441
// amount of padding necessary. This is compatible with GNU.
442
return a->addralign > b->addralign;
443
};
444
auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) {
445
return a->name < b->name;
446
};
447
auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) {
448
return getPriority(a->name) < getPriority(b->name);
449
};
450
451
switch (k) {
452
case SortSectionPolicy::Default:
453
case SortSectionPolicy::None:
454
return;
455
case SortSectionPolicy::Alignment:
456
return llvm::stable_sort(vec, alignmentComparator);
457
case SortSectionPolicy::Name:
458
return llvm::stable_sort(vec, nameComparator);
459
case SortSectionPolicy::Priority:
460
return llvm::stable_sort(vec, priorityComparator);
461
case SortSectionPolicy::Reverse:
462
return std::reverse(vec.begin(), vec.end());
463
}
464
}
465
466
// Sort sections as instructed by SORT-family commands and --sort-section
467
// option. Because SORT-family commands can be nested at most two depth
468
// (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command
469
// line option is respected even if a SORT command is given, the exact
470
// behavior we have here is a bit complicated. Here are the rules.
471
//
472
// 1. If two SORT commands are given, --sort-section is ignored.
473
// 2. If one SORT command is given, and if it is not SORT_NONE,
474
// --sort-section is handled as an inner SORT command.
475
// 3. If one SORT command is given, and if it is SORT_NONE, don't sort.
476
// 4. If no SORT command is given, sort according to --sort-section.
477
static void sortInputSections(MutableArrayRef<InputSectionBase *> vec,
478
SortSectionPolicy outer,
479
SortSectionPolicy inner) {
480
if (outer == SortSectionPolicy::None)
481
return;
482
483
if (inner == SortSectionPolicy::Default)
484
sortSections(vec, config->sortSection);
485
else
486
sortSections(vec, inner);
487
sortSections(vec, outer);
488
}
489
490
// Compute and remember which sections the InputSectionDescription matches.
491
SmallVector<InputSectionBase *, 0>
492
LinkerScript::computeInputSections(const InputSectionDescription *cmd,
493
ArrayRef<InputSectionBase *> sections,
494
const OutputSection &outCmd) {
495
SmallVector<InputSectionBase *, 0> ret;
496
SmallVector<size_t, 0> indexes;
497
DenseSet<size_t> seen;
498
DenseSet<InputSectionBase *> spills;
499
auto sortByPositionThenCommandLine = [&](size_t begin, size_t end) {
500
llvm::sort(MutableArrayRef<size_t>(indexes).slice(begin, end - begin));
501
for (size_t i = begin; i != end; ++i)
502
ret[i] = sections[indexes[i]];
503
sortInputSections(
504
MutableArrayRef<InputSectionBase *>(ret).slice(begin, end - begin),
505
config->sortSection, SortSectionPolicy::None);
506
};
507
508
// Collects all sections that satisfy constraints of Cmd.
509
size_t sizeAfterPrevSort = 0;
510
for (const SectionPattern &pat : cmd->sectionPatterns) {
511
size_t sizeBeforeCurrPat = ret.size();
512
513
for (size_t i = 0, e = sections.size(); i != e; ++i) {
514
// Skip if the section is dead or has been matched by a previous pattern
515
// in this input section description.
516
InputSectionBase *sec = sections[i];
517
if (!sec->isLive() || seen.contains(i))
518
continue;
519
520
// For --emit-relocs we have to ignore entries like
521
// .rela.dyn : { *(.rela.data) }
522
// which are common because they are in the default bfd script.
523
// We do not ignore SHT_REL[A] linker-synthesized sections here because
524
// want to support scripts that do custom layout for them.
525
if (isa<InputSection>(sec) &&
526
cast<InputSection>(sec)->getRelocatedSection())
527
continue;
528
529
// Check the name early to improve performance in the common case.
530
if (!pat.sectionPat.match(sec->name))
531
continue;
532
533
if (!cmd->matchesFile(sec->file) || pat.excludesFile(sec->file) ||
534
(sec->flags & cmd->withFlags) != cmd->withFlags ||
535
(sec->flags & cmd->withoutFlags) != 0)
536
continue;
537
538
if (sec->parent) {
539
// Skip if not allowing multiple matches.
540
if (!config->enableNonContiguousRegions)
541
continue;
542
543
// Disallow spilling into /DISCARD/; special handling would be needed
544
// for this in address assignment, and the semantics are nebulous.
545
if (outCmd.name == "/DISCARD/")
546
continue;
547
548
// Skip if the section's first match was /DISCARD/; such sections are
549
// always discarded.
550
if (sec->parent->name == "/DISCARD/")
551
continue;
552
553
// Skip if the section was already matched by a different input section
554
// description within this output section.
555
if (sec->parent == &outCmd)
556
continue;
557
558
spills.insert(sec);
559
}
560
561
ret.push_back(sec);
562
indexes.push_back(i);
563
seen.insert(i);
564
}
565
566
if (pat.sortOuter == SortSectionPolicy::Default)
567
continue;
568
569
// Matched sections are ordered by radix sort with the keys being (SORT*,
570
// --sort-section, input order), where SORT* (if present) is most
571
// significant.
572
//
573
// Matched sections between the previous SORT* and this SORT* are sorted by
574
// (--sort-alignment, input order).
575
sortByPositionThenCommandLine(sizeAfterPrevSort, sizeBeforeCurrPat);
576
// Matched sections by this SORT* pattern are sorted using all 3 keys.
577
// ret[sizeBeforeCurrPat,ret.size()) are already in the input order, so we
578
// just sort by sortOuter and sortInner.
579
sortInputSections(
580
MutableArrayRef<InputSectionBase *>(ret).slice(sizeBeforeCurrPat),
581
pat.sortOuter, pat.sortInner);
582
sizeAfterPrevSort = ret.size();
583
}
584
// Matched sections after the last SORT* are sorted by (--sort-alignment,
585
// input order).
586
sortByPositionThenCommandLine(sizeAfterPrevSort, ret.size());
587
588
// The flag --enable-non-contiguous-regions may cause sections to match an
589
// InputSectionDescription in more than one OutputSection. Matches after the
590
// first were collected in the spills set, so replace these with potential
591
// spill sections.
592
if (!spills.empty()) {
593
for (InputSectionBase *&sec : ret) {
594
if (!spills.contains(sec))
595
continue;
596
597
// Append the spill input section to the list for the input section,
598
// creating it if necessary.
599
PotentialSpillSection *pss = make<PotentialSpillSection>(
600
*sec, const_cast<InputSectionDescription &>(*cmd));
601
auto [it, inserted] =
602
potentialSpillLists.try_emplace(sec, PotentialSpillList{pss, pss});
603
if (!inserted) {
604
PotentialSpillSection *&tail = it->second.tail;
605
tail = tail->next = pss;
606
}
607
sec = pss;
608
}
609
}
610
611
return ret;
612
}
613
614
void LinkerScript::discard(InputSectionBase &s) {
615
if (&s == in.shStrTab.get())
616
error("discarding " + s.name + " section is not allowed");
617
618
s.markDead();
619
s.parent = nullptr;
620
for (InputSection *sec : s.dependentSections)
621
discard(*sec);
622
}
623
624
void LinkerScript::discardSynthetic(OutputSection &outCmd) {
625
for (Partition &part : partitions) {
626
if (!part.armExidx || !part.armExidx->isLive())
627
continue;
628
SmallVector<InputSectionBase *, 0> secs(
629
part.armExidx->exidxSections.begin(),
630
part.armExidx->exidxSections.end());
631
for (SectionCommand *cmd : outCmd.commands)
632
if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
633
for (InputSectionBase *s : computeInputSections(isd, secs, outCmd))
634
discard(*s);
635
}
636
}
637
638
SmallVector<InputSectionBase *, 0>
639
LinkerScript::createInputSectionList(OutputSection &outCmd) {
640
SmallVector<InputSectionBase *, 0> ret;
641
642
for (SectionCommand *cmd : outCmd.commands) {
643
if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
644
isd->sectionBases = computeInputSections(isd, ctx.inputSections, outCmd);
645
for (InputSectionBase *s : isd->sectionBases)
646
s->parent = &outCmd;
647
ret.insert(ret.end(), isd->sectionBases.begin(), isd->sectionBases.end());
648
}
649
}
650
return ret;
651
}
652
653
// Create output sections described by SECTIONS commands.
654
void LinkerScript::processSectionCommands() {
655
auto process = [this](OutputSection *osec) {
656
SmallVector<InputSectionBase *, 0> v = createInputSectionList(*osec);
657
658
// The output section name `/DISCARD/' is special.
659
// Any input section assigned to it is discarded.
660
if (osec->name == "/DISCARD/") {
661
for (InputSectionBase *s : v)
662
discard(*s);
663
discardSynthetic(*osec);
664
osec->commands.clear();
665
return false;
666
}
667
668
// This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive
669
// ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input
670
// sections satisfy a given constraint. If not, a directive is handled
671
// as if it wasn't present from the beginning.
672
//
673
// Because we'll iterate over SectionCommands many more times, the easy
674
// way to "make it as if it wasn't present" is to make it empty.
675
if (!matchConstraints(v, osec->constraint)) {
676
for (InputSectionBase *s : v)
677
s->parent = nullptr;
678
osec->commands.clear();
679
return false;
680
}
681
682
// Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign
683
// is given, input sections are aligned to that value, whether the
684
// given value is larger or smaller than the original section alignment.
685
if (osec->subalignExpr) {
686
uint32_t subalign = osec->subalignExpr().getValue();
687
for (InputSectionBase *s : v)
688
s->addralign = subalign;
689
}
690
691
// Set the partition field the same way OutputSection::recordSection()
692
// does. Partitions cannot be used with the SECTIONS command, so this is
693
// always 1.
694
osec->partition = 1;
695
return true;
696
};
697
698
// Process OVERWRITE_SECTIONS first so that it can overwrite the main script
699
// or orphans.
700
if (config->enableNonContiguousRegions && !overwriteSections.empty())
701
error("OVERWRITE_SECTIONS cannot be used with "
702
"--enable-non-contiguous-regions");
703
DenseMap<CachedHashStringRef, OutputDesc *> map;
704
size_t i = 0;
705
for (OutputDesc *osd : overwriteSections) {
706
OutputSection *osec = &osd->osec;
707
if (process(osec) &&
708
!map.try_emplace(CachedHashStringRef(osec->name), osd).second)
709
warn("OVERWRITE_SECTIONS specifies duplicate " + osec->name);
710
}
711
for (SectionCommand *&base : sectionCommands)
712
if (auto *osd = dyn_cast<OutputDesc>(base)) {
713
OutputSection *osec = &osd->osec;
714
if (OutputDesc *overwrite = map.lookup(CachedHashStringRef(osec->name))) {
715
log(overwrite->osec.location + " overwrites " + osec->name);
716
overwrite->osec.sectionIndex = i++;
717
base = overwrite;
718
} else if (process(osec)) {
719
osec->sectionIndex = i++;
720
}
721
}
722
723
// If an OVERWRITE_SECTIONS specified output section is not in
724
// sectionCommands, append it to the end. The section will be inserted by
725
// orphan placement.
726
for (OutputDesc *osd : overwriteSections)
727
if (osd->osec.partition == 1 && osd->osec.sectionIndex == UINT32_MAX)
728
sectionCommands.push_back(osd);
729
}
730
731
void LinkerScript::processSymbolAssignments() {
732
// Dot outside an output section still represents a relative address, whose
733
// sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section
734
// that fills the void outside a section. It has an index of one, which is
735
// indistinguishable from any other regular section index.
736
aether = make<OutputSection>("", 0, SHF_ALLOC);
737
aether->sectionIndex = 1;
738
739
// `st` captures the local AddressState and makes it accessible deliberately.
740
// This is needed as there are some cases where we cannot just thread the
741
// current state through to a lambda function created by the script parser.
742
AddressState st;
743
state = &st;
744
st.outSec = aether;
745
746
for (SectionCommand *cmd : sectionCommands) {
747
if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
748
addSymbol(assign);
749
else
750
for (SectionCommand *subCmd : cast<OutputDesc>(cmd)->osec.commands)
751
if (auto *assign = dyn_cast<SymbolAssignment>(subCmd))
752
addSymbol(assign);
753
}
754
755
state = nullptr;
756
}
757
758
static OutputSection *findByName(ArrayRef<SectionCommand *> vec,
759
StringRef name) {
760
for (SectionCommand *cmd : vec)
761
if (auto *osd = dyn_cast<OutputDesc>(cmd))
762
if (osd->osec.name == name)
763
return &osd->osec;
764
return nullptr;
765
}
766
767
static OutputDesc *createSection(InputSectionBase *isec, StringRef outsecName) {
768
OutputDesc *osd = script->createOutputSection(outsecName, "<internal>");
769
osd->osec.recordSection(isec);
770
return osd;
771
}
772
773
static OutputDesc *addInputSec(StringMap<TinyPtrVector<OutputSection *>> &map,
774
InputSectionBase *isec, StringRef outsecName) {
775
// Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r
776
// option is given. A section with SHT_GROUP defines a "section group", and
777
// its members have SHF_GROUP attribute. Usually these flags have already been
778
// stripped by InputFiles.cpp as section groups are processed and uniquified.
779
// However, for the -r option, we want to pass through all section groups
780
// as-is because adding/removing members or merging them with other groups
781
// change their semantics.
782
if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP))
783
return createSection(isec, outsecName);
784
785
// Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have
786
// relocation sections .rela.foo and .rela.bar for example. Most tools do
787
// not allow multiple REL[A] sections for output section. Hence we
788
// should combine these relocation sections into single output.
789
// We skip synthetic sections because it can be .rela.dyn/.rela.plt or any
790
// other REL[A] sections created by linker itself.
791
if (!isa<SyntheticSection>(isec) && isStaticRelSecType(isec->type)) {
792
auto *sec = cast<InputSection>(isec);
793
OutputSection *out = sec->getRelocatedSection()->getOutputSection();
794
795
if (auto *relSec = out->relocationSection) {
796
relSec->recordSection(sec);
797
return nullptr;
798
}
799
800
OutputDesc *osd = createSection(isec, outsecName);
801
out->relocationSection = &osd->osec;
802
return osd;
803
}
804
805
// The ELF spec just says
806
// ----------------------------------------------------------------
807
// In the first phase, input sections that match in name, type and
808
// attribute flags should be concatenated into single sections.
809
// ----------------------------------------------------------------
810
//
811
// However, it is clear that at least some flags have to be ignored for
812
// section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be
813
// ignored. We should not have two output .text sections just because one was
814
// in a group and another was not for example.
815
//
816
// It also seems that wording was a late addition and didn't get the
817
// necessary scrutiny.
818
//
819
// Merging sections with different flags is expected by some users. One
820
// reason is that if one file has
821
//
822
// int *const bar __attribute__((section(".foo"))) = (int *)0;
823
//
824
// gcc with -fPIC will produce a read only .foo section. But if another
825
// file has
826
//
827
// int zed;
828
// int *const bar __attribute__((section(".foo"))) = (int *)&zed;
829
//
830
// gcc with -fPIC will produce a read write section.
831
//
832
// Last but not least, when using linker script the merge rules are forced by
833
// the script. Unfortunately, linker scripts are name based. This means that
834
// expressions like *(.foo*) can refer to multiple input sections with
835
// different flags. We cannot put them in different output sections or we
836
// would produce wrong results for
837
//
838
// start = .; *(.foo.*) end = .; *(.bar)
839
//
840
// and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to
841
// another. The problem is that there is no way to layout those output
842
// sections such that the .foo sections are the only thing between the start
843
// and end symbols.
844
//
845
// Given the above issues, we instead merge sections by name and error on
846
// incompatible types and flags.
847
TinyPtrVector<OutputSection *> &v = map[outsecName];
848
for (OutputSection *sec : v) {
849
if (sec->partition != isec->partition)
850
continue;
851
852
if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) {
853
// Merging two SHF_LINK_ORDER sections with different sh_link fields will
854
// change their semantics, so we only merge them in -r links if they will
855
// end up being linked to the same output section. The casts are fine
856
// because everything in the map was created by the orphan placement code.
857
auto *firstIsec = cast<InputSectionBase>(
858
cast<InputSectionDescription>(sec->commands[0])->sectionBases[0]);
859
OutputSection *firstIsecOut =
860
(firstIsec->flags & SHF_LINK_ORDER)
861
? firstIsec->getLinkOrderDep()->getOutputSection()
862
: nullptr;
863
if (firstIsecOut != isec->getLinkOrderDep()->getOutputSection())
864
continue;
865
}
866
867
sec->recordSection(isec);
868
return nullptr;
869
}
870
871
OutputDesc *osd = createSection(isec, outsecName);
872
v.push_back(&osd->osec);
873
return osd;
874
}
875
876
// Add sections that didn't match any sections command.
877
void LinkerScript::addOrphanSections() {
878
StringMap<TinyPtrVector<OutputSection *>> map;
879
SmallVector<OutputDesc *, 0> v;
880
881
auto add = [&](InputSectionBase *s) {
882
if (s->isLive() && !s->parent) {
883
orphanSections.push_back(s);
884
885
StringRef name = getOutputSectionName(s);
886
if (config->unique) {
887
v.push_back(createSection(s, name));
888
} else if (OutputSection *sec = findByName(sectionCommands, name)) {
889
sec->recordSection(s);
890
} else {
891
if (OutputDesc *osd = addInputSec(map, s, name))
892
v.push_back(osd);
893
assert(isa<MergeInputSection>(s) ||
894
s->getOutputSection()->sectionIndex == UINT32_MAX);
895
}
896
}
897
};
898
899
// For further --emit-reloc handling code we need target output section
900
// to be created before we create relocation output section, so we want
901
// to create target sections first. We do not want priority handling
902
// for synthetic sections because them are special.
903
size_t n = 0;
904
for (InputSectionBase *isec : ctx.inputSections) {
905
// Process InputSection and MergeInputSection.
906
if (LLVM_LIKELY(isa<InputSection>(isec)))
907
ctx.inputSections[n++] = isec;
908
909
// In -r links, SHF_LINK_ORDER sections are added while adding their parent
910
// sections because we need to know the parent's output section before we
911
// can select an output section for the SHF_LINK_ORDER section.
912
if (config->relocatable && (isec->flags & SHF_LINK_ORDER))
913
continue;
914
915
if (auto *sec = dyn_cast<InputSection>(isec))
916
if (InputSectionBase *rel = sec->getRelocatedSection())
917
if (auto *relIS = dyn_cast_or_null<InputSectionBase>(rel->parent))
918
add(relIS);
919
add(isec);
920
if (config->relocatable)
921
for (InputSectionBase *depSec : isec->dependentSections)
922
if (depSec->flags & SHF_LINK_ORDER)
923
add(depSec);
924
}
925
// Keep just InputSection.
926
ctx.inputSections.resize(n);
927
928
// If no SECTIONS command was given, we should insert sections commands
929
// before others, so that we can handle scripts which refers them,
930
// for example: "foo = ABSOLUTE(ADDR(.text)));".
931
// When SECTIONS command is present we just add all orphans to the end.
932
if (hasSectionsCommand)
933
sectionCommands.insert(sectionCommands.end(), v.begin(), v.end());
934
else
935
sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end());
936
}
937
938
void LinkerScript::diagnoseOrphanHandling() const {
939
llvm::TimeTraceScope timeScope("Diagnose orphan sections");
940
if (config->orphanHandling == OrphanHandlingPolicy::Place ||
941
!hasSectionsCommand)
942
return;
943
for (const InputSectionBase *sec : orphanSections) {
944
// .relro_padding is inserted before DATA_SEGMENT_RELRO_END, if present,
945
// automatically. The section is not supposed to be specified by scripts.
946
if (sec == in.relroPadding.get())
947
continue;
948
// Input SHT_REL[A] retained by --emit-relocs are ignored by
949
// computeInputSections(). Don't warn/error.
950
if (isa<InputSection>(sec) &&
951
cast<InputSection>(sec)->getRelocatedSection())
952
continue;
953
954
StringRef name = getOutputSectionName(sec);
955
if (config->orphanHandling == OrphanHandlingPolicy::Error)
956
error(toString(sec) + " is being placed in '" + name + "'");
957
else
958
warn(toString(sec) + " is being placed in '" + name + "'");
959
}
960
}
961
962
void LinkerScript::diagnoseMissingSGSectionAddress() const {
963
if (!config->cmseImplib || !in.armCmseSGSection->isNeeded())
964
return;
965
966
OutputSection *sec = findByName(sectionCommands, ".gnu.sgstubs");
967
if (sec && !sec->addrExpr && !config->sectionStartMap.count(".gnu.sgstubs"))
968
error("no address assigned to the veneers output section " + sec->name);
969
}
970
971
// This function searches for a memory region to place the given output
972
// section in. If found, a pointer to the appropriate memory region is
973
// returned in the first member of the pair. Otherwise, a nullptr is returned.
974
// The second member of the pair is a hint that should be passed to the
975
// subsequent call of this method.
976
std::pair<MemoryRegion *, MemoryRegion *>
977
LinkerScript::findMemoryRegion(OutputSection *sec, MemoryRegion *hint) {
978
// Non-allocatable sections are not part of the process image.
979
if (!(sec->flags & SHF_ALLOC)) {
980
bool hasInputOrByteCommand =
981
sec->hasInputSections ||
982
llvm::any_of(sec->commands, [](SectionCommand *comm) {
983
return ByteCommand::classof(comm);
984
});
985
if (!sec->memoryRegionName.empty() && hasInputOrByteCommand)
986
warn("ignoring memory region assignment for non-allocatable section '" +
987
sec->name + "'");
988
return {nullptr, nullptr};
989
}
990
991
// If a memory region name was specified in the output section command,
992
// then try to find that region first.
993
if (!sec->memoryRegionName.empty()) {
994
if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName))
995
return {m, m};
996
error("memory region '" + sec->memoryRegionName + "' not declared");
997
return {nullptr, nullptr};
998
}
999
1000
// If at least one memory region is defined, all sections must
1001
// belong to some memory region. Otherwise, we don't need to do
1002
// anything for memory regions.
1003
if (memoryRegions.empty())
1004
return {nullptr, nullptr};
1005
1006
// An orphan section should continue the previous memory region.
1007
if (sec->sectionIndex == UINT32_MAX && hint)
1008
return {hint, hint};
1009
1010
// See if a region can be found by matching section flags.
1011
for (auto &pair : memoryRegions) {
1012
MemoryRegion *m = pair.second;
1013
if (m->compatibleWith(sec->flags))
1014
return {m, nullptr};
1015
}
1016
1017
// Otherwise, no suitable region was found.
1018
error("no memory region specified for section '" + sec->name + "'");
1019
return {nullptr, nullptr};
1020
}
1021
1022
static OutputSection *findFirstSection(PhdrEntry *load) {
1023
for (OutputSection *sec : outputSections)
1024
if (sec->ptLoad == load)
1025
return sec;
1026
return nullptr;
1027
}
1028
1029
// Assign addresses to an output section and offsets to its input sections and
1030
// symbol assignments. Return true if the output section's address has changed.
1031
bool LinkerScript::assignOffsets(OutputSection *sec) {
1032
const bool isTbss = (sec->flags & SHF_TLS) && sec->type == SHT_NOBITS;
1033
const bool sameMemRegion = state->memRegion == sec->memRegion;
1034
const bool prevLMARegionIsDefault = state->lmaRegion == nullptr;
1035
const uint64_t savedDot = dot;
1036
bool addressChanged = false;
1037
state->memRegion = sec->memRegion;
1038
state->lmaRegion = sec->lmaRegion;
1039
1040
if (!(sec->flags & SHF_ALLOC)) {
1041
// Non-SHF_ALLOC sections have zero addresses.
1042
dot = 0;
1043
} else if (isTbss) {
1044
// Allow consecutive SHF_TLS SHT_NOBITS output sections. The address range
1045
// starts from the end address of the previous tbss section.
1046
if (state->tbssAddr == 0)
1047
state->tbssAddr = dot;
1048
else
1049
dot = state->tbssAddr;
1050
} else {
1051
if (state->memRegion)
1052
dot = state->memRegion->curPos;
1053
if (sec->addrExpr)
1054
setDot(sec->addrExpr, sec->location, false);
1055
1056
// If the address of the section has been moved forward by an explicit
1057
// expression so that it now starts past the current curPos of the enclosing
1058
// region, we need to expand the current region to account for the space
1059
// between the previous section, if any, and the start of this section.
1060
if (state->memRegion && state->memRegion->curPos < dot)
1061
expandMemoryRegion(state->memRegion, dot - state->memRegion->curPos,
1062
sec->name);
1063
}
1064
1065
state->outSec = sec;
1066
if (!(sec->addrExpr && script->hasSectionsCommand)) {
1067
// ALIGN is respected. sec->alignment is the max of ALIGN and the maximum of
1068
// input section alignments.
1069
const uint64_t pos = dot;
1070
dot = alignToPowerOf2(dot, sec->addralign);
1071
expandMemoryRegions(dot - pos);
1072
}
1073
addressChanged = sec->addr != dot;
1074
sec->addr = dot;
1075
1076
// state->lmaOffset is LMA minus VMA. If LMA is explicitly specified via AT()
1077
// or AT>, recompute state->lmaOffset; otherwise, if both previous/current LMA
1078
// region is the default, and the two sections are in the same memory region,
1079
// reuse previous lmaOffset; otherwise, reset lmaOffset to 0. This emulates
1080
// heuristics described in
1081
// https://sourceware.org/binutils/docs/ld/Output-Section-LMA.html
1082
if (sec->lmaExpr) {
1083
state->lmaOffset = sec->lmaExpr().getValue() - dot;
1084
} else if (MemoryRegion *mr = sec->lmaRegion) {
1085
uint64_t lmaStart = alignToPowerOf2(mr->curPos, sec->addralign);
1086
if (mr->curPos < lmaStart)
1087
expandMemoryRegion(mr, lmaStart - mr->curPos, sec->name);
1088
state->lmaOffset = lmaStart - dot;
1089
} else if (!sameMemRegion || !prevLMARegionIsDefault) {
1090
state->lmaOffset = 0;
1091
}
1092
1093
// Propagate state->lmaOffset to the first "non-header" section.
1094
if (PhdrEntry *l = sec->ptLoad)
1095
if (sec == findFirstSection(l))
1096
l->lmaOffset = state->lmaOffset;
1097
1098
// We can call this method multiple times during the creation of
1099
// thunks and want to start over calculation each time.
1100
sec->size = 0;
1101
1102
// We visited SectionsCommands from processSectionCommands to
1103
// layout sections. Now, we visit SectionsCommands again to fix
1104
// section offsets.
1105
for (SectionCommand *cmd : sec->commands) {
1106
// This handles the assignments to symbol or to the dot.
1107
if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) {
1108
assign->addr = dot;
1109
assignSymbol(assign, true);
1110
assign->size = dot - assign->addr;
1111
continue;
1112
}
1113
1114
// Handle BYTE(), SHORT(), LONG(), or QUAD().
1115
if (auto *data = dyn_cast<ByteCommand>(cmd)) {
1116
data->offset = dot - sec->addr;
1117
dot += data->size;
1118
expandOutputSection(data->size);
1119
continue;
1120
}
1121
1122
// Handle a single input section description command.
1123
// It calculates and assigns the offsets for each section and also
1124
// updates the output section size.
1125
1126
auto &sections = cast<InputSectionDescription>(cmd)->sections;
1127
for (InputSection *isec : sections) {
1128
assert(isec->getParent() == sec);
1129
if (isa<PotentialSpillSection>(isec))
1130
continue;
1131
const uint64_t pos = dot;
1132
dot = alignToPowerOf2(dot, isec->addralign);
1133
isec->outSecOff = dot - sec->addr;
1134
dot += isec->getSize();
1135
1136
// Update output section size after adding each section. This is so that
1137
// SIZEOF works correctly in the case below:
1138
// .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) }
1139
expandOutputSection(dot - pos);
1140
}
1141
}
1142
1143
// If .relro_padding is present, round up the end to a common-page-size
1144
// boundary to protect the last page.
1145
if (in.relroPadding && sec == in.relroPadding->getParent())
1146
expandOutputSection(alignToPowerOf2(dot, config->commonPageSize) - dot);
1147
1148
// Non-SHF_ALLOC sections do not affect the addresses of other OutputSections
1149
// as they are not part of the process image.
1150
if (!(sec->flags & SHF_ALLOC)) {
1151
dot = savedDot;
1152
} else if (isTbss) {
1153
// NOBITS TLS sections are similar. Additionally save the end address.
1154
state->tbssAddr = dot;
1155
dot = savedDot;
1156
}
1157
return addressChanged;
1158
}
1159
1160
static bool isDiscardable(const OutputSection &sec) {
1161
if (sec.name == "/DISCARD/")
1162
return true;
1163
1164
// We do not want to remove OutputSections with expressions that reference
1165
// symbols even if the OutputSection is empty. We want to ensure that the
1166
// expressions can be evaluated and report an error if they cannot.
1167
if (sec.expressionsUseSymbols)
1168
return false;
1169
1170
// OutputSections may be referenced by name in ADDR and LOADADDR expressions,
1171
// as an empty Section can has a valid VMA and LMA we keep the OutputSection
1172
// to maintain the integrity of the other Expression.
1173
if (sec.usedInExpression)
1174
return false;
1175
1176
for (SectionCommand *cmd : sec.commands) {
1177
if (auto assign = dyn_cast<SymbolAssignment>(cmd))
1178
// Don't create empty output sections just for unreferenced PROVIDE
1179
// symbols.
1180
if (assign->name != "." && !assign->sym)
1181
continue;
1182
1183
if (!isa<InputSectionDescription>(*cmd))
1184
return false;
1185
}
1186
return true;
1187
}
1188
1189
static void maybePropagatePhdrs(OutputSection &sec,
1190
SmallVector<StringRef, 0> &phdrs) {
1191
if (sec.phdrs.empty()) {
1192
// To match the bfd linker script behaviour, only propagate program
1193
// headers to sections that are allocated.
1194
if (sec.flags & SHF_ALLOC)
1195
sec.phdrs = phdrs;
1196
} else {
1197
phdrs = sec.phdrs;
1198
}
1199
}
1200
1201
void LinkerScript::adjustOutputSections() {
1202
// If the output section contains only symbol assignments, create a
1203
// corresponding output section. The issue is what to do with linker script
1204
// like ".foo : { symbol = 42; }". One option would be to convert it to
1205
// "symbol = 42;". That is, move the symbol out of the empty section
1206
// description. That seems to be what bfd does for this simple case. The
1207
// problem is that this is not completely general. bfd will give up and
1208
// create a dummy section too if there is a ". = . + 1" inside the section
1209
// for example.
1210
// Given that we want to create the section, we have to worry what impact
1211
// it will have on the link. For example, if we just create a section with
1212
// 0 for flags, it would change which PT_LOADs are created.
1213
// We could remember that particular section is dummy and ignore it in
1214
// other parts of the linker, but unfortunately there are quite a few places
1215
// that would need to change:
1216
// * The program header creation.
1217
// * The orphan section placement.
1218
// * The address assignment.
1219
// The other option is to pick flags that minimize the impact the section
1220
// will have on the rest of the linker. That is why we copy the flags from
1221
// the previous sections. We copy just SHF_ALLOC and SHF_WRITE to keep the
1222
// impact low. We do not propagate SHF_EXECINSTR as in some cases this can
1223
// lead to executable writeable section.
1224
uint64_t flags = SHF_ALLOC;
1225
1226
SmallVector<StringRef, 0> defPhdrs;
1227
bool seenRelro = false;
1228
for (SectionCommand *&cmd : sectionCommands) {
1229
if (!isa<OutputDesc>(cmd))
1230
continue;
1231
auto *sec = &cast<OutputDesc>(cmd)->osec;
1232
1233
// Handle align (e.g. ".foo : ALIGN(16) { ... }").
1234
if (sec->alignExpr)
1235
sec->addralign =
1236
std::max<uint32_t>(sec->addralign, sec->alignExpr().getValue());
1237
1238
bool isEmpty = (getFirstInputSection(sec) == nullptr);
1239
bool discardable = isEmpty && isDiscardable(*sec);
1240
// If sec has at least one input section and not discarded, remember its
1241
// flags to be inherited by subsequent output sections. (sec may contain
1242
// just one empty synthetic section.)
1243
if (sec->hasInputSections && !discardable)
1244
flags = sec->flags;
1245
1246
// We do not want to keep any special flags for output section
1247
// in case it is empty.
1248
if (isEmpty) {
1249
sec->flags =
1250
flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | SHF_WRITE);
1251
sec->sortRank = getSectionRank(*sec);
1252
}
1253
1254
// The code below may remove empty output sections. We should save the
1255
// specified program headers (if exist) and propagate them to subsequent
1256
// sections which do not specify program headers.
1257
// An example of such a linker script is:
1258
// SECTIONS { .empty : { *(.empty) } :rw
1259
// .foo : { *(.foo) } }
1260
// Note: at this point the order of output sections has not been finalized,
1261
// because orphans have not been inserted into their expected positions. We
1262
// will handle them in adjustSectionsAfterSorting().
1263
if (sec->sectionIndex != UINT32_MAX)
1264
maybePropagatePhdrs(*sec, defPhdrs);
1265
1266
// Discard .relro_padding if we have not seen one RELRO section. Note: when
1267
// .tbss is the only RELRO section, there is no associated PT_LOAD segment
1268
// (needsPtLoad), so we don't append .relro_padding in the case.
1269
if (in.relroPadding && in.relroPadding->getParent() == sec && !seenRelro)
1270
discardable = true;
1271
if (discardable) {
1272
sec->markDead();
1273
cmd = nullptr;
1274
} else {
1275
seenRelro |=
1276
sec->relro && !(sec->type == SHT_NOBITS && (sec->flags & SHF_TLS));
1277
}
1278
}
1279
1280
// It is common practice to use very generic linker scripts. So for any
1281
// given run some of the output sections in the script will be empty.
1282
// We could create corresponding empty output sections, but that would
1283
// clutter the output.
1284
// We instead remove trivially empty sections. The bfd linker seems even
1285
// more aggressive at removing them.
1286
llvm::erase_if(sectionCommands, [&](SectionCommand *cmd) { return !cmd; });
1287
}
1288
1289
void LinkerScript::adjustSectionsAfterSorting() {
1290
// Try and find an appropriate memory region to assign offsets in.
1291
MemoryRegion *hint = nullptr;
1292
for (SectionCommand *cmd : sectionCommands) {
1293
if (auto *osd = dyn_cast<OutputDesc>(cmd)) {
1294
OutputSection *sec = &osd->osec;
1295
if (!sec->lmaRegionName.empty()) {
1296
if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName))
1297
sec->lmaRegion = m;
1298
else
1299
error("memory region '" + sec->lmaRegionName + "' not declared");
1300
}
1301
std::tie(sec->memRegion, hint) = findMemoryRegion(sec, hint);
1302
}
1303
}
1304
1305
// If output section command doesn't specify any segments,
1306
// and we haven't previously assigned any section to segment,
1307
// then we simply assign section to the very first load segment.
1308
// Below is an example of such linker script:
1309
// PHDRS { seg PT_LOAD; }
1310
// SECTIONS { .aaa : { *(.aaa) } }
1311
SmallVector<StringRef, 0> defPhdrs;
1312
auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) {
1313
return cmd.type == PT_LOAD;
1314
});
1315
if (firstPtLoad != phdrsCommands.end())
1316
defPhdrs.push_back(firstPtLoad->name);
1317
1318
// Walk the commands and propagate the program headers to commands that don't
1319
// explicitly specify them.
1320
for (SectionCommand *cmd : sectionCommands)
1321
if (auto *osd = dyn_cast<OutputDesc>(cmd))
1322
maybePropagatePhdrs(osd->osec, defPhdrs);
1323
}
1324
1325
static uint64_t computeBase(uint64_t min, bool allocateHeaders) {
1326
// If there is no SECTIONS or if the linkerscript is explicit about program
1327
// headers, do our best to allocate them.
1328
if (!script->hasSectionsCommand || allocateHeaders)
1329
return 0;
1330
// Otherwise only allocate program headers if that would not add a page.
1331
return alignDown(min, config->maxPageSize);
1332
}
1333
1334
// When the SECTIONS command is used, try to find an address for the file and
1335
// program headers output sections, which can be added to the first PT_LOAD
1336
// segment when program headers are created.
1337
//
1338
// We check if the headers fit below the first allocated section. If there isn't
1339
// enough space for these sections, we'll remove them from the PT_LOAD segment,
1340
// and we'll also remove the PT_PHDR segment.
1341
void LinkerScript::allocateHeaders(SmallVector<PhdrEntry *, 0> &phdrs) {
1342
uint64_t min = std::numeric_limits<uint64_t>::max();
1343
for (OutputSection *sec : outputSections)
1344
if (sec->flags & SHF_ALLOC)
1345
min = std::min<uint64_t>(min, sec->addr);
1346
1347
auto it = llvm::find_if(
1348
phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; });
1349
if (it == phdrs.end())
1350
return;
1351
PhdrEntry *firstPTLoad = *it;
1352
1353
bool hasExplicitHeaders =
1354
llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) {
1355
return cmd.hasPhdrs || cmd.hasFilehdr;
1356
});
1357
bool paged = !config->omagic && !config->nmagic;
1358
uint64_t headerSize = getHeaderSize();
1359
if ((paged || hasExplicitHeaders) &&
1360
headerSize <= min - computeBase(min, hasExplicitHeaders)) {
1361
min = alignDown(min - headerSize, config->maxPageSize);
1362
Out::elfHeader->addr = min;
1363
Out::programHeaders->addr = min + Out::elfHeader->size;
1364
return;
1365
}
1366
1367
// Error if we were explicitly asked to allocate headers.
1368
if (hasExplicitHeaders)
1369
error("could not allocate headers");
1370
1371
Out::elfHeader->ptLoad = nullptr;
1372
Out::programHeaders->ptLoad = nullptr;
1373
firstPTLoad->firstSec = findFirstSection(firstPTLoad);
1374
1375
llvm::erase_if(phdrs,
1376
[](const PhdrEntry *e) { return e->p_type == PT_PHDR; });
1377
}
1378
1379
LinkerScript::AddressState::AddressState() {
1380
for (auto &mri : script->memoryRegions) {
1381
MemoryRegion *mr = mri.second;
1382
mr->curPos = (mr->origin)().getValue();
1383
}
1384
}
1385
1386
// Here we assign addresses as instructed by linker script SECTIONS
1387
// sub-commands. Doing that allows us to use final VA values, so here
1388
// we also handle rest commands like symbol assignments and ASSERTs.
1389
// Return an output section that has changed its address or null, and a symbol
1390
// that has changed its section or value (or nullptr if no symbol has changed).
1391
std::pair<const OutputSection *, const Defined *>
1392
LinkerScript::assignAddresses() {
1393
if (script->hasSectionsCommand) {
1394
// With a linker script, assignment of addresses to headers is covered by
1395
// allocateHeaders().
1396
dot = config->imageBase.value_or(0);
1397
} else {
1398
// Assign addresses to headers right now.
1399
dot = target->getImageBase();
1400
Out::elfHeader->addr = dot;
1401
Out::programHeaders->addr = dot + Out::elfHeader->size;
1402
dot += getHeaderSize();
1403
}
1404
1405
OutputSection *changedOsec = nullptr;
1406
AddressState st;
1407
state = &st;
1408
errorOnMissingSection = true;
1409
st.outSec = aether;
1410
recordedErrors.clear();
1411
1412
SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands);
1413
for (SectionCommand *cmd : sectionCommands) {
1414
if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) {
1415
assign->addr = dot;
1416
assignSymbol(assign, false);
1417
assign->size = dot - assign->addr;
1418
continue;
1419
}
1420
if (assignOffsets(&cast<OutputDesc>(cmd)->osec) && !changedOsec)
1421
changedOsec = &cast<OutputDesc>(cmd)->osec;
1422
}
1423
1424
state = nullptr;
1425
return {changedOsec, getChangedSymbolAssignment(oldValues)};
1426
}
1427
1428
static bool hasRegionOverflowed(MemoryRegion *mr) {
1429
if (!mr)
1430
return false;
1431
return mr->curPos - mr->getOrigin() > mr->getLength();
1432
}
1433
1434
// Spill input sections in reverse order of address assignment to (potentially)
1435
// bring memory regions out of overflow. The size savings of a spill can only be
1436
// estimated, since general linker script arithmetic may occur afterwards.
1437
// Under-estimates may cause unnecessary spills, but over-estimates can always
1438
// be corrected on the next pass.
1439
bool LinkerScript::spillSections() {
1440
if (!config->enableNonContiguousRegions)
1441
return false;
1442
1443
bool spilled = false;
1444
for (SectionCommand *cmd : reverse(sectionCommands)) {
1445
auto *od = dyn_cast<OutputDesc>(cmd);
1446
if (!od)
1447
continue;
1448
OutputSection *osec = &od->osec;
1449
if (!osec->memRegion)
1450
continue;
1451
1452
// Input sections that have replaced a potential spill and should be removed
1453
// from their input section description.
1454
DenseSet<InputSection *> spilledInputSections;
1455
1456
for (SectionCommand *cmd : reverse(osec->commands)) {
1457
if (!hasRegionOverflowed(osec->memRegion) &&
1458
!hasRegionOverflowed(osec->lmaRegion))
1459
break;
1460
1461
auto *isd = dyn_cast<InputSectionDescription>(cmd);
1462
if (!isd)
1463
continue;
1464
for (InputSection *isec : reverse(isd->sections)) {
1465
// Potential spill locations cannot be spilled.
1466
if (isa<PotentialSpillSection>(isec))
1467
continue;
1468
1469
// Find the next potential spill location and remove it from the list.
1470
auto it = potentialSpillLists.find(isec);
1471
if (it == potentialSpillLists.end())
1472
continue;
1473
PotentialSpillList &list = it->second;
1474
PotentialSpillSection *spill = list.head;
1475
if (spill->next)
1476
list.head = spill->next;
1477
else
1478
potentialSpillLists.erase(isec);
1479
1480
// Replace the next spill location with the spilled section and adjust
1481
// its properties to match the new location. Note that the alignment of
1482
// the spill section may have diverged from the original due to e.g. a
1483
// SUBALIGN. Correct assignment requires the spill's alignment to be
1484
// used, not the original.
1485
spilledInputSections.insert(isec);
1486
*llvm::find(spill->isd->sections, spill) = isec;
1487
isec->parent = spill->parent;
1488
isec->addralign = spill->addralign;
1489
1490
// Record the (potential) reduction in the region's end position.
1491
osec->memRegion->curPos -= isec->getSize();
1492
if (osec->lmaRegion)
1493
osec->lmaRegion->curPos -= isec->getSize();
1494
1495
// Spilling continues until the end position no longer overflows the
1496
// region. Then, another round of address assignment will either confirm
1497
// the spill's success or lead to yet more spilling.
1498
if (!hasRegionOverflowed(osec->memRegion) &&
1499
!hasRegionOverflowed(osec->lmaRegion))
1500
break;
1501
}
1502
1503
// Remove any spilled input sections to complete their move.
1504
if (!spilledInputSections.empty()) {
1505
spilled = true;
1506
llvm::erase_if(isd->sections, [&](InputSection *isec) {
1507
return spilledInputSections.contains(isec);
1508
});
1509
}
1510
}
1511
}
1512
1513
return spilled;
1514
}
1515
1516
// Erase any potential spill sections that were not used.
1517
void LinkerScript::erasePotentialSpillSections() {
1518
if (potentialSpillLists.empty())
1519
return;
1520
1521
// Collect the set of input section descriptions that contain potential
1522
// spills.
1523
DenseSet<InputSectionDescription *> isds;
1524
for (const auto &[_, list] : potentialSpillLists)
1525
for (PotentialSpillSection *s = list.head; s; s = s->next)
1526
isds.insert(s->isd);
1527
1528
for (InputSectionDescription *isd : isds)
1529
llvm::erase_if(isd->sections, [](InputSection *s) {
1530
return isa<PotentialSpillSection>(s);
1531
});
1532
1533
potentialSpillLists.clear();
1534
}
1535
1536
// Creates program headers as instructed by PHDRS linker script command.
1537
SmallVector<PhdrEntry *, 0> LinkerScript::createPhdrs() {
1538
SmallVector<PhdrEntry *, 0> ret;
1539
1540
// Process PHDRS and FILEHDR keywords because they are not
1541
// real output sections and cannot be added in the following loop.
1542
for (const PhdrsCommand &cmd : phdrsCommands) {
1543
PhdrEntry *phdr = make<PhdrEntry>(cmd.type, cmd.flags.value_or(PF_R));
1544
1545
if (cmd.hasFilehdr)
1546
phdr->add(Out::elfHeader);
1547
if (cmd.hasPhdrs)
1548
phdr->add(Out::programHeaders);
1549
1550
if (cmd.lmaExpr) {
1551
phdr->p_paddr = cmd.lmaExpr().getValue();
1552
phdr->hasLMA = true;
1553
}
1554
ret.push_back(phdr);
1555
}
1556
1557
// Add output sections to program headers.
1558
for (OutputSection *sec : outputSections) {
1559
// Assign headers specified by linker script
1560
for (size_t id : getPhdrIndices(sec)) {
1561
ret[id]->add(sec);
1562
if (!phdrsCommands[id].flags)
1563
ret[id]->p_flags |= sec->getPhdrFlags();
1564
}
1565
}
1566
return ret;
1567
}
1568
1569
// Returns true if we should emit an .interp section.
1570
//
1571
// We usually do. But if PHDRS commands are given, and
1572
// no PT_INTERP is there, there's no place to emit an
1573
// .interp, so we don't do that in that case.
1574
bool LinkerScript::needsInterpSection() {
1575
if (phdrsCommands.empty())
1576
return true;
1577
for (PhdrsCommand &cmd : phdrsCommands)
1578
if (cmd.type == PT_INTERP)
1579
return true;
1580
return false;
1581
}
1582
1583
ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) {
1584
if (name == ".") {
1585
if (state)
1586
return {state->outSec, false, dot - state->outSec->addr, loc};
1587
error(loc + ": unable to get location counter value");
1588
return 0;
1589
}
1590
1591
if (Symbol *sym = symtab.find(name)) {
1592
if (auto *ds = dyn_cast<Defined>(sym)) {
1593
ExprValue v{ds->section, false, ds->value, loc};
1594
// Retain the original st_type, so that the alias will get the same
1595
// behavior in relocation processing. Any operation will reset st_type to
1596
// STT_NOTYPE.
1597
v.type = ds->type;
1598
return v;
1599
}
1600
if (isa<SharedSymbol>(sym))
1601
if (!errorOnMissingSection)
1602
return {nullptr, false, 0, loc};
1603
}
1604
1605
error(loc + ": symbol not found: " + name);
1606
return 0;
1607
}
1608
1609
// Returns the index of the segment named Name.
1610
static std::optional<size_t> getPhdrIndex(ArrayRef<PhdrsCommand> vec,
1611
StringRef name) {
1612
for (size_t i = 0; i < vec.size(); ++i)
1613
if (vec[i].name == name)
1614
return i;
1615
return std::nullopt;
1616
}
1617
1618
// Returns indices of ELF headers containing specific section. Each index is a
1619
// zero based number of ELF header listed within PHDRS {} script block.
1620
SmallVector<size_t, 0> LinkerScript::getPhdrIndices(OutputSection *cmd) {
1621
SmallVector<size_t, 0> ret;
1622
1623
for (StringRef s : cmd->phdrs) {
1624
if (std::optional<size_t> idx = getPhdrIndex(phdrsCommands, s))
1625
ret.push_back(*idx);
1626
else if (s != "NONE")
1627
error(cmd->location + ": program header '" + s +
1628
"' is not listed in PHDRS");
1629
}
1630
return ret;
1631
}
1632
1633
void LinkerScript::printMemoryUsage(raw_ostream& os) {
1634
auto printSize = [&](uint64_t size) {
1635
if ((size & 0x3fffffff) == 0)
1636
os << format_decimal(size >> 30, 10) << " GB";
1637
else if ((size & 0xfffff) == 0)
1638
os << format_decimal(size >> 20, 10) << " MB";
1639
else if ((size & 0x3ff) == 0)
1640
os << format_decimal(size >> 10, 10) << " KB";
1641
else
1642
os << " " << format_decimal(size, 10) << " B";
1643
};
1644
os << "Memory region Used Size Region Size %age Used\n";
1645
for (auto &pair : memoryRegions) {
1646
MemoryRegion *m = pair.second;
1647
uint64_t usedLength = m->curPos - m->getOrigin();
1648
os << right_justify(m->name, 16) << ": ";
1649
printSize(usedLength);
1650
uint64_t length = m->getLength();
1651
if (length != 0) {
1652
printSize(length);
1653
double percent = usedLength * 100.0 / length;
1654
os << " " << format("%6.2f%%", percent);
1655
}
1656
os << '\n';
1657
}
1658
}
1659
1660
void LinkerScript::recordError(const Twine &msg) {
1661
auto &str = recordedErrors.emplace_back();
1662
msg.toVector(str);
1663
}
1664
1665
static void checkMemoryRegion(const MemoryRegion *region,
1666
const OutputSection *osec, uint64_t addr) {
1667
uint64_t osecEnd = addr + osec->size;
1668
uint64_t regionEnd = region->getOrigin() + region->getLength();
1669
if (osecEnd > regionEnd) {
1670
error("section '" + osec->name + "' will not fit in region '" +
1671
region->name + "': overflowed by " + Twine(osecEnd - regionEnd) +
1672
" bytes");
1673
}
1674
}
1675
1676
void LinkerScript::checkFinalScriptConditions() const {
1677
for (StringRef err : recordedErrors)
1678
errorOrWarn(err);
1679
for (const OutputSection *sec : outputSections) {
1680
if (const MemoryRegion *memoryRegion = sec->memRegion)
1681
checkMemoryRegion(memoryRegion, sec, sec->addr);
1682
if (const MemoryRegion *lmaRegion = sec->lmaRegion)
1683
checkMemoryRegion(lmaRegion, sec, sec->getLMA());
1684
}
1685
}
1686
1687
void LinkerScript::addScriptReferencedSymbolsToSymTable() {
1688
// Some symbols (such as __ehdr_start) are defined lazily only when there
1689
// are undefined symbols for them, so we add these to trigger that logic.
1690
auto reference = [](StringRef name) {
1691
Symbol *sym = symtab.addUnusedUndefined(name);
1692
sym->isUsedInRegularObj = true;
1693
sym->referenced = true;
1694
};
1695
for (StringRef name : referencedSymbols)
1696
reference(name);
1697
1698
// Keeps track of references from which PROVIDE symbols have been added to the
1699
// symbol table.
1700
DenseSet<StringRef> added;
1701
SmallVector<const SmallVector<StringRef, 0> *, 0> symRefsVec;
1702
for (const auto &[name, symRefs] : provideMap)
1703
if (LinkerScript::shouldAddProvideSym(name) && added.insert(name).second)
1704
symRefsVec.push_back(&symRefs);
1705
while (symRefsVec.size()) {
1706
for (StringRef name : *symRefsVec.pop_back_val()) {
1707
reference(name);
1708
// Prevent the symbol from being discarded by --gc-sections.
1709
script->referencedSymbols.push_back(name);
1710
auto it = script->provideMap.find(name);
1711
if (it != script->provideMap.end() &&
1712
LinkerScript::shouldAddProvideSym(name) &&
1713
added.insert(name).second) {
1714
symRefsVec.push_back(&it->second);
1715
}
1716
}
1717
}
1718
}
1719
1720
bool LinkerScript::shouldAddProvideSym(StringRef symName) {
1721
Symbol *sym = symtab.find(symName);
1722
return sym && !sym->isDefined() && !sym->isCommon();
1723
}
1724
1725