Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lld/MachO/InputFiles.cpp
34878 views
1
//===- InputFiles.cpp -----------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file contains functions to parse Mach-O object files. In this comment,
10
// we describe the Mach-O file structure and how we parse it.
11
//
12
// Mach-O is not very different from ELF or COFF. The notion of symbols,
13
// sections and relocations exists in Mach-O as it does in ELF and COFF.
14
//
15
// Perhaps the notion that is new to those who know ELF/COFF is "subsections".
16
// In ELF/COFF, sections are an atomic unit of data copied from input files to
17
// output files. When we merge or garbage-collect sections, we treat each
18
// section as an atomic unit. In Mach-O, that's not the case. Sections can
19
// consist of multiple subsections, and subsections are a unit of merging and
20
// garbage-collecting. Therefore, Mach-O's subsections are more similar to
21
// ELF/COFF's sections than Mach-O's sections are.
22
//
23
// A section can have multiple symbols. A symbol that does not have the
24
// N_ALT_ENTRY attribute indicates a beginning of a subsection. Therefore, by
25
// definition, a symbol is always present at the beginning of each subsection. A
26
// symbol with N_ALT_ENTRY attribute does not start a new subsection and can
27
// point to a middle of a subsection.
28
//
29
// The notion of subsections also affects how relocations are represented in
30
// Mach-O. All references within a section need to be explicitly represented as
31
// relocations if they refer to different subsections, because we obviously need
32
// to fix up addresses if subsections are laid out in an output file differently
33
// than they were in object files. To represent that, Mach-O relocations can
34
// refer to an unnamed location via its address. Scattered relocations (those
35
// with the R_SCATTERED bit set) always refer to unnamed locations.
36
// Non-scattered relocations refer to an unnamed location if r_extern is not set
37
// and r_symbolnum is zero.
38
//
39
// Without the above differences, I think you can use your knowledge about ELF
40
// and COFF for Mach-O.
41
//
42
//===----------------------------------------------------------------------===//
43
44
#include "InputFiles.h"
45
#include "Config.h"
46
#include "Driver.h"
47
#include "Dwarf.h"
48
#include "EhFrame.h"
49
#include "ExportTrie.h"
50
#include "InputSection.h"
51
#include "MachOStructs.h"
52
#include "ObjC.h"
53
#include "OutputSection.h"
54
#include "OutputSegment.h"
55
#include "SymbolTable.h"
56
#include "Symbols.h"
57
#include "SyntheticSections.h"
58
#include "Target.h"
59
60
#include "lld/Common/CommonLinkerContext.h"
61
#include "lld/Common/DWARF.h"
62
#include "lld/Common/Reproduce.h"
63
#include "llvm/ADT/iterator.h"
64
#include "llvm/BinaryFormat/MachO.h"
65
#include "llvm/LTO/LTO.h"
66
#include "llvm/Support/BinaryStreamReader.h"
67
#include "llvm/Support/Endian.h"
68
#include "llvm/Support/LEB128.h"
69
#include "llvm/Support/MemoryBuffer.h"
70
#include "llvm/Support/Path.h"
71
#include "llvm/Support/TarWriter.h"
72
#include "llvm/Support/TimeProfiler.h"
73
#include "llvm/TextAPI/Architecture.h"
74
#include "llvm/TextAPI/InterfaceFile.h"
75
76
#include <optional>
77
#include <type_traits>
78
79
using namespace llvm;
80
using namespace llvm::MachO;
81
using namespace llvm::support::endian;
82
using namespace llvm::sys;
83
using namespace lld;
84
using namespace lld::macho;
85
86
// Returns "<internal>", "foo.a(bar.o)", or "baz.o".
87
std::string lld::toString(const InputFile *f) {
88
if (!f)
89
return "<internal>";
90
91
// Multiple dylibs can be defined in one .tbd file.
92
if (const auto *dylibFile = dyn_cast<DylibFile>(f))
93
if (f->getName().ends_with(".tbd"))
94
return (f->getName() + "(" + dylibFile->installName + ")").str();
95
96
if (f->archiveName.empty())
97
return std::string(f->getName());
98
return (f->archiveName + "(" + path::filename(f->getName()) + ")").str();
99
}
100
101
std::string lld::toString(const Section &sec) {
102
return (toString(sec.file) + ":(" + sec.name + ")").str();
103
}
104
105
SetVector<InputFile *> macho::inputFiles;
106
std::unique_ptr<TarWriter> macho::tar;
107
int InputFile::idCount = 0;
108
109
static VersionTuple decodeVersion(uint32_t version) {
110
unsigned major = version >> 16;
111
unsigned minor = (version >> 8) & 0xffu;
112
unsigned subMinor = version & 0xffu;
113
return VersionTuple(major, minor, subMinor);
114
}
115
116
static std::vector<PlatformInfo> getPlatformInfos(const InputFile *input) {
117
if (!isa<ObjFile>(input) && !isa<DylibFile>(input))
118
return {};
119
120
const char *hdr = input->mb.getBufferStart();
121
122
// "Zippered" object files can have multiple LC_BUILD_VERSION load commands.
123
std::vector<PlatformInfo> platformInfos;
124
for (auto *cmd : findCommands<build_version_command>(hdr, LC_BUILD_VERSION)) {
125
PlatformInfo info;
126
info.target.Platform = static_cast<PlatformType>(cmd->platform);
127
info.target.MinDeployment = decodeVersion(cmd->minos);
128
platformInfos.emplace_back(std::move(info));
129
}
130
for (auto *cmd : findCommands<version_min_command>(
131
hdr, LC_VERSION_MIN_MACOSX, LC_VERSION_MIN_IPHONEOS,
132
LC_VERSION_MIN_TVOS, LC_VERSION_MIN_WATCHOS)) {
133
PlatformInfo info;
134
switch (cmd->cmd) {
135
case LC_VERSION_MIN_MACOSX:
136
info.target.Platform = PLATFORM_MACOS;
137
break;
138
case LC_VERSION_MIN_IPHONEOS:
139
info.target.Platform = PLATFORM_IOS;
140
break;
141
case LC_VERSION_MIN_TVOS:
142
info.target.Platform = PLATFORM_TVOS;
143
break;
144
case LC_VERSION_MIN_WATCHOS:
145
info.target.Platform = PLATFORM_WATCHOS;
146
break;
147
}
148
info.target.MinDeployment = decodeVersion(cmd->version);
149
platformInfos.emplace_back(std::move(info));
150
}
151
152
return platformInfos;
153
}
154
155
static bool checkCompatibility(const InputFile *input) {
156
std::vector<PlatformInfo> platformInfos = getPlatformInfos(input);
157
if (platformInfos.empty())
158
return true;
159
160
auto it = find_if(platformInfos, [&](const PlatformInfo &info) {
161
return removeSimulator(info.target.Platform) ==
162
removeSimulator(config->platform());
163
});
164
if (it == platformInfos.end()) {
165
std::string platformNames;
166
raw_string_ostream os(platformNames);
167
interleave(
168
platformInfos, os,
169
[&](const PlatformInfo &info) {
170
os << getPlatformName(info.target.Platform);
171
},
172
"/");
173
error(toString(input) + " has platform " + platformNames +
174
Twine(", which is different from target platform ") +
175
getPlatformName(config->platform()));
176
return false;
177
}
178
179
if (it->target.MinDeployment > config->platformInfo.target.MinDeployment)
180
warn(toString(input) + " has version " +
181
it->target.MinDeployment.getAsString() +
182
", which is newer than target minimum of " +
183
config->platformInfo.target.MinDeployment.getAsString());
184
185
return true;
186
}
187
188
template <class Header>
189
static bool compatWithTargetArch(const InputFile *file, const Header *hdr) {
190
uint32_t cpuType;
191
std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(config->arch());
192
193
if (hdr->cputype != cpuType) {
194
Architecture arch =
195
getArchitectureFromCpuType(hdr->cputype, hdr->cpusubtype);
196
auto msg = config->errorForArchMismatch
197
? static_cast<void (*)(const Twine &)>(error)
198
: warn;
199
200
msg(toString(file) + " has architecture " + getArchitectureName(arch) +
201
" which is incompatible with target architecture " +
202
getArchitectureName(config->arch()));
203
return false;
204
}
205
206
return checkCompatibility(file);
207
}
208
209
// This cache mostly exists to store system libraries (and .tbds) as they're
210
// loaded, rather than the input archives, which are already cached at a higher
211
// level, and other files like the filelist that are only read once.
212
// Theoretically this caching could be more efficient by hoisting it, but that
213
// would require altering many callers to track the state.
214
DenseMap<CachedHashStringRef, MemoryBufferRef> macho::cachedReads;
215
// Open a given file path and return it as a memory-mapped file.
216
std::optional<MemoryBufferRef> macho::readFile(StringRef path) {
217
CachedHashStringRef key(path);
218
auto entry = cachedReads.find(key);
219
if (entry != cachedReads.end())
220
return entry->second;
221
222
ErrorOr<std::unique_ptr<MemoryBuffer>> mbOrErr = MemoryBuffer::getFile(path);
223
if (std::error_code ec = mbOrErr.getError()) {
224
error("cannot open " + path + ": " + ec.message());
225
return std::nullopt;
226
}
227
228
std::unique_ptr<MemoryBuffer> &mb = *mbOrErr;
229
MemoryBufferRef mbref = mb->getMemBufferRef();
230
make<std::unique_ptr<MemoryBuffer>>(std::move(mb)); // take mb ownership
231
232
// If this is a regular non-fat file, return it.
233
const char *buf = mbref.getBufferStart();
234
const auto *hdr = reinterpret_cast<const fat_header *>(buf);
235
if (mbref.getBufferSize() < sizeof(uint32_t) ||
236
read32be(&hdr->magic) != FAT_MAGIC) {
237
if (tar)
238
tar->append(relativeToRoot(path), mbref.getBuffer());
239
return cachedReads[key] = mbref;
240
}
241
242
llvm::BumpPtrAllocator &bAlloc = lld::bAlloc();
243
244
// Object files and archive files may be fat files, which contain multiple
245
// real files for different CPU ISAs. Here, we search for a file that matches
246
// with the current link target and returns it as a MemoryBufferRef.
247
const auto *arch = reinterpret_cast<const fat_arch *>(buf + sizeof(*hdr));
248
auto getArchName = [](uint32_t cpuType, uint32_t cpuSubtype) {
249
return getArchitectureName(getArchitectureFromCpuType(cpuType, cpuSubtype));
250
};
251
252
std::vector<StringRef> archs;
253
for (uint32_t i = 0, n = read32be(&hdr->nfat_arch); i < n; ++i) {
254
if (reinterpret_cast<const char *>(arch + i + 1) >
255
buf + mbref.getBufferSize()) {
256
error(path + ": fat_arch struct extends beyond end of file");
257
return std::nullopt;
258
}
259
260
uint32_t cpuType = read32be(&arch[i].cputype);
261
uint32_t cpuSubtype =
262
read32be(&arch[i].cpusubtype) & ~MachO::CPU_SUBTYPE_MASK;
263
264
// FIXME: LD64 has a more complex fallback logic here.
265
// Consider implementing that as well?
266
if (cpuType != static_cast<uint32_t>(target->cpuType) ||
267
cpuSubtype != target->cpuSubtype) {
268
archs.emplace_back(getArchName(cpuType, cpuSubtype));
269
continue;
270
}
271
272
uint32_t offset = read32be(&arch[i].offset);
273
uint32_t size = read32be(&arch[i].size);
274
if (offset + size > mbref.getBufferSize())
275
error(path + ": slice extends beyond end of file");
276
if (tar)
277
tar->append(relativeToRoot(path), mbref.getBuffer());
278
return cachedReads[key] = MemoryBufferRef(StringRef(buf + offset, size),
279
path.copy(bAlloc));
280
}
281
282
auto targetArchName = getArchName(target->cpuType, target->cpuSubtype);
283
warn(path + ": ignoring file because it is universal (" + join(archs, ",") +
284
") but does not contain the " + targetArchName + " architecture");
285
return std::nullopt;
286
}
287
288
InputFile::InputFile(Kind kind, const InterfaceFile &interface)
289
: id(idCount++), fileKind(kind), name(saver().save(interface.getPath())) {}
290
291
// Some sections comprise of fixed-size records, so instead of splitting them at
292
// symbol boundaries, we split them based on size. Records are distinct from
293
// literals in that they may contain references to other sections, instead of
294
// being leaf nodes in the InputSection graph.
295
//
296
// Note that "record" is a term I came up with. In contrast, "literal" is a term
297
// used by the Mach-O format.
298
static std::optional<size_t> getRecordSize(StringRef segname, StringRef name) {
299
if (name == section_names::compactUnwind) {
300
if (segname == segment_names::ld)
301
return target->wordSize == 8 ? 32 : 20;
302
}
303
if (!config->dedupStrings)
304
return {};
305
306
if (name == section_names::cfString && segname == segment_names::data)
307
return target->wordSize == 8 ? 32 : 16;
308
309
if (config->icfLevel == ICFLevel::none)
310
return {};
311
312
if (name == section_names::objcClassRefs && segname == segment_names::data)
313
return target->wordSize;
314
315
if (name == section_names::objcSelrefs && segname == segment_names::data)
316
return target->wordSize;
317
return {};
318
}
319
320
static Error parseCallGraph(ArrayRef<uint8_t> data,
321
std::vector<CallGraphEntry> &callGraph) {
322
TimeTraceScope timeScope("Parsing call graph section");
323
BinaryStreamReader reader(data, llvm::endianness::little);
324
while (!reader.empty()) {
325
uint32_t fromIndex, toIndex;
326
uint64_t count;
327
if (Error err = reader.readInteger(fromIndex))
328
return err;
329
if (Error err = reader.readInteger(toIndex))
330
return err;
331
if (Error err = reader.readInteger(count))
332
return err;
333
callGraph.emplace_back(fromIndex, toIndex, count);
334
}
335
return Error::success();
336
}
337
338
// Parse the sequence of sections within a single LC_SEGMENT(_64).
339
// Split each section into subsections.
340
template <class SectionHeader>
341
void ObjFile::parseSections(ArrayRef<SectionHeader> sectionHeaders) {
342
sections.reserve(sectionHeaders.size());
343
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
344
345
for (const SectionHeader &sec : sectionHeaders) {
346
StringRef name =
347
StringRef(sec.sectname, strnlen(sec.sectname, sizeof(sec.sectname)));
348
StringRef segname =
349
StringRef(sec.segname, strnlen(sec.segname, sizeof(sec.segname)));
350
sections.push_back(make<Section>(this, segname, name, sec.flags, sec.addr));
351
if (sec.align >= 32) {
352
error("alignment " + std::to_string(sec.align) + " of section " + name +
353
" is too large");
354
continue;
355
}
356
Section &section = *sections.back();
357
uint32_t align = 1 << sec.align;
358
ArrayRef<uint8_t> data = {isZeroFill(sec.flags) ? nullptr
359
: buf + sec.offset,
360
static_cast<size_t>(sec.size)};
361
362
auto splitRecords = [&](size_t recordSize) -> void {
363
if (data.empty())
364
return;
365
Subsections &subsections = section.subsections;
366
subsections.reserve(data.size() / recordSize);
367
for (uint64_t off = 0; off < data.size(); off += recordSize) {
368
auto *isec = make<ConcatInputSection>(
369
section, data.slice(off, std::min(data.size(), recordSize)), align);
370
subsections.push_back({off, isec});
371
}
372
section.doneSplitting = true;
373
};
374
375
if (sectionType(sec.flags) == S_CSTRING_LITERALS) {
376
if (sec.nreloc)
377
fatal(toString(this) + ": " + sec.segname + "," + sec.sectname +
378
" contains relocations, which is unsupported");
379
bool dedupLiterals =
380
name == section_names::objcMethname || config->dedupStrings;
381
InputSection *isec =
382
make<CStringInputSection>(section, data, align, dedupLiterals);
383
// FIXME: parallelize this?
384
cast<CStringInputSection>(isec)->splitIntoPieces();
385
section.subsections.push_back({0, isec});
386
} else if (isWordLiteralSection(sec.flags)) {
387
if (sec.nreloc)
388
fatal(toString(this) + ": " + sec.segname + "," + sec.sectname +
389
" contains relocations, which is unsupported");
390
InputSection *isec = make<WordLiteralInputSection>(section, data, align);
391
section.subsections.push_back({0, isec});
392
} else if (auto recordSize = getRecordSize(segname, name)) {
393
splitRecords(*recordSize);
394
} else if (name == section_names::ehFrame &&
395
segname == segment_names::text) {
396
splitEhFrames(data, *sections.back());
397
} else if (segname == segment_names::llvm) {
398
if (config->callGraphProfileSort && name == section_names::cgProfile)
399
checkError(parseCallGraph(data, callGraph));
400
// ld64 does not appear to emit contents from sections within the __LLVM
401
// segment. Symbols within those sections point to bitcode metadata
402
// instead of actual symbols. Global symbols within those sections could
403
// have the same name without causing duplicate symbol errors. To avoid
404
// spurious duplicate symbol errors, we do not parse these sections.
405
// TODO: Evaluate whether the bitcode metadata is needed.
406
} else if (name == section_names::objCImageInfo &&
407
segname == segment_names::data) {
408
objCImageInfo = data;
409
} else {
410
if (name == section_names::addrSig)
411
addrSigSection = sections.back();
412
413
auto *isec = make<ConcatInputSection>(section, data, align);
414
if (isDebugSection(isec->getFlags()) &&
415
isec->getSegName() == segment_names::dwarf) {
416
// Instead of emitting DWARF sections, we emit STABS symbols to the
417
// object files that contain them. We filter them out early to avoid
418
// parsing their relocations unnecessarily.
419
debugSections.push_back(isec);
420
} else {
421
section.subsections.push_back({0, isec});
422
}
423
}
424
}
425
}
426
427
void ObjFile::splitEhFrames(ArrayRef<uint8_t> data, Section &ehFrameSection) {
428
EhReader reader(this, data, /*dataOff=*/0);
429
size_t off = 0;
430
while (off < reader.size()) {
431
uint64_t frameOff = off;
432
uint64_t length = reader.readLength(&off);
433
if (length == 0)
434
break;
435
uint64_t fullLength = length + (off - frameOff);
436
off += length;
437
// We hard-code an alignment of 1 here because we don't actually want our
438
// EH frames to be aligned to the section alignment. EH frame decoders don't
439
// expect this alignment. Moreover, each EH frame must start where the
440
// previous one ends, and where it ends is indicated by the length field.
441
// Unless we update the length field (troublesome), we should keep the
442
// alignment to 1.
443
// Note that we still want to preserve the alignment of the overall section,
444
// just not of the individual EH frames.
445
ehFrameSection.subsections.push_back(
446
{frameOff, make<ConcatInputSection>(ehFrameSection,
447
data.slice(frameOff, fullLength),
448
/*align=*/1)});
449
}
450
ehFrameSection.doneSplitting = true;
451
}
452
453
template <class T>
454
static Section *findContainingSection(const std::vector<Section *> &sections,
455
T *offset) {
456
static_assert(std::is_same<uint64_t, T>::value ||
457
std::is_same<uint32_t, T>::value,
458
"unexpected type for offset");
459
auto it = std::prev(llvm::upper_bound(
460
sections, *offset,
461
[](uint64_t value, const Section *sec) { return value < sec->addr; }));
462
*offset -= (*it)->addr;
463
return *it;
464
}
465
466
// Find the subsection corresponding to the greatest section offset that is <=
467
// that of the given offset.
468
//
469
// offset: an offset relative to the start of the original InputSection (before
470
// any subsection splitting has occurred). It will be updated to represent the
471
// same location as an offset relative to the start of the containing
472
// subsection.
473
template <class T>
474
static InputSection *findContainingSubsection(const Section &section,
475
T *offset) {
476
static_assert(std::is_same<uint64_t, T>::value ||
477
std::is_same<uint32_t, T>::value,
478
"unexpected type for offset");
479
auto it = std::prev(llvm::upper_bound(
480
section.subsections, *offset,
481
[](uint64_t value, Subsection subsec) { return value < subsec.offset; }));
482
*offset -= it->offset;
483
return it->isec;
484
}
485
486
// Find a symbol at offset `off` within `isec`.
487
static Defined *findSymbolAtOffset(const ConcatInputSection *isec,
488
uint64_t off) {
489
auto it = llvm::lower_bound(isec->symbols, off, [](Defined *d, uint64_t off) {
490
return d->value < off;
491
});
492
// The offset should point at the exact address of a symbol (with no addend.)
493
if (it == isec->symbols.end() || (*it)->value != off) {
494
assert(isec->wasCoalesced);
495
return nullptr;
496
}
497
return *it;
498
}
499
500
template <class SectionHeader>
501
static bool validateRelocationInfo(InputFile *file, const SectionHeader &sec,
502
relocation_info rel) {
503
const RelocAttrs &relocAttrs = target->getRelocAttrs(rel.r_type);
504
bool valid = true;
505
auto message = [relocAttrs, file, sec, rel, &valid](const Twine &diagnostic) {
506
valid = false;
507
return (relocAttrs.name + " relocation " + diagnostic + " at offset " +
508
std::to_string(rel.r_address) + " of " + sec.segname + "," +
509
sec.sectname + " in " + toString(file))
510
.str();
511
};
512
513
if (!relocAttrs.hasAttr(RelocAttrBits::LOCAL) && !rel.r_extern)
514
error(message("must be extern"));
515
if (relocAttrs.hasAttr(RelocAttrBits::PCREL) != rel.r_pcrel)
516
error(message(Twine("must ") + (rel.r_pcrel ? "not " : "") +
517
"be PC-relative"));
518
if (isThreadLocalVariables(sec.flags) &&
519
!relocAttrs.hasAttr(RelocAttrBits::UNSIGNED))
520
error(message("not allowed in thread-local section, must be UNSIGNED"));
521
if (rel.r_length < 2 || rel.r_length > 3 ||
522
!relocAttrs.hasAttr(static_cast<RelocAttrBits>(1 << rel.r_length))) {
523
static SmallVector<StringRef, 4> widths{"0", "4", "8", "4 or 8"};
524
error(message("has width " + std::to_string(1 << rel.r_length) +
525
" bytes, but must be " +
526
widths[(static_cast<int>(relocAttrs.bits) >> 2) & 3] +
527
" bytes"));
528
}
529
return valid;
530
}
531
532
template <class SectionHeader>
533
void ObjFile::parseRelocations(ArrayRef<SectionHeader> sectionHeaders,
534
const SectionHeader &sec, Section &section) {
535
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
536
ArrayRef<relocation_info> relInfos(
537
reinterpret_cast<const relocation_info *>(buf + sec.reloff), sec.nreloc);
538
539
Subsections &subsections = section.subsections;
540
auto subsecIt = subsections.rbegin();
541
for (size_t i = 0; i < relInfos.size(); i++) {
542
// Paired relocations serve as Mach-O's method for attaching a
543
// supplemental datum to a primary relocation record. ELF does not
544
// need them because the *_RELOC_RELA records contain the extra
545
// addend field, vs. *_RELOC_REL which omit the addend.
546
//
547
// The {X86_64,ARM64}_RELOC_SUBTRACTOR record holds the subtrahend,
548
// and the paired *_RELOC_UNSIGNED record holds the minuend. The
549
// datum for each is a symbolic address. The result is the offset
550
// between two addresses.
551
//
552
// The ARM64_RELOC_ADDEND record holds the addend, and the paired
553
// ARM64_RELOC_BRANCH26 or ARM64_RELOC_PAGE21/PAGEOFF12 holds the
554
// base symbolic address.
555
//
556
// Note: X86 does not use *_RELOC_ADDEND because it can embed an addend into
557
// the instruction stream. On X86, a relocatable address field always
558
// occupies an entire contiguous sequence of byte(s), so there is no need to
559
// merge opcode bits with address bits. Therefore, it's easy and convenient
560
// to store addends in the instruction-stream bytes that would otherwise
561
// contain zeroes. By contrast, RISC ISAs such as ARM64 mix opcode bits with
562
// address bits so that bitwise arithmetic is necessary to extract and
563
// insert them. Storing addends in the instruction stream is possible, but
564
// inconvenient and more costly at link time.
565
566
relocation_info relInfo = relInfos[i];
567
bool isSubtrahend =
568
target->hasAttr(relInfo.r_type, RelocAttrBits::SUBTRAHEND);
569
int64_t pairedAddend = 0;
570
if (target->hasAttr(relInfo.r_type, RelocAttrBits::ADDEND)) {
571
pairedAddend = SignExtend64<24>(relInfo.r_symbolnum);
572
relInfo = relInfos[++i];
573
}
574
assert(i < relInfos.size());
575
if (!validateRelocationInfo(this, sec, relInfo))
576
continue;
577
if (relInfo.r_address & R_SCATTERED)
578
fatal("TODO: Scattered relocations not supported");
579
580
int64_t embeddedAddend = target->getEmbeddedAddend(mb, sec.offset, relInfo);
581
assert(!(embeddedAddend && pairedAddend));
582
int64_t totalAddend = pairedAddend + embeddedAddend;
583
Reloc r;
584
r.type = relInfo.r_type;
585
r.pcrel = relInfo.r_pcrel;
586
r.length = relInfo.r_length;
587
r.offset = relInfo.r_address;
588
if (relInfo.r_extern) {
589
r.referent = symbols[relInfo.r_symbolnum];
590
r.addend = isSubtrahend ? 0 : totalAddend;
591
} else {
592
assert(!isSubtrahend);
593
const SectionHeader &referentSecHead =
594
sectionHeaders[relInfo.r_symbolnum - 1];
595
uint64_t referentOffset;
596
if (relInfo.r_pcrel) {
597
// The implicit addend for pcrel section relocations is the pcrel offset
598
// in terms of the addresses in the input file. Here we adjust it so
599
// that it describes the offset from the start of the referent section.
600
// FIXME This logic was written around x86_64 behavior -- ARM64 doesn't
601
// have pcrel section relocations. We may want to factor this out into
602
// the arch-specific .cpp file.
603
assert(target->hasAttr(r.type, RelocAttrBits::BYTE4));
604
referentOffset = sec.addr + relInfo.r_address + 4 + totalAddend -
605
referentSecHead.addr;
606
} else {
607
// The addend for a non-pcrel relocation is its absolute address.
608
referentOffset = totalAddend - referentSecHead.addr;
609
}
610
r.referent = findContainingSubsection(*sections[relInfo.r_symbolnum - 1],
611
&referentOffset);
612
r.addend = referentOffset;
613
}
614
615
// Find the subsection that this relocation belongs to.
616
// Though not required by the Mach-O format, clang and gcc seem to emit
617
// relocations in order, so let's take advantage of it. However, ld64 emits
618
// unsorted relocations (in `-r` mode), so we have a fallback for that
619
// uncommon case.
620
InputSection *subsec;
621
while (subsecIt != subsections.rend() && subsecIt->offset > r.offset)
622
++subsecIt;
623
if (subsecIt == subsections.rend() ||
624
subsecIt->offset + subsecIt->isec->getSize() <= r.offset) {
625
subsec = findContainingSubsection(section, &r.offset);
626
// Now that we know the relocs are unsorted, avoid trying the 'fast path'
627
// for the other relocations.
628
subsecIt = subsections.rend();
629
} else {
630
subsec = subsecIt->isec;
631
r.offset -= subsecIt->offset;
632
}
633
subsec->relocs.push_back(r);
634
635
if (isSubtrahend) {
636
relocation_info minuendInfo = relInfos[++i];
637
// SUBTRACTOR relocations should always be followed by an UNSIGNED one
638
// attached to the same address.
639
assert(target->hasAttr(minuendInfo.r_type, RelocAttrBits::UNSIGNED) &&
640
relInfo.r_address == minuendInfo.r_address);
641
Reloc p;
642
p.type = minuendInfo.r_type;
643
if (minuendInfo.r_extern) {
644
p.referent = symbols[minuendInfo.r_symbolnum];
645
p.addend = totalAddend;
646
} else {
647
uint64_t referentOffset =
648
totalAddend - sectionHeaders[minuendInfo.r_symbolnum - 1].addr;
649
p.referent = findContainingSubsection(
650
*sections[minuendInfo.r_symbolnum - 1], &referentOffset);
651
p.addend = referentOffset;
652
}
653
subsec->relocs.push_back(p);
654
}
655
}
656
}
657
658
template <class NList>
659
static macho::Symbol *createDefined(const NList &sym, StringRef name,
660
InputSection *isec, uint64_t value,
661
uint64_t size, bool forceHidden) {
662
// Symbol scope is determined by sym.n_type & (N_EXT | N_PEXT):
663
// N_EXT: Global symbols. These go in the symbol table during the link,
664
// and also in the export table of the output so that the dynamic
665
// linker sees them.
666
// N_EXT | N_PEXT: Linkage unit (think: dylib) scoped. These go in the
667
// symbol table during the link so that duplicates are
668
// either reported (for non-weak symbols) or merged
669
// (for weak symbols), but they do not go in the export
670
// table of the output.
671
// N_PEXT: llvm-mc does not emit these, but `ld -r` (wherein ld64 emits
672
// object files) may produce them. LLD does not yet support -r.
673
// These are translation-unit scoped, identical to the `0` case.
674
// 0: Translation-unit scoped. These are not in the symbol table during
675
// link, and not in the export table of the output either.
676
bool isWeakDefCanBeHidden =
677
(sym.n_desc & (N_WEAK_DEF | N_WEAK_REF)) == (N_WEAK_DEF | N_WEAK_REF);
678
679
assert(!(sym.n_desc & N_ARM_THUMB_DEF) && "ARM32 arch is not supported");
680
681
if (sym.n_type & N_EXT) {
682
// -load_hidden makes us treat global symbols as linkage unit scoped.
683
// Duplicates are reported but the symbol does not go in the export trie.
684
bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
685
686
// lld's behavior for merging symbols is slightly different from ld64:
687
// ld64 picks the winning symbol based on several criteria (see
688
// pickBetweenRegularAtoms() in ld64's SymbolTable.cpp), while lld
689
// just merges metadata and keeps the contents of the first symbol
690
// with that name (see SymbolTable::addDefined). For:
691
// * inline function F in a TU built with -fvisibility-inlines-hidden
692
// * and inline function F in another TU built without that flag
693
// ld64 will pick the one from the file built without
694
// -fvisibility-inlines-hidden.
695
// lld will instead pick the one listed first on the link command line and
696
// give it visibility as if the function was built without
697
// -fvisibility-inlines-hidden.
698
// If both functions have the same contents, this will have the same
699
// behavior. If not, it won't, but the input had an ODR violation in
700
// that case.
701
//
702
// Similarly, merging a symbol
703
// that's isPrivateExtern and not isWeakDefCanBeHidden with one
704
// that's not isPrivateExtern but isWeakDefCanBeHidden technically
705
// should produce one
706
// that's not isPrivateExtern but isWeakDefCanBeHidden. That matters
707
// with ld64's semantics, because it means the non-private-extern
708
// definition will continue to take priority if more private extern
709
// definitions are encountered. With lld's semantics there's no observable
710
// difference between a symbol that's isWeakDefCanBeHidden(autohide) or one
711
// that's privateExtern -- neither makes it into the dynamic symbol table,
712
// unless the autohide symbol is explicitly exported.
713
// But if a symbol is both privateExtern and autohide then it can't
714
// be exported.
715
// So we nullify the autohide flag when privateExtern is present
716
// and promote the symbol to privateExtern when it is not already.
717
if (isWeakDefCanBeHidden && isPrivateExtern)
718
isWeakDefCanBeHidden = false;
719
else if (isWeakDefCanBeHidden)
720
isPrivateExtern = true;
721
return symtab->addDefined(
722
name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
723
isPrivateExtern, sym.n_desc & REFERENCED_DYNAMICALLY,
724
sym.n_desc & N_NO_DEAD_STRIP, isWeakDefCanBeHidden);
725
}
726
bool includeInSymtab = !isPrivateLabel(name) && !isEhFrameSection(isec);
727
return make<Defined>(
728
name, isec->getFile(), isec, value, size, sym.n_desc & N_WEAK_DEF,
729
/*isExternal=*/false, /*isPrivateExtern=*/false, includeInSymtab,
730
sym.n_desc & REFERENCED_DYNAMICALLY, sym.n_desc & N_NO_DEAD_STRIP);
731
}
732
733
// Absolute symbols are defined symbols that do not have an associated
734
// InputSection. They cannot be weak.
735
template <class NList>
736
static macho::Symbol *createAbsolute(const NList &sym, InputFile *file,
737
StringRef name, bool forceHidden) {
738
assert(!(sym.n_desc & N_ARM_THUMB_DEF) && "ARM32 arch is not supported");
739
740
if (sym.n_type & N_EXT) {
741
bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
742
return symtab->addDefined(name, file, nullptr, sym.n_value, /*size=*/0,
743
/*isWeakDef=*/false, isPrivateExtern,
744
/*isReferencedDynamically=*/false,
745
sym.n_desc & N_NO_DEAD_STRIP,
746
/*isWeakDefCanBeHidden=*/false);
747
}
748
return make<Defined>(name, file, nullptr, sym.n_value, /*size=*/0,
749
/*isWeakDef=*/false,
750
/*isExternal=*/false, /*isPrivateExtern=*/false,
751
/*includeInSymtab=*/true,
752
/*isReferencedDynamically=*/false,
753
sym.n_desc & N_NO_DEAD_STRIP);
754
}
755
756
template <class NList>
757
macho::Symbol *ObjFile::parseNonSectionSymbol(const NList &sym,
758
const char *strtab) {
759
StringRef name = StringRef(strtab + sym.n_strx);
760
uint8_t type = sym.n_type & N_TYPE;
761
bool isPrivateExtern = sym.n_type & N_PEXT || forceHidden;
762
switch (type) {
763
case N_UNDF:
764
return sym.n_value == 0
765
? symtab->addUndefined(name, this, sym.n_desc & N_WEAK_REF)
766
: symtab->addCommon(name, this, sym.n_value,
767
1 << GET_COMM_ALIGN(sym.n_desc),
768
isPrivateExtern);
769
case N_ABS:
770
return createAbsolute(sym, this, name, forceHidden);
771
case N_INDR: {
772
// Not much point in making local aliases -- relocs in the current file can
773
// just refer to the actual symbol itself. ld64 ignores these symbols too.
774
if (!(sym.n_type & N_EXT))
775
return nullptr;
776
StringRef aliasedName = StringRef(strtab + sym.n_value);
777
// isPrivateExtern is the only symbol flag that has an impact on the final
778
// aliased symbol.
779
auto *alias = make<AliasSymbol>(this, name, aliasedName, isPrivateExtern);
780
aliases.push_back(alias);
781
return alias;
782
}
783
case N_PBUD:
784
error("TODO: support symbols of type N_PBUD");
785
return nullptr;
786
case N_SECT:
787
llvm_unreachable(
788
"N_SECT symbols should not be passed to parseNonSectionSymbol");
789
default:
790
llvm_unreachable("invalid symbol type");
791
}
792
}
793
794
template <class NList> static bool isUndef(const NList &sym) {
795
return (sym.n_type & N_TYPE) == N_UNDF && sym.n_value == 0;
796
}
797
798
template <class LP>
799
void ObjFile::parseSymbols(ArrayRef<typename LP::section> sectionHeaders,
800
ArrayRef<typename LP::nlist> nList,
801
const char *strtab, bool subsectionsViaSymbols) {
802
using NList = typename LP::nlist;
803
804
// Groups indices of the symbols by the sections that contain them.
805
std::vector<std::vector<uint32_t>> symbolsBySection(sections.size());
806
symbols.resize(nList.size());
807
SmallVector<unsigned, 32> undefineds;
808
for (uint32_t i = 0; i < nList.size(); ++i) {
809
const NList &sym = nList[i];
810
811
// Ignore debug symbols for now.
812
// FIXME: may need special handling.
813
if (sym.n_type & N_STAB)
814
continue;
815
816
if ((sym.n_type & N_TYPE) == N_SECT) {
817
Subsections &subsections = sections[sym.n_sect - 1]->subsections;
818
// parseSections() may have chosen not to parse this section.
819
if (subsections.empty())
820
continue;
821
symbolsBySection[sym.n_sect - 1].push_back(i);
822
} else if (isUndef(sym)) {
823
undefineds.push_back(i);
824
} else {
825
symbols[i] = parseNonSectionSymbol(sym, strtab);
826
}
827
}
828
829
for (size_t i = 0; i < sections.size(); ++i) {
830
Subsections &subsections = sections[i]->subsections;
831
if (subsections.empty())
832
continue;
833
std::vector<uint32_t> &symbolIndices = symbolsBySection[i];
834
uint64_t sectionAddr = sectionHeaders[i].addr;
835
uint32_t sectionAlign = 1u << sectionHeaders[i].align;
836
837
// Some sections have already been split into subsections during
838
// parseSections(), so we simply need to match Symbols to the corresponding
839
// subsection here.
840
if (sections[i]->doneSplitting) {
841
for (size_t j = 0; j < symbolIndices.size(); ++j) {
842
const uint32_t symIndex = symbolIndices[j];
843
const NList &sym = nList[symIndex];
844
StringRef name = strtab + sym.n_strx;
845
uint64_t symbolOffset = sym.n_value - sectionAddr;
846
InputSection *isec =
847
findContainingSubsection(*sections[i], &symbolOffset);
848
if (symbolOffset != 0) {
849
error(toString(*sections[i]) + ": symbol " + name +
850
" at misaligned offset");
851
continue;
852
}
853
symbols[symIndex] =
854
createDefined(sym, name, isec, 0, isec->getSize(), forceHidden);
855
}
856
continue;
857
}
858
sections[i]->doneSplitting = true;
859
860
auto getSymName = [strtab](const NList& sym) -> StringRef {
861
return StringRef(strtab + sym.n_strx);
862
};
863
864
// Calculate symbol sizes and create subsections by splitting the sections
865
// along symbol boundaries.
866
// We populate subsections by repeatedly splitting the last (highest
867
// address) subsection.
868
llvm::stable_sort(symbolIndices, [&](uint32_t lhs, uint32_t rhs) {
869
// Put extern weak symbols after other symbols at the same address so
870
// that weak symbol coalescing works correctly. See
871
// SymbolTable::addDefined() for details.
872
if (nList[lhs].n_value == nList[rhs].n_value &&
873
nList[lhs].n_type & N_EXT && nList[rhs].n_type & N_EXT)
874
return !(nList[lhs].n_desc & N_WEAK_DEF) && (nList[rhs].n_desc & N_WEAK_DEF);
875
return nList[lhs].n_value < nList[rhs].n_value;
876
});
877
for (size_t j = 0; j < symbolIndices.size(); ++j) {
878
const uint32_t symIndex = symbolIndices[j];
879
const NList &sym = nList[symIndex];
880
StringRef name = getSymName(sym);
881
Subsection &subsec = subsections.back();
882
InputSection *isec = subsec.isec;
883
884
uint64_t subsecAddr = sectionAddr + subsec.offset;
885
size_t symbolOffset = sym.n_value - subsecAddr;
886
uint64_t symbolSize =
887
j + 1 < symbolIndices.size()
888
? nList[symbolIndices[j + 1]].n_value - sym.n_value
889
: isec->data.size() - symbolOffset;
890
// There are 4 cases where we do not need to create a new subsection:
891
// 1. If the input file does not use subsections-via-symbols.
892
// 2. Multiple symbols at the same address only induce one subsection.
893
// (The symbolOffset == 0 check covers both this case as well as
894
// the first loop iteration.)
895
// 3. Alternative entry points do not induce new subsections.
896
// 4. If we have a literal section (e.g. __cstring and __literal4).
897
if (!subsectionsViaSymbols || symbolOffset == 0 ||
898
sym.n_desc & N_ALT_ENTRY || !isa<ConcatInputSection>(isec)) {
899
isec->hasAltEntry = symbolOffset != 0;
900
symbols[symIndex] = createDefined(sym, name, isec, symbolOffset,
901
symbolSize, forceHidden);
902
continue;
903
}
904
auto *concatIsec = cast<ConcatInputSection>(isec);
905
906
auto *nextIsec = make<ConcatInputSection>(*concatIsec);
907
nextIsec->wasCoalesced = false;
908
if (isZeroFill(isec->getFlags())) {
909
// Zero-fill sections have NULL data.data() non-zero data.size()
910
nextIsec->data = {nullptr, isec->data.size() - symbolOffset};
911
isec->data = {nullptr, symbolOffset};
912
} else {
913
nextIsec->data = isec->data.slice(symbolOffset);
914
isec->data = isec->data.slice(0, symbolOffset);
915
}
916
917
// By construction, the symbol will be at offset zero in the new
918
// subsection.
919
symbols[symIndex] = createDefined(sym, name, nextIsec, /*value=*/0,
920
symbolSize, forceHidden);
921
// TODO: ld64 appears to preserve the original alignment as well as each
922
// subsection's offset from the last aligned address. We should consider
923
// emulating that behavior.
924
nextIsec->align = MinAlign(sectionAlign, sym.n_value);
925
subsections.push_back({sym.n_value - sectionAddr, nextIsec});
926
}
927
}
928
929
// Undefined symbols can trigger recursive fetch from Archives due to
930
// LazySymbols. Process defined symbols first so that the relative order
931
// between a defined symbol and an undefined symbol does not change the
932
// symbol resolution behavior. In addition, a set of interconnected symbols
933
// will all be resolved to the same file, instead of being resolved to
934
// different files.
935
for (unsigned i : undefineds)
936
symbols[i] = parseNonSectionSymbol(nList[i], strtab);
937
}
938
939
OpaqueFile::OpaqueFile(MemoryBufferRef mb, StringRef segName,
940
StringRef sectName)
941
: InputFile(OpaqueKind, mb) {
942
const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
943
ArrayRef<uint8_t> data = {buf, mb.getBufferSize()};
944
sections.push_back(make<Section>(/*file=*/this, segName.take_front(16),
945
sectName.take_front(16),
946
/*flags=*/0, /*addr=*/0));
947
Section &section = *sections.back();
948
ConcatInputSection *isec = make<ConcatInputSection>(section, data);
949
isec->live = true;
950
section.subsections.push_back({0, isec});
951
}
952
953
template <class LP>
954
void ObjFile::parseLinkerOptions(SmallVectorImpl<StringRef> &LCLinkerOptions) {
955
using Header = typename LP::mach_header;
956
auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
957
958
for (auto *cmd : findCommands<linker_option_command>(hdr, LC_LINKER_OPTION)) {
959
StringRef data{reinterpret_cast<const char *>(cmd + 1),
960
cmd->cmdsize - sizeof(linker_option_command)};
961
parseLCLinkerOption(LCLinkerOptions, this, cmd->count, data);
962
}
963
}
964
965
SmallVector<StringRef> macho::unprocessedLCLinkerOptions;
966
ObjFile::ObjFile(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
967
bool lazy, bool forceHidden, bool compatArch,
968
bool builtFromBitcode)
969
: InputFile(ObjKind, mb, lazy), modTime(modTime), forceHidden(forceHidden),
970
builtFromBitcode(builtFromBitcode) {
971
this->archiveName = std::string(archiveName);
972
this->compatArch = compatArch;
973
if (lazy) {
974
if (target->wordSize == 8)
975
parseLazy<LP64>();
976
else
977
parseLazy<ILP32>();
978
} else {
979
if (target->wordSize == 8)
980
parse<LP64>();
981
else
982
parse<ILP32>();
983
}
984
}
985
986
template <class LP> void ObjFile::parse() {
987
using Header = typename LP::mach_header;
988
using SegmentCommand = typename LP::segment_command;
989
using SectionHeader = typename LP::section;
990
using NList = typename LP::nlist;
991
992
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
993
auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
994
995
// If we've already checked the arch, then don't need to check again.
996
if (!compatArch)
997
return;
998
if (!(compatArch = compatWithTargetArch(this, hdr)))
999
return;
1000
1001
// We will resolve LC linker options once all native objects are loaded after
1002
// LTO is finished.
1003
SmallVector<StringRef, 4> LCLinkerOptions;
1004
parseLinkerOptions<LP>(LCLinkerOptions);
1005
unprocessedLCLinkerOptions.append(LCLinkerOptions);
1006
1007
ArrayRef<SectionHeader> sectionHeaders;
1008
if (const load_command *cmd = findCommand(hdr, LP::segmentLCType)) {
1009
auto *c = reinterpret_cast<const SegmentCommand *>(cmd);
1010
sectionHeaders = ArrayRef<SectionHeader>{
1011
reinterpret_cast<const SectionHeader *>(c + 1), c->nsects};
1012
parseSections(sectionHeaders);
1013
}
1014
1015
// TODO: Error on missing LC_SYMTAB?
1016
if (const load_command *cmd = findCommand(hdr, LC_SYMTAB)) {
1017
auto *c = reinterpret_cast<const symtab_command *>(cmd);
1018
ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
1019
c->nsyms);
1020
const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
1021
bool subsectionsViaSymbols = hdr->flags & MH_SUBSECTIONS_VIA_SYMBOLS;
1022
parseSymbols<LP>(sectionHeaders, nList, strtab, subsectionsViaSymbols);
1023
}
1024
1025
// The relocations may refer to the symbols, so we parse them after we have
1026
// parsed all the symbols.
1027
for (size_t i = 0, n = sections.size(); i < n; ++i)
1028
if (!sections[i]->subsections.empty())
1029
parseRelocations(sectionHeaders, sectionHeaders[i], *sections[i]);
1030
1031
parseDebugInfo();
1032
1033
Section *ehFrameSection = nullptr;
1034
Section *compactUnwindSection = nullptr;
1035
for (Section *sec : sections) {
1036
Section **s = StringSwitch<Section **>(sec->name)
1037
.Case(section_names::compactUnwind, &compactUnwindSection)
1038
.Case(section_names::ehFrame, &ehFrameSection)
1039
.Default(nullptr);
1040
if (s)
1041
*s = sec;
1042
}
1043
if (compactUnwindSection)
1044
registerCompactUnwind(*compactUnwindSection);
1045
if (ehFrameSection)
1046
registerEhFrames(*ehFrameSection);
1047
}
1048
1049
template <class LP> void ObjFile::parseLazy() {
1050
using Header = typename LP::mach_header;
1051
using NList = typename LP::nlist;
1052
1053
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1054
auto *hdr = reinterpret_cast<const Header *>(mb.getBufferStart());
1055
1056
if (!compatArch)
1057
return;
1058
if (!(compatArch = compatWithTargetArch(this, hdr)))
1059
return;
1060
1061
const load_command *cmd = findCommand(hdr, LC_SYMTAB);
1062
if (!cmd)
1063
return;
1064
auto *c = reinterpret_cast<const symtab_command *>(cmd);
1065
ArrayRef<NList> nList(reinterpret_cast<const NList *>(buf + c->symoff),
1066
c->nsyms);
1067
const char *strtab = reinterpret_cast<const char *>(buf) + c->stroff;
1068
symbols.resize(nList.size());
1069
for (const auto &[i, sym] : llvm::enumerate(nList)) {
1070
if ((sym.n_type & N_EXT) && !isUndef(sym)) {
1071
// TODO: Bound checking
1072
StringRef name = strtab + sym.n_strx;
1073
symbols[i] = symtab->addLazyObject(name, *this);
1074
if (!lazy)
1075
break;
1076
}
1077
}
1078
}
1079
1080
void ObjFile::parseDebugInfo() {
1081
std::unique_ptr<DwarfObject> dObj = DwarfObject::create(this);
1082
if (!dObj)
1083
return;
1084
1085
// We do not re-use the context from getDwarf() here as that function
1086
// constructs an expensive DWARFCache object.
1087
auto *ctx = make<DWARFContext>(
1088
std::move(dObj), "",
1089
[&](Error err) {
1090
warn(toString(this) + ": " + toString(std::move(err)));
1091
},
1092
[&](Error warning) {
1093
warn(toString(this) + ": " + toString(std::move(warning)));
1094
});
1095
1096
// TODO: Since object files can contain a lot of DWARF info, we should verify
1097
// that we are parsing just the info we need
1098
const DWARFContext::compile_unit_range &units = ctx->compile_units();
1099
// FIXME: There can be more than one compile unit per object file. See
1100
// PR48637.
1101
auto it = units.begin();
1102
compileUnit = it != units.end() ? it->get() : nullptr;
1103
}
1104
1105
ArrayRef<data_in_code_entry> ObjFile::getDataInCode() const {
1106
const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1107
const load_command *cmd = findCommand(buf, LC_DATA_IN_CODE);
1108
if (!cmd)
1109
return {};
1110
const auto *c = reinterpret_cast<const linkedit_data_command *>(cmd);
1111
return {reinterpret_cast<const data_in_code_entry *>(buf + c->dataoff),
1112
c->datasize / sizeof(data_in_code_entry)};
1113
}
1114
1115
ArrayRef<uint8_t> ObjFile::getOptimizationHints() const {
1116
const auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1117
if (auto *cmd =
1118
findCommand<linkedit_data_command>(buf, LC_LINKER_OPTIMIZATION_HINT))
1119
return {buf + cmd->dataoff, cmd->datasize};
1120
return {};
1121
}
1122
1123
// Create pointers from symbols to their associated compact unwind entries.
1124
void ObjFile::registerCompactUnwind(Section &compactUnwindSection) {
1125
for (const Subsection &subsection : compactUnwindSection.subsections) {
1126
ConcatInputSection *isec = cast<ConcatInputSection>(subsection.isec);
1127
// Hack!! Each compact unwind entry (CUE) has its UNSIGNED relocations embed
1128
// their addends in its data. Thus if ICF operated naively and compared the
1129
// entire contents of each CUE, entries with identical unwind info but e.g.
1130
// belonging to different functions would never be considered equivalent. To
1131
// work around this problem, we remove some parts of the data containing the
1132
// embedded addends. In particular, we remove the function address and LSDA
1133
// pointers. Since these locations are at the start and end of the entry,
1134
// we can do this using a simple, efficient slice rather than performing a
1135
// copy. We are not losing any information here because the embedded
1136
// addends have already been parsed in the corresponding Reloc structs.
1137
//
1138
// Removing these pointers would not be safe if they were pointers to
1139
// absolute symbols. In that case, there would be no corresponding
1140
// relocation. However, (AFAIK) MC cannot emit references to absolute
1141
// symbols for either the function address or the LSDA. However, it *can* do
1142
// so for the personality pointer, so we are not slicing that field away.
1143
//
1144
// Note that we do not adjust the offsets of the corresponding relocations;
1145
// instead, we rely on `relocateCompactUnwind()` to correctly handle these
1146
// truncated input sections.
1147
isec->data = isec->data.slice(target->wordSize, 8 + target->wordSize);
1148
uint32_t encoding = read32le(isec->data.data() + sizeof(uint32_t));
1149
// llvm-mc omits CU entries for functions that need DWARF encoding, but
1150
// `ld -r` doesn't. We can ignore them because we will re-synthesize these
1151
// CU entries from the DWARF info during the output phase.
1152
if ((encoding & static_cast<uint32_t>(UNWIND_MODE_MASK)) ==
1153
target->modeDwarfEncoding)
1154
continue;
1155
1156
ConcatInputSection *referentIsec;
1157
for (auto it = isec->relocs.begin(); it != isec->relocs.end();) {
1158
Reloc &r = *it;
1159
// CUE::functionAddress is at offset 0. Skip personality & LSDA relocs.
1160
if (r.offset != 0) {
1161
++it;
1162
continue;
1163
}
1164
uint64_t add = r.addend;
1165
if (auto *sym = cast_or_null<Defined>(r.referent.dyn_cast<Symbol *>())) {
1166
// Check whether the symbol defined in this file is the prevailing one.
1167
// Skip if it is e.g. a weak def that didn't prevail.
1168
if (sym->getFile() != this) {
1169
++it;
1170
continue;
1171
}
1172
add += sym->value;
1173
referentIsec = cast<ConcatInputSection>(sym->isec());
1174
} else {
1175
referentIsec =
1176
cast<ConcatInputSection>(r.referent.dyn_cast<InputSection *>());
1177
}
1178
// Unwind info lives in __DATA, and finalization of __TEXT will occur
1179
// before finalization of __DATA. Moreover, the finalization of unwind
1180
// info depends on the exact addresses that it references. So it is safe
1181
// for compact unwind to reference addresses in __TEXT, but not addresses
1182
// in any other segment.
1183
if (referentIsec->getSegName() != segment_names::text)
1184
error(isec->getLocation(r.offset) + " references section " +
1185
referentIsec->getName() + " which is not in segment __TEXT");
1186
// The functionAddress relocations are typically section relocations.
1187
// However, unwind info operates on a per-symbol basis, so we search for
1188
// the function symbol here.
1189
Defined *d = findSymbolAtOffset(referentIsec, add);
1190
if (!d) {
1191
++it;
1192
continue;
1193
}
1194
d->originalUnwindEntry = isec;
1195
// Now that the symbol points to the unwind entry, we can remove the reloc
1196
// that points from the unwind entry back to the symbol.
1197
//
1198
// First, the symbol keeps the unwind entry alive (and not vice versa), so
1199
// this keeps dead-stripping simple.
1200
//
1201
// Moreover, it reduces the work that ICF needs to do to figure out if
1202
// functions with unwind info are foldable.
1203
//
1204
// However, this does make it possible for ICF to fold CUEs that point to
1205
// distinct functions (if the CUEs are otherwise identical).
1206
// UnwindInfoSection takes care of this by re-duplicating the CUEs so that
1207
// each one can hold a distinct functionAddress value.
1208
//
1209
// Given that clang emits relocations in reverse order of address, this
1210
// relocation should be at the end of the vector for most of our input
1211
// object files, so this erase() is typically an O(1) operation.
1212
it = isec->relocs.erase(it);
1213
}
1214
}
1215
}
1216
1217
struct CIE {
1218
macho::Symbol *personalitySymbol = nullptr;
1219
bool fdesHaveAug = false;
1220
uint8_t lsdaPtrSize = 0; // 0 => no LSDA
1221
uint8_t funcPtrSize = 0;
1222
};
1223
1224
static uint8_t pointerEncodingToSize(uint8_t enc) {
1225
switch (enc & 0xf) {
1226
case dwarf::DW_EH_PE_absptr:
1227
return target->wordSize;
1228
case dwarf::DW_EH_PE_sdata4:
1229
return 4;
1230
case dwarf::DW_EH_PE_sdata8:
1231
// ld64 doesn't actually support sdata8, but this seems simple enough...
1232
return 8;
1233
default:
1234
return 0;
1235
};
1236
}
1237
1238
static CIE parseCIE(const InputSection *isec, const EhReader &reader,
1239
size_t off) {
1240
// Handling the full generality of possible DWARF encodings would be a major
1241
// pain. We instead take advantage of our knowledge of how llvm-mc encodes
1242
// DWARF and handle just that.
1243
constexpr uint8_t expectedPersonalityEnc =
1244
dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_sdata4;
1245
1246
CIE cie;
1247
uint8_t version = reader.readByte(&off);
1248
if (version != 1 && version != 3)
1249
fatal("Expected CIE version of 1 or 3, got " + Twine(version));
1250
StringRef aug = reader.readString(&off);
1251
reader.skipLeb128(&off); // skip code alignment
1252
reader.skipLeb128(&off); // skip data alignment
1253
reader.skipLeb128(&off); // skip return address register
1254
reader.skipLeb128(&off); // skip aug data length
1255
uint64_t personalityAddrOff = 0;
1256
for (char c : aug) {
1257
switch (c) {
1258
case 'z':
1259
cie.fdesHaveAug = true;
1260
break;
1261
case 'P': {
1262
uint8_t personalityEnc = reader.readByte(&off);
1263
if (personalityEnc != expectedPersonalityEnc)
1264
reader.failOn(off, "unexpected personality encoding 0x" +
1265
Twine::utohexstr(personalityEnc));
1266
personalityAddrOff = off;
1267
off += 4;
1268
break;
1269
}
1270
case 'L': {
1271
uint8_t lsdaEnc = reader.readByte(&off);
1272
cie.lsdaPtrSize = pointerEncodingToSize(lsdaEnc);
1273
if (cie.lsdaPtrSize == 0)
1274
reader.failOn(off, "unexpected LSDA encoding 0x" +
1275
Twine::utohexstr(lsdaEnc));
1276
break;
1277
}
1278
case 'R': {
1279
uint8_t pointerEnc = reader.readByte(&off);
1280
cie.funcPtrSize = pointerEncodingToSize(pointerEnc);
1281
if (cie.funcPtrSize == 0 || !(pointerEnc & dwarf::DW_EH_PE_pcrel))
1282
reader.failOn(off, "unexpected pointer encoding 0x" +
1283
Twine::utohexstr(pointerEnc));
1284
break;
1285
}
1286
default:
1287
break;
1288
}
1289
}
1290
if (personalityAddrOff != 0) {
1291
const auto *personalityReloc = isec->getRelocAt(personalityAddrOff);
1292
if (!personalityReloc)
1293
reader.failOn(off, "Failed to locate relocation for personality symbol");
1294
cie.personalitySymbol = personalityReloc->referent.get<macho::Symbol *>();
1295
}
1296
return cie;
1297
}
1298
1299
// EH frame target addresses may be encoded as pcrel offsets. However, instead
1300
// of using an actual pcrel reloc, ld64 emits subtractor relocations instead.
1301
// This function recovers the target address from the subtractors, essentially
1302
// performing the inverse operation of EhRelocator.
1303
//
1304
// Concretely, we expect our relocations to write the value of `PC -
1305
// target_addr` to `PC`. `PC` itself is denoted by a minuend relocation that
1306
// points to a symbol plus an addend.
1307
//
1308
// It is important that the minuend relocation point to a symbol within the
1309
// same section as the fixup value, since sections may get moved around.
1310
//
1311
// For example, for arm64, llvm-mc emits relocations for the target function
1312
// address like so:
1313
//
1314
// ltmp:
1315
// <CIE start>
1316
// ...
1317
// <CIE end>
1318
// ... multiple FDEs ...
1319
// <FDE start>
1320
// <target function address - (ltmp + pcrel offset)>
1321
// ...
1322
//
1323
// If any of the FDEs in `multiple FDEs` get dead-stripped, then `FDE start`
1324
// will move to an earlier address, and `ltmp + pcrel offset` will no longer
1325
// reflect an accurate pcrel value. To avoid this problem, we "canonicalize"
1326
// our relocation by adding an `EH_Frame` symbol at `FDE start`, and updating
1327
// the reloc to be `target function address - (EH_Frame + new pcrel offset)`.
1328
//
1329
// If `Invert` is set, then we instead expect `target_addr - PC` to be written
1330
// to `PC`.
1331
template <bool Invert = false>
1332
Defined *
1333
targetSymFromCanonicalSubtractor(const InputSection *isec,
1334
std::vector<macho::Reloc>::iterator relocIt) {
1335
macho::Reloc &subtrahend = *relocIt;
1336
macho::Reloc &minuend = *std::next(relocIt);
1337
assert(target->hasAttr(subtrahend.type, RelocAttrBits::SUBTRAHEND));
1338
assert(target->hasAttr(minuend.type, RelocAttrBits::UNSIGNED));
1339
// Note: pcSym may *not* be exactly at the PC; there's usually a non-zero
1340
// addend.
1341
auto *pcSym = cast<Defined>(subtrahend.referent.get<macho::Symbol *>());
1342
Defined *target =
1343
cast_or_null<Defined>(minuend.referent.dyn_cast<macho::Symbol *>());
1344
if (!pcSym) {
1345
auto *targetIsec =
1346
cast<ConcatInputSection>(minuend.referent.get<InputSection *>());
1347
target = findSymbolAtOffset(targetIsec, minuend.addend);
1348
}
1349
if (Invert)
1350
std::swap(pcSym, target);
1351
if (pcSym->isec() == isec) {
1352
if (pcSym->value - (Invert ? -1 : 1) * minuend.addend != subtrahend.offset)
1353
fatal("invalid FDE relocation in __eh_frame");
1354
} else {
1355
// Ensure the pcReloc points to a symbol within the current EH frame.
1356
// HACK: we should really verify that the original relocation's semantics
1357
// are preserved. In particular, we should have
1358
// `oldSym->value + oldOffset == newSym + newOffset`. However, we don't
1359
// have an easy way to access the offsets from this point in the code; some
1360
// refactoring is needed for that.
1361
macho::Reloc &pcReloc = Invert ? minuend : subtrahend;
1362
pcReloc.referent = isec->symbols[0];
1363
assert(isec->symbols[0]->value == 0);
1364
minuend.addend = pcReloc.offset * (Invert ? 1LL : -1LL);
1365
}
1366
return target;
1367
}
1368
1369
Defined *findSymbolAtAddress(const std::vector<Section *> &sections,
1370
uint64_t addr) {
1371
Section *sec = findContainingSection(sections, &addr);
1372
auto *isec = cast<ConcatInputSection>(findContainingSubsection(*sec, &addr));
1373
return findSymbolAtOffset(isec, addr);
1374
}
1375
1376
// For symbols that don't have compact unwind info, associate them with the more
1377
// general-purpose (and verbose) DWARF unwind info found in __eh_frame.
1378
//
1379
// This requires us to parse the contents of __eh_frame. See EhFrame.h for a
1380
// description of its format.
1381
//
1382
// While parsing, we also look for what MC calls "abs-ified" relocations -- they
1383
// are relocations which are implicitly encoded as offsets in the section data.
1384
// We convert them into explicit Reloc structs so that the EH frames can be
1385
// handled just like a regular ConcatInputSection later in our output phase.
1386
//
1387
// We also need to handle the case where our input object file has explicit
1388
// relocations. This is the case when e.g. it's the output of `ld -r`. We only
1389
// look for the "abs-ified" relocation if an explicit relocation is absent.
1390
void ObjFile::registerEhFrames(Section &ehFrameSection) {
1391
DenseMap<const InputSection *, CIE> cieMap;
1392
for (const Subsection &subsec : ehFrameSection.subsections) {
1393
auto *isec = cast<ConcatInputSection>(subsec.isec);
1394
uint64_t isecOff = subsec.offset;
1395
1396
// Subtractor relocs require the subtrahend to be a symbol reloc. Ensure
1397
// that all EH frames have an associated symbol so that we can generate
1398
// subtractor relocs that reference them.
1399
if (isec->symbols.size() == 0)
1400
make<Defined>("EH_Frame", isec->getFile(), isec, /*value=*/0,
1401
isec->getSize(), /*isWeakDef=*/false, /*isExternal=*/false,
1402
/*isPrivateExtern=*/false, /*includeInSymtab=*/false,
1403
/*isReferencedDynamically=*/false,
1404
/*noDeadStrip=*/false);
1405
else if (isec->symbols[0]->value != 0)
1406
fatal("found symbol at unexpected offset in __eh_frame");
1407
1408
EhReader reader(this, isec->data, subsec.offset);
1409
size_t dataOff = 0; // Offset from the start of the EH frame.
1410
reader.skipValidLength(&dataOff); // readLength() already validated this.
1411
// cieOffOff is the offset from the start of the EH frame to the cieOff
1412
// value, which is itself an offset from the current PC to a CIE.
1413
const size_t cieOffOff = dataOff;
1414
1415
EhRelocator ehRelocator(isec);
1416
auto cieOffRelocIt = llvm::find_if(
1417
isec->relocs, [=](const Reloc &r) { return r.offset == cieOffOff; });
1418
InputSection *cieIsec = nullptr;
1419
if (cieOffRelocIt != isec->relocs.end()) {
1420
// We already have an explicit relocation for the CIE offset.
1421
cieIsec =
1422
targetSymFromCanonicalSubtractor</*Invert=*/true>(isec, cieOffRelocIt)
1423
->isec();
1424
dataOff += sizeof(uint32_t);
1425
} else {
1426
// If we haven't found a relocation, then the CIE offset is most likely
1427
// embedded in the section data (AKA an "abs-ified" reloc.). Parse that
1428
// and generate a Reloc struct.
1429
uint32_t cieMinuend = reader.readU32(&dataOff);
1430
if (cieMinuend == 0) {
1431
cieIsec = isec;
1432
} else {
1433
uint32_t cieOff = isecOff + dataOff - cieMinuend;
1434
cieIsec = findContainingSubsection(ehFrameSection, &cieOff);
1435
if (cieIsec == nullptr)
1436
fatal("failed to find CIE");
1437
}
1438
if (cieIsec != isec)
1439
ehRelocator.makeNegativePcRel(cieOffOff, cieIsec->symbols[0],
1440
/*length=*/2);
1441
}
1442
if (cieIsec == isec) {
1443
cieMap[cieIsec] = parseCIE(isec, reader, dataOff);
1444
continue;
1445
}
1446
1447
assert(cieMap.count(cieIsec));
1448
const CIE &cie = cieMap[cieIsec];
1449
// Offset of the function address within the EH frame.
1450
const size_t funcAddrOff = dataOff;
1451
uint64_t funcAddr = reader.readPointer(&dataOff, cie.funcPtrSize) +
1452
ehFrameSection.addr + isecOff + funcAddrOff;
1453
uint32_t funcLength = reader.readPointer(&dataOff, cie.funcPtrSize);
1454
size_t lsdaAddrOff = 0; // Offset of the LSDA address within the EH frame.
1455
std::optional<uint64_t> lsdaAddrOpt;
1456
if (cie.fdesHaveAug) {
1457
reader.skipLeb128(&dataOff);
1458
lsdaAddrOff = dataOff;
1459
if (cie.lsdaPtrSize != 0) {
1460
uint64_t lsdaOff = reader.readPointer(&dataOff, cie.lsdaPtrSize);
1461
if (lsdaOff != 0) // FIXME possible to test this?
1462
lsdaAddrOpt = ehFrameSection.addr + isecOff + lsdaAddrOff + lsdaOff;
1463
}
1464
}
1465
1466
auto funcAddrRelocIt = isec->relocs.end();
1467
auto lsdaAddrRelocIt = isec->relocs.end();
1468
for (auto it = isec->relocs.begin(); it != isec->relocs.end(); ++it) {
1469
if (it->offset == funcAddrOff)
1470
funcAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1471
else if (lsdaAddrOpt && it->offset == lsdaAddrOff)
1472
lsdaAddrRelocIt = it++; // Found subtrahend; skip over minuend reloc
1473
}
1474
1475
Defined *funcSym;
1476
if (funcAddrRelocIt != isec->relocs.end()) {
1477
funcSym = targetSymFromCanonicalSubtractor(isec, funcAddrRelocIt);
1478
// Canonicalize the symbol. If there are multiple symbols at the same
1479
// address, we want both `registerEhFrame` and `registerCompactUnwind`
1480
// to register the unwind entry under same symbol.
1481
// This is not particularly efficient, but we should run into this case
1482
// infrequently (only when handling the output of `ld -r`).
1483
if (funcSym->isec())
1484
funcSym = findSymbolAtOffset(cast<ConcatInputSection>(funcSym->isec()),
1485
funcSym->value);
1486
} else {
1487
funcSym = findSymbolAtAddress(sections, funcAddr);
1488
ehRelocator.makePcRel(funcAddrOff, funcSym, target->p2WordSize);
1489
}
1490
// The symbol has been coalesced, or already has a compact unwind entry.
1491
if (!funcSym || funcSym->getFile() != this || funcSym->unwindEntry()) {
1492
// We must prune unused FDEs for correctness, so we cannot rely on
1493
// -dead_strip being enabled.
1494
isec->live = false;
1495
continue;
1496
}
1497
1498
InputSection *lsdaIsec = nullptr;
1499
if (lsdaAddrRelocIt != isec->relocs.end()) {
1500
lsdaIsec =
1501
targetSymFromCanonicalSubtractor(isec, lsdaAddrRelocIt)->isec();
1502
} else if (lsdaAddrOpt) {
1503
uint64_t lsdaAddr = *lsdaAddrOpt;
1504
Section *sec = findContainingSection(sections, &lsdaAddr);
1505
lsdaIsec =
1506
cast<ConcatInputSection>(findContainingSubsection(*sec, &lsdaAddr));
1507
ehRelocator.makePcRel(lsdaAddrOff, lsdaIsec, target->p2WordSize);
1508
}
1509
1510
fdes[isec] = {funcLength, cie.personalitySymbol, lsdaIsec};
1511
funcSym->originalUnwindEntry = isec;
1512
ehRelocator.commit();
1513
}
1514
1515
// __eh_frame is marked as S_ATTR_LIVE_SUPPORT in input files, because FDEs
1516
// are normally required to be kept alive if they reference a live symbol.
1517
// However, we've explicitly created a dependency from a symbol to its FDE, so
1518
// dead-stripping will just work as usual, and S_ATTR_LIVE_SUPPORT will only
1519
// serve to incorrectly prevent us from dead-stripping duplicate FDEs for a
1520
// live symbol (e.g. if there were multiple weak copies). Remove this flag to
1521
// let dead-stripping proceed correctly.
1522
ehFrameSection.flags &= ~S_ATTR_LIVE_SUPPORT;
1523
}
1524
1525
std::string ObjFile::sourceFile() const {
1526
const char *unitName = compileUnit->getUnitDIE().getShortName();
1527
// DWARF allows DW_AT_name to be absolute, in which case nothing should be
1528
// prepended. As for the styles, debug info can contain paths from any OS, not
1529
// necessarily an OS we're currently running on. Moreover different
1530
// compilation units can be compiled on different operating systems and linked
1531
// together later.
1532
if (sys::path::is_absolute(unitName, llvm::sys::path::Style::posix) ||
1533
sys::path::is_absolute(unitName, llvm::sys::path::Style::windows))
1534
return unitName;
1535
SmallString<261> dir(compileUnit->getCompilationDir());
1536
StringRef sep = sys::path::get_separator();
1537
// We don't use `path::append` here because we want an empty `dir` to result
1538
// in an absolute path. `append` would give us a relative path for that case.
1539
if (!dir.ends_with(sep))
1540
dir += sep;
1541
return (dir + unitName).str();
1542
}
1543
1544
lld::DWARFCache *ObjFile::getDwarf() {
1545
llvm::call_once(initDwarf, [this]() {
1546
auto dwObj = DwarfObject::create(this);
1547
if (!dwObj)
1548
return;
1549
dwarfCache = std::make_unique<DWARFCache>(std::make_unique<DWARFContext>(
1550
std::move(dwObj), "",
1551
[&](Error err) { warn(getName() + ": " + toString(std::move(err))); },
1552
[&](Error warning) {
1553
warn(getName() + ": " + toString(std::move(warning)));
1554
}));
1555
});
1556
1557
return dwarfCache.get();
1558
}
1559
// The path can point to either a dylib or a .tbd file.
1560
static DylibFile *loadDylib(StringRef path, DylibFile *umbrella) {
1561
std::optional<MemoryBufferRef> mbref = readFile(path);
1562
if (!mbref) {
1563
error("could not read dylib file at " + path);
1564
return nullptr;
1565
}
1566
return loadDylib(*mbref, umbrella);
1567
}
1568
1569
// TBD files are parsed into a series of TAPI documents (InterfaceFiles), with
1570
// the first document storing child pointers to the rest of them. When we are
1571
// processing a given TBD file, we store that top-level document in
1572
// currentTopLevelTapi. When processing re-exports, we search its children for
1573
// potentially matching documents in the same TBD file. Note that the children
1574
// themselves don't point to further documents, i.e. this is a two-level tree.
1575
//
1576
// Re-exports can either refer to on-disk files, or to documents within .tbd
1577
// files.
1578
static DylibFile *findDylib(StringRef path, DylibFile *umbrella,
1579
const InterfaceFile *currentTopLevelTapi) {
1580
// Search order:
1581
// 1. Install name basename in -F / -L directories.
1582
{
1583
StringRef stem = path::stem(path);
1584
SmallString<128> frameworkName;
1585
path::append(frameworkName, path::Style::posix, stem + ".framework", stem);
1586
bool isFramework = path.ends_with(frameworkName);
1587
if (isFramework) {
1588
for (StringRef dir : config->frameworkSearchPaths) {
1589
SmallString<128> candidate = dir;
1590
path::append(candidate, frameworkName);
1591
if (std::optional<StringRef> dylibPath =
1592
resolveDylibPath(candidate.str()))
1593
return loadDylib(*dylibPath, umbrella);
1594
}
1595
} else if (std::optional<StringRef> dylibPath = findPathCombination(
1596
stem, config->librarySearchPaths, {".tbd", ".dylib", ".so"}))
1597
return loadDylib(*dylibPath, umbrella);
1598
}
1599
1600
// 2. As absolute path.
1601
if (path::is_absolute(path, path::Style::posix))
1602
for (StringRef root : config->systemLibraryRoots)
1603
if (std::optional<StringRef> dylibPath =
1604
resolveDylibPath((root + path).str()))
1605
return loadDylib(*dylibPath, umbrella);
1606
1607
// 3. As relative path.
1608
1609
// TODO: Handle -dylib_file
1610
1611
// Replace @executable_path, @loader_path, @rpath prefixes in install name.
1612
SmallString<128> newPath;
1613
if (config->outputType == MH_EXECUTE &&
1614
path.consume_front("@executable_path/")) {
1615
// ld64 allows overriding this with the undocumented flag -executable_path.
1616
// lld doesn't currently implement that flag.
1617
// FIXME: Consider using finalOutput instead of outputFile.
1618
path::append(newPath, path::parent_path(config->outputFile), path);
1619
path = newPath;
1620
} else if (path.consume_front("@loader_path/")) {
1621
fs::real_path(umbrella->getName(), newPath);
1622
path::remove_filename(newPath);
1623
path::append(newPath, path);
1624
path = newPath;
1625
} else if (path.starts_with("@rpath/")) {
1626
for (StringRef rpath : umbrella->rpaths) {
1627
newPath.clear();
1628
if (rpath.consume_front("@loader_path/")) {
1629
fs::real_path(umbrella->getName(), newPath);
1630
path::remove_filename(newPath);
1631
}
1632
path::append(newPath, rpath, path.drop_front(strlen("@rpath/")));
1633
if (std::optional<StringRef> dylibPath = resolveDylibPath(newPath.str()))
1634
return loadDylib(*dylibPath, umbrella);
1635
}
1636
}
1637
1638
// FIXME: Should this be further up?
1639
if (currentTopLevelTapi) {
1640
for (InterfaceFile &child :
1641
make_pointee_range(currentTopLevelTapi->documents())) {
1642
assert(child.documents().empty());
1643
if (path == child.getInstallName()) {
1644
auto *file = make<DylibFile>(child, umbrella, /*isBundleLoader=*/false,
1645
/*explicitlyLinked=*/false);
1646
file->parseReexports(child);
1647
return file;
1648
}
1649
}
1650
}
1651
1652
if (std::optional<StringRef> dylibPath = resolveDylibPath(path))
1653
return loadDylib(*dylibPath, umbrella);
1654
1655
return nullptr;
1656
}
1657
1658
// If a re-exported dylib is public (lives in /usr/lib or
1659
// /System/Library/Frameworks), then it is considered implicitly linked: we
1660
// should bind to its symbols directly instead of via the re-exporting umbrella
1661
// library.
1662
static bool isImplicitlyLinked(StringRef path) {
1663
if (!config->implicitDylibs)
1664
return false;
1665
1666
if (path::parent_path(path) == "/usr/lib")
1667
return true;
1668
1669
// Match /System/Library/Frameworks/$FOO.framework/**/$FOO
1670
if (path.consume_front("/System/Library/Frameworks/")) {
1671
StringRef frameworkName = path.take_until([](char c) { return c == '.'; });
1672
return path::filename(path) == frameworkName;
1673
}
1674
1675
return false;
1676
}
1677
1678
void DylibFile::loadReexport(StringRef path, DylibFile *umbrella,
1679
const InterfaceFile *currentTopLevelTapi) {
1680
DylibFile *reexport = findDylib(path, umbrella, currentTopLevelTapi);
1681
if (!reexport)
1682
error(toString(this) + ": unable to locate re-export with install name " +
1683
path);
1684
}
1685
1686
DylibFile::DylibFile(MemoryBufferRef mb, DylibFile *umbrella,
1687
bool isBundleLoader, bool explicitlyLinked)
1688
: InputFile(DylibKind, mb), refState(RefState::Unreferenced),
1689
explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1690
assert(!isBundleLoader || !umbrella);
1691
if (umbrella == nullptr)
1692
umbrella = this;
1693
this->umbrella = umbrella;
1694
1695
auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1696
1697
// Initialize installName.
1698
if (const load_command *cmd = findCommand(hdr, LC_ID_DYLIB)) {
1699
auto *c = reinterpret_cast<const dylib_command *>(cmd);
1700
currentVersion = read32le(&c->dylib.current_version);
1701
compatibilityVersion = read32le(&c->dylib.compatibility_version);
1702
installName =
1703
reinterpret_cast<const char *>(cmd) + read32le(&c->dylib.name);
1704
} else if (!isBundleLoader) {
1705
// macho_executable and macho_bundle don't have LC_ID_DYLIB,
1706
// so it's OK.
1707
error(toString(this) + ": dylib missing LC_ID_DYLIB load command");
1708
return;
1709
}
1710
1711
if (config->printEachFile)
1712
message(toString(this));
1713
inputFiles.insert(this);
1714
1715
deadStrippable = hdr->flags & MH_DEAD_STRIPPABLE_DYLIB;
1716
1717
if (!checkCompatibility(this))
1718
return;
1719
1720
checkAppExtensionSafety(hdr->flags & MH_APP_EXTENSION_SAFE);
1721
1722
for (auto *cmd : findCommands<rpath_command>(hdr, LC_RPATH)) {
1723
StringRef rpath{reinterpret_cast<const char *>(cmd) + cmd->path};
1724
rpaths.push_back(rpath);
1725
}
1726
1727
// Initialize symbols.
1728
bool canBeImplicitlyLinked = findCommand(hdr, LC_SUB_CLIENT) == nullptr;
1729
exportingFile = (canBeImplicitlyLinked && isImplicitlyLinked(installName))
1730
? this
1731
: this->umbrella;
1732
1733
const auto *dyldInfo = findCommand<dyld_info_command>(hdr, LC_DYLD_INFO_ONLY);
1734
const auto *exportsTrie =
1735
findCommand<linkedit_data_command>(hdr, LC_DYLD_EXPORTS_TRIE);
1736
if (dyldInfo && exportsTrie) {
1737
// It's unclear what should happen in this case. Maybe we should only error
1738
// out if the two load commands refer to different data?
1739
error(toString(this) +
1740
": dylib has both LC_DYLD_INFO_ONLY and LC_DYLD_EXPORTS_TRIE");
1741
return;
1742
}
1743
1744
if (dyldInfo) {
1745
parseExportedSymbols(dyldInfo->export_off, dyldInfo->export_size);
1746
} else if (exportsTrie) {
1747
parseExportedSymbols(exportsTrie->dataoff, exportsTrie->datasize);
1748
} else {
1749
error("No LC_DYLD_INFO_ONLY or LC_DYLD_EXPORTS_TRIE found in " +
1750
toString(this));
1751
}
1752
}
1753
1754
void DylibFile::parseExportedSymbols(uint32_t offset, uint32_t size) {
1755
struct TrieEntry {
1756
StringRef name;
1757
uint64_t flags;
1758
};
1759
1760
auto *buf = reinterpret_cast<const uint8_t *>(mb.getBufferStart());
1761
std::vector<TrieEntry> entries;
1762
// Find all the $ld$* symbols to process first.
1763
parseTrie(buf + offset, size, [&](const Twine &name, uint64_t flags) {
1764
StringRef savedName = saver().save(name);
1765
if (handleLDSymbol(savedName))
1766
return;
1767
entries.push_back({savedName, flags});
1768
});
1769
1770
// Process the "normal" symbols.
1771
for (TrieEntry &entry : entries) {
1772
if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(entry.name)))
1773
continue;
1774
1775
bool isWeakDef = entry.flags & EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION;
1776
bool isTlv = entry.flags & EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL;
1777
1778
symbols.push_back(
1779
symtab->addDylib(entry.name, exportingFile, isWeakDef, isTlv));
1780
}
1781
}
1782
1783
void DylibFile::parseLoadCommands(MemoryBufferRef mb) {
1784
auto *hdr = reinterpret_cast<const mach_header *>(mb.getBufferStart());
1785
const uint8_t *p = reinterpret_cast<const uint8_t *>(mb.getBufferStart()) +
1786
target->headerSize;
1787
for (uint32_t i = 0, n = hdr->ncmds; i < n; ++i) {
1788
auto *cmd = reinterpret_cast<const load_command *>(p);
1789
p += cmd->cmdsize;
1790
1791
if (!(hdr->flags & MH_NO_REEXPORTED_DYLIBS) &&
1792
cmd->cmd == LC_REEXPORT_DYLIB) {
1793
const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1794
StringRef reexportPath =
1795
reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1796
loadReexport(reexportPath, exportingFile, nullptr);
1797
}
1798
1799
// FIXME: What about LC_LOAD_UPWARD_DYLIB, LC_LAZY_LOAD_DYLIB,
1800
// LC_LOAD_WEAK_DYLIB, LC_REEXPORT_DYLIB (..are reexports from dylibs with
1801
// MH_NO_REEXPORTED_DYLIBS loaded for -flat_namespace)?
1802
if (config->namespaceKind == NamespaceKind::flat &&
1803
cmd->cmd == LC_LOAD_DYLIB) {
1804
const auto *c = reinterpret_cast<const dylib_command *>(cmd);
1805
StringRef dylibPath =
1806
reinterpret_cast<const char *>(c) + read32le(&c->dylib.name);
1807
DylibFile *dylib = findDylib(dylibPath, umbrella, nullptr);
1808
if (!dylib)
1809
error(Twine("unable to locate library '") + dylibPath +
1810
"' loaded from '" + toString(this) + "' for -flat_namespace");
1811
}
1812
}
1813
}
1814
1815
// Some versions of Xcode ship with .tbd files that don't have the right
1816
// platform settings.
1817
constexpr std::array<StringRef, 3> skipPlatformChecks{
1818
"/usr/lib/system/libsystem_kernel.dylib",
1819
"/usr/lib/system/libsystem_platform.dylib",
1820
"/usr/lib/system/libsystem_pthread.dylib"};
1821
1822
static bool skipPlatformCheckForCatalyst(const InterfaceFile &interface,
1823
bool explicitlyLinked) {
1824
// Catalyst outputs can link against implicitly linked macOS-only libraries.
1825
if (config->platform() != PLATFORM_MACCATALYST || explicitlyLinked)
1826
return false;
1827
return is_contained(interface.targets(),
1828
MachO::Target(config->arch(), PLATFORM_MACOS));
1829
}
1830
1831
static bool isArchABICompatible(ArchitectureSet archSet,
1832
Architecture targetArch) {
1833
uint32_t cpuType;
1834
uint32_t targetCpuType;
1835
std::tie(targetCpuType, std::ignore) = getCPUTypeFromArchitecture(targetArch);
1836
1837
return llvm::any_of(archSet, [&](const auto &p) {
1838
std::tie(cpuType, std::ignore) = getCPUTypeFromArchitecture(p);
1839
return cpuType == targetCpuType;
1840
});
1841
}
1842
1843
static bool isTargetPlatformArchCompatible(
1844
InterfaceFile::const_target_range interfaceTargets, Target target) {
1845
if (is_contained(interfaceTargets, target))
1846
return true;
1847
1848
if (config->forceExactCpuSubtypeMatch)
1849
return false;
1850
1851
ArchitectureSet archSet;
1852
for (const auto &p : interfaceTargets)
1853
if (p.Platform == target.Platform)
1854
archSet.set(p.Arch);
1855
if (archSet.empty())
1856
return false;
1857
1858
return isArchABICompatible(archSet, target.Arch);
1859
}
1860
1861
DylibFile::DylibFile(const InterfaceFile &interface, DylibFile *umbrella,
1862
bool isBundleLoader, bool explicitlyLinked)
1863
: InputFile(DylibKind, interface), refState(RefState::Unreferenced),
1864
explicitlyLinked(explicitlyLinked), isBundleLoader(isBundleLoader) {
1865
// FIXME: Add test for the missing TBD code path.
1866
1867
if (umbrella == nullptr)
1868
umbrella = this;
1869
this->umbrella = umbrella;
1870
1871
installName = saver().save(interface.getInstallName());
1872
compatibilityVersion = interface.getCompatibilityVersion().rawValue();
1873
currentVersion = interface.getCurrentVersion().rawValue();
1874
1875
if (config->printEachFile)
1876
message(toString(this));
1877
inputFiles.insert(this);
1878
1879
if (!is_contained(skipPlatformChecks, installName) &&
1880
!isTargetPlatformArchCompatible(interface.targets(),
1881
config->platformInfo.target) &&
1882
!skipPlatformCheckForCatalyst(interface, explicitlyLinked)) {
1883
error(toString(this) + " is incompatible with " +
1884
std::string(config->platformInfo.target));
1885
return;
1886
}
1887
1888
checkAppExtensionSafety(interface.isApplicationExtensionSafe());
1889
1890
bool canBeImplicitlyLinked = interface.allowableClients().size() == 0;
1891
exportingFile = (canBeImplicitlyLinked && isImplicitlyLinked(installName))
1892
? this
1893
: umbrella;
1894
auto addSymbol = [&](const llvm::MachO::Symbol &symbol,
1895
const Twine &name) -> void {
1896
StringRef savedName = saver().save(name);
1897
if (exportingFile->hiddenSymbols.contains(CachedHashStringRef(savedName)))
1898
return;
1899
1900
symbols.push_back(symtab->addDylib(savedName, exportingFile,
1901
symbol.isWeakDefined(),
1902
symbol.isThreadLocalValue()));
1903
};
1904
1905
std::vector<const llvm::MachO::Symbol *> normalSymbols;
1906
normalSymbols.reserve(interface.symbolsCount());
1907
for (const auto *symbol : interface.symbols()) {
1908
if (!isArchABICompatible(symbol->getArchitectures(), config->arch()))
1909
continue;
1910
if (handleLDSymbol(symbol->getName()))
1911
continue;
1912
1913
switch (symbol->getKind()) {
1914
case EncodeKind::GlobalSymbol:
1915
case EncodeKind::ObjectiveCClass:
1916
case EncodeKind::ObjectiveCClassEHType:
1917
case EncodeKind::ObjectiveCInstanceVariable:
1918
normalSymbols.push_back(symbol);
1919
}
1920
}
1921
// interface.symbols() order is non-deterministic.
1922
llvm::sort(normalSymbols,
1923
[](auto *l, auto *r) { return l->getName() < r->getName(); });
1924
1925
// TODO(compnerd) filter out symbols based on the target platform
1926
for (const auto *symbol : normalSymbols) {
1927
switch (symbol->getKind()) {
1928
case EncodeKind::GlobalSymbol:
1929
addSymbol(*symbol, symbol->getName());
1930
break;
1931
case EncodeKind::ObjectiveCClass:
1932
// XXX ld64 only creates these symbols when -ObjC is passed in. We may
1933
// want to emulate that.
1934
addSymbol(*symbol, objc::symbol_names::klass + symbol->getName());
1935
addSymbol(*symbol, objc::symbol_names::metaclass + symbol->getName());
1936
break;
1937
case EncodeKind::ObjectiveCClassEHType:
1938
addSymbol(*symbol, objc::symbol_names::ehtype + symbol->getName());
1939
break;
1940
case EncodeKind::ObjectiveCInstanceVariable:
1941
addSymbol(*symbol, objc::symbol_names::ivar + symbol->getName());
1942
break;
1943
}
1944
}
1945
}
1946
1947
DylibFile::DylibFile(DylibFile *umbrella)
1948
: InputFile(DylibKind, MemoryBufferRef{}), refState(RefState::Unreferenced),
1949
explicitlyLinked(false), isBundleLoader(false) {
1950
if (umbrella == nullptr)
1951
umbrella = this;
1952
this->umbrella = umbrella;
1953
}
1954
1955
void DylibFile::parseReexports(const InterfaceFile &interface) {
1956
const InterfaceFile *topLevel =
1957
interface.getParent() == nullptr ? &interface : interface.getParent();
1958
for (const InterfaceFileRef &intfRef : interface.reexportedLibraries()) {
1959
InterfaceFile::const_target_range targets = intfRef.targets();
1960
if (is_contained(skipPlatformChecks, intfRef.getInstallName()) ||
1961
isTargetPlatformArchCompatible(targets, config->platformInfo.target))
1962
loadReexport(intfRef.getInstallName(), exportingFile, topLevel);
1963
}
1964
}
1965
1966
bool DylibFile::isExplicitlyLinked() const {
1967
if (!explicitlyLinked)
1968
return false;
1969
1970
// If this dylib was explicitly linked, but at least one of the symbols
1971
// of the synthetic dylibs it created via $ld$previous symbols is
1972
// referenced, then that synthetic dylib fulfils the explicit linkedness
1973
// and we can deadstrip this dylib if it's unreferenced.
1974
for (const auto *dylib : extraDylibs)
1975
if (dylib->isReferenced())
1976
return false;
1977
1978
return true;
1979
}
1980
1981
DylibFile *DylibFile::getSyntheticDylib(StringRef installName,
1982
uint32_t currentVersion,
1983
uint32_t compatVersion) {
1984
for (DylibFile *dylib : extraDylibs)
1985
if (dylib->installName == installName) {
1986
// FIXME: Check what to do if different $ld$previous symbols
1987
// request the same dylib, but with different versions.
1988
return dylib;
1989
}
1990
1991
auto *dylib = make<DylibFile>(umbrella == this ? nullptr : umbrella);
1992
dylib->installName = saver().save(installName);
1993
dylib->currentVersion = currentVersion;
1994
dylib->compatibilityVersion = compatVersion;
1995
extraDylibs.push_back(dylib);
1996
return dylib;
1997
}
1998
1999
// $ld$ symbols modify the properties/behavior of the library (e.g. its install
2000
// name, compatibility version or hide/add symbols) for specific target
2001
// versions.
2002
bool DylibFile::handleLDSymbol(StringRef originalName) {
2003
if (!originalName.starts_with("$ld$"))
2004
return false;
2005
2006
StringRef action;
2007
StringRef name;
2008
std::tie(action, name) = originalName.drop_front(strlen("$ld$")).split('$');
2009
if (action == "previous")
2010
handleLDPreviousSymbol(name, originalName);
2011
else if (action == "install_name")
2012
handleLDInstallNameSymbol(name, originalName);
2013
else if (action == "hide")
2014
handleLDHideSymbol(name, originalName);
2015
return true;
2016
}
2017
2018
void DylibFile::handleLDPreviousSymbol(StringRef name, StringRef originalName) {
2019
// originalName: $ld$ previous $ <installname> $ <compatversion> $
2020
// <platformstr> $ <startversion> $ <endversion> $ <symbol-name> $
2021
StringRef installName;
2022
StringRef compatVersion;
2023
StringRef platformStr;
2024
StringRef startVersion;
2025
StringRef endVersion;
2026
StringRef symbolName;
2027
StringRef rest;
2028
2029
std::tie(installName, name) = name.split('$');
2030
std::tie(compatVersion, name) = name.split('$');
2031
std::tie(platformStr, name) = name.split('$');
2032
std::tie(startVersion, name) = name.split('$');
2033
std::tie(endVersion, name) = name.split('$');
2034
std::tie(symbolName, rest) = name.rsplit('$');
2035
2036
// FIXME: Does this do the right thing for zippered files?
2037
unsigned platform;
2038
if (platformStr.getAsInteger(10, platform) ||
2039
platform != static_cast<unsigned>(config->platform()))
2040
return;
2041
2042
VersionTuple start;
2043
if (start.tryParse(startVersion)) {
2044
warn(toString(this) + ": failed to parse start version, symbol '" +
2045
originalName + "' ignored");
2046
return;
2047
}
2048
VersionTuple end;
2049
if (end.tryParse(endVersion)) {
2050
warn(toString(this) + ": failed to parse end version, symbol '" +
2051
originalName + "' ignored");
2052
return;
2053
}
2054
if (config->platformInfo.target.MinDeployment < start ||
2055
config->platformInfo.target.MinDeployment >= end)
2056
return;
2057
2058
// Initialized to compatibilityVersion for the symbolName branch below.
2059
uint32_t newCompatibilityVersion = compatibilityVersion;
2060
uint32_t newCurrentVersionForSymbol = currentVersion;
2061
if (!compatVersion.empty()) {
2062
VersionTuple cVersion;
2063
if (cVersion.tryParse(compatVersion)) {
2064
warn(toString(this) +
2065
": failed to parse compatibility version, symbol '" + originalName +
2066
"' ignored");
2067
return;
2068
}
2069
newCompatibilityVersion = encodeVersion(cVersion);
2070
newCurrentVersionForSymbol = newCompatibilityVersion;
2071
}
2072
2073
if (!symbolName.empty()) {
2074
// A $ld$previous$ symbol with symbol name adds a symbol with that name to
2075
// a dylib with given name and version.
2076
auto *dylib = getSyntheticDylib(installName, newCurrentVersionForSymbol,
2077
newCompatibilityVersion);
2078
2079
// The tbd file usually contains the $ld$previous symbol for an old version,
2080
// and then the symbol itself later, for newer deployment targets, like so:
2081
// symbols: [
2082
// '$ld$previous$/Another$$1$3.0$14.0$_zzz$',
2083
// _zzz,
2084
// ]
2085
// Since the symbols are sorted, adding them to the symtab in the given
2086
// order means the $ld$previous version of _zzz will prevail, as desired.
2087
dylib->symbols.push_back(symtab->addDylib(
2088
saver().save(symbolName), dylib, /*isWeakDef=*/false, /*isTlv=*/false));
2089
return;
2090
}
2091
2092
// A $ld$previous$ symbol without symbol name modifies the dylib it's in.
2093
this->installName = saver().save(installName);
2094
this->compatibilityVersion = newCompatibilityVersion;
2095
}
2096
2097
void DylibFile::handleLDInstallNameSymbol(StringRef name,
2098
StringRef originalName) {
2099
// originalName: $ld$ install_name $ os<version> $ install_name
2100
StringRef condition, installName;
2101
std::tie(condition, installName) = name.split('$');
2102
VersionTuple version;
2103
if (!condition.consume_front("os") || version.tryParse(condition))
2104
warn(toString(this) + ": failed to parse os version, symbol '" +
2105
originalName + "' ignored");
2106
else if (version == config->platformInfo.target.MinDeployment)
2107
this->installName = saver().save(installName);
2108
}
2109
2110
void DylibFile::handleLDHideSymbol(StringRef name, StringRef originalName) {
2111
StringRef symbolName;
2112
bool shouldHide = true;
2113
if (name.starts_with("os")) {
2114
// If it's hidden based on versions.
2115
name = name.drop_front(2);
2116
StringRef minVersion;
2117
std::tie(minVersion, symbolName) = name.split('$');
2118
VersionTuple versionTup;
2119
if (versionTup.tryParse(minVersion)) {
2120
warn(toString(this) + ": failed to parse hidden version, symbol `" + originalName +
2121
"` ignored.");
2122
return;
2123
}
2124
shouldHide = versionTup == config->platformInfo.target.MinDeployment;
2125
} else {
2126
symbolName = name;
2127
}
2128
2129
if (shouldHide)
2130
exportingFile->hiddenSymbols.insert(CachedHashStringRef(symbolName));
2131
}
2132
2133
void DylibFile::checkAppExtensionSafety(bool dylibIsAppExtensionSafe) const {
2134
if (config->applicationExtension && !dylibIsAppExtensionSafe)
2135
warn("using '-application_extension' with unsafe dylib: " + toString(this));
2136
}
2137
2138
ArchiveFile::ArchiveFile(std::unique_ptr<object::Archive> &&f, bool forceHidden)
2139
: InputFile(ArchiveKind, f->getMemoryBufferRef()), file(std::move(f)),
2140
forceHidden(forceHidden) {}
2141
2142
void ArchiveFile::addLazySymbols() {
2143
// Avoid calling getMemoryBufferRef() on zero-symbol archive
2144
// since that crashes.
2145
if (file->isEmpty() || file->getNumberOfSymbols() == 0)
2146
return;
2147
2148
Error err = Error::success();
2149
auto child = file->child_begin(err);
2150
// Ignore the I/O error here - will be reported later.
2151
if (!err) {
2152
Expected<MemoryBufferRef> mbOrErr = child->getMemoryBufferRef();
2153
if (!mbOrErr) {
2154
llvm::consumeError(mbOrErr.takeError());
2155
} else {
2156
if (identify_magic(mbOrErr->getBuffer()) == file_magic::macho_object) {
2157
if (target->wordSize == 8)
2158
compatArch = compatWithTargetArch(
2159
this, reinterpret_cast<const LP64::mach_header *>(
2160
mbOrErr->getBufferStart()));
2161
else
2162
compatArch = compatWithTargetArch(
2163
this, reinterpret_cast<const ILP32::mach_header *>(
2164
mbOrErr->getBufferStart()));
2165
if (!compatArch)
2166
return;
2167
}
2168
}
2169
}
2170
2171
for (const object::Archive::Symbol &sym : file->symbols())
2172
symtab->addLazyArchive(sym.getName(), this, sym);
2173
}
2174
2175
static Expected<InputFile *>
2176
loadArchiveMember(MemoryBufferRef mb, uint32_t modTime, StringRef archiveName,
2177
uint64_t offsetInArchive, bool forceHidden, bool compatArch) {
2178
if (config->zeroModTime)
2179
modTime = 0;
2180
2181
switch (identify_magic(mb.getBuffer())) {
2182
case file_magic::macho_object:
2183
return make<ObjFile>(mb, modTime, archiveName, /*lazy=*/false, forceHidden,
2184
compatArch);
2185
case file_magic::bitcode:
2186
return make<BitcodeFile>(mb, archiveName, offsetInArchive, /*lazy=*/false,
2187
forceHidden, compatArch);
2188
default:
2189
return createStringError(inconvertibleErrorCode(),
2190
mb.getBufferIdentifier() +
2191
" has unhandled file type");
2192
}
2193
}
2194
2195
Error ArchiveFile::fetch(const object::Archive::Child &c, StringRef reason) {
2196
if (!seen.insert(c.getChildOffset()).second)
2197
return Error::success();
2198
2199
Expected<MemoryBufferRef> mb = c.getMemoryBufferRef();
2200
if (!mb)
2201
return mb.takeError();
2202
2203
Expected<TimePoint<std::chrono::seconds>> modTime = c.getLastModified();
2204
if (!modTime)
2205
return modTime.takeError();
2206
2207
Expected<InputFile *> file =
2208
loadArchiveMember(*mb, toTimeT(*modTime), getName(), c.getChildOffset(),
2209
forceHidden, compatArch);
2210
2211
if (!file)
2212
return file.takeError();
2213
2214
inputFiles.insert(*file);
2215
printArchiveMemberLoad(reason, *file);
2216
return Error::success();
2217
}
2218
2219
void ArchiveFile::fetch(const object::Archive::Symbol &sym) {
2220
object::Archive::Child c =
2221
CHECK(sym.getMember(), toString(this) +
2222
": could not get the member defining symbol " +
2223
toMachOString(sym));
2224
2225
// `sym` is owned by a LazySym, which will be replace<>()d by make<ObjFile>
2226
// and become invalid after that call. Copy it to the stack so we can refer
2227
// to it later.
2228
const object::Archive::Symbol symCopy = sym;
2229
2230
// ld64 doesn't demangle sym here even with -demangle.
2231
// Match that: intentionally don't call toMachOString().
2232
if (Error e = fetch(c, symCopy.getName()))
2233
error(toString(this) + ": could not get the member defining symbol " +
2234
toMachOString(symCopy) + ": " + toString(std::move(e)));
2235
}
2236
2237
static macho::Symbol *createBitcodeSymbol(const lto::InputFile::Symbol &objSym,
2238
BitcodeFile &file) {
2239
StringRef name = saver().save(objSym.getName());
2240
2241
if (objSym.isUndefined())
2242
return symtab->addUndefined(name, &file, /*isWeakRef=*/objSym.isWeak());
2243
2244
// TODO: Write a test demonstrating why computing isPrivateExtern before
2245
// LTO compilation is important.
2246
bool isPrivateExtern = false;
2247
switch (objSym.getVisibility()) {
2248
case GlobalValue::HiddenVisibility:
2249
isPrivateExtern = true;
2250
break;
2251
case GlobalValue::ProtectedVisibility:
2252
error(name + " has protected visibility, which is not supported by Mach-O");
2253
break;
2254
case GlobalValue::DefaultVisibility:
2255
break;
2256
}
2257
isPrivateExtern = isPrivateExtern || objSym.canBeOmittedFromSymbolTable() ||
2258
file.forceHidden;
2259
2260
if (objSym.isCommon())
2261
return symtab->addCommon(name, &file, objSym.getCommonSize(),
2262
objSym.getCommonAlignment(), isPrivateExtern);
2263
2264
return symtab->addDefined(name, &file, /*isec=*/nullptr, /*value=*/0,
2265
/*size=*/0, objSym.isWeak(), isPrivateExtern,
2266
/*isReferencedDynamically=*/false,
2267
/*noDeadStrip=*/false,
2268
/*isWeakDefCanBeHidden=*/false);
2269
}
2270
2271
BitcodeFile::BitcodeFile(MemoryBufferRef mb, StringRef archiveName,
2272
uint64_t offsetInArchive, bool lazy, bool forceHidden,
2273
bool compatArch)
2274
: InputFile(BitcodeKind, mb, lazy), forceHidden(forceHidden) {
2275
this->archiveName = std::string(archiveName);
2276
this->compatArch = compatArch;
2277
std::string path = mb.getBufferIdentifier().str();
2278
if (config->thinLTOIndexOnly)
2279
path = replaceThinLTOSuffix(mb.getBufferIdentifier());
2280
2281
// If the parent archive already determines that the arch is not compat with
2282
// target, then just return.
2283
if (!compatArch)
2284
return;
2285
2286
// ThinLTO assumes that all MemoryBufferRefs given to it have a unique
2287
// name. If two members with the same name are provided, this causes a
2288
// collision and ThinLTO can't proceed.
2289
// So, we append the archive name to disambiguate two members with the same
2290
// name from multiple different archives, and offset within the archive to
2291
// disambiguate two members of the same name from a single archive.
2292
MemoryBufferRef mbref(mb.getBuffer(),
2293
saver().save(archiveName.empty()
2294
? path
2295
: archiveName + "(" +
2296
sys::path::filename(path) + ")" +
2297
utostr(offsetInArchive)));
2298
obj = check(lto::InputFile::create(mbref));
2299
if (lazy)
2300
parseLazy();
2301
else
2302
parse();
2303
}
2304
2305
void BitcodeFile::parse() {
2306
// Convert LTO Symbols to LLD Symbols in order to perform resolution. The
2307
// "winning" symbol will then be marked as Prevailing at LTO compilation
2308
// time.
2309
symbols.resize(obj->symbols().size());
2310
2311
// Process defined symbols first. See the comment at the end of
2312
// ObjFile<>::parseSymbols.
2313
for (auto it : llvm::enumerate(obj->symbols()))
2314
if (!it.value().isUndefined())
2315
symbols[it.index()] = createBitcodeSymbol(it.value(), *this);
2316
for (auto it : llvm::enumerate(obj->symbols()))
2317
if (it.value().isUndefined())
2318
symbols[it.index()] = createBitcodeSymbol(it.value(), *this);
2319
}
2320
2321
void BitcodeFile::parseLazy() {
2322
symbols.resize(obj->symbols().size());
2323
for (const auto &[i, objSym] : llvm::enumerate(obj->symbols())) {
2324
if (!objSym.isUndefined()) {
2325
symbols[i] = symtab->addLazyObject(saver().save(objSym.getName()), *this);
2326
if (!lazy)
2327
break;
2328
}
2329
}
2330
}
2331
2332
std::string macho::replaceThinLTOSuffix(StringRef path) {
2333
auto [suffix, repl] = config->thinLTOObjectSuffixReplace;
2334
if (path.consume_back(suffix))
2335
return (path + repl).str();
2336
return std::string(path);
2337
}
2338
2339
void macho::extract(InputFile &file, StringRef reason) {
2340
if (!file.lazy)
2341
return;
2342
file.lazy = false;
2343
2344
printArchiveMemberLoad(reason, &file);
2345
if (auto *bitcode = dyn_cast<BitcodeFile>(&file)) {
2346
bitcode->parse();
2347
} else {
2348
auto &f = cast<ObjFile>(file);
2349
if (target->wordSize == 8)
2350
f.parse<LP64>();
2351
else
2352
f.parse<ILP32>();
2353
}
2354
}
2355
2356
template void ObjFile::parse<LP64>();
2357
2358