Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lldb/source/Breakpoint/WatchpointAlgorithms.cpp
39587 views
1
//===-- WatchpointAlgorithms.cpp ------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "lldb/Breakpoint/WatchpointAlgorithms.h"
10
#include "lldb/Breakpoint/WatchpointResource.h"
11
#include "lldb/Target/Process.h"
12
#include "lldb/Utility/ArchSpec.h"
13
#include "lldb/Utility/LLDBLog.h"
14
#include "lldb/Utility/Log.h"
15
16
#include <algorithm>
17
#include <utility>
18
#include <vector>
19
20
using namespace lldb;
21
using namespace lldb_private;
22
23
std::vector<WatchpointResourceSP>
24
WatchpointAlgorithms::AtomizeWatchpointRequest(
25
addr_t addr, size_t size, bool read, bool write,
26
WatchpointHardwareFeature supported_features, ArchSpec &arch) {
27
28
std::vector<Region> entries;
29
30
if (supported_features & eWatchpointHardwareArmMASK) {
31
entries =
32
PowerOf2Watchpoints(addr, size,
33
/*min_byte_size*/ 1,
34
/*max_byte_size*/ INT32_MAX,
35
/*address_byte_size*/ arch.GetAddressByteSize());
36
} else {
37
// As a fallback, assume we can watch any power-of-2
38
// number of bytes up through the size of an address in the target.
39
entries =
40
PowerOf2Watchpoints(addr, size,
41
/*min_byte_size*/ 1,
42
/*max_byte_size*/ arch.GetAddressByteSize(),
43
/*address_byte_size*/ arch.GetAddressByteSize());
44
}
45
46
Log *log = GetLog(LLDBLog::Watchpoints);
47
LLDB_LOGV(log, "AtomizeWatchpointRequest user request addr {0:x} size {1}",
48
addr, size);
49
std::vector<WatchpointResourceSP> resources;
50
for (Region &ent : entries) {
51
LLDB_LOGV(log, "AtomizeWatchpointRequest creating resource {0:x} size {1}",
52
ent.addr, ent.size);
53
WatchpointResourceSP wp_res_sp =
54
std::make_shared<WatchpointResource>(ent.addr, ent.size, read, write);
55
resources.push_back(wp_res_sp);
56
}
57
58
return resources;
59
}
60
61
// This should be `std::bit_ceil(aligned_size)` but
62
// that requires C++20.
63
// Calculates the smallest integral power of two that is not smaller than x.
64
static uint64_t bit_ceil(uint64_t input) {
65
if (input <= 1 || llvm::popcount(input) == 1)
66
return input;
67
68
return 1ULL << (64 - llvm::countl_zero(input));
69
}
70
71
/// Convert a user's watchpoint request (\a user_addr and \a user_size)
72
/// into hardware watchpoints, for a target that can watch a power-of-2
73
/// region of memory (1, 2, 4, 8, etc), aligned to that same power-of-2
74
/// memory address.
75
///
76
/// If a user asks to watch 4 bytes at address 0x1002 (0x1002-0x1005
77
/// inclusive) we can implement this with two 2-byte watchpoints
78
/// (0x1002 and 0x1004) or with an 8-byte watchpoint at 0x1000.
79
/// A 4-byte watchpoint at 0x1002 would not be properly 4 byte aligned.
80
///
81
/// If a user asks to watch 16 bytes at 0x1000, and this target supports
82
/// 8-byte watchpoints, we can implement this with two 8-byte watchpoints
83
/// at 0x1000 and 0x1008.
84
std::vector<WatchpointAlgorithms::Region>
85
WatchpointAlgorithms::PowerOf2Watchpoints(addr_t user_addr, size_t user_size,
86
size_t min_byte_size,
87
size_t max_byte_size,
88
uint32_t address_byte_size) {
89
90
Log *log = GetLog(LLDBLog::Watchpoints);
91
LLDB_LOGV(log,
92
"AtomizeWatchpointRequest user request addr {0:x} size {1} "
93
"min_byte_size {2}, max_byte_size {3}, address_byte_size {4}",
94
user_addr, user_size, min_byte_size, max_byte_size,
95
address_byte_size);
96
97
// Can't watch zero bytes.
98
if (user_size == 0)
99
return {};
100
101
size_t aligned_size = std::max(user_size, min_byte_size);
102
/// Round up \a user_size to the next power-of-2 size
103
/// user_size == 8 -> aligned_size == 8
104
/// user_size == 9 -> aligned_size == 16
105
aligned_size = bit_ceil(aligned_size);
106
107
addr_t aligned_start = user_addr & ~(aligned_size - 1);
108
109
// Does this power-of-2 memory range, aligned to power-of-2 that the
110
// hardware can watch, completely cover the requested region.
111
if (aligned_size <= max_byte_size &&
112
aligned_start + aligned_size >= user_addr + user_size)
113
return {{aligned_start, aligned_size}};
114
115
// If the maximum region we can watch is larger than the aligned
116
// size, try increasing the region size by one power of 2 and see
117
// if aligning to that amount can cover the requested region.
118
//
119
// Increasing the aligned_size repeatedly instead of splitting the
120
// watchpoint can result in us watching large regions of memory
121
// unintentionally when we could use small two watchpoints. e.g.
122
// user_addr 0x3ff8 user_size 32
123
// can be watched with four 8-byte watchpoints or if it's done with one
124
// MASK watchpoint, it would need to be a 32KB watchpoint (a 16KB
125
// watchpoint at 0x0 only covers 0x0000-0x4000). A user request
126
// at the end of a power-of-2 region can lead to these undesirably
127
// large watchpoints and many false positive hits to ignore.
128
if (max_byte_size >= (aligned_size << 1)) {
129
aligned_size <<= 1;
130
aligned_start = user_addr & ~(aligned_size - 1);
131
if (aligned_size <= max_byte_size &&
132
aligned_start + aligned_size >= user_addr + user_size)
133
return {{aligned_start, aligned_size}};
134
135
// Go back to our original aligned size, to try the multiple
136
// watchpoint approach.
137
aligned_size >>= 1;
138
}
139
140
// We need to split the user's watchpoint into two or more watchpoints
141
// that can be monitored by hardware, because of alignment and/or size
142
// reasons.
143
aligned_size = std::min(aligned_size, max_byte_size);
144
aligned_start = user_addr & ~(aligned_size - 1);
145
146
std::vector<Region> result;
147
addr_t current_address = aligned_start;
148
const addr_t user_end_address = user_addr + user_size;
149
while (current_address + aligned_size < user_end_address) {
150
result.push_back({current_address, aligned_size});
151
current_address += aligned_size;
152
}
153
154
if (current_address < user_end_address)
155
result.push_back({current_address, aligned_size});
156
157
return result;
158
}
159
160