Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lld/MachO/UnwindInfoSection.cpp
34869 views
1
//===- UnwindInfoSection.cpp ----------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "UnwindInfoSection.h"
10
#include "InputSection.h"
11
#include "Layout.h"
12
#include "OutputSection.h"
13
#include "OutputSegment.h"
14
#include "SymbolTable.h"
15
#include "Symbols.h"
16
#include "SyntheticSections.h"
17
#include "Target.h"
18
19
#include "lld/Common/ErrorHandler.h"
20
#include "lld/Common/Memory.h"
21
#include "llvm/ADT/DenseMap.h"
22
#include "llvm/ADT/STLExtras.h"
23
#include "llvm/BinaryFormat/MachO.h"
24
#include "llvm/Support/Parallel.h"
25
26
#include "mach-o/compact_unwind_encoding.h"
27
28
#include <numeric>
29
30
using namespace llvm;
31
using namespace llvm::MachO;
32
using namespace llvm::support::endian;
33
using namespace lld;
34
using namespace lld::macho;
35
36
#define COMMON_ENCODINGS_MAX 127
37
#define COMPACT_ENCODINGS_MAX 256
38
39
#define SECOND_LEVEL_PAGE_BYTES 4096
40
#define SECOND_LEVEL_PAGE_WORDS (SECOND_LEVEL_PAGE_BYTES / sizeof(uint32_t))
41
#define REGULAR_SECOND_LEVEL_ENTRIES_MAX \
42
((SECOND_LEVEL_PAGE_BYTES - \
43
sizeof(unwind_info_regular_second_level_page_header)) / \
44
sizeof(unwind_info_regular_second_level_entry))
45
#define COMPRESSED_SECOND_LEVEL_ENTRIES_MAX \
46
((SECOND_LEVEL_PAGE_BYTES - \
47
sizeof(unwind_info_compressed_second_level_page_header)) / \
48
sizeof(uint32_t))
49
50
#define COMPRESSED_ENTRY_FUNC_OFFSET_BITS 24
51
#define COMPRESSED_ENTRY_FUNC_OFFSET_MASK \
52
UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(~0)
53
54
static_assert(static_cast<uint32_t>(UNWIND_X86_64_DWARF_SECTION_OFFSET) ==
55
static_cast<uint32_t>(UNWIND_ARM64_DWARF_SECTION_OFFSET) &&
56
static_cast<uint32_t>(UNWIND_X86_64_DWARF_SECTION_OFFSET) ==
57
static_cast<uint32_t>(UNWIND_X86_DWARF_SECTION_OFFSET));
58
59
constexpr uint64_t DWARF_SECTION_OFFSET = UNWIND_X86_64_DWARF_SECTION_OFFSET;
60
61
// Compact Unwind format is a Mach-O evolution of DWARF Unwind that
62
// optimizes space and exception-time lookup. Most DWARF unwind
63
// entries can be replaced with Compact Unwind entries, but the ones
64
// that cannot are retained in DWARF form.
65
//
66
// This comment will address macro-level organization of the pre-link
67
// and post-link compact unwind tables. For micro-level organization
68
// pertaining to the bitfield layout of the 32-bit compact unwind
69
// entries, see libunwind/include/mach-o/compact_unwind_encoding.h
70
//
71
// Important clarifying factoids:
72
//
73
// * __LD,__compact_unwind is the compact unwind format for compiler
74
// output and linker input. It is never a final output. It could be
75
// an intermediate output with the `-r` option which retains relocs.
76
//
77
// * __TEXT,__unwind_info is the compact unwind format for final
78
// linker output. It is never an input.
79
//
80
// * __TEXT,__eh_frame is the DWARF format for both linker input and output.
81
//
82
// * __TEXT,__unwind_info entries are divided into 4 KiB pages (2nd
83
// level) by ascending address, and the pages are referenced by an
84
// index (1st level) in the section header.
85
//
86
// * Following the headers in __TEXT,__unwind_info, the bulk of the
87
// section contains a vector of compact unwind entries
88
// `{functionOffset, encoding}` sorted by ascending `functionOffset`.
89
// Adjacent entries with the same encoding can be folded to great
90
// advantage, achieving a 3-order-of-magnitude reduction in the
91
// number of entries.
92
//
93
// Refer to the definition of unwind_info_section_header in
94
// compact_unwind_encoding.h for an overview of the format we are encoding
95
// here.
96
97
// TODO(gkm): how do we align the 2nd-level pages?
98
99
// The various fields in the on-disk representation of each compact unwind
100
// entry.
101
#define FOR_EACH_CU_FIELD(DO) \
102
DO(Ptr, functionAddress) \
103
DO(uint32_t, functionLength) \
104
DO(compact_unwind_encoding_t, encoding) \
105
DO(Ptr, personality) \
106
DO(Ptr, lsda)
107
108
CREATE_LAYOUT_CLASS(CompactUnwind, FOR_EACH_CU_FIELD);
109
110
#undef FOR_EACH_CU_FIELD
111
112
// LLD's internal representation of a compact unwind entry.
113
struct CompactUnwindEntry {
114
uint64_t functionAddress;
115
uint32_t functionLength;
116
compact_unwind_encoding_t encoding;
117
Symbol *personality;
118
InputSection *lsda;
119
};
120
121
using EncodingMap = DenseMap<compact_unwind_encoding_t, size_t>;
122
123
struct SecondLevelPage {
124
uint32_t kind;
125
size_t entryIndex;
126
size_t entryCount;
127
size_t byteCount;
128
std::vector<compact_unwind_encoding_t> localEncodings;
129
EncodingMap localEncodingIndexes;
130
};
131
132
// UnwindInfoSectionImpl allows us to avoid cluttering our header file with a
133
// lengthy definition of UnwindInfoSection.
134
class UnwindInfoSectionImpl final : public UnwindInfoSection {
135
public:
136
UnwindInfoSectionImpl() : cuLayout(target->wordSize) {}
137
uint64_t getSize() const override { return unwindInfoSize; }
138
void prepare() override;
139
void finalize() override;
140
void writeTo(uint8_t *buf) const override;
141
142
private:
143
void prepareRelocations(ConcatInputSection *);
144
void relocateCompactUnwind(std::vector<CompactUnwindEntry> &);
145
void encodePersonalities();
146
Symbol *canonicalizePersonality(Symbol *);
147
148
uint64_t unwindInfoSize = 0;
149
SmallVector<decltype(symbols)::value_type, 0> symbolsVec;
150
CompactUnwindLayout cuLayout;
151
std::vector<std::pair<compact_unwind_encoding_t, size_t>> commonEncodings;
152
EncodingMap commonEncodingIndexes;
153
// The entries here will be in the same order as their originating symbols
154
// in symbolsVec.
155
std::vector<CompactUnwindEntry> cuEntries;
156
// Indices into the cuEntries vector.
157
std::vector<size_t> cuIndices;
158
std::vector<Symbol *> personalities;
159
SmallDenseMap<std::pair<InputSection *, uint64_t /* addend */>, Symbol *>
160
personalityTable;
161
// Indices into cuEntries for CUEs with a non-null LSDA.
162
std::vector<size_t> entriesWithLsda;
163
// Map of cuEntries index to an index within the LSDA array.
164
DenseMap<size_t, uint32_t> lsdaIndex;
165
std::vector<SecondLevelPage> secondLevelPages;
166
uint64_t level2PagesOffset = 0;
167
// The highest-address function plus its size. The unwinder needs this to
168
// determine the address range that is covered by unwind info.
169
uint64_t cueEndBoundary = 0;
170
};
171
172
UnwindInfoSection::UnwindInfoSection()
173
: SyntheticSection(segment_names::text, section_names::unwindInfo) {
174
align = 4;
175
}
176
177
// Record function symbols that may need entries emitted in __unwind_info, which
178
// stores unwind data for address ranges.
179
//
180
// Note that if several adjacent functions have the same unwind encoding and
181
// personality function and no LSDA, they share one unwind entry. For this to
182
// work, functions without unwind info need explicit "no unwind info" unwind
183
// entries -- else the unwinder would think they have the unwind info of the
184
// closest function with unwind info right before in the image. Thus, we add
185
// function symbols for each unique address regardless of whether they have
186
// associated unwind info.
187
void UnwindInfoSection::addSymbol(const Defined *d) {
188
if (d->unwindEntry())
189
allEntriesAreOmitted = false;
190
// We don't yet know the final output address of this symbol, but we know that
191
// they are uniquely determined by a combination of the isec and value, so
192
// we use that as the key here.
193
auto p = symbols.insert({{d->isec(), d->value}, d});
194
// If we have multiple symbols at the same address, only one of them can have
195
// an associated unwind entry.
196
if (!p.second && d->unwindEntry()) {
197
assert(p.first->second == d || !p.first->second->unwindEntry());
198
p.first->second = d;
199
}
200
}
201
202
void UnwindInfoSectionImpl::prepare() {
203
// This iteration needs to be deterministic, since prepareRelocations may add
204
// entries to the GOT. Hence the use of a MapVector for
205
// UnwindInfoSection::symbols.
206
for (const Defined *d : make_second_range(symbols))
207
if (d->unwindEntry()) {
208
if (d->unwindEntry()->getName() == section_names::compactUnwind) {
209
prepareRelocations(d->unwindEntry());
210
} else {
211
// We don't have to add entries to the GOT here because FDEs have
212
// explicit GOT relocations, so Writer::scanRelocations() will add those
213
// GOT entries. However, we still need to canonicalize the personality
214
// pointers (like prepareRelocations() does for CU entries) in order
215
// to avoid overflowing the 3-personality limit.
216
FDE &fde = cast<ObjFile>(d->getFile())->fdes[d->unwindEntry()];
217
fde.personality = canonicalizePersonality(fde.personality);
218
}
219
}
220
}
221
222
// Compact unwind relocations have different semantics, so we handle them in a
223
// separate code path from regular relocations. First, we do not wish to add
224
// rebase opcodes for __LD,__compact_unwind, because that section doesn't
225
// actually end up in the final binary. Second, personality pointers always
226
// reside in the GOT and must be treated specially.
227
void UnwindInfoSectionImpl::prepareRelocations(ConcatInputSection *isec) {
228
assert(!isec->shouldOmitFromOutput() &&
229
"__compact_unwind section should not be omitted");
230
231
// FIXME: Make this skip relocations for CompactUnwindEntries that
232
// point to dead-stripped functions. That might save some amount of
233
// work. But since there are usually just few personality functions
234
// that are referenced from many places, at least some of them likely
235
// live, it wouldn't reduce number of got entries.
236
for (size_t i = 0; i < isec->relocs.size(); ++i) {
237
Reloc &r = isec->relocs[i];
238
assert(target->hasAttr(r.type, RelocAttrBits::UNSIGNED));
239
// Since compact unwind sections aren't part of the inputSections vector,
240
// they don't get canonicalized by scanRelocations(), so we have to do the
241
// canonicalization here.
242
if (auto *referentIsec = r.referent.dyn_cast<InputSection *>())
243
r.referent = referentIsec->canonical();
244
245
// Functions and LSDA entries always reside in the same object file as the
246
// compact unwind entries that references them, and thus appear as section
247
// relocs. There is no need to prepare them. We only prepare relocs for
248
// personality functions.
249
if (r.offset != cuLayout.personalityOffset)
250
continue;
251
252
if (auto *s = r.referent.dyn_cast<Symbol *>()) {
253
// Personality functions are nearly always system-defined (e.g.,
254
// ___gxx_personality_v0 for C++) and relocated as dylib symbols. When an
255
// application provides its own personality function, it might be
256
// referenced by an extern Defined symbol reloc, or a local section reloc.
257
if (auto *defined = dyn_cast<Defined>(s)) {
258
// XXX(vyng) This is a special case for handling duplicate personality
259
// symbols. Note that LD64's behavior is a bit different and it is
260
// inconsistent with how symbol resolution usually work
261
//
262
// So we've decided not to follow it. Instead, simply pick the symbol
263
// with the same name from the symbol table to replace the local one.
264
//
265
// (See discussions/alternatives already considered on D107533)
266
if (!defined->isExternal())
267
if (Symbol *sym = symtab->find(defined->getName()))
268
if (!sym->isLazy())
269
r.referent = s = sym;
270
}
271
if (auto *undefined = dyn_cast<Undefined>(s)) {
272
treatUndefinedSymbol(*undefined, isec, r.offset);
273
// treatUndefinedSymbol() can replace s with a DylibSymbol; re-check.
274
if (isa<Undefined>(s))
275
continue;
276
}
277
278
// Similar to canonicalizePersonality(), but we also register a GOT entry.
279
if (auto *defined = dyn_cast<Defined>(s)) {
280
// Check if we have created a synthetic symbol at the same address.
281
Symbol *&personality =
282
personalityTable[{defined->isec(), defined->value}];
283
if (personality == nullptr) {
284
personality = defined;
285
in.got->addEntry(defined);
286
} else if (personality != defined) {
287
r.referent = personality;
288
}
289
continue;
290
}
291
292
assert(isa<DylibSymbol>(s));
293
in.got->addEntry(s);
294
continue;
295
}
296
297
if (auto *referentIsec = r.referent.dyn_cast<InputSection *>()) {
298
assert(!isCoalescedWeak(referentIsec));
299
// Personality functions can be referenced via section relocations
300
// if they live in the same object file. Create placeholder synthetic
301
// symbols for them in the GOT. If the corresponding symbol is already
302
// in the GOT, use that to avoid creating a duplicate entry. All GOT
303
// entries needed by non-unwind sections will have already been added
304
// by this point.
305
Symbol *&s = personalityTable[{referentIsec, r.addend}];
306
if (s == nullptr) {
307
Defined *const *gotEntry =
308
llvm::find_if(referentIsec->symbols, [&](Defined const *d) {
309
return d->value == static_cast<uint64_t>(r.addend) &&
310
d->isInGot();
311
});
312
if (gotEntry != referentIsec->symbols.end()) {
313
s = *gotEntry;
314
} else {
315
// This runs after dead stripping, so the noDeadStrip argument does
316
// not matter.
317
s = make<Defined>("<internal>", /*file=*/nullptr, referentIsec,
318
r.addend, /*size=*/0, /*isWeakDef=*/false,
319
/*isExternal=*/false, /*isPrivateExtern=*/false,
320
/*includeInSymtab=*/true,
321
/*isReferencedDynamically=*/false,
322
/*noDeadStrip=*/false);
323
s->used = true;
324
in.got->addEntry(s);
325
}
326
}
327
r.referent = s;
328
r.addend = 0;
329
}
330
}
331
}
332
333
Symbol *UnwindInfoSectionImpl::canonicalizePersonality(Symbol *personality) {
334
if (auto *defined = dyn_cast_or_null<Defined>(personality)) {
335
// Check if we have created a synthetic symbol at the same address.
336
Symbol *&synth = personalityTable[{defined->isec(), defined->value}];
337
if (synth == nullptr)
338
synth = defined;
339
else if (synth != defined)
340
return synth;
341
}
342
return personality;
343
}
344
345
// We need to apply the relocations to the pre-link compact unwind section
346
// before converting it to post-link form. There should only be absolute
347
// relocations here: since we are not emitting the pre-link CU section, there
348
// is no source address to make a relative location meaningful.
349
void UnwindInfoSectionImpl::relocateCompactUnwind(
350
std::vector<CompactUnwindEntry> &cuEntries) {
351
parallelFor(0, symbolsVec.size(), [&](size_t i) {
352
CompactUnwindEntry &cu = cuEntries[i];
353
const Defined *d = symbolsVec[i].second;
354
cu.functionAddress = d->getVA();
355
if (!d->unwindEntry())
356
return;
357
358
// If we have DWARF unwind info, create a slimmed-down CU entry that points
359
// to it.
360
if (d->unwindEntry()->getName() == section_names::ehFrame) {
361
// The unwinder will look for the DWARF entry starting at the hint,
362
// assuming the hint points to a valid CFI record start. If it
363
// fails to find the record, it proceeds in a linear search through the
364
// contiguous CFI records from the hint until the end of the section.
365
// Ideally, in the case where the offset is too large to be encoded, we
366
// would instead encode the largest possible offset to a valid CFI record,
367
// but since we don't keep track of that, just encode zero -- the start of
368
// the section is always the start of a CFI record.
369
uint64_t dwarfOffsetHint =
370
d->unwindEntry()->outSecOff <= DWARF_SECTION_OFFSET
371
? d->unwindEntry()->outSecOff
372
: 0;
373
cu.encoding = target->modeDwarfEncoding | dwarfOffsetHint;
374
const FDE &fde = cast<ObjFile>(d->getFile())->fdes[d->unwindEntry()];
375
cu.functionLength = fde.funcLength;
376
// Omit the DWARF personality from compact-unwind entry so that we
377
// don't need to encode it.
378
cu.personality = nullptr;
379
cu.lsda = fde.lsda;
380
return;
381
}
382
383
assert(d->unwindEntry()->getName() == section_names::compactUnwind);
384
385
auto buf =
386
reinterpret_cast<const uint8_t *>(d->unwindEntry()->data.data()) -
387
target->wordSize;
388
cu.functionLength =
389
support::endian::read32le(buf + cuLayout.functionLengthOffset);
390
cu.encoding = support::endian::read32le(buf + cuLayout.encodingOffset);
391
for (const Reloc &r : d->unwindEntry()->relocs) {
392
if (r.offset == cuLayout.personalityOffset)
393
cu.personality = r.referent.get<Symbol *>();
394
else if (r.offset == cuLayout.lsdaOffset)
395
cu.lsda = r.getReferentInputSection();
396
}
397
});
398
}
399
400
// There should only be a handful of unique personality pointers, so we can
401
// encode them as 2-bit indices into a small array.
402
void UnwindInfoSectionImpl::encodePersonalities() {
403
for (size_t idx : cuIndices) {
404
CompactUnwindEntry &cu = cuEntries[idx];
405
if (cu.personality == nullptr)
406
continue;
407
// Linear search is fast enough for a small array.
408
auto it = find(personalities, cu.personality);
409
uint32_t personalityIndex; // 1-based index
410
if (it != personalities.end()) {
411
personalityIndex = std::distance(personalities.begin(), it) + 1;
412
} else {
413
personalities.push_back(cu.personality);
414
personalityIndex = personalities.size();
415
}
416
cu.encoding |=
417
personalityIndex << llvm::countr_zero(
418
static_cast<compact_unwind_encoding_t>(UNWIND_PERSONALITY_MASK));
419
}
420
if (personalities.size() > 3)
421
error("too many personalities (" + Twine(personalities.size()) +
422
") for compact unwind to encode");
423
}
424
425
static bool canFoldEncoding(compact_unwind_encoding_t encoding) {
426
// From compact_unwind_encoding.h:
427
// UNWIND_X86_64_MODE_STACK_IND:
428
// A "frameless" (RBP not used as frame pointer) function large constant
429
// stack size. This case is like the previous, except the stack size is too
430
// large to encode in the compact unwind encoding. Instead it requires that
431
// the function contains "subq $nnnnnnnn,RSP" in its prolog. The compact
432
// encoding contains the offset to the nnnnnnnn value in the function in
433
// UNWIND_X86_64_FRAMELESS_STACK_SIZE.
434
// Since this means the unwinder has to look at the `subq` in the function
435
// of the unwind info's unwind address, two functions that have identical
436
// unwind info can't be folded if it's using this encoding since both
437
// entries need unique addresses.
438
static_assert(static_cast<uint32_t>(UNWIND_X86_64_MODE_STACK_IND) ==
439
static_cast<uint32_t>(UNWIND_X86_MODE_STACK_IND));
440
if ((target->cpuType == CPU_TYPE_X86_64 || target->cpuType == CPU_TYPE_X86) &&
441
(encoding & UNWIND_MODE_MASK) == UNWIND_X86_64_MODE_STACK_IND) {
442
// FIXME: Consider passing in the two function addresses and getting
443
// their two stack sizes off the `subq` and only returning false if they're
444
// actually different.
445
return false;
446
}
447
return true;
448
}
449
450
// Scan the __LD,__compact_unwind entries and compute the space needs of
451
// __TEXT,__unwind_info and __TEXT,__eh_frame.
452
void UnwindInfoSectionImpl::finalize() {
453
if (symbols.empty())
454
return;
455
456
// At this point, the address space for __TEXT,__text has been
457
// assigned, so we can relocate the __LD,__compact_unwind entries
458
// into a temporary buffer. Relocation is necessary in order to sort
459
// the CU entries by function address. Sorting is necessary so that
460
// we can fold adjacent CU entries with identical encoding+personality
461
// and without any LSDA. Folding is necessary because it reduces the
462
// number of CU entries by as much as 3 orders of magnitude!
463
cuEntries.resize(symbols.size());
464
// The "map" part of the symbols MapVector was only needed for deduplication
465
// in addSymbol(). Now that we are done adding, move the contents to a plain
466
// std::vector for indexed access.
467
symbolsVec = symbols.takeVector();
468
relocateCompactUnwind(cuEntries);
469
470
// Rather than sort & fold the 32-byte entries directly, we create a
471
// vector of indices to entries and sort & fold that instead.
472
cuIndices.resize(cuEntries.size());
473
std::iota(cuIndices.begin(), cuIndices.end(), 0);
474
llvm::sort(cuIndices, [&](size_t a, size_t b) {
475
return cuEntries[a].functionAddress < cuEntries[b].functionAddress;
476
});
477
478
// Record the ending boundary before we fold the entries.
479
cueEndBoundary = cuEntries[cuIndices.back()].functionAddress +
480
cuEntries[cuIndices.back()].functionLength;
481
482
// Fold adjacent entries with matching encoding+personality and without LSDA
483
// We use three iterators on the same cuIndices to fold in-situ:
484
// (1) `foldBegin` is the first of a potential sequence of matching entries
485
// (2) `foldEnd` is the first non-matching entry after `foldBegin`.
486
// The semi-open interval [ foldBegin .. foldEnd ) contains a range
487
// entries that can be folded into a single entry and written to ...
488
// (3) `foldWrite`
489
auto foldWrite = cuIndices.begin();
490
for (auto foldBegin = cuIndices.begin(); foldBegin < cuIndices.end();) {
491
auto foldEnd = foldBegin;
492
// Common LSDA encodings (e.g. for C++ and Objective-C) contain offsets from
493
// a base address. The base address is normally not contained directly in
494
// the LSDA, and in that case, the personality function treats the starting
495
// address of the function (which is computed by the unwinder) as the base
496
// address and interprets the LSDA accordingly. The unwinder computes the
497
// starting address of a function as the address associated with its CU
498
// entry. For this reason, we cannot fold adjacent entries if they have an
499
// LSDA, because folding would make the unwinder compute the wrong starting
500
// address for the functions with the folded entries, which in turn would
501
// cause the personality function to misinterpret the LSDA for those
502
// functions. In the very rare case where the base address is encoded
503
// directly in the LSDA, two functions at different addresses would
504
// necessarily have different LSDAs, so their CU entries would not have been
505
// folded anyway.
506
while (++foldEnd < cuIndices.end() &&
507
cuEntries[*foldBegin].encoding == cuEntries[*foldEnd].encoding &&
508
!cuEntries[*foldBegin].lsda && !cuEntries[*foldEnd].lsda &&
509
// If we've gotten to this point, we don't have an LSDA, which should
510
// also imply that we don't have a personality function, since in all
511
// likelihood a personality function needs the LSDA to do anything
512
// useful. It can be technically valid to have a personality function
513
// and no LSDA though (e.g. the C++ personality __gxx_personality_v0
514
// is just a no-op without LSDA), so we still check for personality
515
// function equivalence to handle that case.
516
cuEntries[*foldBegin].personality ==
517
cuEntries[*foldEnd].personality &&
518
canFoldEncoding(cuEntries[*foldEnd].encoding))
519
;
520
*foldWrite++ = *foldBegin;
521
foldBegin = foldEnd;
522
}
523
cuIndices.erase(foldWrite, cuIndices.end());
524
525
encodePersonalities();
526
527
// Count frequencies of the folded encodings
528
EncodingMap encodingFrequencies;
529
for (size_t idx : cuIndices)
530
encodingFrequencies[cuEntries[idx].encoding]++;
531
532
// Make a vector of encodings, sorted by descending frequency
533
for (const auto &frequency : encodingFrequencies)
534
commonEncodings.emplace_back(frequency);
535
llvm::sort(commonEncodings,
536
[](const std::pair<compact_unwind_encoding_t, size_t> &a,
537
const std::pair<compact_unwind_encoding_t, size_t> &b) {
538
if (a.second == b.second)
539
// When frequencies match, secondarily sort on encoding
540
// to maintain parity with validate-unwind-info.py
541
return a.first > b.first;
542
return a.second > b.second;
543
});
544
545
// Truncate the vector to 127 elements.
546
// Common encoding indexes are limited to 0..126, while encoding
547
// indexes 127..255 are local to each second-level page
548
if (commonEncodings.size() > COMMON_ENCODINGS_MAX)
549
commonEncodings.resize(COMMON_ENCODINGS_MAX);
550
551
// Create a map from encoding to common-encoding-table index
552
for (size_t i = 0; i < commonEncodings.size(); i++)
553
commonEncodingIndexes[commonEncodings[i].first] = i;
554
555
// Split folded encodings into pages, where each page is limited by ...
556
// (a) 4 KiB capacity
557
// (b) 24-bit difference between first & final function address
558
// (c) 8-bit compact-encoding-table index,
559
// for which 0..126 references the global common-encodings table,
560
// and 127..255 references a local per-second-level-page table.
561
// First we try the compact format and determine how many entries fit.
562
// If more entries fit in the regular format, we use that.
563
for (size_t i = 0; i < cuIndices.size();) {
564
size_t idx = cuIndices[i];
565
secondLevelPages.emplace_back();
566
SecondLevelPage &page = secondLevelPages.back();
567
page.entryIndex = i;
568
uint64_t functionAddressMax =
569
cuEntries[idx].functionAddress + COMPRESSED_ENTRY_FUNC_OFFSET_MASK;
570
size_t n = commonEncodings.size();
571
size_t wordsRemaining =
572
SECOND_LEVEL_PAGE_WORDS -
573
sizeof(unwind_info_compressed_second_level_page_header) /
574
sizeof(uint32_t);
575
while (wordsRemaining >= 1 && i < cuIndices.size()) {
576
idx = cuIndices[i];
577
const CompactUnwindEntry *cuPtr = &cuEntries[idx];
578
if (cuPtr->functionAddress >= functionAddressMax)
579
break;
580
if (commonEncodingIndexes.count(cuPtr->encoding) ||
581
page.localEncodingIndexes.count(cuPtr->encoding)) {
582
i++;
583
wordsRemaining--;
584
} else if (wordsRemaining >= 2 && n < COMPACT_ENCODINGS_MAX) {
585
page.localEncodings.emplace_back(cuPtr->encoding);
586
page.localEncodingIndexes[cuPtr->encoding] = n++;
587
i++;
588
wordsRemaining -= 2;
589
} else {
590
break;
591
}
592
}
593
page.entryCount = i - page.entryIndex;
594
595
// If this is not the final page, see if it's possible to fit more entries
596
// by using the regular format. This can happen when there are many unique
597
// encodings, and we saturated the local encoding table early.
598
if (i < cuIndices.size() &&
599
page.entryCount < REGULAR_SECOND_LEVEL_ENTRIES_MAX) {
600
page.kind = UNWIND_SECOND_LEVEL_REGULAR;
601
page.entryCount = std::min(REGULAR_SECOND_LEVEL_ENTRIES_MAX,
602
cuIndices.size() - page.entryIndex);
603
i = page.entryIndex + page.entryCount;
604
} else {
605
page.kind = UNWIND_SECOND_LEVEL_COMPRESSED;
606
}
607
}
608
609
for (size_t idx : cuIndices) {
610
lsdaIndex[idx] = entriesWithLsda.size();
611
if (cuEntries[idx].lsda)
612
entriesWithLsda.push_back(idx);
613
}
614
615
// compute size of __TEXT,__unwind_info section
616
level2PagesOffset = sizeof(unwind_info_section_header) +
617
commonEncodings.size() * sizeof(uint32_t) +
618
personalities.size() * sizeof(uint32_t) +
619
// The extra second-level-page entry is for the sentinel
620
(secondLevelPages.size() + 1) *
621
sizeof(unwind_info_section_header_index_entry) +
622
entriesWithLsda.size() *
623
sizeof(unwind_info_section_header_lsda_index_entry);
624
unwindInfoSize =
625
level2PagesOffset + secondLevelPages.size() * SECOND_LEVEL_PAGE_BYTES;
626
}
627
628
// All inputs are relocated and output addresses are known, so write!
629
630
void UnwindInfoSectionImpl::writeTo(uint8_t *buf) const {
631
assert(!cuIndices.empty() && "call only if there is unwind info");
632
633
// section header
634
auto *uip = reinterpret_cast<unwind_info_section_header *>(buf);
635
uip->version = 1;
636
uip->commonEncodingsArraySectionOffset = sizeof(unwind_info_section_header);
637
uip->commonEncodingsArrayCount = commonEncodings.size();
638
uip->personalityArraySectionOffset =
639
uip->commonEncodingsArraySectionOffset +
640
(uip->commonEncodingsArrayCount * sizeof(uint32_t));
641
uip->personalityArrayCount = personalities.size();
642
uip->indexSectionOffset = uip->personalityArraySectionOffset +
643
(uip->personalityArrayCount * sizeof(uint32_t));
644
uip->indexCount = secondLevelPages.size() + 1;
645
646
// Common encodings
647
auto *i32p = reinterpret_cast<uint32_t *>(&uip[1]);
648
for (const auto &encoding : commonEncodings)
649
*i32p++ = encoding.first;
650
651
// Personalities
652
for (const Symbol *personality : personalities)
653
*i32p++ = personality->getGotVA() - in.header->addr;
654
655
// FIXME: LD64 checks and warns aboutgaps or overlapse in cuEntries address
656
// ranges. We should do the same too
657
658
// Level-1 index
659
uint32_t lsdaOffset =
660
uip->indexSectionOffset +
661
uip->indexCount * sizeof(unwind_info_section_header_index_entry);
662
uint64_t l2PagesOffset = level2PagesOffset;
663
auto *iep = reinterpret_cast<unwind_info_section_header_index_entry *>(i32p);
664
for (const SecondLevelPage &page : secondLevelPages) {
665
size_t idx = cuIndices[page.entryIndex];
666
iep->functionOffset = cuEntries[idx].functionAddress - in.header->addr;
667
iep->secondLevelPagesSectionOffset = l2PagesOffset;
668
iep->lsdaIndexArraySectionOffset =
669
lsdaOffset + lsdaIndex.lookup(idx) *
670
sizeof(unwind_info_section_header_lsda_index_entry);
671
iep++;
672
l2PagesOffset += SECOND_LEVEL_PAGE_BYTES;
673
}
674
// Level-1 sentinel
675
// XXX(vyng): Note that LD64 adds +1 here.
676
// Unsure whether it's a bug or it's their workaround for something else.
677
// See comments from https://reviews.llvm.org/D138320.
678
iep->functionOffset = cueEndBoundary - in.header->addr;
679
iep->secondLevelPagesSectionOffset = 0;
680
iep->lsdaIndexArraySectionOffset =
681
lsdaOffset + entriesWithLsda.size() *
682
sizeof(unwind_info_section_header_lsda_index_entry);
683
iep++;
684
685
// LSDAs
686
auto *lep =
687
reinterpret_cast<unwind_info_section_header_lsda_index_entry *>(iep);
688
for (size_t idx : entriesWithLsda) {
689
const CompactUnwindEntry &cu = cuEntries[idx];
690
lep->lsdaOffset = cu.lsda->getVA(/*off=*/0) - in.header->addr;
691
lep->functionOffset = cu.functionAddress - in.header->addr;
692
lep++;
693
}
694
695
// Level-2 pages
696
auto *pp = reinterpret_cast<uint32_t *>(lep);
697
for (const SecondLevelPage &page : secondLevelPages) {
698
if (page.kind == UNWIND_SECOND_LEVEL_COMPRESSED) {
699
uintptr_t functionAddressBase =
700
cuEntries[cuIndices[page.entryIndex]].functionAddress;
701
auto *p2p =
702
reinterpret_cast<unwind_info_compressed_second_level_page_header *>(
703
pp);
704
p2p->kind = page.kind;
705
p2p->entryPageOffset =
706
sizeof(unwind_info_compressed_second_level_page_header);
707
p2p->entryCount = page.entryCount;
708
p2p->encodingsPageOffset =
709
p2p->entryPageOffset + p2p->entryCount * sizeof(uint32_t);
710
p2p->encodingsCount = page.localEncodings.size();
711
auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
712
for (size_t i = 0; i < page.entryCount; i++) {
713
const CompactUnwindEntry &cue =
714
cuEntries[cuIndices[page.entryIndex + i]];
715
auto it = commonEncodingIndexes.find(cue.encoding);
716
if (it == commonEncodingIndexes.end())
717
it = page.localEncodingIndexes.find(cue.encoding);
718
*ep++ = (it->second << COMPRESSED_ENTRY_FUNC_OFFSET_BITS) |
719
(cue.functionAddress - functionAddressBase);
720
}
721
if (!page.localEncodings.empty())
722
memcpy(ep, page.localEncodings.data(),
723
page.localEncodings.size() * sizeof(uint32_t));
724
} else {
725
auto *p2p =
726
reinterpret_cast<unwind_info_regular_second_level_page_header *>(pp);
727
p2p->kind = page.kind;
728
p2p->entryPageOffset =
729
sizeof(unwind_info_regular_second_level_page_header);
730
p2p->entryCount = page.entryCount;
731
auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
732
for (size_t i = 0; i < page.entryCount; i++) {
733
const CompactUnwindEntry &cue =
734
cuEntries[cuIndices[page.entryIndex + i]];
735
*ep++ = cue.functionAddress;
736
*ep++ = cue.encoding;
737
}
738
}
739
pp += SECOND_LEVEL_PAGE_WORDS;
740
}
741
}
742
743
UnwindInfoSection *macho::makeUnwindInfoSection() {
744
return make<UnwindInfoSectionImpl>();
745
}
746
747