Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lld/ELF/Relocations.cpp
34878 views
1
//===- Relocations.cpp ----------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains platform-independent functions to process relocations.
10
// I'll describe the overview of this file here.
11
//
12
// Simple relocations are easy to handle for the linker. For example,
13
// for R_X86_64_PC64 relocs, the linker just has to fix up locations
14
// with the relative offsets to the target symbols. It would just be
15
// reading records from relocation sections and applying them to output.
16
//
17
// But not all relocations are that easy to handle. For example, for
18
// R_386_GOTOFF relocs, the linker has to create new GOT entries for
19
// symbols if they don't exist, and fix up locations with GOT entry
20
// offsets from the beginning of GOT section. So there is more than
21
// fixing addresses in relocation processing.
22
//
23
// ELF defines a large number of complex relocations.
24
//
25
// The functions in this file analyze relocations and do whatever needs
26
// to be done. It includes, but not limited to, the following.
27
//
28
// - create GOT/PLT entries
29
// - create new relocations in .dynsym to let the dynamic linker resolve
30
// them at runtime (since ELF supports dynamic linking, not all
31
// relocations can be resolved at link-time)
32
// - create COPY relocs and reserve space in .bss
33
// - replace expensive relocs (in terms of runtime cost) with cheap ones
34
// - error out infeasible combinations such as PIC and non-relative relocs
35
//
36
// Note that the functions in this file don't actually apply relocations
37
// because it doesn't know about the output file nor the output file buffer.
38
// It instead stores Relocation objects to InputSection's Relocations
39
// vector to let it apply later in InputSection::writeTo.
40
//
41
//===----------------------------------------------------------------------===//
42
43
#include "Relocations.h"
44
#include "Config.h"
45
#include "InputFiles.h"
46
#include "LinkerScript.h"
47
#include "OutputSections.h"
48
#include "SymbolTable.h"
49
#include "Symbols.h"
50
#include "SyntheticSections.h"
51
#include "Target.h"
52
#include "Thunks.h"
53
#include "lld/Common/ErrorHandler.h"
54
#include "lld/Common/Memory.h"
55
#include "llvm/ADT/SmallSet.h"
56
#include "llvm/BinaryFormat/ELF.h"
57
#include "llvm/Demangle/Demangle.h"
58
#include "llvm/Support/Endian.h"
59
#include <algorithm>
60
61
using namespace llvm;
62
using namespace llvm::ELF;
63
using namespace llvm::object;
64
using namespace llvm::support::endian;
65
using namespace lld;
66
using namespace lld::elf;
67
68
static std::optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
69
for (SectionCommand *cmd : script->sectionCommands)
70
if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
71
if (assign->sym == &sym)
72
return assign->location;
73
return std::nullopt;
74
}
75
76
static std::string getDefinedLocation(const Symbol &sym) {
77
const char msg[] = "\n>>> defined in ";
78
if (sym.file)
79
return msg + toString(sym.file);
80
if (std::optional<std::string> loc = getLinkerScriptLocation(sym))
81
return msg + *loc;
82
return "";
83
}
84
85
// Construct a message in the following format.
86
//
87
// >>> defined in /home/alice/src/foo.o
88
// >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
89
// >>> /home/alice/src/bar.o:(.text+0x1)
90
static std::string getLocation(InputSectionBase &s, const Symbol &sym,
91
uint64_t off) {
92
std::string msg = getDefinedLocation(sym) + "\n>>> referenced by ";
93
std::string src = s.getSrcMsg(sym, off);
94
if (!src.empty())
95
msg += src + "\n>>> ";
96
return msg + s.getObjMsg(off);
97
}
98
99
void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v,
100
int64_t min, uint64_t max) {
101
ErrorPlace errPlace = getErrorPlace(loc);
102
std::string hint;
103
if (rel.sym) {
104
if (!rel.sym->isSection())
105
hint = "; references '" + lld::toString(*rel.sym) + '\'';
106
else if (auto *d = dyn_cast<Defined>(rel.sym))
107
hint = ("; references section '" + d->section->name + "'").str();
108
109
if (config->emachine == EM_X86_64 && rel.type == R_X86_64_PC32 &&
110
rel.sym->getOutputSection() &&
111
(rel.sym->getOutputSection()->flags & SHF_X86_64_LARGE)) {
112
hint += "; R_X86_64_PC32 should not reference a section marked "
113
"SHF_X86_64_LARGE";
114
}
115
}
116
if (!errPlace.srcLoc.empty())
117
hint += "\n>>> referenced by " + errPlace.srcLoc;
118
if (rel.sym && !rel.sym->isSection())
119
hint += getDefinedLocation(*rel.sym);
120
121
if (errPlace.isec && errPlace.isec->name.starts_with(".debug"))
122
hint += "; consider recompiling with -fdebug-types-section to reduce size "
123
"of debug sections";
124
125
errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) +
126
" out of range: " + v.str() + " is not in [" + Twine(min).str() +
127
", " + Twine(max).str() + "]" + hint);
128
}
129
130
void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym,
131
const Twine &msg) {
132
ErrorPlace errPlace = getErrorPlace(loc);
133
std::string hint;
134
if (!sym.getName().empty())
135
hint =
136
"; references '" + lld::toString(sym) + '\'' + getDefinedLocation(sym);
137
errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) +
138
" is not in [" + Twine(llvm::minIntN(n)) + ", " +
139
Twine(llvm::maxIntN(n)) + "]" + hint);
140
}
141
142
// Build a bitmask with one bit set for each 64 subset of RelExpr.
143
static constexpr uint64_t buildMask() { return 0; }
144
145
template <typename... Tails>
146
static constexpr uint64_t buildMask(int head, Tails... tails) {
147
return (0 <= head && head < 64 ? uint64_t(1) << head : 0) |
148
buildMask(tails...);
149
}
150
151
// Return true if `Expr` is one of `Exprs`.
152
// There are more than 64 but less than 128 RelExprs, so we divide the set of
153
// exprs into [0, 64) and [64, 128) and represent each range as a constant
154
// 64-bit mask. Then we decide which mask to test depending on the value of
155
// expr and use a simple shift and bitwise-and to test for membership.
156
template <RelExpr... Exprs> static bool oneof(RelExpr expr) {
157
assert(0 <= expr && (int)expr < 128 &&
158
"RelExpr is too large for 128-bit mask!");
159
160
if (expr >= 64)
161
return (uint64_t(1) << (expr - 64)) & buildMask((Exprs - 64)...);
162
return (uint64_t(1) << expr) & buildMask(Exprs...);
163
}
164
165
static RelType getMipsPairType(RelType type, bool isLocal) {
166
switch (type) {
167
case R_MIPS_HI16:
168
return R_MIPS_LO16;
169
case R_MIPS_GOT16:
170
// In case of global symbol, the R_MIPS_GOT16 relocation does not
171
// have a pair. Each global symbol has a unique entry in the GOT
172
// and a corresponding instruction with help of the R_MIPS_GOT16
173
// relocation loads an address of the symbol. In case of local
174
// symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
175
// the high 16 bits of the symbol's value. A paired R_MIPS_LO16
176
// relocations handle low 16 bits of the address. That allows
177
// to allocate only one GOT entry for every 64 KBytes of local data.
178
return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
179
case R_MICROMIPS_GOT16:
180
return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
181
case R_MIPS_PCHI16:
182
return R_MIPS_PCLO16;
183
case R_MICROMIPS_HI16:
184
return R_MICROMIPS_LO16;
185
default:
186
return R_MIPS_NONE;
187
}
188
}
189
190
// True if non-preemptable symbol always has the same value regardless of where
191
// the DSO is loaded.
192
static bool isAbsolute(const Symbol &sym) {
193
if (sym.isUndefWeak())
194
return true;
195
if (const auto *dr = dyn_cast<Defined>(&sym))
196
return dr->section == nullptr; // Absolute symbol.
197
return false;
198
}
199
200
static bool isAbsoluteValue(const Symbol &sym) {
201
return isAbsolute(sym) || sym.isTls();
202
}
203
204
// Returns true if Expr refers a PLT entry.
205
static bool needsPlt(RelExpr expr) {
206
return oneof<R_PLT, R_PLT_PC, R_PLT_GOTREL, R_PLT_GOTPLT, R_GOTPLT_GOTREL,
207
R_GOTPLT_PC, R_LOONGARCH_PLT_PAGE_PC, R_PPC32_PLTREL,
208
R_PPC64_CALL_PLT>(expr);
209
}
210
211
bool lld::elf::needsGot(RelExpr expr) {
212
return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
213
R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT,
214
R_AARCH64_GOT_PAGE, R_LOONGARCH_GOT, R_LOONGARCH_GOT_PAGE_PC>(
215
expr);
216
}
217
218
// True if this expression is of the form Sym - X, where X is a position in the
219
// file (PC, or GOT for example).
220
static bool isRelExpr(RelExpr expr) {
221
return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_ARM_PCA, R_MIPS_GOTREL,
222
R_PPC64_CALL, R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC,
223
R_RELAX_GOT_PC, R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC,
224
R_LOONGARCH_PAGE_PC>(expr);
225
}
226
227
static RelExpr toPlt(RelExpr expr) {
228
switch (expr) {
229
case R_LOONGARCH_PAGE_PC:
230
return R_LOONGARCH_PLT_PAGE_PC;
231
case R_PPC64_CALL:
232
return R_PPC64_CALL_PLT;
233
case R_PC:
234
return R_PLT_PC;
235
case R_ABS:
236
return R_PLT;
237
case R_GOTREL:
238
return R_PLT_GOTREL;
239
default:
240
return expr;
241
}
242
}
243
244
static RelExpr fromPlt(RelExpr expr) {
245
// We decided not to use a plt. Optimize a reference to the plt to a
246
// reference to the symbol itself.
247
switch (expr) {
248
case R_PLT_PC:
249
case R_PPC32_PLTREL:
250
return R_PC;
251
case R_LOONGARCH_PLT_PAGE_PC:
252
return R_LOONGARCH_PAGE_PC;
253
case R_PPC64_CALL_PLT:
254
return R_PPC64_CALL;
255
case R_PLT:
256
return R_ABS;
257
case R_PLT_GOTPLT:
258
return R_GOTPLTREL;
259
case R_PLT_GOTREL:
260
return R_GOTREL;
261
default:
262
return expr;
263
}
264
}
265
266
// Returns true if a given shared symbol is in a read-only segment in a DSO.
267
template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
268
using Elf_Phdr = typename ELFT::Phdr;
269
270
// Determine if the symbol is read-only by scanning the DSO's program headers.
271
const auto &file = cast<SharedFile>(*ss.file);
272
for (const Elf_Phdr &phdr :
273
check(file.template getObj<ELFT>().program_headers()))
274
if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
275
!(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
276
ss.value < phdr.p_vaddr + phdr.p_memsz)
277
return true;
278
return false;
279
}
280
281
// Returns symbols at the same offset as a given symbol, including SS itself.
282
//
283
// If two or more symbols are at the same offset, and at least one of
284
// them are copied by a copy relocation, all of them need to be copied.
285
// Otherwise, they would refer to different places at runtime.
286
template <class ELFT>
287
static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
288
using Elf_Sym = typename ELFT::Sym;
289
290
const auto &file = cast<SharedFile>(*ss.file);
291
292
SmallSet<SharedSymbol *, 4> ret;
293
for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
294
if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
295
s.getType() == STT_TLS || s.st_value != ss.value)
296
continue;
297
StringRef name = check(s.getName(file.getStringTable()));
298
Symbol *sym = symtab.find(name);
299
if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
300
ret.insert(alias);
301
}
302
303
// The loop does not check SHT_GNU_verneed, so ret does not contain
304
// non-default version symbols. If ss has a non-default version, ret won't
305
// contain ss. Just add ss unconditionally. If a non-default version alias is
306
// separately copy relocated, it and ss will have different addresses.
307
// Fortunately this case is impractical and fails with GNU ld as well.
308
ret.insert(&ss);
309
return ret;
310
}
311
312
// When a symbol is copy relocated or we create a canonical plt entry, it is
313
// effectively a defined symbol. In the case of copy relocation the symbol is
314
// in .bss and in the case of a canonical plt entry it is in .plt. This function
315
// replaces the existing symbol with a Defined pointing to the appropriate
316
// location.
317
static void replaceWithDefined(Symbol &sym, SectionBase &sec, uint64_t value,
318
uint64_t size) {
319
Symbol old = sym;
320
Defined(sym.file, StringRef(), sym.binding, sym.stOther, sym.type, value,
321
size, &sec)
322
.overwrite(sym);
323
324
sym.versionId = old.versionId;
325
sym.exportDynamic = true;
326
sym.isUsedInRegularObj = true;
327
// A copy relocated alias may need a GOT entry.
328
sym.flags.store(old.flags.load(std::memory_order_relaxed) & NEEDS_GOT,
329
std::memory_order_relaxed);
330
}
331
332
// Reserve space in .bss or .bss.rel.ro for copy relocation.
333
//
334
// The copy relocation is pretty much a hack. If you use a copy relocation
335
// in your program, not only the symbol name but the symbol's size, RW/RO
336
// bit and alignment become part of the ABI. In addition to that, if the
337
// symbol has aliases, the aliases become part of the ABI. That's subtle,
338
// but if you violate that implicit ABI, that can cause very counter-
339
// intuitive consequences.
340
//
341
// So, what is the copy relocation? It's for linking non-position
342
// independent code to DSOs. In an ideal world, all references to data
343
// exported by DSOs should go indirectly through GOT. But if object files
344
// are compiled as non-PIC, all data references are direct. There is no
345
// way for the linker to transform the code to use GOT, as machine
346
// instructions are already set in stone in object files. This is where
347
// the copy relocation takes a role.
348
//
349
// A copy relocation instructs the dynamic linker to copy data from a DSO
350
// to a specified address (which is usually in .bss) at load-time. If the
351
// static linker (that's us) finds a direct data reference to a DSO
352
// symbol, it creates a copy relocation, so that the symbol can be
353
// resolved as if it were in .bss rather than in a DSO.
354
//
355
// As you can see in this function, we create a copy relocation for the
356
// dynamic linker, and the relocation contains not only symbol name but
357
// various other information about the symbol. So, such attributes become a
358
// part of the ABI.
359
//
360
// Note for application developers: I can give you a piece of advice if
361
// you are writing a shared library. You probably should export only
362
// functions from your library. You shouldn't export variables.
363
//
364
// As an example what can happen when you export variables without knowing
365
// the semantics of copy relocations, assume that you have an exported
366
// variable of type T. It is an ABI-breaking change to add new members at
367
// end of T even though doing that doesn't change the layout of the
368
// existing members. That's because the space for the new members are not
369
// reserved in .bss unless you recompile the main program. That means they
370
// are likely to overlap with other data that happens to be laid out next
371
// to the variable in .bss. This kind of issue is sometimes very hard to
372
// debug. What's a solution? Instead of exporting a variable V from a DSO,
373
// define an accessor getV().
374
template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) {
375
// Copy relocation against zero-sized symbol doesn't make sense.
376
uint64_t symSize = ss.getSize();
377
if (symSize == 0 || ss.alignment == 0)
378
fatal("cannot create a copy relocation for symbol " + toString(ss));
379
380
// See if this symbol is in a read-only segment. If so, preserve the symbol's
381
// memory protection by reserving space in the .bss.rel.ro section.
382
bool isRO = isReadOnly<ELFT>(ss);
383
BssSection *sec =
384
make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
385
OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent();
386
387
// At this point, sectionBases has been migrated to sections. Append sec to
388
// sections.
389
if (osec->commands.empty() ||
390
!isa<InputSectionDescription>(osec->commands.back()))
391
osec->commands.push_back(make<InputSectionDescription>(""));
392
auto *isd = cast<InputSectionDescription>(osec->commands.back());
393
isd->sections.push_back(sec);
394
osec->commitSection(sec);
395
396
// Look through the DSO's dynamic symbol table for aliases and create a
397
// dynamic symbol for each one. This causes the copy relocation to correctly
398
// interpose any aliases.
399
for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
400
replaceWithDefined(*sym, *sec, 0, sym->size);
401
402
mainPart->relaDyn->addSymbolReloc(target->copyRel, *sec, 0, ss);
403
}
404
405
// .eh_frame sections are mergeable input sections, so their input
406
// offsets are not linearly mapped to output section. For each input
407
// offset, we need to find a section piece containing the offset and
408
// add the piece's base address to the input offset to compute the
409
// output offset. That isn't cheap.
410
//
411
// This class is to speed up the offset computation. When we process
412
// relocations, we access offsets in the monotonically increasing
413
// order. So we can optimize for that access pattern.
414
//
415
// For sections other than .eh_frame, this class doesn't do anything.
416
namespace {
417
class OffsetGetter {
418
public:
419
OffsetGetter() = default;
420
explicit OffsetGetter(InputSectionBase &sec) {
421
if (auto *eh = dyn_cast<EhInputSection>(&sec)) {
422
cies = eh->cies;
423
fdes = eh->fdes;
424
i = cies.begin();
425
j = fdes.begin();
426
}
427
}
428
429
// Translates offsets in input sections to offsets in output sections.
430
// Given offset must increase monotonically. We assume that Piece is
431
// sorted by inputOff.
432
uint64_t get(uint64_t off) {
433
if (cies.empty())
434
return off;
435
436
while (j != fdes.end() && j->inputOff <= off)
437
++j;
438
auto it = j;
439
if (j == fdes.begin() || j[-1].inputOff + j[-1].size <= off) {
440
while (i != cies.end() && i->inputOff <= off)
441
++i;
442
if (i == cies.begin() || i[-1].inputOff + i[-1].size <= off)
443
fatal(".eh_frame: relocation is not in any piece");
444
it = i;
445
}
446
447
// Offset -1 means that the piece is dead (i.e. garbage collected).
448
if (it[-1].outputOff == -1)
449
return -1;
450
return it[-1].outputOff + (off - it[-1].inputOff);
451
}
452
453
private:
454
ArrayRef<EhSectionPiece> cies, fdes;
455
ArrayRef<EhSectionPiece>::iterator i, j;
456
};
457
458
// This class encapsulates states needed to scan relocations for one
459
// InputSectionBase.
460
class RelocationScanner {
461
public:
462
template <class ELFT>
463
void scanSection(InputSectionBase &s, bool isEH = false);
464
465
private:
466
InputSectionBase *sec;
467
OffsetGetter getter;
468
469
// End of relocations, used by Mips/PPC64.
470
const void *end = nullptr;
471
472
template <class RelTy> RelType getMipsN32RelType(RelTy *&rel) const;
473
template <class ELFT, class RelTy>
474
int64_t computeMipsAddend(const RelTy &rel, RelExpr expr, bool isLocal) const;
475
bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
476
uint64_t relOff) const;
477
void processAux(RelExpr expr, RelType type, uint64_t offset, Symbol &sym,
478
int64_t addend) const;
479
template <class ELFT, class RelTy>
480
void scanOne(typename Relocs<RelTy>::const_iterator &i);
481
template <class ELFT, class RelTy> void scan(Relocs<RelTy> rels);
482
};
483
} // namespace
484
485
// MIPS has an odd notion of "paired" relocations to calculate addends.
486
// For example, if a relocation is of R_MIPS_HI16, there must be a
487
// R_MIPS_LO16 relocation after that, and an addend is calculated using
488
// the two relocations.
489
template <class ELFT, class RelTy>
490
int64_t RelocationScanner::computeMipsAddend(const RelTy &rel, RelExpr expr,
491
bool isLocal) const {
492
if (expr == R_MIPS_GOTREL && isLocal)
493
return sec->getFile<ELFT>()->mipsGp0;
494
495
// The ABI says that the paired relocation is used only for REL.
496
// See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
497
// This generalises to relocation types with implicit addends.
498
if (RelTy::HasAddend)
499
return 0;
500
501
RelType type = rel.getType(config->isMips64EL);
502
uint32_t pairTy = getMipsPairType(type, isLocal);
503
if (pairTy == R_MIPS_NONE)
504
return 0;
505
506
const uint8_t *buf = sec->content().data();
507
uint32_t symIndex = rel.getSymbol(config->isMips64EL);
508
509
// To make things worse, paired relocations might not be contiguous in
510
// the relocation table, so we need to do linear search. *sigh*
511
for (const RelTy *ri = &rel; ri != static_cast<const RelTy *>(end); ++ri)
512
if (ri->getType(config->isMips64EL) == pairTy &&
513
ri->getSymbol(config->isMips64EL) == symIndex)
514
return target->getImplicitAddend(buf + ri->r_offset, pairTy);
515
516
warn("can't find matching " + toString(pairTy) + " relocation for " +
517
toString(type));
518
return 0;
519
}
520
521
// Custom error message if Sym is defined in a discarded section.
522
template <class ELFT>
523
static std::string maybeReportDiscarded(Undefined &sym) {
524
auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
525
if (!file || !sym.discardedSecIdx)
526
return "";
527
ArrayRef<typename ELFT::Shdr> objSections =
528
file->template getELFShdrs<ELFT>();
529
530
std::string msg;
531
if (sym.type == ELF::STT_SECTION) {
532
msg = "relocation refers to a discarded section: ";
533
msg += CHECK(
534
file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file);
535
} else {
536
msg = "relocation refers to a symbol in a discarded section: " +
537
toString(sym);
538
}
539
msg += "\n>>> defined in " + toString(file);
540
541
Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
542
if (elfSec.sh_type != SHT_GROUP)
543
return msg;
544
545
// If the discarded section is a COMDAT.
546
StringRef signature = file->getShtGroupSignature(objSections, elfSec);
547
if (const InputFile *prevailing =
548
symtab.comdatGroups.lookup(CachedHashStringRef(signature))) {
549
msg += "\n>>> section group signature: " + signature.str() +
550
"\n>>> prevailing definition is in " + toString(prevailing);
551
if (sym.nonPrevailing) {
552
msg += "\n>>> or the symbol in the prevailing group had STB_WEAK "
553
"binding and the symbol in a non-prevailing group had STB_GLOBAL "
554
"binding. Mixing groups with STB_WEAK and STB_GLOBAL binding "
555
"signature is not supported";
556
}
557
}
558
return msg;
559
}
560
561
namespace {
562
// Undefined diagnostics are collected in a vector and emitted once all of
563
// them are known, so that some postprocessing on the list of undefined symbols
564
// can happen before lld emits diagnostics.
565
struct UndefinedDiag {
566
Undefined *sym;
567
struct Loc {
568
InputSectionBase *sec;
569
uint64_t offset;
570
};
571
std::vector<Loc> locs;
572
bool isWarning;
573
};
574
575
std::vector<UndefinedDiag> undefs;
576
std::mutex relocMutex;
577
}
578
579
// Check whether the definition name def is a mangled function name that matches
580
// the reference name ref.
581
static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
582
llvm::ItaniumPartialDemangler d;
583
std::string name = def.str();
584
if (d.partialDemangle(name.c_str()))
585
return false;
586
char *buf = d.getFunctionName(nullptr, nullptr);
587
if (!buf)
588
return false;
589
bool ret = ref == buf;
590
free(buf);
591
return ret;
592
}
593
594
// Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
595
// the suggested symbol, which is either in the symbol table, or in the same
596
// file of sym.
597
static const Symbol *getAlternativeSpelling(const Undefined &sym,
598
std::string &pre_hint,
599
std::string &post_hint) {
600
DenseMap<StringRef, const Symbol *> map;
601
if (sym.file && sym.file->kind() == InputFile::ObjKind) {
602
auto *file = cast<ELFFileBase>(sym.file);
603
// If sym is a symbol defined in a discarded section, maybeReportDiscarded()
604
// will give an error. Don't suggest an alternative spelling.
605
if (file && sym.discardedSecIdx != 0 &&
606
file->getSections()[sym.discardedSecIdx] == &InputSection::discarded)
607
return nullptr;
608
609
// Build a map of local defined symbols.
610
for (const Symbol *s : sym.file->getSymbols())
611
if (s->isLocal() && s->isDefined() && !s->getName().empty())
612
map.try_emplace(s->getName(), s);
613
}
614
615
auto suggest = [&](StringRef newName) -> const Symbol * {
616
// If defined locally.
617
if (const Symbol *s = map.lookup(newName))
618
return s;
619
620
// If in the symbol table and not undefined.
621
if (const Symbol *s = symtab.find(newName))
622
if (!s->isUndefined())
623
return s;
624
625
return nullptr;
626
};
627
628
// This loop enumerates all strings of Levenshtein distance 1 as typo
629
// correction candidates and suggests the one that exists as a non-undefined
630
// symbol.
631
StringRef name = sym.getName();
632
for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
633
// Insert a character before name[i].
634
std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
635
for (char c = '0'; c <= 'z'; ++c) {
636
newName[i] = c;
637
if (const Symbol *s = suggest(newName))
638
return s;
639
}
640
if (i == e)
641
break;
642
643
// Substitute name[i].
644
newName = std::string(name);
645
for (char c = '0'; c <= 'z'; ++c) {
646
newName[i] = c;
647
if (const Symbol *s = suggest(newName))
648
return s;
649
}
650
651
// Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
652
// common.
653
if (i + 1 < e) {
654
newName[i] = name[i + 1];
655
newName[i + 1] = name[i];
656
if (const Symbol *s = suggest(newName))
657
return s;
658
}
659
660
// Delete name[i].
661
newName = (name.substr(0, i) + name.substr(i + 1)).str();
662
if (const Symbol *s = suggest(newName))
663
return s;
664
}
665
666
// Case mismatch, e.g. Foo vs FOO.
667
for (auto &it : map)
668
if (name.equals_insensitive(it.first))
669
return it.second;
670
for (Symbol *sym : symtab.getSymbols())
671
if (!sym->isUndefined() && name.equals_insensitive(sym->getName()))
672
return sym;
673
674
// The reference may be a mangled name while the definition is not. Suggest a
675
// missing extern "C".
676
if (name.starts_with("_Z")) {
677
std::string buf = name.str();
678
llvm::ItaniumPartialDemangler d;
679
if (!d.partialDemangle(buf.c_str()))
680
if (char *buf = d.getFunctionName(nullptr, nullptr)) {
681
const Symbol *s = suggest(buf);
682
free(buf);
683
if (s) {
684
pre_hint = ": extern \"C\" ";
685
return s;
686
}
687
}
688
} else {
689
const Symbol *s = nullptr;
690
for (auto &it : map)
691
if (canSuggestExternCForCXX(name, it.first)) {
692
s = it.second;
693
break;
694
}
695
if (!s)
696
for (Symbol *sym : symtab.getSymbols())
697
if (canSuggestExternCForCXX(name, sym->getName())) {
698
s = sym;
699
break;
700
}
701
if (s) {
702
pre_hint = " to declare ";
703
post_hint = " as extern \"C\"?";
704
return s;
705
}
706
}
707
708
return nullptr;
709
}
710
711
static void reportUndefinedSymbol(const UndefinedDiag &undef,
712
bool correctSpelling) {
713
Undefined &sym = *undef.sym;
714
715
auto visibility = [&]() -> std::string {
716
switch (sym.visibility()) {
717
case STV_INTERNAL:
718
return "internal ";
719
case STV_HIDDEN:
720
return "hidden ";
721
case STV_PROTECTED:
722
return "protected ";
723
default:
724
return "";
725
}
726
};
727
728
std::string msg;
729
switch (config->ekind) {
730
case ELF32LEKind:
731
msg = maybeReportDiscarded<ELF32LE>(sym);
732
break;
733
case ELF32BEKind:
734
msg = maybeReportDiscarded<ELF32BE>(sym);
735
break;
736
case ELF64LEKind:
737
msg = maybeReportDiscarded<ELF64LE>(sym);
738
break;
739
case ELF64BEKind:
740
msg = maybeReportDiscarded<ELF64BE>(sym);
741
break;
742
default:
743
llvm_unreachable("");
744
}
745
if (msg.empty())
746
msg = "undefined " + visibility() + "symbol: " + toString(sym);
747
748
const size_t maxUndefReferences = 3;
749
size_t i = 0;
750
for (UndefinedDiag::Loc l : undef.locs) {
751
if (i >= maxUndefReferences)
752
break;
753
InputSectionBase &sec = *l.sec;
754
uint64_t offset = l.offset;
755
756
msg += "\n>>> referenced by ";
757
// In the absence of line number information, utilize DW_TAG_variable (if
758
// present) for the enclosing symbol (e.g. var in `int *a[] = {&undef};`).
759
Symbol *enclosing = sec.getEnclosingSymbol(offset);
760
std::string src = sec.getSrcMsg(enclosing ? *enclosing : sym, offset);
761
if (!src.empty())
762
msg += src + "\n>>> ";
763
msg += sec.getObjMsg(offset);
764
i++;
765
}
766
767
if (i < undef.locs.size())
768
msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
769
.str();
770
771
if (correctSpelling) {
772
std::string pre_hint = ": ", post_hint;
773
if (const Symbol *corrected =
774
getAlternativeSpelling(sym, pre_hint, post_hint)) {
775
msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint;
776
if (corrected->file)
777
msg += "\n>>> defined in: " + toString(corrected->file);
778
}
779
}
780
781
if (sym.getName().starts_with("_ZTV"))
782
msg +=
783
"\n>>> the vtable symbol may be undefined because the class is missing "
784
"its key function (see https://lld.llvm.org/missingkeyfunction)";
785
if (config->gcSections && config->zStartStopGC &&
786
sym.getName().starts_with("__start_")) {
787
msg += "\n>>> the encapsulation symbol needs to be retained under "
788
"--gc-sections properly; consider -z nostart-stop-gc "
789
"(see https://lld.llvm.org/ELF/start-stop-gc)";
790
}
791
792
if (undef.isWarning)
793
warn(msg);
794
else
795
error(msg, ErrorTag::SymbolNotFound, {sym.getName()});
796
}
797
798
void elf::reportUndefinedSymbols() {
799
// Find the first "undefined symbol" diagnostic for each diagnostic, and
800
// collect all "referenced from" lines at the first diagnostic.
801
DenseMap<Symbol *, UndefinedDiag *> firstRef;
802
for (UndefinedDiag &undef : undefs) {
803
assert(undef.locs.size() == 1);
804
if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
805
canon->locs.push_back(undef.locs[0]);
806
undef.locs.clear();
807
} else
808
firstRef[undef.sym] = &undef;
809
}
810
811
// Enable spell corrector for the first 2 diagnostics.
812
for (const auto &[i, undef] : llvm::enumerate(undefs))
813
if (!undef.locs.empty())
814
reportUndefinedSymbol(undef, i < 2);
815
undefs.clear();
816
}
817
818
// Report an undefined symbol if necessary.
819
// Returns true if the undefined symbol will produce an error message.
820
static bool maybeReportUndefined(Undefined &sym, InputSectionBase &sec,
821
uint64_t offset) {
822
std::lock_guard<std::mutex> lock(relocMutex);
823
// If versioned, issue an error (even if the symbol is weak) because we don't
824
// know the defining filename which is required to construct a Verneed entry.
825
if (sym.hasVersionSuffix) {
826
undefs.push_back({&sym, {{&sec, offset}}, false});
827
return true;
828
}
829
if (sym.isWeak())
830
return false;
831
832
bool canBeExternal = !sym.isLocal() && sym.visibility() == STV_DEFAULT;
833
if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
834
return false;
835
836
// clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
837
// which references a switch table in a discarded .rodata/.text section. The
838
// .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
839
// spec says references from outside the group to a STB_LOCAL symbol are not
840
// allowed. Work around the bug.
841
//
842
// PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
843
// because .LC0-.LTOC is not representable if the two labels are in different
844
// .got2
845
if (sym.discardedSecIdx != 0 && (sec.name == ".got2" || sec.name == ".toc"))
846
return false;
847
848
bool isWarning =
849
(config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
850
config->noinhibitExec;
851
undefs.push_back({&sym, {{&sec, offset}}, isWarning});
852
return !isWarning;
853
}
854
855
// MIPS N32 ABI treats series of successive relocations with the same offset
856
// as a single relocation. The similar approach used by N64 ABI, but this ABI
857
// packs all relocations into the single relocation record. Here we emulate
858
// this for the N32 ABI. Iterate over relocation with the same offset and put
859
// theirs types into the single bit-set.
860
template <class RelTy>
861
RelType RelocationScanner::getMipsN32RelType(RelTy *&rel) const {
862
RelType type = 0;
863
uint64_t offset = rel->r_offset;
864
865
int n = 0;
866
while (rel != static_cast<const RelTy *>(end) && rel->r_offset == offset)
867
type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
868
return type;
869
}
870
871
template <bool shard = false>
872
static void addRelativeReloc(InputSectionBase &isec, uint64_t offsetInSec,
873
Symbol &sym, int64_t addend, RelExpr expr,
874
RelType type) {
875
Partition &part = isec.getPartition();
876
877
if (sym.isTagged()) {
878
std::lock_guard<std::mutex> lock(relocMutex);
879
part.relaDyn->addRelativeReloc(target->relativeRel, isec, offsetInSec, sym,
880
addend, type, expr);
881
// With MTE globals, we always want to derive the address tag by `ldg`-ing
882
// the symbol. When we have a RELATIVE relocation though, we no longer have
883
// a reference to the symbol. Because of this, when we have an addend that
884
// puts the result of the RELATIVE relocation out-of-bounds of the symbol
885
// (e.g. the addend is outside of [0, sym.getSize()]), the AArch64 MemtagABI
886
// says we should store the offset to the start of the symbol in the target
887
// field. This is described in further detail in:
888
// https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#841extended-semantics-of-r_aarch64_relative
889
if (addend < 0 || static_cast<uint64_t>(addend) >= sym.getSize())
890
isec.relocations.push_back({expr, type, offsetInSec, addend, &sym});
891
return;
892
}
893
894
// Add a relative relocation. If relrDyn section is enabled, and the
895
// relocation offset is guaranteed to be even, add the relocation to
896
// the relrDyn section, otherwise add it to the relaDyn section.
897
// relrDyn sections don't support odd offsets. Also, relrDyn sections
898
// don't store the addend values, so we must write it to the relocated
899
// address.
900
if (part.relrDyn && isec.addralign >= 2 && offsetInSec % 2 == 0) {
901
isec.addReloc({expr, type, offsetInSec, addend, &sym});
902
if (shard)
903
part.relrDyn->relocsVec[parallel::getThreadIndex()].push_back(
904
{&isec, isec.relocs().size() - 1});
905
else
906
part.relrDyn->relocs.push_back({&isec, isec.relocs().size() - 1});
907
return;
908
}
909
part.relaDyn->addRelativeReloc<shard>(target->relativeRel, isec, offsetInSec,
910
sym, addend, type, expr);
911
}
912
913
template <class PltSection, class GotPltSection>
914
static void addPltEntry(PltSection &plt, GotPltSection &gotPlt,
915
RelocationBaseSection &rel, RelType type, Symbol &sym) {
916
plt.addEntry(sym);
917
gotPlt.addEntry(sym);
918
rel.addReloc({type, &gotPlt, sym.getGotPltOffset(),
919
sym.isPreemptible ? DynamicReloc::AgainstSymbol
920
: DynamicReloc::AddendOnlyWithTargetVA,
921
sym, 0, R_ABS});
922
}
923
924
void elf::addGotEntry(Symbol &sym) {
925
in.got->addEntry(sym);
926
uint64_t off = sym.getGotOffset();
927
928
// If preemptible, emit a GLOB_DAT relocation.
929
if (sym.isPreemptible) {
930
mainPart->relaDyn->addReloc({target->gotRel, in.got.get(), off,
931
DynamicReloc::AgainstSymbol, sym, 0, R_ABS});
932
return;
933
}
934
935
// Otherwise, the value is either a link-time constant or the load base
936
// plus a constant.
937
if (!config->isPic || isAbsolute(sym))
938
in.got->addConstant({R_ABS, target->symbolicRel, off, 0, &sym});
939
else
940
addRelativeReloc(*in.got, off, sym, 0, R_ABS, target->symbolicRel);
941
}
942
943
static void addTpOffsetGotEntry(Symbol &sym) {
944
in.got->addEntry(sym);
945
uint64_t off = sym.getGotOffset();
946
if (!sym.isPreemptible && !config->shared) {
947
in.got->addConstant({R_TPREL, target->symbolicRel, off, 0, &sym});
948
return;
949
}
950
mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
951
target->tlsGotRel, *in.got, off, sym, target->symbolicRel);
952
}
953
954
// Return true if we can define a symbol in the executable that
955
// contains the value/function of a symbol defined in a shared
956
// library.
957
static bool canDefineSymbolInExecutable(Symbol &sym) {
958
// If the symbol has default visibility the symbol defined in the
959
// executable will preempt it.
960
// Note that we want the visibility of the shared symbol itself, not
961
// the visibility of the symbol in the output file we are producing.
962
if (!sym.dsoProtected)
963
return true;
964
965
// If we are allowed to break address equality of functions, defining
966
// a plt entry will allow the program to call the function in the
967
// .so, but the .so and the executable will no agree on the address
968
// of the function. Similar logic for objects.
969
return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
970
(sym.isObject() && config->ignoreDataAddressEquality));
971
}
972
973
// Returns true if a given relocation can be computed at link-time.
974
// This only handles relocation types expected in processAux.
975
//
976
// For instance, we know the offset from a relocation to its target at
977
// link-time if the relocation is PC-relative and refers a
978
// non-interposable function in the same executable. This function
979
// will return true for such relocation.
980
//
981
// If this function returns false, that means we need to emit a
982
// dynamic relocation so that the relocation will be fixed at load-time.
983
bool RelocationScanner::isStaticLinkTimeConstant(RelExpr e, RelType type,
984
const Symbol &sym,
985
uint64_t relOff) const {
986
// These expressions always compute a constant
987
if (oneof<R_GOTPLT, R_GOT_OFF, R_RELAX_HINT, R_MIPS_GOT_LOCAL_PAGE,
988
R_MIPS_GOTREL, R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC,
989
R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
990
R_PLT_PC, R_PLT_GOTREL, R_PLT_GOTPLT, R_GOTPLT_GOTREL, R_GOTPLT_PC,
991
R_PPC32_PLTREL, R_PPC64_CALL_PLT, R_PPC64_RELAX_TOC, R_RISCV_ADD,
992
R_AARCH64_GOT_PAGE, R_LOONGARCH_PLT_PAGE_PC, R_LOONGARCH_GOT,
993
R_LOONGARCH_GOT_PAGE_PC>(e))
994
return true;
995
996
// These never do, except if the entire file is position dependent or if
997
// only the low bits are used.
998
if (e == R_GOT || e == R_PLT)
999
return target->usesOnlyLowPageBits(type) || !config->isPic;
1000
1001
// R_AARCH64_AUTH_ABS64 requires a dynamic relocation.
1002
if (sym.isPreemptible || e == R_AARCH64_AUTH)
1003
return false;
1004
if (!config->isPic)
1005
return true;
1006
1007
// Constant when referencing a non-preemptible symbol.
1008
if (e == R_SIZE || e == R_RISCV_LEB128)
1009
return true;
1010
1011
// For the target and the relocation, we want to know if they are
1012
// absolute or relative.
1013
bool absVal = isAbsoluteValue(sym);
1014
bool relE = isRelExpr(e);
1015
if (absVal && !relE)
1016
return true;
1017
if (!absVal && relE)
1018
return true;
1019
if (!absVal && !relE)
1020
return target->usesOnlyLowPageBits(type);
1021
1022
assert(absVal && relE);
1023
1024
// Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
1025
// in PIC mode. This is a little strange, but it allows us to link function
1026
// calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
1027
// Normally such a call will be guarded with a comparison, which will load a
1028
// zero from the GOT.
1029
if (sym.isUndefWeak())
1030
return true;
1031
1032
// We set the final symbols values for linker script defined symbols later.
1033
// They always can be computed as a link time constant.
1034
if (sym.scriptDefined)
1035
return true;
1036
1037
error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
1038
toString(sym) + getLocation(*sec, sym, relOff));
1039
return true;
1040
}
1041
1042
// The reason we have to do this early scan is as follows
1043
// * To mmap the output file, we need to know the size
1044
// * For that, we need to know how many dynamic relocs we will have.
1045
// It might be possible to avoid this by outputting the file with write:
1046
// * Write the allocated output sections, computing addresses.
1047
// * Apply relocations, recording which ones require a dynamic reloc.
1048
// * Write the dynamic relocations.
1049
// * Write the rest of the file.
1050
// This would have some drawbacks. For example, we would only know if .rela.dyn
1051
// is needed after applying relocations. If it is, it will go after rw and rx
1052
// sections. Given that it is ro, we will need an extra PT_LOAD. This
1053
// complicates things for the dynamic linker and means we would have to reserve
1054
// space for the extra PT_LOAD even if we end up not using it.
1055
void RelocationScanner::processAux(RelExpr expr, RelType type, uint64_t offset,
1056
Symbol &sym, int64_t addend) const {
1057
// If non-ifunc non-preemptible, change PLT to direct call and optimize GOT
1058
// indirection.
1059
const bool isIfunc = sym.isGnuIFunc();
1060
if (!sym.isPreemptible && (!isIfunc || config->zIfuncNoplt)) {
1061
if (expr != R_GOT_PC) {
1062
// The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1063
// stub type. It should be ignored if optimized to R_PC.
1064
if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
1065
addend &= ~0x8000;
1066
// R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into
1067
// call __tls_get_addr even if the symbol is non-preemptible.
1068
if (!(config->emachine == EM_HEXAGON &&
1069
(type == R_HEX_GD_PLT_B22_PCREL ||
1070
type == R_HEX_GD_PLT_B22_PCREL_X ||
1071
type == R_HEX_GD_PLT_B32_PCREL_X)))
1072
expr = fromPlt(expr);
1073
} else if (!isAbsoluteValue(sym)) {
1074
expr =
1075
target->adjustGotPcExpr(type, addend, sec->content().data() + offset);
1076
// If the target adjusted the expression to R_RELAX_GOT_PC, we may end up
1077
// needing the GOT if we can't relax everything.
1078
if (expr == R_RELAX_GOT_PC)
1079
in.got->hasGotOffRel.store(true, std::memory_order_relaxed);
1080
}
1081
}
1082
1083
// We were asked not to generate PLT entries for ifuncs. Instead, pass the
1084
// direct relocation on through.
1085
if (LLVM_UNLIKELY(isIfunc) && config->zIfuncNoplt) {
1086
std::lock_guard<std::mutex> lock(relocMutex);
1087
sym.exportDynamic = true;
1088
mainPart->relaDyn->addSymbolReloc(type, *sec, offset, sym, addend, type);
1089
return;
1090
}
1091
1092
if (needsGot(expr)) {
1093
if (config->emachine == EM_MIPS) {
1094
// MIPS ABI has special rules to process GOT entries and doesn't
1095
// require relocation entries for them. A special case is TLS
1096
// relocations. In that case dynamic loader applies dynamic
1097
// relocations to initialize TLS GOT entries.
1098
// See "Global Offset Table" in Chapter 5 in the following document
1099
// for detailed description:
1100
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1101
in.mipsGot->addEntry(*sec->file, sym, addend, expr);
1102
} else if (!sym.isTls() || config->emachine != EM_LOONGARCH) {
1103
// Many LoongArch TLS relocs reuse the R_LOONGARCH_GOT type, in which
1104
// case the NEEDS_GOT flag shouldn't get set.
1105
sym.setFlags(NEEDS_GOT);
1106
}
1107
} else if (needsPlt(expr)) {
1108
sym.setFlags(NEEDS_PLT);
1109
} else if (LLVM_UNLIKELY(isIfunc)) {
1110
sym.setFlags(HAS_DIRECT_RELOC);
1111
}
1112
1113
// If the relocation is known to be a link-time constant, we know no dynamic
1114
// relocation will be created, pass the control to relocateAlloc() or
1115
// relocateNonAlloc() to resolve it.
1116
//
1117
// The behavior of an undefined weak reference is implementation defined. For
1118
// non-link-time constants, we resolve relocations statically (let
1119
// relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic
1120
// relocations for -pie and -shared.
1121
//
1122
// The general expectation of -no-pie static linking is that there is no
1123
// dynamic relocation (except IRELATIVE). Emitting dynamic relocations for
1124
// -shared matches the spirit of its -z undefs default. -pie has freedom on
1125
// choices, and we choose dynamic relocations to be consistent with the
1126
// handling of GOT-generating relocations.
1127
if (isStaticLinkTimeConstant(expr, type, sym, offset) ||
1128
(!config->isPic && sym.isUndefWeak())) {
1129
sec->addReloc({expr, type, offset, addend, &sym});
1130
return;
1131
}
1132
1133
// Use a simple -z notext rule that treats all sections except .eh_frame as
1134
// writable. GNU ld does not produce dynamic relocations in .eh_frame (and our
1135
// SectionBase::getOffset would incorrectly adjust the offset).
1136
//
1137
// For MIPS, we don't implement GNU ld's DW_EH_PE_absptr to DW_EH_PE_pcrel
1138
// conversion. We still emit a dynamic relocation.
1139
bool canWrite = (sec->flags & SHF_WRITE) ||
1140
!(config->zText ||
1141
(isa<EhInputSection>(sec) && config->emachine != EM_MIPS));
1142
if (canWrite) {
1143
RelType rel = target->getDynRel(type);
1144
if (oneof<R_GOT, R_LOONGARCH_GOT>(expr) ||
1145
(rel == target->symbolicRel && !sym.isPreemptible)) {
1146
addRelativeReloc<true>(*sec, offset, sym, addend, expr, type);
1147
return;
1148
}
1149
if (rel != 0) {
1150
if (config->emachine == EM_MIPS && rel == target->symbolicRel)
1151
rel = target->relativeRel;
1152
std::lock_guard<std::mutex> lock(relocMutex);
1153
Partition &part = sec->getPartition();
1154
if (config->emachine == EM_AARCH64 && type == R_AARCH64_AUTH_ABS64) {
1155
// For a preemptible symbol, we can't use a relative relocation. For an
1156
// undefined symbol, we can't compute offset at link-time and use a
1157
// relative relocation. Use a symbolic relocation instead.
1158
if (sym.isPreemptible) {
1159
part.relaDyn->addSymbolReloc(type, *sec, offset, sym, addend, type);
1160
} else if (part.relrAuthDyn && sec->addralign >= 2 && offset % 2 == 0) {
1161
// When symbol values are determined in
1162
// finalizeAddressDependentContent, some .relr.auth.dyn relocations
1163
// may be moved to .rela.dyn.
1164
sec->addReloc({expr, type, offset, addend, &sym});
1165
part.relrAuthDyn->relocs.push_back({sec, sec->relocs().size() - 1});
1166
} else {
1167
part.relaDyn->addReloc({R_AARCH64_AUTH_RELATIVE, sec, offset,
1168
DynamicReloc::AddendOnlyWithTargetVA, sym,
1169
addend, R_ABS});
1170
}
1171
return;
1172
}
1173
part.relaDyn->addSymbolReloc(rel, *sec, offset, sym, addend, type);
1174
1175
// MIPS ABI turns using of GOT and dynamic relocations inside out.
1176
// While regular ABI uses dynamic relocations to fill up GOT entries
1177
// MIPS ABI requires dynamic linker to fills up GOT entries using
1178
// specially sorted dynamic symbol table. This affects even dynamic
1179
// relocations against symbols which do not require GOT entries
1180
// creation explicitly, i.e. do not have any GOT-relocations. So if
1181
// a preemptible symbol has a dynamic relocation we anyway have
1182
// to create a GOT entry for it.
1183
// If a non-preemptible symbol has a dynamic relocation against it,
1184
// dynamic linker takes it st_value, adds offset and writes down
1185
// result of the dynamic relocation. In case of preemptible symbol
1186
// dynamic linker performs symbol resolution, writes the symbol value
1187
// to the GOT entry and reads the GOT entry when it needs to perform
1188
// a dynamic relocation.
1189
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1190
if (config->emachine == EM_MIPS)
1191
in.mipsGot->addEntry(*sec->file, sym, addend, expr);
1192
return;
1193
}
1194
}
1195
1196
// When producing an executable, we can perform copy relocations (for
1197
// STT_OBJECT) and canonical PLT (for STT_FUNC) if sym is defined by a DSO.
1198
// Copy relocations/canonical PLT entries are unsupported for
1199
// R_AARCH64_AUTH_ABS64.
1200
if (!config->shared && sym.isShared() &&
1201
!(config->emachine == EM_AARCH64 && type == R_AARCH64_AUTH_ABS64)) {
1202
if (!canDefineSymbolInExecutable(sym)) {
1203
errorOrWarn("cannot preempt symbol: " + toString(sym) +
1204
getLocation(*sec, sym, offset));
1205
return;
1206
}
1207
1208
if (sym.isObject()) {
1209
// Produce a copy relocation.
1210
if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
1211
if (!config->zCopyreloc)
1212
error("unresolvable relocation " + toString(type) +
1213
" against symbol '" + toString(*ss) +
1214
"'; recompile with -fPIC or remove '-z nocopyreloc'" +
1215
getLocation(*sec, sym, offset));
1216
sym.setFlags(NEEDS_COPY);
1217
}
1218
sec->addReloc({expr, type, offset, addend, &sym});
1219
return;
1220
}
1221
1222
// This handles a non PIC program call to function in a shared library. In
1223
// an ideal world, we could just report an error saying the relocation can
1224
// overflow at runtime. In the real world with glibc, crt1.o has a
1225
// R_X86_64_PC32 pointing to libc.so.
1226
//
1227
// The general idea on how to handle such cases is to create a PLT entry and
1228
// use that as the function value.
1229
//
1230
// For the static linking part, we just return a plt expr and everything
1231
// else will use the PLT entry as the address.
1232
//
1233
// The remaining problem is making sure pointer equality still works. We
1234
// need the help of the dynamic linker for that. We let it know that we have
1235
// a direct reference to a so symbol by creating an undefined symbol with a
1236
// non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1237
// the value of the symbol we created. This is true even for got entries, so
1238
// pointer equality is maintained. To avoid an infinite loop, the only entry
1239
// that points to the real function is a dedicated got entry used by the
1240
// plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1241
// R_386_JMP_SLOT, etc).
1242
1243
// For position independent executable on i386, the plt entry requires ebx
1244
// to be set. This causes two problems:
1245
// * If some code has a direct reference to a function, it was probably
1246
// compiled without -fPIE/-fPIC and doesn't maintain ebx.
1247
// * If a library definition gets preempted to the executable, it will have
1248
// the wrong ebx value.
1249
if (sym.isFunc()) {
1250
if (config->pie && config->emachine == EM_386)
1251
errorOrWarn("symbol '" + toString(sym) +
1252
"' cannot be preempted; recompile with -fPIE" +
1253
getLocation(*sec, sym, offset));
1254
sym.setFlags(NEEDS_COPY | NEEDS_PLT);
1255
sec->addReloc({expr, type, offset, addend, &sym});
1256
return;
1257
}
1258
}
1259
1260
errorOrWarn("relocation " + toString(type) + " cannot be used against " +
1261
(sym.getName().empty() ? "local symbol"
1262
: "symbol '" + toString(sym) + "'") +
1263
"; recompile with -fPIC" + getLocation(*sec, sym, offset));
1264
}
1265
1266
// This function is similar to the `handleTlsRelocation`. MIPS does not
1267
// support any relaxations for TLS relocations so by factoring out MIPS
1268
// handling in to the separate function we can simplify the code and do not
1269
// pollute other `handleTlsRelocation` by MIPS `ifs` statements.
1270
// Mips has a custom MipsGotSection that handles the writing of GOT entries
1271
// without dynamic relocations.
1272
static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
1273
InputSectionBase &c, uint64_t offset,
1274
int64_t addend, RelExpr expr) {
1275
if (expr == R_MIPS_TLSLD) {
1276
in.mipsGot->addTlsIndex(*c.file);
1277
c.addReloc({expr, type, offset, addend, &sym});
1278
return 1;
1279
}
1280
if (expr == R_MIPS_TLSGD) {
1281
in.mipsGot->addDynTlsEntry(*c.file, sym);
1282
c.addReloc({expr, type, offset, addend, &sym});
1283
return 1;
1284
}
1285
return 0;
1286
}
1287
1288
// Notes about General Dynamic and Local Dynamic TLS models below. They may
1289
// require the generation of a pair of GOT entries that have associated dynamic
1290
// relocations. The pair of GOT entries created are of the form GOT[e0] Module
1291
// Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
1292
// symbol in TLS block.
1293
//
1294
// Returns the number of relocations processed.
1295
static unsigned handleTlsRelocation(RelType type, Symbol &sym,
1296
InputSectionBase &c, uint64_t offset,
1297
int64_t addend, RelExpr expr) {
1298
if (expr == R_TPREL || expr == R_TPREL_NEG) {
1299
if (config->shared) {
1300
errorOrWarn("relocation " + toString(type) + " against " + toString(sym) +
1301
" cannot be used with -shared" + getLocation(c, sym, offset));
1302
return 1;
1303
}
1304
return 0;
1305
}
1306
1307
if (config->emachine == EM_MIPS)
1308
return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);
1309
1310
// LoongArch does not yet implement transition from TLSDESC to LE/IE, so
1311
// generate TLSDESC dynamic relocation for the dynamic linker to handle.
1312
if (config->emachine == EM_LOONGARCH &&
1313
oneof<R_LOONGARCH_TLSDESC_PAGE_PC, R_TLSDESC, R_TLSDESC_PC,
1314
R_TLSDESC_CALL>(expr)) {
1315
if (expr != R_TLSDESC_CALL) {
1316
sym.setFlags(NEEDS_TLSDESC);
1317
c.addReloc({expr, type, offset, addend, &sym});
1318
}
1319
return 1;
1320
}
1321
1322
bool isRISCV = config->emachine == EM_RISCV;
1323
1324
if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1325
R_TLSDESC_GOTPLT>(expr) &&
1326
config->shared) {
1327
// R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} reference a label. Do not
1328
// set NEEDS_TLSDESC on the label.
1329
if (expr != R_TLSDESC_CALL) {
1330
if (!isRISCV || type == R_RISCV_TLSDESC_HI20)
1331
sym.setFlags(NEEDS_TLSDESC);
1332
c.addReloc({expr, type, offset, addend, &sym});
1333
}
1334
return 1;
1335
}
1336
1337
// ARM, Hexagon, LoongArch and RISC-V do not support GD/LD to IE/LE
1338
// optimizations.
1339
// RISC-V supports TLSDESC to IE/LE optimizations.
1340
// For PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable
1341
// optimization as well.
1342
bool execOptimize =
1343
!config->shared && config->emachine != EM_ARM &&
1344
config->emachine != EM_HEXAGON && config->emachine != EM_LOONGARCH &&
1345
!(isRISCV && expr != R_TLSDESC_PC && expr != R_TLSDESC_CALL) &&
1346
!c.file->ppc64DisableTLSRelax;
1347
1348
// If we are producing an executable and the symbol is non-preemptable, it
1349
// must be defined and the code sequence can be optimized to use Local-Exec.
1350
//
1351
// ARM and RISC-V do not support any relaxations for TLS relocations, however,
1352
// we can omit the DTPMOD dynamic relocations and resolve them at link time
1353
// because them are always 1. This may be necessary for static linking as
1354
// DTPMOD may not be expected at load time.
1355
bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1356
1357
// Local Dynamic is for access to module local TLS variables, while still
1358
// being suitable for being dynamically loaded via dlopen. GOT[e0] is the
1359
// module index, with a special value of 0 for the current module. GOT[e1] is
1360
// unused. There only needs to be one module index entry.
1361
if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(expr)) {
1362
// Local-Dynamic relocs can be optimized to Local-Exec.
1363
if (execOptimize) {
1364
c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type,
1365
offset, addend, &sym});
1366
return target->getTlsGdRelaxSkip(type);
1367
}
1368
if (expr == R_TLSLD_HINT)
1369
return 1;
1370
ctx.needsTlsLd.store(true, std::memory_order_relaxed);
1371
c.addReloc({expr, type, offset, addend, &sym});
1372
return 1;
1373
}
1374
1375
// Local-Dynamic relocs can be optimized to Local-Exec.
1376
if (expr == R_DTPREL) {
1377
if (execOptimize)
1378
expr = target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE);
1379
c.addReloc({expr, type, offset, addend, &sym});
1380
return 1;
1381
}
1382
1383
// Local-Dynamic sequence where offset of tls variable relative to dynamic
1384
// thread pointer is stored in the got. This cannot be optimized to
1385
// Local-Exec.
1386
if (expr == R_TLSLD_GOT_OFF) {
1387
sym.setFlags(NEEDS_GOT_DTPREL);
1388
c.addReloc({expr, type, offset, addend, &sym});
1389
return 1;
1390
}
1391
1392
if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1393
R_TLSDESC_GOTPLT, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC,
1394
R_LOONGARCH_TLSGD_PAGE_PC>(expr)) {
1395
if (!execOptimize) {
1396
sym.setFlags(NEEDS_TLSGD);
1397
c.addReloc({expr, type, offset, addend, &sym});
1398
return 1;
1399
}
1400
1401
// Global-Dynamic/TLSDESC can be optimized to Initial-Exec or Local-Exec
1402
// depending on the symbol being locally defined or not.
1403
//
1404
// R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} reference a non-preemptible
1405
// label, so TLSDESC=>IE will be categorized as R_RELAX_TLS_GD_TO_LE. We fix
1406
// the categorization in RISCV::relocateAlloc.
1407
if (sym.isPreemptible) {
1408
sym.setFlags(NEEDS_TLSGD_TO_IE);
1409
c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type,
1410
offset, addend, &sym});
1411
} else {
1412
c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type,
1413
offset, addend, &sym});
1414
}
1415
return target->getTlsGdRelaxSkip(type);
1416
}
1417
1418
if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC,
1419
R_LOONGARCH_GOT_PAGE_PC, R_GOT_OFF, R_TLSIE_HINT>(expr)) {
1420
ctx.hasTlsIe.store(true, std::memory_order_relaxed);
1421
// Initial-Exec relocs can be optimized to Local-Exec if the symbol is
1422
// locally defined. This is not supported on SystemZ.
1423
if (execOptimize && isLocalInExecutable && config->emachine != EM_S390) {
1424
c.addReloc({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
1425
} else if (expr != R_TLSIE_HINT) {
1426
sym.setFlags(NEEDS_TLSIE);
1427
// R_GOT needs a relative relocation for PIC on i386 and Hexagon.
1428
if (expr == R_GOT && config->isPic && !target->usesOnlyLowPageBits(type))
1429
addRelativeReloc<true>(c, offset, sym, addend, expr, type);
1430
else
1431
c.addReloc({expr, type, offset, addend, &sym});
1432
}
1433
return 1;
1434
}
1435
1436
return 0;
1437
}
1438
1439
template <class ELFT, class RelTy>
1440
void RelocationScanner::scanOne(typename Relocs<RelTy>::const_iterator &i) {
1441
const RelTy &rel = *i;
1442
uint32_t symIndex = rel.getSymbol(config->isMips64EL);
1443
Symbol &sym = sec->getFile<ELFT>()->getSymbol(symIndex);
1444
RelType type;
1445
if constexpr (ELFT::Is64Bits || RelTy::IsCrel) {
1446
type = rel.getType(config->isMips64EL);
1447
++i;
1448
} else {
1449
// CREL is unsupported for MIPS N32.
1450
if (config->mipsN32Abi) {
1451
type = getMipsN32RelType(i);
1452
} else {
1453
type = rel.getType(config->isMips64EL);
1454
++i;
1455
}
1456
}
1457
// Get an offset in an output section this relocation is applied to.
1458
uint64_t offset = getter.get(rel.r_offset);
1459
if (offset == uint64_t(-1))
1460
return;
1461
1462
RelExpr expr = target->getRelExpr(type, sym, sec->content().data() + offset);
1463
int64_t addend = RelTy::HasAddend
1464
? getAddend<ELFT>(rel)
1465
: target->getImplicitAddend(
1466
sec->content().data() + rel.r_offset, type);
1467
if (LLVM_UNLIKELY(config->emachine == EM_MIPS))
1468
addend += computeMipsAddend<ELFT>(rel, expr, sym.isLocal());
1469
else if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
1470
addend += getPPC64TocBase();
1471
1472
// Ignore R_*_NONE and other marker relocations.
1473
if (expr == R_NONE)
1474
return;
1475
1476
// Error if the target symbol is undefined. Symbol index 0 may be used by
1477
// marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1478
if (sym.isUndefined() && symIndex != 0 &&
1479
maybeReportUndefined(cast<Undefined>(sym), *sec, offset))
1480
return;
1481
1482
if (config->emachine == EM_PPC64) {
1483
// We can separate the small code model relocations into 2 categories:
1484
// 1) Those that access the compiler generated .toc sections.
1485
// 2) Those that access the linker allocated got entries.
1486
// lld allocates got entries to symbols on demand. Since we don't try to
1487
// sort the got entries in any way, we don't have to track which objects
1488
// have got-based small code model relocs. The .toc sections get placed
1489
// after the end of the linker allocated .got section and we do sort those
1490
// so sections addressed with small code model relocations come first.
1491
if (type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS)
1492
sec->file->ppc64SmallCodeModelTocRelocs = true;
1493
1494
// Record the TOC entry (.toc + addend) as not relaxable. See the comment in
1495
// InputSectionBase::relocateAlloc().
1496
if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) &&
1497
cast<Defined>(sym).section->name == ".toc")
1498
ppc64noTocRelax.insert({&sym, addend});
1499
1500
if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) ||
1501
(type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) {
1502
// Skip the error check for CREL, which does not set `end`.
1503
if constexpr (!RelTy::IsCrel) {
1504
if (i == end) {
1505
errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last "
1506
"relocation" +
1507
getLocation(*sec, sym, offset));
1508
return;
1509
}
1510
}
1511
1512
// Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC
1513
// case, so we can discern it later from the toc-case.
1514
if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC)
1515
++offset;
1516
}
1517
}
1518
1519
// If the relocation does not emit a GOT or GOTPLT entry but its computation
1520
// uses their addresses, we need GOT or GOTPLT to be created.
1521
//
1522
// The 5 types that relative GOTPLT are all x86 and x86-64 specific.
1523
if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_PLT_GOTPLT,
1524
R_TLSDESC_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
1525
in.gotPlt->hasGotPltOffRel.store(true, std::memory_order_relaxed);
1526
} else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC32_PLTREL, R_PPC64_TOCBASE,
1527
R_PPC64_RELAX_TOC>(expr)) {
1528
in.got->hasGotOffRel.store(true, std::memory_order_relaxed);
1529
}
1530
1531
// Process TLS relocations, including TLS optimizations. Note that
1532
// R_TPREL and R_TPREL_NEG relocations are resolved in processAux.
1533
//
1534
// Some RISCV TLSDESC relocations reference a local NOTYPE symbol,
1535
// but we need to process them in handleTlsRelocation.
1536
if (sym.isTls() || oneof<R_TLSDESC_PC, R_TLSDESC_CALL>(expr)) {
1537
if (unsigned processed =
1538
handleTlsRelocation(type, sym, *sec, offset, addend, expr)) {
1539
i += processed - 1;
1540
return;
1541
}
1542
}
1543
1544
processAux(expr, type, offset, sym, addend);
1545
}
1546
1547
// R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for
1548
// General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is
1549
// found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the
1550
// instructions are generated by very old IBM XL compilers. Work around the
1551
// issue by disabling GD/LD to IE/LE relaxation.
1552
template <class RelTy>
1553
static void checkPPC64TLSRelax(InputSectionBase &sec, Relocs<RelTy> rels) {
1554
// Skip if sec is synthetic (sec.file is null) or if sec has been marked.
1555
if (!sec.file || sec.file->ppc64DisableTLSRelax)
1556
return;
1557
bool hasGDLD = false;
1558
for (const RelTy &rel : rels) {
1559
RelType type = rel.getType(false);
1560
switch (type) {
1561
case R_PPC64_TLSGD:
1562
case R_PPC64_TLSLD:
1563
return; // Found a marker
1564
case R_PPC64_GOT_TLSGD16:
1565
case R_PPC64_GOT_TLSGD16_HA:
1566
case R_PPC64_GOT_TLSGD16_HI:
1567
case R_PPC64_GOT_TLSGD16_LO:
1568
case R_PPC64_GOT_TLSLD16:
1569
case R_PPC64_GOT_TLSLD16_HA:
1570
case R_PPC64_GOT_TLSLD16_HI:
1571
case R_PPC64_GOT_TLSLD16_LO:
1572
hasGDLD = true;
1573
break;
1574
}
1575
}
1576
if (hasGDLD) {
1577
sec.file->ppc64DisableTLSRelax = true;
1578
warn(toString(sec.file) +
1579
": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without "
1580
"R_PPC64_TLSGD/R_PPC64_TLSLD relocations");
1581
}
1582
}
1583
1584
template <class ELFT, class RelTy>
1585
void RelocationScanner::scan(Relocs<RelTy> rels) {
1586
// Not all relocations end up in Sec->Relocations, but a lot do.
1587
sec->relocations.reserve(rels.size());
1588
1589
if (config->emachine == EM_PPC64)
1590
checkPPC64TLSRelax<RelTy>(*sec, rels);
1591
1592
// For EhInputSection, OffsetGetter expects the relocations to be sorted by
1593
// r_offset. In rare cases (.eh_frame pieces are reordered by a linker
1594
// script), the relocations may be unordered.
1595
// On SystemZ, all sections need to be sorted by r_offset, to allow TLS
1596
// relaxation to be handled correctly - see SystemZ::getTlsGdRelaxSkip.
1597
SmallVector<RelTy, 0> storage;
1598
if (isa<EhInputSection>(sec) || config->emachine == EM_S390)
1599
rels = sortRels(rels, storage);
1600
1601
if constexpr (RelTy::IsCrel) {
1602
for (auto i = rels.begin(); i != rels.end();)
1603
scanOne<ELFT, RelTy>(i);
1604
} else {
1605
// The non-CREL code path has additional check for PPC64 TLS.
1606
end = static_cast<const void *>(rels.end());
1607
for (auto i = rels.begin(); i != end;)
1608
scanOne<ELFT, RelTy>(i);
1609
}
1610
1611
// Sort relocations by offset for more efficient searching for
1612
// R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1613
if (config->emachine == EM_RISCV ||
1614
(config->emachine == EM_PPC64 && sec->name == ".toc"))
1615
llvm::stable_sort(sec->relocs(),
1616
[](const Relocation &lhs, const Relocation &rhs) {
1617
return lhs.offset < rhs.offset;
1618
});
1619
}
1620
1621
template <class ELFT>
1622
void RelocationScanner::scanSection(InputSectionBase &s, bool isEH) {
1623
sec = &s;
1624
getter = OffsetGetter(s);
1625
const RelsOrRelas<ELFT> rels = s.template relsOrRelas<ELFT>(!isEH);
1626
if (rels.areRelocsCrel())
1627
scan<ELFT>(rels.crels);
1628
else if (rels.areRelocsRel())
1629
scan<ELFT>(rels.rels);
1630
else
1631
scan<ELFT>(rels.relas);
1632
}
1633
1634
template <class ELFT> void elf::scanRelocations() {
1635
// Scan all relocations. Each relocation goes through a series of tests to
1636
// determine if it needs special treatment, such as creating GOT, PLT,
1637
// copy relocations, etc. Note that relocations for non-alloc sections are
1638
// directly processed by InputSection::relocateNonAlloc.
1639
1640
// Deterministic parallellism needs sorting relocations which is unsuitable
1641
// for -z nocombreloc. MIPS and PPC64 use global states which are not suitable
1642
// for parallelism.
1643
bool serial = !config->zCombreloc || config->emachine == EM_MIPS ||
1644
config->emachine == EM_PPC64;
1645
parallel::TaskGroup tg;
1646
auto outerFn = [&]() {
1647
for (ELFFileBase *f : ctx.objectFiles) {
1648
auto fn = [f]() {
1649
RelocationScanner scanner;
1650
for (InputSectionBase *s : f->getSections()) {
1651
if (s && s->kind() == SectionBase::Regular && s->isLive() &&
1652
(s->flags & SHF_ALLOC) &&
1653
!(s->type == SHT_ARM_EXIDX && config->emachine == EM_ARM))
1654
scanner.template scanSection<ELFT>(*s);
1655
}
1656
};
1657
if (serial)
1658
fn();
1659
else
1660
tg.spawn(fn);
1661
}
1662
auto scanEH = [] {
1663
RelocationScanner scanner;
1664
for (Partition &part : partitions) {
1665
for (EhInputSection *sec : part.ehFrame->sections)
1666
scanner.template scanSection<ELFT>(*sec);
1667
if (part.armExidx && part.armExidx->isLive())
1668
for (InputSection *sec : part.armExidx->exidxSections)
1669
if (sec->isLive())
1670
scanner.template scanSection<ELFT>(*sec);
1671
}
1672
};
1673
if (serial)
1674
scanEH();
1675
else
1676
tg.spawn(scanEH);
1677
};
1678
// If `serial` is true, call `spawn` to ensure that `scanner` runs in a thread
1679
// with valid getThreadIndex().
1680
if (serial)
1681
tg.spawn(outerFn);
1682
else
1683
outerFn();
1684
}
1685
1686
static bool handleNonPreemptibleIfunc(Symbol &sym, uint16_t flags) {
1687
// Handle a reference to a non-preemptible ifunc. These are special in a
1688
// few ways:
1689
//
1690
// - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1691
// a fixed value. But assuming that all references to the ifunc are
1692
// GOT-generating or PLT-generating, the handling of an ifunc is
1693
// relatively straightforward. We create a PLT entry in Iplt, which is
1694
// usually at the end of .plt, which makes an indirect call using a
1695
// matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1696
// The GOT entry is relocated using an IRELATIVE relocation in relaDyn,
1697
// which is usually at the end of .rela.dyn.
1698
//
1699
// - Despite the fact that an ifunc does not have a fixed value, compilers
1700
// that are not passed -fPIC will assume that they do, and will emit
1701
// direct (non-GOT-generating, non-PLT-generating) relocations to the
1702
// symbol. This means that if a direct relocation to the symbol is
1703
// seen, the linker must set a value for the symbol, and this value must
1704
// be consistent no matter what type of reference is made to the symbol.
1705
// This can be done by creating a PLT entry for the symbol in the way
1706
// described above and making it canonical, that is, making all references
1707
// point to the PLT entry instead of the resolver. In lld we also store
1708
// the address of the PLT entry in the dynamic symbol table, which means
1709
// that the symbol will also have the same value in other modules.
1710
// Because the value loaded from the GOT needs to be consistent with
1711
// the value computed using a direct relocation, a non-preemptible ifunc
1712
// may end up with two GOT entries, one in .got.plt that points to the
1713
// address returned by the resolver and is used only by the PLT entry,
1714
// and another in .got that points to the PLT entry and is used by
1715
// GOT-generating relocations.
1716
//
1717
// - The fact that these symbols do not have a fixed value makes them an
1718
// exception to the general rule that a statically linked executable does
1719
// not require any form of dynamic relocation. To handle these relocations
1720
// correctly, the IRELATIVE relocations are stored in an array which a
1721
// statically linked executable's startup code must enumerate using the
1722
// linker-defined symbols __rela?_iplt_{start,end}.
1723
if (!sym.isGnuIFunc() || sym.isPreemptible || config->zIfuncNoplt)
1724
return false;
1725
// Skip unreferenced non-preemptible ifunc.
1726
if (!(flags & (NEEDS_GOT | NEEDS_PLT | HAS_DIRECT_RELOC)))
1727
return true;
1728
1729
sym.isInIplt = true;
1730
1731
// Create an Iplt and the associated IRELATIVE relocation pointing to the
1732
// original section/value pairs. For non-GOT non-PLT relocation case below, we
1733
// may alter section/value, so create a copy of the symbol to make
1734
// section/value fixed.
1735
//
1736
// Prior to Android V, there was a bug that caused RELR relocations to be
1737
// applied after packed relocations. This meant that resolvers referenced by
1738
// IRELATIVE relocations in the packed relocation section would read
1739
// unrelocated globals with RELR relocations when
1740
// --pack-relative-relocs=android+relr is enabled. Work around this by placing
1741
// IRELATIVE in .rela.plt.
1742
auto *directSym = makeDefined(cast<Defined>(sym));
1743
directSym->allocateAux();
1744
auto &dyn = config->androidPackDynRelocs ? *in.relaPlt : *mainPart->relaDyn;
1745
addPltEntry(*in.iplt, *in.igotPlt, dyn, target->iRelativeRel, *directSym);
1746
sym.allocateAux();
1747
symAux.back().pltIdx = symAux[directSym->auxIdx].pltIdx;
1748
1749
if (flags & HAS_DIRECT_RELOC) {
1750
// Change the value to the IPLT and redirect all references to it.
1751
auto &d = cast<Defined>(sym);
1752
d.section = in.iplt.get();
1753
d.value = d.getPltIdx() * target->ipltEntrySize;
1754
d.size = 0;
1755
// It's important to set the symbol type here so that dynamic loaders
1756
// don't try to call the PLT as if it were an ifunc resolver.
1757
d.type = STT_FUNC;
1758
1759
if (flags & NEEDS_GOT)
1760
addGotEntry(sym);
1761
} else if (flags & NEEDS_GOT) {
1762
// Redirect GOT accesses to point to the Igot.
1763
sym.gotInIgot = true;
1764
}
1765
return true;
1766
}
1767
1768
void elf::postScanRelocations() {
1769
auto fn = [](Symbol &sym) {
1770
auto flags = sym.flags.load(std::memory_order_relaxed);
1771
if (handleNonPreemptibleIfunc(sym, flags))
1772
return;
1773
1774
if (sym.isTagged() && sym.isDefined())
1775
mainPart->memtagGlobalDescriptors->addSymbol(sym);
1776
1777
if (!sym.needsDynReloc())
1778
return;
1779
sym.allocateAux();
1780
1781
if (flags & NEEDS_GOT)
1782
addGotEntry(sym);
1783
if (flags & NEEDS_PLT)
1784
addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, sym);
1785
if (flags & NEEDS_COPY) {
1786
if (sym.isObject()) {
1787
invokeELFT(addCopyRelSymbol, cast<SharedSymbol>(sym));
1788
// NEEDS_COPY is cleared for sym and its aliases so that in
1789
// later iterations aliases won't cause redundant copies.
1790
assert(!sym.hasFlag(NEEDS_COPY));
1791
} else {
1792
assert(sym.isFunc() && sym.hasFlag(NEEDS_PLT));
1793
if (!sym.isDefined()) {
1794
replaceWithDefined(sym, *in.plt,
1795
target->pltHeaderSize +
1796
target->pltEntrySize * sym.getPltIdx(),
1797
0);
1798
sym.setFlags(NEEDS_COPY);
1799
if (config->emachine == EM_PPC) {
1800
// PPC32 canonical PLT entries are at the beginning of .glink
1801
cast<Defined>(sym).value = in.plt->headerSize;
1802
in.plt->headerSize += 16;
1803
cast<PPC32GlinkSection>(*in.plt).canonical_plts.push_back(&sym);
1804
}
1805
}
1806
}
1807
}
1808
1809
if (!sym.isTls())
1810
return;
1811
bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1812
GotSection *got = in.got.get();
1813
1814
if (flags & NEEDS_TLSDESC) {
1815
got->addTlsDescEntry(sym);
1816
mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
1817
target->tlsDescRel, *got, got->getTlsDescOffset(sym), sym,
1818
target->tlsDescRel);
1819
}
1820
if (flags & NEEDS_TLSGD) {
1821
got->addDynTlsEntry(sym);
1822
uint64_t off = got->getGlobalDynOffset(sym);
1823
if (isLocalInExecutable)
1824
// Write one to the GOT slot.
1825
got->addConstant({R_ADDEND, target->symbolicRel, off, 1, &sym});
1826
else
1827
mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *got, off,
1828
sym);
1829
1830
// If the symbol is preemptible we need the dynamic linker to write
1831
// the offset too.
1832
uint64_t offsetOff = off + config->wordsize;
1833
if (sym.isPreemptible)
1834
mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *got, offsetOff,
1835
sym);
1836
else
1837
got->addConstant({R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
1838
}
1839
if (flags & NEEDS_TLSGD_TO_IE) {
1840
got->addEntry(sym);
1841
mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, *got,
1842
sym.getGotOffset(), sym);
1843
}
1844
if (flags & NEEDS_GOT_DTPREL) {
1845
got->addEntry(sym);
1846
got->addConstant(
1847
{R_ABS, target->tlsOffsetRel, sym.getGotOffset(), 0, &sym});
1848
}
1849
1850
if ((flags & NEEDS_TLSIE) && !(flags & NEEDS_TLSGD_TO_IE))
1851
addTpOffsetGotEntry(sym);
1852
};
1853
1854
GotSection *got = in.got.get();
1855
if (ctx.needsTlsLd.load(std::memory_order_relaxed) && got->addTlsIndex()) {
1856
static Undefined dummy(ctx.internalFile, "", STB_LOCAL, 0, 0);
1857
if (config->shared)
1858
mainPart->relaDyn->addReloc(
1859
{target->tlsModuleIndexRel, got, got->getTlsIndexOff()});
1860
else
1861
got->addConstant(
1862
{R_ADDEND, target->symbolicRel, got->getTlsIndexOff(), 1, &dummy});
1863
}
1864
1865
assert(symAux.size() == 1);
1866
for (Symbol *sym : symtab.getSymbols())
1867
fn(*sym);
1868
1869
// Local symbols may need the aforementioned non-preemptible ifunc and GOT
1870
// handling. They don't need regular PLT.
1871
for (ELFFileBase *file : ctx.objectFiles)
1872
for (Symbol *sym : file->getLocalSymbols())
1873
fn(*sym);
1874
}
1875
1876
static bool mergeCmp(const InputSection *a, const InputSection *b) {
1877
// std::merge requires a strict weak ordering.
1878
if (a->outSecOff < b->outSecOff)
1879
return true;
1880
1881
// FIXME dyn_cast<ThunkSection> is non-null for any SyntheticSection.
1882
if (a->outSecOff == b->outSecOff && a != b) {
1883
auto *ta = dyn_cast<ThunkSection>(a);
1884
auto *tb = dyn_cast<ThunkSection>(b);
1885
1886
// Check if Thunk is immediately before any specific Target
1887
// InputSection for example Mips LA25 Thunks.
1888
if (ta && ta->getTargetInputSection() == b)
1889
return true;
1890
1891
// Place Thunk Sections without specific targets before
1892
// non-Thunk Sections.
1893
if (ta && !tb && !ta->getTargetInputSection())
1894
return true;
1895
}
1896
1897
return false;
1898
}
1899
1900
// Call Fn on every executable InputSection accessed via the linker script
1901
// InputSectionDescription::Sections.
1902
static void forEachInputSectionDescription(
1903
ArrayRef<OutputSection *> outputSections,
1904
llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
1905
for (OutputSection *os : outputSections) {
1906
if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
1907
continue;
1908
for (SectionCommand *bc : os->commands)
1909
if (auto *isd = dyn_cast<InputSectionDescription>(bc))
1910
fn(os, isd);
1911
}
1912
}
1913
1914
// Thunk Implementation
1915
//
1916
// Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1917
// of code that the linker inserts inbetween a caller and a callee. The thunks
1918
// are added at link time rather than compile time as the decision on whether
1919
// a thunk is needed, such as the caller and callee being out of range, can only
1920
// be made at link time.
1921
//
1922
// It is straightforward to tell given the current state of the program when a
1923
// thunk is needed for a particular call. The more difficult part is that
1924
// the thunk needs to be placed in the program such that the caller can reach
1925
// the thunk and the thunk can reach the callee; furthermore, adding thunks to
1926
// the program alters addresses, which can mean more thunks etc.
1927
//
1928
// In lld we have a synthetic ThunkSection that can hold many Thunks.
1929
// The decision to have a ThunkSection act as a container means that we can
1930
// more easily handle the most common case of a single block of contiguous
1931
// Thunks by inserting just a single ThunkSection.
1932
//
1933
// The implementation of Thunks in lld is split across these areas
1934
// Relocations.cpp : Framework for creating and placing thunks
1935
// Thunks.cpp : The code generated for each supported thunk
1936
// Target.cpp : Target specific hooks that the framework uses to decide when
1937
// a thunk is used
1938
// Synthetic.cpp : Implementation of ThunkSection
1939
// Writer.cpp : Iteratively call framework until no more Thunks added
1940
//
1941
// Thunk placement requirements:
1942
// Mips LA25 thunks. These must be placed immediately before the callee section
1943
// We can assume that the caller is in range of the Thunk. These are modelled
1944
// by Thunks that return the section they must precede with
1945
// getTargetInputSection().
1946
//
1947
// ARM interworking and range extension thunks. These thunks must be placed
1948
// within range of the caller. All implemented ARM thunks can always reach the
1949
// callee as they use an indirect jump via a register that has no range
1950
// restrictions.
1951
//
1952
// Thunk placement algorithm:
1953
// For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1954
// getTargetInputSection().
1955
//
1956
// For thunks that must be placed within range of the caller there are many
1957
// possible choices given that the maximum range from the caller is usually
1958
// much larger than the average InputSection size. Desirable properties include:
1959
// - Maximize reuse of thunks by multiple callers
1960
// - Minimize number of ThunkSections to simplify insertion
1961
// - Handle impact of already added Thunks on addresses
1962
// - Simple to understand and implement
1963
//
1964
// In lld for the first pass, we pre-create one or more ThunkSections per
1965
// InputSectionDescription at Target specific intervals. A ThunkSection is
1966
// placed so that the estimated end of the ThunkSection is within range of the
1967
// start of the InputSectionDescription or the previous ThunkSection. For
1968
// example:
1969
// InputSectionDescription
1970
// Section 0
1971
// ...
1972
// Section N
1973
// ThunkSection 0
1974
// Section N + 1
1975
// ...
1976
// Section N + K
1977
// Thunk Section 1
1978
//
1979
// The intention is that we can add a Thunk to a ThunkSection that is well
1980
// spaced enough to service a number of callers without having to do a lot
1981
// of work. An important principle is that it is not an error if a Thunk cannot
1982
// be placed in a pre-created ThunkSection; when this happens we create a new
1983
// ThunkSection placed next to the caller. This allows us to handle the vast
1984
// majority of thunks simply, but also handle rare cases where the branch range
1985
// is smaller than the target specific spacing.
1986
//
1987
// The algorithm is expected to create all the thunks that are needed in a
1988
// single pass, with a small number of programs needing a second pass due to
1989
// the insertion of thunks in the first pass increasing the offset between
1990
// callers and callees that were only just in range.
1991
//
1992
// A consequence of allowing new ThunkSections to be created outside of the
1993
// pre-created ThunkSections is that in rare cases calls to Thunks that were in
1994
// range in pass K, are out of range in some pass > K due to the insertion of
1995
// more Thunks in between the caller and callee. When this happens we retarget
1996
// the relocation back to the original target and create another Thunk.
1997
1998
// Remove ThunkSections that are empty, this should only be the initial set
1999
// precreated on pass 0.
2000
2001
// Insert the Thunks for OutputSection OS into their designated place
2002
// in the Sections vector, and recalculate the InputSection output section
2003
// offsets.
2004
// This may invalidate any output section offsets stored outside of InputSection
2005
void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
2006
forEachInputSectionDescription(
2007
outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2008
if (isd->thunkSections.empty())
2009
return;
2010
2011
// Remove any zero sized precreated Thunks.
2012
llvm::erase_if(isd->thunkSections,
2013
[](const std::pair<ThunkSection *, uint32_t> &ts) {
2014
return ts.first->getSize() == 0;
2015
});
2016
2017
// ISD->ThunkSections contains all created ThunkSections, including
2018
// those inserted in previous passes. Extract the Thunks created this
2019
// pass and order them in ascending outSecOff.
2020
std::vector<ThunkSection *> newThunks;
2021
for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
2022
if (ts.second == pass)
2023
newThunks.push_back(ts.first);
2024
llvm::stable_sort(newThunks,
2025
[](const ThunkSection *a, const ThunkSection *b) {
2026
return a->outSecOff < b->outSecOff;
2027
});
2028
2029
// Merge sorted vectors of Thunks and InputSections by outSecOff
2030
SmallVector<InputSection *, 0> tmp;
2031
tmp.reserve(isd->sections.size() + newThunks.size());
2032
2033
std::merge(isd->sections.begin(), isd->sections.end(),
2034
newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
2035
mergeCmp);
2036
2037
isd->sections = std::move(tmp);
2038
});
2039
}
2040
2041
static int64_t getPCBias(RelType type) {
2042
if (config->emachine != EM_ARM)
2043
return 0;
2044
switch (type) {
2045
case R_ARM_THM_JUMP19:
2046
case R_ARM_THM_JUMP24:
2047
case R_ARM_THM_CALL:
2048
return 4;
2049
default:
2050
return 8;
2051
}
2052
}
2053
2054
// Find or create a ThunkSection within the InputSectionDescription (ISD) that
2055
// is in range of Src. An ISD maps to a range of InputSections described by a
2056
// linker script section pattern such as { .text .text.* }.
2057
ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os,
2058
InputSection *isec,
2059
InputSectionDescription *isd,
2060
const Relocation &rel,
2061
uint64_t src) {
2062
// See the comment in getThunk for -pcBias below.
2063
const int64_t pcBias = getPCBias(rel.type);
2064
for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
2065
ThunkSection *ts = tp.first;
2066
uint64_t tsBase = os->addr + ts->outSecOff - pcBias;
2067
uint64_t tsLimit = tsBase + ts->getSize();
2068
if (target->inBranchRange(rel.type, src,
2069
(src > tsLimit) ? tsBase : tsLimit))
2070
return ts;
2071
}
2072
2073
// No suitable ThunkSection exists. This can happen when there is a branch
2074
// with lower range than the ThunkSection spacing or when there are too
2075
// many Thunks. Create a new ThunkSection as close to the InputSection as
2076
// possible. Error if InputSection is so large we cannot place ThunkSection
2077
// anywhere in Range.
2078
uint64_t thunkSecOff = isec->outSecOff;
2079
if (!target->inBranchRange(rel.type, src,
2080
os->addr + thunkSecOff + rel.addend)) {
2081
thunkSecOff = isec->outSecOff + isec->getSize();
2082
if (!target->inBranchRange(rel.type, src,
2083
os->addr + thunkSecOff + rel.addend))
2084
fatal("InputSection too large for range extension thunk " +
2085
isec->getObjMsg(src - (os->addr + isec->outSecOff)));
2086
}
2087
return addThunkSection(os, isd, thunkSecOff);
2088
}
2089
2090
// Add a Thunk that needs to be placed in a ThunkSection that immediately
2091
// precedes its Target.
2092
ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
2093
ThunkSection *ts = thunkedSections.lookup(isec);
2094
if (ts)
2095
return ts;
2096
2097
// Find InputSectionRange within Target Output Section (TOS) that the
2098
// InputSection (IS) that we need to precede is in.
2099
OutputSection *tos = isec->getParent();
2100
for (SectionCommand *bc : tos->commands) {
2101
auto *isd = dyn_cast<InputSectionDescription>(bc);
2102
if (!isd || isd->sections.empty())
2103
continue;
2104
2105
InputSection *first = isd->sections.front();
2106
InputSection *last = isd->sections.back();
2107
2108
if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
2109
continue;
2110
2111
ts = addThunkSection(tos, isd, isec->outSecOff);
2112
thunkedSections[isec] = ts;
2113
return ts;
2114
}
2115
2116
return nullptr;
2117
}
2118
2119
// Create one or more ThunkSections per OS that can be used to place Thunks.
2120
// We attempt to place the ThunkSections using the following desirable
2121
// properties:
2122
// - Within range of the maximum number of callers
2123
// - Minimise the number of ThunkSections
2124
//
2125
// We follow a simple but conservative heuristic to place ThunkSections at
2126
// offsets that are multiples of a Target specific branch range.
2127
// For an InputSectionDescription that is smaller than the range, a single
2128
// ThunkSection at the end of the range will do.
2129
//
2130
// For an InputSectionDescription that is more than twice the size of the range,
2131
// we place the last ThunkSection at range bytes from the end of the
2132
// InputSectionDescription in order to increase the likelihood that the
2133
// distance from a thunk to its target will be sufficiently small to
2134
// allow for the creation of a short thunk.
2135
void ThunkCreator::createInitialThunkSections(
2136
ArrayRef<OutputSection *> outputSections) {
2137
uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();
2138
2139
forEachInputSectionDescription(
2140
outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2141
if (isd->sections.empty())
2142
return;
2143
2144
uint32_t isdBegin = isd->sections.front()->outSecOff;
2145
uint32_t isdEnd =
2146
isd->sections.back()->outSecOff + isd->sections.back()->getSize();
2147
uint32_t lastThunkLowerBound = -1;
2148
if (isdEnd - isdBegin > thunkSectionSpacing * 2)
2149
lastThunkLowerBound = isdEnd - thunkSectionSpacing;
2150
2151
uint32_t isecLimit;
2152
uint32_t prevIsecLimit = isdBegin;
2153
uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;
2154
2155
for (const InputSection *isec : isd->sections) {
2156
isecLimit = isec->outSecOff + isec->getSize();
2157
if (isecLimit > thunkUpperBound) {
2158
addThunkSection(os, isd, prevIsecLimit);
2159
thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
2160
}
2161
if (isecLimit > lastThunkLowerBound)
2162
break;
2163
prevIsecLimit = isecLimit;
2164
}
2165
addThunkSection(os, isd, isecLimit);
2166
});
2167
}
2168
2169
ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
2170
InputSectionDescription *isd,
2171
uint64_t off) {
2172
auto *ts = make<ThunkSection>(os, off);
2173
ts->partition = os->partition;
2174
if ((config->fixCortexA53Errata843419 || config->fixCortexA8) &&
2175
!isd->sections.empty()) {
2176
// The errata fixes are sensitive to addresses modulo 4 KiB. When we add
2177
// thunks we disturb the base addresses of sections placed after the thunks
2178
// this makes patches we have generated redundant, and may cause us to
2179
// generate more patches as different instructions are now in sensitive
2180
// locations. When we generate more patches we may force more branches to
2181
// go out of range, causing more thunks to be generated. In pathological
2182
// cases this can cause the address dependent content pass not to converge.
2183
// We fix this by rounding up the size of the ThunkSection to 4KiB, this
2184
// limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
2185
// which means that adding Thunks to the section does not invalidate
2186
// errata patches for following code.
2187
// Rounding up the size to 4KiB has consequences for code-size and can
2188
// trip up linker script defined assertions. For example the linux kernel
2189
// has an assertion that what LLD represents as an InputSectionDescription
2190
// does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
2191
// We use the heuristic of rounding up the size when both of the following
2192
// conditions are true:
2193
// 1.) The OutputSection is larger than the ThunkSectionSpacing. This
2194
// accounts for the case where no single InputSectionDescription is
2195
// larger than the OutputSection size. This is conservative but simple.
2196
// 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
2197
// any assertion failures that an InputSectionDescription is < 4 KiB
2198
// in size.
2199
uint64_t isdSize = isd->sections.back()->outSecOff +
2200
isd->sections.back()->getSize() -
2201
isd->sections.front()->outSecOff;
2202
if (os->size > target->getThunkSectionSpacing() && isdSize > 4096)
2203
ts->roundUpSizeForErrata = true;
2204
}
2205
isd->thunkSections.push_back({ts, pass});
2206
return ts;
2207
}
2208
2209
static bool isThunkSectionCompatible(InputSection *source,
2210
SectionBase *target) {
2211
// We can't reuse thunks in different loadable partitions because they might
2212
// not be loaded. But partition 1 (the main partition) will always be loaded.
2213
if (source->partition != target->partition)
2214
return target->partition == 1;
2215
return true;
2216
}
2217
2218
std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
2219
Relocation &rel, uint64_t src) {
2220
std::vector<Thunk *> *thunkVec = nullptr;
2221
// Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled
2222
// out in the relocation addend. We compensate for the PC bias so that
2223
// an Arm and Thumb relocation to the same destination get the same keyAddend,
2224
// which is usually 0.
2225
const int64_t pcBias = getPCBias(rel.type);
2226
const int64_t keyAddend = rel.addend + pcBias;
2227
2228
// We use a ((section, offset), addend) pair to find the thunk position if
2229
// possible so that we create only one thunk for aliased symbols or ICFed
2230
// sections. There may be multiple relocations sharing the same (section,
2231
// offset + addend) pair. We may revert the relocation back to its original
2232
// non-Thunk target, so we cannot fold offset + addend.
2233
if (auto *d = dyn_cast<Defined>(rel.sym))
2234
if (!d->isInPlt() && d->section)
2235
thunkVec = &thunkedSymbolsBySectionAndAddend[{{d->section, d->value},
2236
keyAddend}];
2237
if (!thunkVec)
2238
thunkVec = &thunkedSymbols[{rel.sym, keyAddend}];
2239
2240
// Check existing Thunks for Sym to see if they can be reused
2241
for (Thunk *t : *thunkVec)
2242
if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
2243
t->isCompatibleWith(*isec, rel) &&
2244
target->inBranchRange(rel.type, src,
2245
t->getThunkTargetSym()->getVA(-pcBias)))
2246
return std::make_pair(t, false);
2247
2248
// No existing compatible Thunk in range, create a new one
2249
Thunk *t = addThunk(*isec, rel);
2250
thunkVec->push_back(t);
2251
return std::make_pair(t, true);
2252
}
2253
2254
// Return true if the relocation target is an in range Thunk.
2255
// Return false if the relocation is not to a Thunk. If the relocation target
2256
// was originally to a Thunk, but is no longer in range we revert the
2257
// relocation back to its original non-Thunk target.
2258
bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
2259
if (Thunk *t = thunks.lookup(rel.sym)) {
2260
if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend)))
2261
return true;
2262
rel.sym = &t->destination;
2263
rel.addend = t->addend;
2264
if (rel.sym->isInPlt())
2265
rel.expr = toPlt(rel.expr);
2266
}
2267
return false;
2268
}
2269
2270
// Process all relocations from the InputSections that have been assigned
2271
// to InputSectionDescriptions and redirect through Thunks if needed. The
2272
// function should be called iteratively until it returns false.
2273
//
2274
// PreConditions:
2275
// All InputSections that may need a Thunk are reachable from
2276
// OutputSectionCommands.
2277
//
2278
// All OutputSections have an address and all InputSections have an offset
2279
// within the OutputSection.
2280
//
2281
// The offsets between caller (relocation place) and callee
2282
// (relocation target) will not be modified outside of createThunks().
2283
//
2284
// PostConditions:
2285
// If return value is true then ThunkSections have been inserted into
2286
// OutputSections. All relocations that needed a Thunk based on the information
2287
// available to createThunks() on entry have been redirected to a Thunk. Note
2288
// that adding Thunks changes offsets between caller and callee so more Thunks
2289
// may be required.
2290
//
2291
// If return value is false then no more Thunks are needed, and createThunks has
2292
// made no changes. If the target requires range extension thunks, currently
2293
// ARM, then any future change in offset between caller and callee risks a
2294
// relocation out of range error.
2295
bool ThunkCreator::createThunks(uint32_t pass,
2296
ArrayRef<OutputSection *> outputSections) {
2297
this->pass = pass;
2298
bool addressesChanged = false;
2299
2300
if (pass == 0 && target->getThunkSectionSpacing())
2301
createInitialThunkSections(outputSections);
2302
2303
// Create all the Thunks and insert them into synthetic ThunkSections. The
2304
// ThunkSections are later inserted back into InputSectionDescriptions.
2305
// We separate the creation of ThunkSections from the insertion of the
2306
// ThunkSections as ThunkSections are not always inserted into the same
2307
// InputSectionDescription as the caller.
2308
forEachInputSectionDescription(
2309
outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2310
for (InputSection *isec : isd->sections)
2311
for (Relocation &rel : isec->relocs()) {
2312
uint64_t src = isec->getVA(rel.offset);
2313
2314
// If we are a relocation to an existing Thunk, check if it is
2315
// still in range. If not then Rel will be altered to point to its
2316
// original target so another Thunk can be generated.
2317
if (pass > 0 && normalizeExistingThunk(rel, src))
2318
continue;
2319
2320
if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
2321
*rel.sym, rel.addend))
2322
continue;
2323
2324
Thunk *t;
2325
bool isNew;
2326
std::tie(t, isNew) = getThunk(isec, rel, src);
2327
2328
if (isNew) {
2329
// Find or create a ThunkSection for the new Thunk
2330
ThunkSection *ts;
2331
if (auto *tis = t->getTargetInputSection())
2332
ts = getISThunkSec(tis);
2333
else
2334
ts = getISDThunkSec(os, isec, isd, rel, src);
2335
ts->addThunk(t);
2336
thunks[t->getThunkTargetSym()] = t;
2337
}
2338
2339
// Redirect relocation to Thunk, we never go via the PLT to a Thunk
2340
rel.sym = t->getThunkTargetSym();
2341
rel.expr = fromPlt(rel.expr);
2342
2343
// On AArch64 and PPC, a jump/call relocation may be encoded as
2344
// STT_SECTION + non-zero addend, clear the addend after
2345
// redirection.
2346
if (config->emachine != EM_MIPS)
2347
rel.addend = -getPCBias(rel.type);
2348
}
2349
2350
for (auto &p : isd->thunkSections)
2351
addressesChanged |= p.first->assignOffsets();
2352
});
2353
2354
for (auto &p : thunkedSections)
2355
addressesChanged |= p.second->assignOffsets();
2356
2357
// Merge all created synthetic ThunkSections back into OutputSection
2358
mergeThunks(outputSections);
2359
return addressesChanged;
2360
}
2361
2362
// The following aid in the conversion of call x@GDPLT to call __tls_get_addr
2363
// hexagonNeedsTLSSymbol scans for relocations would require a call to
2364
// __tls_get_addr.
2365
// hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr.
2366
bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) {
2367
bool needTlsSymbol = false;
2368
forEachInputSectionDescription(
2369
outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2370
for (InputSection *isec : isd->sections)
2371
for (Relocation &rel : isec->relocs())
2372
if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2373
needTlsSymbol = true;
2374
return;
2375
}
2376
});
2377
return needTlsSymbol;
2378
}
2379
2380
void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) {
2381
Symbol *sym = symtab.find("__tls_get_addr");
2382
if (!sym)
2383
return;
2384
bool needEntry = true;
2385
forEachInputSectionDescription(
2386
outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2387
for (InputSection *isec : isd->sections)
2388
for (Relocation &rel : isec->relocs())
2389
if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2390
if (needEntry) {
2391
sym->allocateAux();
2392
addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel,
2393
*sym);
2394
needEntry = false;
2395
}
2396
rel.sym = sym;
2397
}
2398
});
2399
}
2400
2401
static bool matchesRefTo(const NoCrossRefCommand &cmd, StringRef osec) {
2402
if (cmd.toFirst)
2403
return cmd.outputSections[0] == osec;
2404
return llvm::is_contained(cmd.outputSections, osec);
2405
}
2406
2407
template <class ELFT, class Rels>
2408
static void scanCrossRefs(const NoCrossRefCommand &cmd, OutputSection *osec,
2409
InputSection *sec, Rels rels) {
2410
for (const auto &r : rels) {
2411
Symbol &sym = sec->file->getSymbol(r.getSymbol(config->isMips64EL));
2412
// A legal cross-reference is when the destination output section is
2413
// nullptr, osec for a self-reference, or a section that is described by the
2414
// NOCROSSREFS/NOCROSSREFS_TO command.
2415
auto *dstOsec = sym.getOutputSection();
2416
if (!dstOsec || dstOsec == osec || !matchesRefTo(cmd, dstOsec->name))
2417
continue;
2418
2419
std::string toSymName;
2420
if (!sym.isSection())
2421
toSymName = toString(sym);
2422
else if (auto *d = dyn_cast<Defined>(&sym))
2423
toSymName = d->section->name;
2424
errorOrWarn(sec->getLocation(r.r_offset) +
2425
": prohibited cross reference from '" + osec->name + "' to '" +
2426
toSymName + "' in '" + dstOsec->name + "'");
2427
}
2428
}
2429
2430
// For each output section described by at least one NOCROSSREFS(_TO) command,
2431
// scan relocations from its input sections for prohibited cross references.
2432
template <class ELFT> void elf::checkNoCrossRefs() {
2433
for (OutputSection *osec : outputSections) {
2434
for (const NoCrossRefCommand &noxref : script->noCrossRefs) {
2435
if (!llvm::is_contained(noxref.outputSections, osec->name) ||
2436
(noxref.toFirst && noxref.outputSections[0] == osec->name))
2437
continue;
2438
for (SectionCommand *cmd : osec->commands) {
2439
auto *isd = dyn_cast<InputSectionDescription>(cmd);
2440
if (!isd)
2441
continue;
2442
parallelForEach(isd->sections, [&](InputSection *sec) {
2443
invokeOnRelocs(*sec, scanCrossRefs<ELFT>, noxref, osec, sec);
2444
});
2445
}
2446
}
2447
}
2448
}
2449
2450
template void elf::scanRelocations<ELF32LE>();
2451
template void elf::scanRelocations<ELF32BE>();
2452
template void elf::scanRelocations<ELF64LE>();
2453
template void elf::scanRelocations<ELF64BE>();
2454
2455
template void elf::checkNoCrossRefs<ELF32LE>();
2456
template void elf::checkNoCrossRefs<ELF32BE>();
2457
template void elf::checkNoCrossRefs<ELF64LE>();
2458
template void elf::checkNoCrossRefs<ELF64BE>();
2459
2460