Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lldb/source/Expression/DWARFExpression.cpp
39587 views
1
//===-- DWARFExpression.cpp -----------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "lldb/Expression/DWARFExpression.h"
10
11
#include <cinttypes>
12
13
#include <optional>
14
#include <vector>
15
16
#include "lldb/Core/Module.h"
17
#include "lldb/Core/Value.h"
18
#include "lldb/Core/dwarf.h"
19
#include "lldb/Utility/DataEncoder.h"
20
#include "lldb/Utility/LLDBLog.h"
21
#include "lldb/Utility/Log.h"
22
#include "lldb/Utility/RegisterValue.h"
23
#include "lldb/Utility/Scalar.h"
24
#include "lldb/Utility/StreamString.h"
25
#include "lldb/Utility/VMRange.h"
26
27
#include "lldb/Host/Host.h"
28
#include "lldb/Utility/Endian.h"
29
30
#include "lldb/Symbol/Function.h"
31
32
#include "lldb/Target/ABI.h"
33
#include "lldb/Target/ExecutionContext.h"
34
#include "lldb/Target/Process.h"
35
#include "lldb/Target/RegisterContext.h"
36
#include "lldb/Target/StackFrame.h"
37
#include "lldb/Target/StackID.h"
38
#include "lldb/Target/Target.h"
39
#include "lldb/Target/Thread.h"
40
#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
41
#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
42
43
#include "Plugins/SymbolFile/DWARF/DWARFUnit.h"
44
45
using namespace lldb;
46
using namespace lldb_private;
47
using namespace lldb_private::dwarf;
48
using namespace lldb_private::plugin::dwarf;
49
50
// DWARFExpression constructor
51
DWARFExpression::DWARFExpression() : m_data() {}
52
53
DWARFExpression::DWARFExpression(const DataExtractor &data) : m_data(data) {}
54
55
// Destructor
56
DWARFExpression::~DWARFExpression() = default;
57
58
bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; }
59
60
void DWARFExpression::UpdateValue(uint64_t const_value,
61
lldb::offset_t const_value_byte_size,
62
uint8_t addr_byte_size) {
63
if (!const_value_byte_size)
64
return;
65
66
m_data.SetData(
67
DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size)));
68
m_data.SetByteOrder(endian::InlHostByteOrder());
69
m_data.SetAddressByteSize(addr_byte_size);
70
}
71
72
void DWARFExpression::DumpLocation(Stream *s, lldb::DescriptionLevel level,
73
ABI *abi) const {
74
auto *MCRegInfo = abi ? &abi->GetMCRegisterInfo() : nullptr;
75
auto GetRegName = [&MCRegInfo](uint64_t DwarfRegNum,
76
bool IsEH) -> llvm::StringRef {
77
if (!MCRegInfo)
78
return {};
79
if (std::optional<unsigned> LLVMRegNum =
80
MCRegInfo->getLLVMRegNum(DwarfRegNum, IsEH))
81
if (const char *RegName = MCRegInfo->getName(*LLVMRegNum))
82
return llvm::StringRef(RegName);
83
return {};
84
};
85
llvm::DIDumpOptions DumpOpts;
86
DumpOpts.GetNameForDWARFReg = GetRegName;
87
llvm::DWARFExpression(m_data.GetAsLLVM(), m_data.GetAddressByteSize())
88
.print(s->AsRawOstream(), DumpOpts, nullptr);
89
}
90
91
RegisterKind DWARFExpression::GetRegisterKind() const { return m_reg_kind; }
92
93
void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) {
94
m_reg_kind = reg_kind;
95
}
96
97
static llvm::Error ReadRegisterValueAsScalar(RegisterContext *reg_ctx,
98
lldb::RegisterKind reg_kind,
99
uint32_t reg_num, Value &value) {
100
if (reg_ctx == nullptr)
101
return llvm::createStringError("no register context in frame");
102
103
const uint32_t native_reg =
104
reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
105
if (native_reg == LLDB_INVALID_REGNUM)
106
return llvm::createStringError(
107
"unable to convert register kind=%u reg_num=%u to a native "
108
"register number",
109
reg_kind, reg_num);
110
111
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoAtIndex(native_reg);
112
RegisterValue reg_value;
113
if (reg_ctx->ReadRegister(reg_info, reg_value)) {
114
if (reg_value.GetScalarValue(value.GetScalar())) {
115
value.SetValueType(Value::ValueType::Scalar);
116
value.SetContext(Value::ContextType::RegisterInfo,
117
const_cast<RegisterInfo *>(reg_info));
118
return llvm::Error::success();
119
}
120
121
// If we get this error, then we need to implement a value buffer in
122
// the dwarf expression evaluation function...
123
return llvm::createStringError(
124
"register %s can't be converted to a scalar value", reg_info->name);
125
}
126
127
return llvm::createStringError("register %s is not available",
128
reg_info->name);
129
}
130
131
/// Return the length in bytes of the set of operands for \p op. No guarantees
132
/// are made on the state of \p data after this call.
133
static offset_t GetOpcodeDataSize(const DataExtractor &data,
134
const lldb::offset_t data_offset,
135
const uint8_t op, const DWARFUnit *dwarf_cu) {
136
lldb::offset_t offset = data_offset;
137
switch (op) {
138
case DW_OP_addr:
139
case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
140
return data.GetAddressByteSize();
141
142
// Opcodes with no arguments
143
case DW_OP_deref: // 0x06
144
case DW_OP_dup: // 0x12
145
case DW_OP_drop: // 0x13
146
case DW_OP_over: // 0x14
147
case DW_OP_swap: // 0x16
148
case DW_OP_rot: // 0x17
149
case DW_OP_xderef: // 0x18
150
case DW_OP_abs: // 0x19
151
case DW_OP_and: // 0x1a
152
case DW_OP_div: // 0x1b
153
case DW_OP_minus: // 0x1c
154
case DW_OP_mod: // 0x1d
155
case DW_OP_mul: // 0x1e
156
case DW_OP_neg: // 0x1f
157
case DW_OP_not: // 0x20
158
case DW_OP_or: // 0x21
159
case DW_OP_plus: // 0x22
160
case DW_OP_shl: // 0x24
161
case DW_OP_shr: // 0x25
162
case DW_OP_shra: // 0x26
163
case DW_OP_xor: // 0x27
164
case DW_OP_eq: // 0x29
165
case DW_OP_ge: // 0x2a
166
case DW_OP_gt: // 0x2b
167
case DW_OP_le: // 0x2c
168
case DW_OP_lt: // 0x2d
169
case DW_OP_ne: // 0x2e
170
case DW_OP_lit0: // 0x30
171
case DW_OP_lit1: // 0x31
172
case DW_OP_lit2: // 0x32
173
case DW_OP_lit3: // 0x33
174
case DW_OP_lit4: // 0x34
175
case DW_OP_lit5: // 0x35
176
case DW_OP_lit6: // 0x36
177
case DW_OP_lit7: // 0x37
178
case DW_OP_lit8: // 0x38
179
case DW_OP_lit9: // 0x39
180
case DW_OP_lit10: // 0x3A
181
case DW_OP_lit11: // 0x3B
182
case DW_OP_lit12: // 0x3C
183
case DW_OP_lit13: // 0x3D
184
case DW_OP_lit14: // 0x3E
185
case DW_OP_lit15: // 0x3F
186
case DW_OP_lit16: // 0x40
187
case DW_OP_lit17: // 0x41
188
case DW_OP_lit18: // 0x42
189
case DW_OP_lit19: // 0x43
190
case DW_OP_lit20: // 0x44
191
case DW_OP_lit21: // 0x45
192
case DW_OP_lit22: // 0x46
193
case DW_OP_lit23: // 0x47
194
case DW_OP_lit24: // 0x48
195
case DW_OP_lit25: // 0x49
196
case DW_OP_lit26: // 0x4A
197
case DW_OP_lit27: // 0x4B
198
case DW_OP_lit28: // 0x4C
199
case DW_OP_lit29: // 0x4D
200
case DW_OP_lit30: // 0x4E
201
case DW_OP_lit31: // 0x4f
202
case DW_OP_reg0: // 0x50
203
case DW_OP_reg1: // 0x51
204
case DW_OP_reg2: // 0x52
205
case DW_OP_reg3: // 0x53
206
case DW_OP_reg4: // 0x54
207
case DW_OP_reg5: // 0x55
208
case DW_OP_reg6: // 0x56
209
case DW_OP_reg7: // 0x57
210
case DW_OP_reg8: // 0x58
211
case DW_OP_reg9: // 0x59
212
case DW_OP_reg10: // 0x5A
213
case DW_OP_reg11: // 0x5B
214
case DW_OP_reg12: // 0x5C
215
case DW_OP_reg13: // 0x5D
216
case DW_OP_reg14: // 0x5E
217
case DW_OP_reg15: // 0x5F
218
case DW_OP_reg16: // 0x60
219
case DW_OP_reg17: // 0x61
220
case DW_OP_reg18: // 0x62
221
case DW_OP_reg19: // 0x63
222
case DW_OP_reg20: // 0x64
223
case DW_OP_reg21: // 0x65
224
case DW_OP_reg22: // 0x66
225
case DW_OP_reg23: // 0x67
226
case DW_OP_reg24: // 0x68
227
case DW_OP_reg25: // 0x69
228
case DW_OP_reg26: // 0x6A
229
case DW_OP_reg27: // 0x6B
230
case DW_OP_reg28: // 0x6C
231
case DW_OP_reg29: // 0x6D
232
case DW_OP_reg30: // 0x6E
233
case DW_OP_reg31: // 0x6F
234
case DW_OP_nop: // 0x96
235
case DW_OP_push_object_address: // 0x97 DWARF3
236
case DW_OP_form_tls_address: // 0x9b DWARF3
237
case DW_OP_call_frame_cfa: // 0x9c DWARF3
238
case DW_OP_stack_value: // 0x9f DWARF4
239
case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension
240
return 0;
241
242
// Opcodes with a single 1 byte arguments
243
case DW_OP_const1u: // 0x08 1 1-byte constant
244
case DW_OP_const1s: // 0x09 1 1-byte constant
245
case DW_OP_pick: // 0x15 1 1-byte stack index
246
case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved
247
case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
248
return 1;
249
250
// Opcodes with a single 2 byte arguments
251
case DW_OP_const2u: // 0x0a 1 2-byte constant
252
case DW_OP_const2s: // 0x0b 1 2-byte constant
253
case DW_OP_skip: // 0x2f 1 signed 2-byte constant
254
case DW_OP_bra: // 0x28 1 signed 2-byte constant
255
case DW_OP_call2: // 0x98 1 2-byte offset of DIE (DWARF3)
256
return 2;
257
258
// Opcodes with a single 4 byte arguments
259
case DW_OP_const4u: // 0x0c 1 4-byte constant
260
case DW_OP_const4s: // 0x0d 1 4-byte constant
261
case DW_OP_call4: // 0x99 1 4-byte offset of DIE (DWARF3)
262
return 4;
263
264
// Opcodes with a single 8 byte arguments
265
case DW_OP_const8u: // 0x0e 1 8-byte constant
266
case DW_OP_const8s: // 0x0f 1 8-byte constant
267
return 8;
268
269
// All opcodes that have a single ULEB (signed or unsigned) argument
270
case DW_OP_addrx: // 0xa1 1 ULEB128 index
271
case DW_OP_constu: // 0x10 1 ULEB128 constant
272
case DW_OP_consts: // 0x11 1 SLEB128 constant
273
case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend
274
case DW_OP_breg0: // 0x70 1 ULEB128 register
275
case DW_OP_breg1: // 0x71 1 ULEB128 register
276
case DW_OP_breg2: // 0x72 1 ULEB128 register
277
case DW_OP_breg3: // 0x73 1 ULEB128 register
278
case DW_OP_breg4: // 0x74 1 ULEB128 register
279
case DW_OP_breg5: // 0x75 1 ULEB128 register
280
case DW_OP_breg6: // 0x76 1 ULEB128 register
281
case DW_OP_breg7: // 0x77 1 ULEB128 register
282
case DW_OP_breg8: // 0x78 1 ULEB128 register
283
case DW_OP_breg9: // 0x79 1 ULEB128 register
284
case DW_OP_breg10: // 0x7a 1 ULEB128 register
285
case DW_OP_breg11: // 0x7b 1 ULEB128 register
286
case DW_OP_breg12: // 0x7c 1 ULEB128 register
287
case DW_OP_breg13: // 0x7d 1 ULEB128 register
288
case DW_OP_breg14: // 0x7e 1 ULEB128 register
289
case DW_OP_breg15: // 0x7f 1 ULEB128 register
290
case DW_OP_breg16: // 0x80 1 ULEB128 register
291
case DW_OP_breg17: // 0x81 1 ULEB128 register
292
case DW_OP_breg18: // 0x82 1 ULEB128 register
293
case DW_OP_breg19: // 0x83 1 ULEB128 register
294
case DW_OP_breg20: // 0x84 1 ULEB128 register
295
case DW_OP_breg21: // 0x85 1 ULEB128 register
296
case DW_OP_breg22: // 0x86 1 ULEB128 register
297
case DW_OP_breg23: // 0x87 1 ULEB128 register
298
case DW_OP_breg24: // 0x88 1 ULEB128 register
299
case DW_OP_breg25: // 0x89 1 ULEB128 register
300
case DW_OP_breg26: // 0x8a 1 ULEB128 register
301
case DW_OP_breg27: // 0x8b 1 ULEB128 register
302
case DW_OP_breg28: // 0x8c 1 ULEB128 register
303
case DW_OP_breg29: // 0x8d 1 ULEB128 register
304
case DW_OP_breg30: // 0x8e 1 ULEB128 register
305
case DW_OP_breg31: // 0x8f 1 ULEB128 register
306
case DW_OP_regx: // 0x90 1 ULEB128 register
307
case DW_OP_fbreg: // 0x91 1 SLEB128 offset
308
case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed
309
case DW_OP_GNU_addr_index: // 0xfb 1 ULEB128 index
310
case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index
311
data.Skip_LEB128(&offset);
312
return offset - data_offset;
313
314
// All opcodes that have a 2 ULEB (signed or unsigned) arguments
315
case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset
316
case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
317
data.Skip_LEB128(&offset);
318
data.Skip_LEB128(&offset);
319
return offset - data_offset;
320
321
case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size
322
// (DWARF4)
323
{
324
uint64_t block_len = data.Skip_LEB128(&offset);
325
offset += block_len;
326
return offset - data_offset;
327
}
328
329
case DW_OP_GNU_entry_value:
330
case DW_OP_entry_value: // 0xa3 ULEB128 size + variable-length block
331
{
332
uint64_t subexpr_len = data.GetULEB128(&offset);
333
return (offset - data_offset) + subexpr_len;
334
}
335
336
default:
337
if (!dwarf_cu) {
338
return LLDB_INVALID_OFFSET;
339
}
340
return dwarf_cu->GetSymbolFileDWARF().GetVendorDWARFOpcodeSize(
341
data, data_offset, op);
342
}
343
}
344
345
lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(const DWARFUnit *dwarf_cu,
346
bool &error) const {
347
error = false;
348
lldb::offset_t offset = 0;
349
while (m_data.ValidOffset(offset)) {
350
const uint8_t op = m_data.GetU8(&offset);
351
352
if (op == DW_OP_addr)
353
return m_data.GetAddress(&offset);
354
if (op == DW_OP_GNU_addr_index || op == DW_OP_addrx) {
355
uint64_t index = m_data.GetULEB128(&offset);
356
if (dwarf_cu)
357
return dwarf_cu->ReadAddressFromDebugAddrSection(index);
358
error = true;
359
break;
360
}
361
const offset_t op_arg_size =
362
GetOpcodeDataSize(m_data, offset, op, dwarf_cu);
363
if (op_arg_size == LLDB_INVALID_OFFSET) {
364
error = true;
365
break;
366
}
367
offset += op_arg_size;
368
}
369
return LLDB_INVALID_ADDRESS;
370
}
371
372
bool DWARFExpression::Update_DW_OP_addr(const DWARFUnit *dwarf_cu,
373
lldb::addr_t file_addr) {
374
lldb::offset_t offset = 0;
375
while (m_data.ValidOffset(offset)) {
376
const uint8_t op = m_data.GetU8(&offset);
377
378
if (op == DW_OP_addr) {
379
const uint32_t addr_byte_size = m_data.GetAddressByteSize();
380
// We have to make a copy of the data as we don't know if this data is
381
// from a read only memory mapped buffer, so we duplicate all of the data
382
// first, then modify it, and if all goes well, we then replace the data
383
// for this expression
384
385
// Make en encoder that contains a copy of the location expression data
386
// so we can write the address into the buffer using the correct byte
387
// order.
388
DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(),
389
m_data.GetByteOrder(), addr_byte_size);
390
391
// Replace the address in the new buffer
392
if (encoder.PutAddress(offset, file_addr) == UINT32_MAX)
393
return false;
394
395
// All went well, so now we can reset the data using a shared pointer to
396
// the heap data so "m_data" will now correctly manage the heap data.
397
m_data.SetData(encoder.GetDataBuffer());
398
return true;
399
}
400
if (op == DW_OP_addrx) {
401
// Replace DW_OP_addrx with DW_OP_addr, since we can't modify the
402
// read-only debug_addr table.
403
// Subtract one to account for the opcode.
404
llvm::ArrayRef data_before_op = m_data.GetData().take_front(offset - 1);
405
406
// Read the addrx index to determine how many bytes it needs.
407
const lldb::offset_t old_offset = offset;
408
m_data.GetULEB128(&offset);
409
if (old_offset == offset)
410
return false;
411
llvm::ArrayRef data_after_op = m_data.GetData().drop_front(offset);
412
413
DataEncoder encoder(m_data.GetByteOrder(), m_data.GetAddressByteSize());
414
encoder.AppendData(data_before_op);
415
encoder.AppendU8(DW_OP_addr);
416
encoder.AppendAddress(file_addr);
417
encoder.AppendData(data_after_op);
418
m_data.SetData(encoder.GetDataBuffer());
419
return true;
420
}
421
const offset_t op_arg_size =
422
GetOpcodeDataSize(m_data, offset, op, dwarf_cu);
423
if (op_arg_size == LLDB_INVALID_OFFSET)
424
break;
425
offset += op_arg_size;
426
}
427
return false;
428
}
429
430
bool DWARFExpression::ContainsThreadLocalStorage(
431
const DWARFUnit *dwarf_cu) const {
432
lldb::offset_t offset = 0;
433
while (m_data.ValidOffset(offset)) {
434
const uint8_t op = m_data.GetU8(&offset);
435
436
if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address)
437
return true;
438
const offset_t op_arg_size =
439
GetOpcodeDataSize(m_data, offset, op, dwarf_cu);
440
if (op_arg_size == LLDB_INVALID_OFFSET)
441
return false;
442
offset += op_arg_size;
443
}
444
return false;
445
}
446
bool DWARFExpression::LinkThreadLocalStorage(
447
const DWARFUnit *dwarf_cu,
448
std::function<lldb::addr_t(lldb::addr_t file_addr)> const
449
&link_address_callback) {
450
const uint32_t addr_byte_size = m_data.GetAddressByteSize();
451
// We have to make a copy of the data as we don't know if this data is from a
452
// read only memory mapped buffer, so we duplicate all of the data first,
453
// then modify it, and if all goes well, we then replace the data for this
454
// expression.
455
// Make en encoder that contains a copy of the location expression data so we
456
// can write the address into the buffer using the correct byte order.
457
DataEncoder encoder(m_data.GetDataStart(), m_data.GetByteSize(),
458
m_data.GetByteOrder(), addr_byte_size);
459
460
lldb::offset_t offset = 0;
461
lldb::offset_t const_offset = 0;
462
lldb::addr_t const_value = 0;
463
size_t const_byte_size = 0;
464
while (m_data.ValidOffset(offset)) {
465
const uint8_t op = m_data.GetU8(&offset);
466
467
bool decoded_data = false;
468
switch (op) {
469
case DW_OP_const4u:
470
// Remember the const offset in case we later have a
471
// DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
472
const_offset = offset;
473
const_value = m_data.GetU32(&offset);
474
decoded_data = true;
475
const_byte_size = 4;
476
break;
477
478
case DW_OP_const8u:
479
// Remember the const offset in case we later have a
480
// DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
481
const_offset = offset;
482
const_value = m_data.GetU64(&offset);
483
decoded_data = true;
484
const_byte_size = 8;
485
break;
486
487
case DW_OP_form_tls_address:
488
case DW_OP_GNU_push_tls_address:
489
// DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded
490
// by a file address on the stack. We assume that DW_OP_const4u or
491
// DW_OP_const8u is used for these values, and we check that the last
492
// opcode we got before either of these was DW_OP_const4u or
493
// DW_OP_const8u. If so, then we can link the value accordingly. For
494
// Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file
495
// address of a structure that contains a function pointer, the pthread
496
// key and the offset into the data pointed to by the pthread key. So we
497
// must link this address and also set the module of this expression to
498
// the new_module_sp so we can resolve the file address correctly
499
if (const_byte_size > 0) {
500
lldb::addr_t linked_file_addr = link_address_callback(const_value);
501
if (linked_file_addr == LLDB_INVALID_ADDRESS)
502
return false;
503
// Replace the address in the new buffer
504
if (encoder.PutUnsigned(const_offset, const_byte_size,
505
linked_file_addr) == UINT32_MAX)
506
return false;
507
}
508
break;
509
510
default:
511
const_offset = 0;
512
const_value = 0;
513
const_byte_size = 0;
514
break;
515
}
516
517
if (!decoded_data) {
518
const offset_t op_arg_size =
519
GetOpcodeDataSize(m_data, offset, op, dwarf_cu);
520
if (op_arg_size == LLDB_INVALID_OFFSET)
521
return false;
522
else
523
offset += op_arg_size;
524
}
525
}
526
527
m_data.SetData(encoder.GetDataBuffer());
528
return true;
529
}
530
531
static llvm::Error Evaluate_DW_OP_entry_value(std::vector<Value> &stack,
532
ExecutionContext *exe_ctx,
533
RegisterContext *reg_ctx,
534
const DataExtractor &opcodes,
535
lldb::offset_t &opcode_offset,
536
Log *log) {
537
// DW_OP_entry_value(sub-expr) describes the location a variable had upon
538
// function entry: this variable location is presumed to be optimized out at
539
// the current PC value. The caller of the function may have call site
540
// information that describes an alternate location for the variable (e.g. a
541
// constant literal, or a spilled stack value) in the parent frame.
542
//
543
// Example (this is pseudo-code & pseudo-DWARF, but hopefully illustrative):
544
//
545
// void child(int &sink, int x) {
546
// ...
547
// /* "x" gets optimized out. */
548
//
549
// /* The location of "x" here is: DW_OP_entry_value($reg2). */
550
// ++sink;
551
// }
552
//
553
// void parent() {
554
// int sink;
555
//
556
// /*
557
// * The callsite information emitted here is:
558
// *
559
// * DW_TAG_call_site
560
// * DW_AT_return_pc ... (for "child(sink, 123);")
561
// * DW_TAG_call_site_parameter (for "sink")
562
// * DW_AT_location ($reg1)
563
// * DW_AT_call_value ($SP - 8)
564
// * DW_TAG_call_site_parameter (for "x")
565
// * DW_AT_location ($reg2)
566
// * DW_AT_call_value ($literal 123)
567
// *
568
// * DW_TAG_call_site
569
// * DW_AT_return_pc ... (for "child(sink, 456);")
570
// * ...
571
// */
572
// child(sink, 123);
573
// child(sink, 456);
574
// }
575
//
576
// When the program stops at "++sink" within `child`, the debugger determines
577
// the call site by analyzing the return address. Once the call site is found,
578
// the debugger determines which parameter is referenced by DW_OP_entry_value
579
// and evaluates the corresponding location for that parameter in `parent`.
580
581
// 1. Find the function which pushed the current frame onto the stack.
582
if ((!exe_ctx || !exe_ctx->HasTargetScope()) || !reg_ctx) {
583
return llvm::createStringError("no exe/reg context");
584
}
585
586
StackFrame *current_frame = exe_ctx->GetFramePtr();
587
Thread *thread = exe_ctx->GetThreadPtr();
588
if (!current_frame || !thread)
589
return llvm::createStringError("no current frame/thread");
590
591
Target &target = exe_ctx->GetTargetRef();
592
StackFrameSP parent_frame = nullptr;
593
addr_t return_pc = LLDB_INVALID_ADDRESS;
594
uint32_t current_frame_idx = current_frame->GetFrameIndex();
595
596
for (uint32_t parent_frame_idx = current_frame_idx + 1;;parent_frame_idx++) {
597
parent_frame = thread->GetStackFrameAtIndex(parent_frame_idx);
598
// If this is null, we're at the end of the stack.
599
if (!parent_frame)
600
break;
601
602
// Record the first valid return address, even if this is an inlined frame,
603
// in order to look up the associated call edge in the first non-inlined
604
// parent frame.
605
if (return_pc == LLDB_INVALID_ADDRESS) {
606
return_pc = parent_frame->GetFrameCodeAddress().GetLoadAddress(&target);
607
LLDB_LOG(log, "immediate ancestor with pc = {0:x}", return_pc);
608
}
609
610
// If we've found an inlined frame, skip it (these have no call site
611
// parameters).
612
if (parent_frame->IsInlined())
613
continue;
614
615
// We've found the first non-inlined parent frame.
616
break;
617
}
618
if (!parent_frame || !parent_frame->GetRegisterContext()) {
619
return llvm::createStringError("no parent frame with reg ctx");
620
}
621
622
Function *parent_func =
623
parent_frame->GetSymbolContext(eSymbolContextFunction).function;
624
if (!parent_func)
625
return llvm::createStringError("no parent function");
626
627
// 2. Find the call edge in the parent function responsible for creating the
628
// current activation.
629
Function *current_func =
630
current_frame->GetSymbolContext(eSymbolContextFunction).function;
631
if (!current_func)
632
return llvm::createStringError("no current function");
633
634
CallEdge *call_edge = nullptr;
635
ModuleList &modlist = target.GetImages();
636
ExecutionContext parent_exe_ctx = *exe_ctx;
637
parent_exe_ctx.SetFrameSP(parent_frame);
638
if (!parent_frame->IsArtificial()) {
639
// If the parent frame is not artificial, the current activation may be
640
// produced by an ambiguous tail call. In this case, refuse to proceed.
641
call_edge = parent_func->GetCallEdgeForReturnAddress(return_pc, target);
642
if (!call_edge) {
643
return llvm::createStringError(
644
llvm::formatv("no call edge for retn-pc = {0:x} in parent frame {1}",
645
return_pc, parent_func->GetName()));
646
}
647
Function *callee_func = call_edge->GetCallee(modlist, parent_exe_ctx);
648
if (callee_func != current_func) {
649
return llvm::createStringError(
650
"ambiguous call sequence, can't find real parent frame");
651
}
652
} else {
653
// The StackFrameList solver machinery has deduced that an unambiguous tail
654
// call sequence that produced the current activation. The first edge in
655
// the parent that points to the current function must be valid.
656
for (auto &edge : parent_func->GetTailCallingEdges()) {
657
if (edge->GetCallee(modlist, parent_exe_ctx) == current_func) {
658
call_edge = edge.get();
659
break;
660
}
661
}
662
}
663
if (!call_edge)
664
return llvm::createStringError("no unambiguous edge from parent "
665
"to current function");
666
667
// 3. Attempt to locate the DW_OP_entry_value expression in the set of
668
// available call site parameters. If found, evaluate the corresponding
669
// parameter in the context of the parent frame.
670
const uint32_t subexpr_len = opcodes.GetULEB128(&opcode_offset);
671
const void *subexpr_data = opcodes.GetData(&opcode_offset, subexpr_len);
672
if (!subexpr_data)
673
return llvm::createStringError("subexpr could not be read");
674
675
const CallSiteParameter *matched_param = nullptr;
676
for (const CallSiteParameter &param : call_edge->GetCallSiteParameters()) {
677
DataExtractor param_subexpr_extractor;
678
if (!param.LocationInCallee.GetExpressionData(param_subexpr_extractor))
679
continue;
680
lldb::offset_t param_subexpr_offset = 0;
681
const void *param_subexpr_data =
682
param_subexpr_extractor.GetData(&param_subexpr_offset, subexpr_len);
683
if (!param_subexpr_data ||
684
param_subexpr_extractor.BytesLeft(param_subexpr_offset) != 0)
685
continue;
686
687
// At this point, the DW_OP_entry_value sub-expression and the callee-side
688
// expression in the call site parameter are known to have the same length.
689
// Check whether they are equal.
690
//
691
// Note that an equality check is sufficient: the contents of the
692
// DW_OP_entry_value subexpression are only used to identify the right call
693
// site parameter in the parent, and do not require any special handling.
694
if (memcmp(subexpr_data, param_subexpr_data, subexpr_len) == 0) {
695
matched_param = &param;
696
break;
697
}
698
}
699
if (!matched_param)
700
return llvm::createStringError("no matching call site param found");
701
702
// TODO: Add support for DW_OP_push_object_address within a DW_OP_entry_value
703
// subexpresion whenever llvm does.
704
const DWARFExpressionList &param_expr = matched_param->LocationInCaller;
705
706
llvm::Expected<Value> maybe_result = param_expr.Evaluate(
707
&parent_exe_ctx, parent_frame->GetRegisterContext().get(),
708
LLDB_INVALID_ADDRESS,
709
/*initial_value_ptr=*/nullptr,
710
/*object_address_ptr=*/nullptr);
711
if (!maybe_result) {
712
LLDB_LOG(log,
713
"Evaluate_DW_OP_entry_value: call site param evaluation failed");
714
return maybe_result.takeError();
715
}
716
717
stack.push_back(*maybe_result);
718
return llvm::Error::success();
719
}
720
721
namespace {
722
/// The location description kinds described by the DWARF v5
723
/// specification. Composite locations are handled out-of-band and
724
/// thus aren't part of the enum.
725
enum LocationDescriptionKind {
726
Empty,
727
Memory,
728
Register,
729
Implicit
730
/* Composite*/
731
};
732
/// Adjust value's ValueType according to the kind of location description.
733
void UpdateValueTypeFromLocationDescription(Log *log, const DWARFUnit *dwarf_cu,
734
LocationDescriptionKind kind,
735
Value *value = nullptr) {
736
// Note that this function is conflating DWARF expressions with
737
// DWARF location descriptions. Perhaps it would be better to define
738
// a wrapper for DWARFExpression::Eval() that deals with DWARF
739
// location descriptions (which consist of one or more DWARF
740
// expressions). But doing this would mean we'd also need factor the
741
// handling of DW_OP_(bit_)piece out of this function.
742
if (dwarf_cu && dwarf_cu->GetVersion() >= 4) {
743
const char *log_msg = "DWARF location description kind: %s";
744
switch (kind) {
745
case Empty:
746
LLDB_LOGF(log, log_msg, "Empty");
747
break;
748
case Memory:
749
LLDB_LOGF(log, log_msg, "Memory");
750
if (value->GetValueType() == Value::ValueType::Scalar)
751
value->SetValueType(Value::ValueType::LoadAddress);
752
break;
753
case Register:
754
LLDB_LOGF(log, log_msg, "Register");
755
value->SetValueType(Value::ValueType::Scalar);
756
break;
757
case Implicit:
758
LLDB_LOGF(log, log_msg, "Implicit");
759
if (value->GetValueType() == Value::ValueType::LoadAddress)
760
value->SetValueType(Value::ValueType::Scalar);
761
break;
762
}
763
}
764
}
765
} // namespace
766
767
/// Helper function to move common code used to resolve a file address and turn
768
/// into a load address.
769
///
770
/// \param exe_ctx Pointer to the execution context
771
/// \param module_sp shared_ptr contains the module if we have one
772
/// \param dw_op_type C-style string used to vary the error output
773
/// \param file_addr the file address we are trying to resolve and turn into a
774
/// load address
775
/// \param so_addr out parameter, will be set to load address or section offset
776
/// \param check_sectionoffset bool which determines if having a section offset
777
/// but not a load address is considerd a success
778
/// \returns std::optional containing the load address if resolving and getting
779
/// the load address succeed or an empty Optinal otherwise. If
780
/// check_sectionoffset is true we consider LLDB_INVALID_ADDRESS a
781
/// success if so_addr.IsSectionOffset() is true.
782
static llvm::Expected<lldb::addr_t>
783
ResolveLoadAddress(ExecutionContext *exe_ctx, lldb::ModuleSP &module_sp,
784
const char *dw_op_type, lldb::addr_t file_addr,
785
Address &so_addr, bool check_sectionoffset = false) {
786
if (!module_sp)
787
return llvm::createStringError("need module to resolve file address for %s",
788
dw_op_type);
789
790
if (!module_sp->ResolveFileAddress(file_addr, so_addr))
791
return llvm::createStringError("failed to resolve file address in module");
792
793
const addr_t load_addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr());
794
795
if (load_addr == LLDB_INVALID_ADDRESS &&
796
(check_sectionoffset && !so_addr.IsSectionOffset()))
797
return llvm::createStringError("failed to resolve load address");
798
799
return load_addr;
800
}
801
802
/// Helper function to move common code used to load sized data from a uint8_t
803
/// buffer.
804
///
805
/// \param addr_bytes uint8_t buffer containg raw data
806
/// \param size_addr_bytes how large is the underlying raw data
807
/// \param byte_order what is the byter order of the underlyig data
808
/// \param size How much of the underlying data we want to use
809
/// \return The underlying data converted into a Scalar
810
static Scalar DerefSizeExtractDataHelper(uint8_t *addr_bytes,
811
size_t size_addr_bytes,
812
ByteOrder byte_order, size_t size) {
813
DataExtractor addr_data(addr_bytes, size_addr_bytes, byte_order, size);
814
815
lldb::offset_t addr_data_offset = 0;
816
if (size <= 8)
817
return addr_data.GetMaxU64(&addr_data_offset, size);
818
else
819
return addr_data.GetAddress(&addr_data_offset);
820
}
821
822
llvm::Expected<Value> DWARFExpression::Evaluate(
823
ExecutionContext *exe_ctx, RegisterContext *reg_ctx,
824
lldb::ModuleSP module_sp, const DataExtractor &opcodes,
825
const DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_kind,
826
const Value *initial_value_ptr, const Value *object_address_ptr) {
827
828
if (opcodes.GetByteSize() == 0)
829
return llvm::createStringError(
830
"no location, value may have been optimized out");
831
std::vector<Value> stack;
832
833
Process *process = nullptr;
834
StackFrame *frame = nullptr;
835
Target *target = nullptr;
836
837
if (exe_ctx) {
838
process = exe_ctx->GetProcessPtr();
839
frame = exe_ctx->GetFramePtr();
840
target = exe_ctx->GetTargetPtr();
841
}
842
if (reg_ctx == nullptr && frame)
843
reg_ctx = frame->GetRegisterContext().get();
844
845
if (initial_value_ptr)
846
stack.push_back(*initial_value_ptr);
847
848
lldb::offset_t offset = 0;
849
Value tmp;
850
uint32_t reg_num;
851
852
/// Insertion point for evaluating multi-piece expression.
853
uint64_t op_piece_offset = 0;
854
Value pieces; // Used for DW_OP_piece
855
856
Log *log = GetLog(LLDBLog::Expressions);
857
// A generic type is "an integral type that has the size of an address and an
858
// unspecified signedness". For now, just use the signedness of the operand.
859
// TODO: Implement a real typed stack, and store the genericness of the value
860
// there.
861
auto to_generic = [&](auto v) {
862
bool is_signed = std::is_signed<decltype(v)>::value;
863
return Scalar(llvm::APSInt(
864
llvm::APInt(8 * opcodes.GetAddressByteSize(), v, is_signed),
865
!is_signed));
866
};
867
868
// The default kind is a memory location. This is updated by any
869
// operation that changes this, such as DW_OP_stack_value, and reset
870
// by composition operations like DW_OP_piece.
871
LocationDescriptionKind dwarf4_location_description_kind = Memory;
872
873
while (opcodes.ValidOffset(offset)) {
874
const lldb::offset_t op_offset = offset;
875
const uint8_t op = opcodes.GetU8(&offset);
876
877
if (log && log->GetVerbose()) {
878
size_t count = stack.size();
879
LLDB_LOGF(log, "Stack before operation has %" PRIu64 " values:",
880
(uint64_t)count);
881
for (size_t i = 0; i < count; ++i) {
882
StreamString new_value;
883
new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
884
stack[i].Dump(&new_value);
885
LLDB_LOGF(log, " %s", new_value.GetData());
886
}
887
LLDB_LOGF(log, "0x%8.8" PRIx64 ": %s", op_offset,
888
DW_OP_value_to_name(op));
889
}
890
891
if (std::optional<unsigned> arity =
892
llvm::dwarf::OperationArity(static_cast<LocationAtom>(op))) {
893
if (stack.size() < *arity)
894
return llvm::createStringError(
895
"%s needs at least %d stack entries (stack has %d entries)",
896
DW_OP_value_to_name(op), *arity, stack.size());
897
}
898
899
switch (op) {
900
// The DW_OP_addr operation has a single operand that encodes a machine
901
// address and whose size is the size of an address on the target machine.
902
case DW_OP_addr:
903
stack.push_back(Scalar(opcodes.GetAddress(&offset)));
904
if (target &&
905
target->GetArchitecture().GetCore() == ArchSpec::eCore_wasm32) {
906
// wasm file sections aren't mapped into memory, therefore addresses can
907
// never point into a file section and are always LoadAddresses.
908
stack.back().SetValueType(Value::ValueType::LoadAddress);
909
} else {
910
stack.back().SetValueType(Value::ValueType::FileAddress);
911
}
912
break;
913
914
// The DW_OP_addr_sect_offset4 is used for any location expressions in
915
// shared libraries that have a location like:
916
// DW_OP_addr(0x1000)
917
// If this address resides in a shared library, then this virtual address
918
// won't make sense when it is evaluated in the context of a running
919
// process where shared libraries have been slid. To account for this, this
920
// new address type where we can store the section pointer and a 4 byte
921
// offset.
922
// case DW_OP_addr_sect_offset4:
923
// {
924
// result_type = eResultTypeFileAddress;
925
// lldb::Section *sect = (lldb::Section
926
// *)opcodes.GetMaxU64(&offset, sizeof(void *));
927
// lldb::addr_t sect_offset = opcodes.GetU32(&offset);
928
//
929
// Address so_addr (sect, sect_offset);
930
// lldb::addr_t load_addr = so_addr.GetLoadAddress();
931
// if (load_addr != LLDB_INVALID_ADDRESS)
932
// {
933
// // We successfully resolve a file address to a load
934
// // address.
935
// stack.push_back(load_addr);
936
// break;
937
// }
938
// else
939
// {
940
// // We were able
941
// if (error_ptr)
942
// error_ptr->SetErrorStringWithFormat ("Section %s in
943
// %s is not currently loaded.\n",
944
// sect->GetName().AsCString(),
945
// sect->GetModule()->GetFileSpec().GetFilename().AsCString());
946
// return false;
947
// }
948
// }
949
// break;
950
951
// OPCODE: DW_OP_deref
952
// OPERANDS: none
953
// DESCRIPTION: Pops the top stack entry and treats it as an address.
954
// The value retrieved from that address is pushed. The size of the data
955
// retrieved from the dereferenced address is the size of an address on the
956
// target machine.
957
case DW_OP_deref: {
958
if (stack.empty())
959
return llvm::createStringError(
960
"expression stack empty for DW_OP_deref");
961
Value::ValueType value_type = stack.back().GetValueType();
962
switch (value_type) {
963
case Value::ValueType::HostAddress: {
964
void *src = (void *)stack.back().GetScalar().ULongLong();
965
intptr_t ptr;
966
::memcpy(&ptr, src, sizeof(void *));
967
stack.back().GetScalar() = ptr;
968
stack.back().ClearContext();
969
} break;
970
case Value::ValueType::FileAddress: {
971
auto file_addr = stack.back().GetScalar().ULongLong(
972
LLDB_INVALID_ADDRESS);
973
974
Address so_addr;
975
auto maybe_load_addr = ResolveLoadAddress(
976
exe_ctx, module_sp, "DW_OP_deref", file_addr, so_addr);
977
978
if (!maybe_load_addr)
979
return maybe_load_addr.takeError();
980
981
stack.back().GetScalar() = *maybe_load_addr;
982
// Fall through to load address promotion code below.
983
}
984
[[fallthrough]];
985
case Value::ValueType::Scalar:
986
// Promote Scalar to LoadAddress and fall through.
987
stack.back().SetValueType(Value::ValueType::LoadAddress);
988
[[fallthrough]];
989
case Value::ValueType::LoadAddress:
990
if (exe_ctx) {
991
if (process) {
992
lldb::addr_t pointer_addr =
993
stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
994
Status error;
995
lldb::addr_t pointer_value =
996
process->ReadPointerFromMemory(pointer_addr, error);
997
if (pointer_value != LLDB_INVALID_ADDRESS) {
998
if (ABISP abi_sp = process->GetABI())
999
pointer_value = abi_sp->FixCodeAddress(pointer_value);
1000
stack.back().GetScalar() = pointer_value;
1001
stack.back().ClearContext();
1002
} else {
1003
return llvm::createStringError(
1004
"Failed to dereference pointer from 0x%" PRIx64
1005
" for DW_OP_deref: %s\n",
1006
pointer_addr, error.AsCString());
1007
}
1008
} else {
1009
return llvm::createStringError("NULL process for DW_OP_deref");
1010
}
1011
} else {
1012
return llvm::createStringError(
1013
"NULL execution context for DW_OP_deref");
1014
}
1015
break;
1016
1017
case Value::ValueType::Invalid:
1018
return llvm::createStringError("invalid value type for DW_OP_deref");
1019
}
1020
1021
} break;
1022
1023
// OPCODE: DW_OP_deref_size
1024
// OPERANDS: 1
1025
// 1 - uint8_t that specifies the size of the data to dereference.
1026
// DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
1027
// stack entry and treats it as an address. The value retrieved from that
1028
// address is pushed. In the DW_OP_deref_size operation, however, the size
1029
// in bytes of the data retrieved from the dereferenced address is
1030
// specified by the single operand. This operand is a 1-byte unsigned
1031
// integral constant whose value may not be larger than the size of an
1032
// address on the target machine. The data retrieved is zero extended to
1033
// the size of an address on the target machine before being pushed on the
1034
// expression stack.
1035
case DW_OP_deref_size: {
1036
if (stack.empty()) {
1037
return llvm::createStringError(
1038
"expression stack empty for DW_OP_deref_size");
1039
}
1040
uint8_t size = opcodes.GetU8(&offset);
1041
if (size > 8) {
1042
return llvm::createStringError(
1043
"Invalid address size for DW_OP_deref_size: %d\n", size);
1044
}
1045
Value::ValueType value_type = stack.back().GetValueType();
1046
switch (value_type) {
1047
case Value::ValueType::HostAddress: {
1048
void *src = (void *)stack.back().GetScalar().ULongLong();
1049
intptr_t ptr;
1050
::memcpy(&ptr, src, sizeof(void *));
1051
// I can't decide whether the size operand should apply to the bytes in
1052
// their
1053
// lldb-host endianness or the target endianness.. I doubt this'll ever
1054
// come up but I'll opt for assuming big endian regardless.
1055
switch (size) {
1056
case 1:
1057
ptr = ptr & 0xff;
1058
break;
1059
case 2:
1060
ptr = ptr & 0xffff;
1061
break;
1062
case 3:
1063
ptr = ptr & 0xffffff;
1064
break;
1065
case 4:
1066
ptr = ptr & 0xffffffff;
1067
break;
1068
// the casts are added to work around the case where intptr_t is a 32
1069
// bit quantity;
1070
// presumably we won't hit the 5..7 cases if (void*) is 32-bits in this
1071
// program.
1072
case 5:
1073
ptr = (intptr_t)ptr & 0xffffffffffULL;
1074
break;
1075
case 6:
1076
ptr = (intptr_t)ptr & 0xffffffffffffULL;
1077
break;
1078
case 7:
1079
ptr = (intptr_t)ptr & 0xffffffffffffffULL;
1080
break;
1081
default:
1082
break;
1083
}
1084
stack.back().GetScalar() = ptr;
1085
stack.back().ClearContext();
1086
} break;
1087
case Value::ValueType::FileAddress: {
1088
auto file_addr =
1089
stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1090
Address so_addr;
1091
auto maybe_load_addr = ResolveLoadAddress(
1092
exe_ctx, module_sp, "DW_OP_deref_size", file_addr, so_addr,
1093
/*check_sectionoffset=*/true);
1094
1095
if (!maybe_load_addr)
1096
return maybe_load_addr.takeError();
1097
1098
addr_t load_addr = *maybe_load_addr;
1099
1100
if (load_addr == LLDB_INVALID_ADDRESS && so_addr.IsSectionOffset()) {
1101
uint8_t addr_bytes[8];
1102
Status error;
1103
1104
if (target &&
1105
target->ReadMemory(so_addr, &addr_bytes, size, error,
1106
/*force_live_memory=*/false) == size) {
1107
ObjectFile *objfile = module_sp->GetObjectFile();
1108
1109
stack.back().GetScalar() = DerefSizeExtractDataHelper(
1110
addr_bytes, size, objfile->GetByteOrder(), size);
1111
stack.back().ClearContext();
1112
break;
1113
} else {
1114
return llvm::createStringError(
1115
"Failed to dereference pointer for DW_OP_deref_size: "
1116
"%s\n",
1117
error.AsCString());
1118
}
1119
}
1120
stack.back().GetScalar() = load_addr;
1121
// Fall through to load address promotion code below.
1122
}
1123
1124
[[fallthrough]];
1125
case Value::ValueType::Scalar:
1126
case Value::ValueType::LoadAddress:
1127
if (exe_ctx) {
1128
if (process) {
1129
lldb::addr_t pointer_addr =
1130
stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1131
uint8_t addr_bytes[sizeof(lldb::addr_t)];
1132
Status error;
1133
if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) ==
1134
size) {
1135
1136
stack.back().GetScalar() =
1137
DerefSizeExtractDataHelper(addr_bytes, sizeof(addr_bytes),
1138
process->GetByteOrder(), size);
1139
stack.back().ClearContext();
1140
} else {
1141
return llvm::createStringError(
1142
"Failed to dereference pointer from 0x%" PRIx64
1143
" for DW_OP_deref: %s\n",
1144
pointer_addr, error.AsCString());
1145
}
1146
} else {
1147
1148
return llvm::createStringError("NULL process for DW_OP_deref_size");
1149
}
1150
} else {
1151
return llvm::createStringError(
1152
"NULL execution context for DW_OP_deref_size");
1153
}
1154
break;
1155
1156
case Value::ValueType::Invalid:
1157
1158
return llvm::createStringError("invalid value for DW_OP_deref_size");
1159
}
1160
1161
} break;
1162
1163
// OPCODE: DW_OP_xderef_size
1164
// OPERANDS: 1
1165
// 1 - uint8_t that specifies the size of the data to dereference.
1166
// DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
1167
// the top of the stack is treated as an address. The second stack entry is
1168
// treated as an "address space identifier" for those architectures that
1169
// support multiple address spaces. The top two stack elements are popped,
1170
// a data item is retrieved through an implementation-defined address
1171
// calculation and pushed as the new stack top. In the DW_OP_xderef_size
1172
// operation, however, the size in bytes of the data retrieved from the
1173
// dereferenced address is specified by the single operand. This operand is
1174
// a 1-byte unsigned integral constant whose value may not be larger than
1175
// the size of an address on the target machine. The data retrieved is zero
1176
// extended to the size of an address on the target machine before being
1177
// pushed on the expression stack.
1178
case DW_OP_xderef_size:
1179
return llvm::createStringError("unimplemented opcode: DW_OP_xderef_size");
1180
// OPCODE: DW_OP_xderef
1181
// OPERANDS: none
1182
// DESCRIPTION: Provides an extended dereference mechanism. The entry at
1183
// the top of the stack is treated as an address. The second stack entry is
1184
// treated as an "address space identifier" for those architectures that
1185
// support multiple address spaces. The top two stack elements are popped,
1186
// a data item is retrieved through an implementation-defined address
1187
// calculation and pushed as the new stack top. The size of the data
1188
// retrieved from the dereferenced address is the size of an address on the
1189
// target machine.
1190
case DW_OP_xderef:
1191
return llvm::createStringError("unimplemented opcode: DW_OP_xderef");
1192
1193
// All DW_OP_constXXX opcodes have a single operand as noted below:
1194
//
1195
// Opcode Operand 1
1196
// DW_OP_const1u 1-byte unsigned integer constant
1197
// DW_OP_const1s 1-byte signed integer constant
1198
// DW_OP_const2u 2-byte unsigned integer constant
1199
// DW_OP_const2s 2-byte signed integer constant
1200
// DW_OP_const4u 4-byte unsigned integer constant
1201
// DW_OP_const4s 4-byte signed integer constant
1202
// DW_OP_const8u 8-byte unsigned integer constant
1203
// DW_OP_const8s 8-byte signed integer constant
1204
// DW_OP_constu unsigned LEB128 integer constant
1205
// DW_OP_consts signed LEB128 integer constant
1206
case DW_OP_const1u:
1207
stack.push_back(to_generic(opcodes.GetU8(&offset)));
1208
break;
1209
case DW_OP_const1s:
1210
stack.push_back(to_generic((int8_t)opcodes.GetU8(&offset)));
1211
break;
1212
case DW_OP_const2u:
1213
stack.push_back(to_generic(opcodes.GetU16(&offset)));
1214
break;
1215
case DW_OP_const2s:
1216
stack.push_back(to_generic((int16_t)opcodes.GetU16(&offset)));
1217
break;
1218
case DW_OP_const4u:
1219
stack.push_back(to_generic(opcodes.GetU32(&offset)));
1220
break;
1221
case DW_OP_const4s:
1222
stack.push_back(to_generic((int32_t)opcodes.GetU32(&offset)));
1223
break;
1224
case DW_OP_const8u:
1225
stack.push_back(to_generic(opcodes.GetU64(&offset)));
1226
break;
1227
case DW_OP_const8s:
1228
stack.push_back(to_generic((int64_t)opcodes.GetU64(&offset)));
1229
break;
1230
// These should also use to_generic, but we can't do that due to a
1231
// producer-side bug in llvm. See llvm.org/pr48087.
1232
case DW_OP_constu:
1233
stack.push_back(Scalar(opcodes.GetULEB128(&offset)));
1234
break;
1235
case DW_OP_consts:
1236
stack.push_back(Scalar(opcodes.GetSLEB128(&offset)));
1237
break;
1238
1239
// OPCODE: DW_OP_dup
1240
// OPERANDS: none
1241
// DESCRIPTION: duplicates the value at the top of the stack
1242
case DW_OP_dup:
1243
if (stack.empty()) {
1244
return llvm::createStringError("expression stack empty for DW_OP_dup");
1245
} else
1246
stack.push_back(stack.back());
1247
break;
1248
1249
// OPCODE: DW_OP_drop
1250
// OPERANDS: none
1251
// DESCRIPTION: pops the value at the top of the stack
1252
case DW_OP_drop:
1253
if (stack.empty()) {
1254
return llvm::createStringError("expression stack empty for DW_OP_drop");
1255
} else
1256
stack.pop_back();
1257
break;
1258
1259
// OPCODE: DW_OP_over
1260
// OPERANDS: none
1261
// DESCRIPTION: Duplicates the entry currently second in the stack at
1262
// the top of the stack.
1263
case DW_OP_over:
1264
stack.push_back(stack[stack.size() - 2]);
1265
break;
1266
1267
// OPCODE: DW_OP_pick
1268
// OPERANDS: uint8_t index into the current stack
1269
// DESCRIPTION: The stack entry with the specified index (0 through 255,
1270
// inclusive) is pushed on the stack
1271
case DW_OP_pick: {
1272
uint8_t pick_idx = opcodes.GetU8(&offset);
1273
if (pick_idx < stack.size())
1274
stack.push_back(stack[stack.size() - 1 - pick_idx]);
1275
else {
1276
return llvm::createStringError(
1277
"Index %u out of range for DW_OP_pick.\n", pick_idx);
1278
}
1279
} break;
1280
1281
// OPCODE: DW_OP_swap
1282
// OPERANDS: none
1283
// DESCRIPTION: swaps the top two stack entries. The entry at the top
1284
// of the stack becomes the second stack entry, and the second entry
1285
// becomes the top of the stack
1286
case DW_OP_swap:
1287
tmp = stack.back();
1288
stack.back() = stack[stack.size() - 2];
1289
stack[stack.size() - 2] = tmp;
1290
break;
1291
1292
// OPCODE: DW_OP_rot
1293
// OPERANDS: none
1294
// DESCRIPTION: Rotates the first three stack entries. The entry at
1295
// the top of the stack becomes the third stack entry, the second entry
1296
// becomes the top of the stack, and the third entry becomes the second
1297
// entry.
1298
case DW_OP_rot: {
1299
size_t last_idx = stack.size() - 1;
1300
Value old_top = stack[last_idx];
1301
stack[last_idx] = stack[last_idx - 1];
1302
stack[last_idx - 1] = stack[last_idx - 2];
1303
stack[last_idx - 2] = old_top;
1304
} break;
1305
1306
// OPCODE: DW_OP_abs
1307
// OPERANDS: none
1308
// DESCRIPTION: pops the top stack entry, interprets it as a signed
1309
// value and pushes its absolute value. If the absolute value can not be
1310
// represented, the result is undefined.
1311
case DW_OP_abs:
1312
if (!stack.back().ResolveValue(exe_ctx).AbsoluteValue()) {
1313
return llvm::createStringError(
1314
"failed to take the absolute value of the first stack item");
1315
}
1316
break;
1317
1318
// OPCODE: DW_OP_and
1319
// OPERANDS: none
1320
// DESCRIPTION: pops the top two stack values, performs a bitwise and
1321
// operation on the two, and pushes the result.
1322
case DW_OP_and:
1323
tmp = stack.back();
1324
stack.pop_back();
1325
stack.back().ResolveValue(exe_ctx) =
1326
stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
1327
break;
1328
1329
// OPCODE: DW_OP_div
1330
// OPERANDS: none
1331
// DESCRIPTION: pops the top two stack values, divides the former second
1332
// entry by the former top of the stack using signed division, and pushes
1333
// the result.
1334
case DW_OP_div: {
1335
tmp = stack.back();
1336
if (tmp.ResolveValue(exe_ctx).IsZero())
1337
return llvm::createStringError("divide by zero");
1338
1339
stack.pop_back();
1340
Scalar divisor, dividend;
1341
divisor = tmp.ResolveValue(exe_ctx);
1342
dividend = stack.back().ResolveValue(exe_ctx);
1343
divisor.MakeSigned();
1344
dividend.MakeSigned();
1345
stack.back() = dividend / divisor;
1346
1347
if (!stack.back().ResolveValue(exe_ctx).IsValid())
1348
return llvm::createStringError("divide failed");
1349
} break;
1350
1351
// OPCODE: DW_OP_minus
1352
// OPERANDS: none
1353
// DESCRIPTION: pops the top two stack values, subtracts the former top
1354
// of the stack from the former second entry, and pushes the result.
1355
case DW_OP_minus:
1356
tmp = stack.back();
1357
stack.pop_back();
1358
stack.back().ResolveValue(exe_ctx) =
1359
stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
1360
break;
1361
1362
// OPCODE: DW_OP_mod
1363
// OPERANDS: none
1364
// DESCRIPTION: pops the top two stack values and pushes the result of
1365
// the calculation: former second stack entry modulo the former top of the
1366
// stack.
1367
case DW_OP_mod:
1368
tmp = stack.back();
1369
stack.pop_back();
1370
stack.back().ResolveValue(exe_ctx) =
1371
stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
1372
break;
1373
1374
// OPCODE: DW_OP_mul
1375
// OPERANDS: none
1376
// DESCRIPTION: pops the top two stack entries, multiplies them
1377
// together, and pushes the result.
1378
case DW_OP_mul:
1379
tmp = stack.back();
1380
stack.pop_back();
1381
stack.back().ResolveValue(exe_ctx) =
1382
stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
1383
break;
1384
1385
// OPCODE: DW_OP_neg
1386
// OPERANDS: none
1387
// DESCRIPTION: pops the top stack entry, and pushes its negation.
1388
case DW_OP_neg:
1389
if (!stack.back().ResolveValue(exe_ctx).UnaryNegate())
1390
return llvm::createStringError("unary negate failed");
1391
break;
1392
1393
// OPCODE: DW_OP_not
1394
// OPERANDS: none
1395
// DESCRIPTION: pops the top stack entry, and pushes its bitwise
1396
// complement
1397
case DW_OP_not:
1398
if (!stack.back().ResolveValue(exe_ctx).OnesComplement())
1399
return llvm::createStringError("logical NOT failed");
1400
break;
1401
1402
// OPCODE: DW_OP_or
1403
// OPERANDS: none
1404
// DESCRIPTION: pops the top two stack entries, performs a bitwise or
1405
// operation on the two, and pushes the result.
1406
case DW_OP_or:
1407
tmp = stack.back();
1408
stack.pop_back();
1409
stack.back().ResolveValue(exe_ctx) =
1410
stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
1411
break;
1412
1413
// OPCODE: DW_OP_plus
1414
// OPERANDS: none
1415
// DESCRIPTION: pops the top two stack entries, adds them together, and
1416
// pushes the result.
1417
case DW_OP_plus:
1418
tmp = stack.back();
1419
stack.pop_back();
1420
stack.back().GetScalar() += tmp.GetScalar();
1421
break;
1422
1423
// OPCODE: DW_OP_plus_uconst
1424
// OPERANDS: none
1425
// DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
1426
// constant operand and pushes the result.
1427
case DW_OP_plus_uconst: {
1428
const uint64_t uconst_value = opcodes.GetULEB128(&offset);
1429
// Implicit conversion from a UINT to a Scalar...
1430
stack.back().GetScalar() += uconst_value;
1431
if (!stack.back().GetScalar().IsValid())
1432
return llvm::createStringError("DW_OP_plus_uconst failed");
1433
} break;
1434
1435
// OPCODE: DW_OP_shl
1436
// OPERANDS: none
1437
// DESCRIPTION: pops the top two stack entries, shifts the former
1438
// second entry left by the number of bits specified by the former top of
1439
// the stack, and pushes the result.
1440
case DW_OP_shl:
1441
tmp = stack.back();
1442
stack.pop_back();
1443
stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
1444
break;
1445
1446
// OPCODE: DW_OP_shr
1447
// OPERANDS: none
1448
// DESCRIPTION: pops the top two stack entries, shifts the former second
1449
// entry right logically (filling with zero bits) by the number of bits
1450
// specified by the former top of the stack, and pushes the result.
1451
case DW_OP_shr:
1452
tmp = stack.back();
1453
stack.pop_back();
1454
if (!stack.back().ResolveValue(exe_ctx).ShiftRightLogical(
1455
tmp.ResolveValue(exe_ctx)))
1456
return llvm::createStringError("DW_OP_shr failed");
1457
break;
1458
1459
// OPCODE: DW_OP_shra
1460
// OPERANDS: none
1461
// DESCRIPTION: pops the top two stack entries, shifts the former second
1462
// entry right arithmetically (divide the magnitude by 2, keep the same
1463
// sign for the result) by the number of bits specified by the former top
1464
// of the stack, and pushes the result.
1465
case DW_OP_shra:
1466
tmp = stack.back();
1467
stack.pop_back();
1468
stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
1469
break;
1470
1471
// OPCODE: DW_OP_xor
1472
// OPERANDS: none
1473
// DESCRIPTION: pops the top two stack entries, performs the bitwise
1474
// exclusive-or operation on the two, and pushes the result.
1475
case DW_OP_xor:
1476
tmp = stack.back();
1477
stack.pop_back();
1478
stack.back().ResolveValue(exe_ctx) =
1479
stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
1480
break;
1481
1482
// OPCODE: DW_OP_skip
1483
// OPERANDS: int16_t
1484
// DESCRIPTION: An unconditional branch. Its single operand is a 2-byte
1485
// signed integer constant. The 2-byte constant is the number of bytes of
1486
// the DWARF expression to skip forward or backward from the current
1487
// operation, beginning after the 2-byte constant.
1488
case DW_OP_skip: {
1489
int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
1490
lldb::offset_t new_offset = offset + skip_offset;
1491
// New offset can point at the end of the data, in this case we should
1492
// terminate the DWARF expression evaluation (will happen in the loop
1493
// condition).
1494
if (new_offset <= opcodes.GetByteSize())
1495
offset = new_offset;
1496
else {
1497
return llvm::createStringError(llvm::formatv(
1498
"Invalid opcode offset in DW_OP_skip: {0}+({1}) > {2}", offset,
1499
skip_offset, opcodes.GetByteSize()));
1500
}
1501
} break;
1502
1503
// OPCODE: DW_OP_bra
1504
// OPERANDS: int16_t
1505
// DESCRIPTION: A conditional branch. Its single operand is a 2-byte
1506
// signed integer constant. This operation pops the top of stack. If the
1507
// value popped is not the constant 0, the 2-byte constant operand is the
1508
// number of bytes of the DWARF expression to skip forward or backward from
1509
// the current operation, beginning after the 2-byte constant.
1510
case DW_OP_bra: {
1511
tmp = stack.back();
1512
stack.pop_back();
1513
int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
1514
Scalar zero(0);
1515
if (tmp.ResolveValue(exe_ctx) != zero) {
1516
lldb::offset_t new_offset = offset + bra_offset;
1517
// New offset can point at the end of the data, in this case we should
1518
// terminate the DWARF expression evaluation (will happen in the loop
1519
// condition).
1520
if (new_offset <= opcodes.GetByteSize())
1521
offset = new_offset;
1522
else {
1523
return llvm::createStringError(llvm::formatv(
1524
"Invalid opcode offset in DW_OP_bra: {0}+({1}) > {2}", offset,
1525
bra_offset, opcodes.GetByteSize()));
1526
}
1527
}
1528
} break;
1529
1530
// OPCODE: DW_OP_eq
1531
// OPERANDS: none
1532
// DESCRIPTION: pops the top two stack values, compares using the
1533
// equals (==) operator.
1534
// STACK RESULT: push the constant value 1 onto the stack if the result
1535
// of the operation is true or the constant value 0 if the result of the
1536
// operation is false.
1537
case DW_OP_eq:
1538
tmp = stack.back();
1539
stack.pop_back();
1540
stack.back().ResolveValue(exe_ctx) =
1541
stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
1542
break;
1543
1544
// OPCODE: DW_OP_ge
1545
// OPERANDS: none
1546
// DESCRIPTION: pops the top two stack values, compares using the
1547
// greater than or equal to (>=) operator.
1548
// STACK RESULT: push the constant value 1 onto the stack if the result
1549
// of the operation is true or the constant value 0 if the result of the
1550
// operation is false.
1551
case DW_OP_ge:
1552
tmp = stack.back();
1553
stack.pop_back();
1554
stack.back().ResolveValue(exe_ctx) =
1555
stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
1556
break;
1557
1558
// OPCODE: DW_OP_gt
1559
// OPERANDS: none
1560
// DESCRIPTION: pops the top two stack values, compares using the
1561
// greater than (>) operator.
1562
// STACK RESULT: push the constant value 1 onto the stack if the result
1563
// of the operation is true or the constant value 0 if the result of the
1564
// operation is false.
1565
case DW_OP_gt:
1566
tmp = stack.back();
1567
stack.pop_back();
1568
stack.back().ResolveValue(exe_ctx) =
1569
stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
1570
break;
1571
1572
// OPCODE: DW_OP_le
1573
// OPERANDS: none
1574
// DESCRIPTION: pops the top two stack values, compares using the
1575
// less than or equal to (<=) operator.
1576
// STACK RESULT: push the constant value 1 onto the stack if the result
1577
// of the operation is true or the constant value 0 if the result of the
1578
// operation is false.
1579
case DW_OP_le:
1580
tmp = stack.back();
1581
stack.pop_back();
1582
stack.back().ResolveValue(exe_ctx) =
1583
stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
1584
break;
1585
1586
// OPCODE: DW_OP_lt
1587
// OPERANDS: none
1588
// DESCRIPTION: pops the top two stack values, compares using the
1589
// less than (<) operator.
1590
// STACK RESULT: push the constant value 1 onto the stack if the result
1591
// of the operation is true or the constant value 0 if the result of the
1592
// operation is false.
1593
case DW_OP_lt:
1594
tmp = stack.back();
1595
stack.pop_back();
1596
stack.back().ResolveValue(exe_ctx) =
1597
stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
1598
break;
1599
1600
// OPCODE: DW_OP_ne
1601
// OPERANDS: none
1602
// DESCRIPTION: pops the top two stack values, compares using the
1603
// not equal (!=) operator.
1604
// STACK RESULT: push the constant value 1 onto the stack if the result
1605
// of the operation is true or the constant value 0 if the result of the
1606
// operation is false.
1607
case DW_OP_ne:
1608
tmp = stack.back();
1609
stack.pop_back();
1610
stack.back().ResolveValue(exe_ctx) =
1611
stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
1612
break;
1613
1614
// OPCODE: DW_OP_litn
1615
// OPERANDS: none
1616
// DESCRIPTION: encode the unsigned literal values from 0 through 31.
1617
// STACK RESULT: push the unsigned literal constant value onto the top
1618
// of the stack.
1619
case DW_OP_lit0:
1620
case DW_OP_lit1:
1621
case DW_OP_lit2:
1622
case DW_OP_lit3:
1623
case DW_OP_lit4:
1624
case DW_OP_lit5:
1625
case DW_OP_lit6:
1626
case DW_OP_lit7:
1627
case DW_OP_lit8:
1628
case DW_OP_lit9:
1629
case DW_OP_lit10:
1630
case DW_OP_lit11:
1631
case DW_OP_lit12:
1632
case DW_OP_lit13:
1633
case DW_OP_lit14:
1634
case DW_OP_lit15:
1635
case DW_OP_lit16:
1636
case DW_OP_lit17:
1637
case DW_OP_lit18:
1638
case DW_OP_lit19:
1639
case DW_OP_lit20:
1640
case DW_OP_lit21:
1641
case DW_OP_lit22:
1642
case DW_OP_lit23:
1643
case DW_OP_lit24:
1644
case DW_OP_lit25:
1645
case DW_OP_lit26:
1646
case DW_OP_lit27:
1647
case DW_OP_lit28:
1648
case DW_OP_lit29:
1649
case DW_OP_lit30:
1650
case DW_OP_lit31:
1651
stack.push_back(to_generic(op - DW_OP_lit0));
1652
break;
1653
1654
// OPCODE: DW_OP_regN
1655
// OPERANDS: none
1656
// DESCRIPTION: Push the value in register n on the top of the stack.
1657
case DW_OP_reg0:
1658
case DW_OP_reg1:
1659
case DW_OP_reg2:
1660
case DW_OP_reg3:
1661
case DW_OP_reg4:
1662
case DW_OP_reg5:
1663
case DW_OP_reg6:
1664
case DW_OP_reg7:
1665
case DW_OP_reg8:
1666
case DW_OP_reg9:
1667
case DW_OP_reg10:
1668
case DW_OP_reg11:
1669
case DW_OP_reg12:
1670
case DW_OP_reg13:
1671
case DW_OP_reg14:
1672
case DW_OP_reg15:
1673
case DW_OP_reg16:
1674
case DW_OP_reg17:
1675
case DW_OP_reg18:
1676
case DW_OP_reg19:
1677
case DW_OP_reg20:
1678
case DW_OP_reg21:
1679
case DW_OP_reg22:
1680
case DW_OP_reg23:
1681
case DW_OP_reg24:
1682
case DW_OP_reg25:
1683
case DW_OP_reg26:
1684
case DW_OP_reg27:
1685
case DW_OP_reg28:
1686
case DW_OP_reg29:
1687
case DW_OP_reg30:
1688
case DW_OP_reg31: {
1689
dwarf4_location_description_kind = Register;
1690
reg_num = op - DW_OP_reg0;
1691
1692
if (llvm::Error err =
1693
ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, tmp))
1694
return err;
1695
stack.push_back(tmp);
1696
} break;
1697
// OPCODE: DW_OP_regx
1698
// OPERANDS:
1699
// ULEB128 literal operand that encodes the register.
1700
// DESCRIPTION: Push the value in register on the top of the stack.
1701
case DW_OP_regx: {
1702
dwarf4_location_description_kind = Register;
1703
reg_num = opcodes.GetULEB128(&offset);
1704
Status read_err;
1705
if (llvm::Error err =
1706
ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, tmp))
1707
return err;
1708
stack.push_back(tmp);
1709
} break;
1710
1711
// OPCODE: DW_OP_bregN
1712
// OPERANDS:
1713
// SLEB128 offset from register N
1714
// DESCRIPTION: Value is in memory at the address specified by register
1715
// N plus an offset.
1716
case DW_OP_breg0:
1717
case DW_OP_breg1:
1718
case DW_OP_breg2:
1719
case DW_OP_breg3:
1720
case DW_OP_breg4:
1721
case DW_OP_breg5:
1722
case DW_OP_breg6:
1723
case DW_OP_breg7:
1724
case DW_OP_breg8:
1725
case DW_OP_breg9:
1726
case DW_OP_breg10:
1727
case DW_OP_breg11:
1728
case DW_OP_breg12:
1729
case DW_OP_breg13:
1730
case DW_OP_breg14:
1731
case DW_OP_breg15:
1732
case DW_OP_breg16:
1733
case DW_OP_breg17:
1734
case DW_OP_breg18:
1735
case DW_OP_breg19:
1736
case DW_OP_breg20:
1737
case DW_OP_breg21:
1738
case DW_OP_breg22:
1739
case DW_OP_breg23:
1740
case DW_OP_breg24:
1741
case DW_OP_breg25:
1742
case DW_OP_breg26:
1743
case DW_OP_breg27:
1744
case DW_OP_breg28:
1745
case DW_OP_breg29:
1746
case DW_OP_breg30:
1747
case DW_OP_breg31: {
1748
reg_num = op - DW_OP_breg0;
1749
if (llvm::Error err =
1750
ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, tmp))
1751
return err;
1752
1753
int64_t breg_offset = opcodes.GetSLEB128(&offset);
1754
tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
1755
tmp.ClearContext();
1756
stack.push_back(tmp);
1757
stack.back().SetValueType(Value::ValueType::LoadAddress);
1758
} break;
1759
// OPCODE: DW_OP_bregx
1760
// OPERANDS: 2
1761
// ULEB128 literal operand that encodes the register.
1762
// SLEB128 offset from register N
1763
// DESCRIPTION: Value is in memory at the address specified by register
1764
// N plus an offset.
1765
case DW_OP_bregx: {
1766
reg_num = opcodes.GetULEB128(&offset);
1767
if (llvm::Error err =
1768
ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, tmp))
1769
return err;
1770
1771
int64_t breg_offset = opcodes.GetSLEB128(&offset);
1772
tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
1773
tmp.ClearContext();
1774
stack.push_back(tmp);
1775
stack.back().SetValueType(Value::ValueType::LoadAddress);
1776
} break;
1777
1778
case DW_OP_fbreg:
1779
if (exe_ctx) {
1780
if (frame) {
1781
Scalar value;
1782
Status fb_err;
1783
if (frame->GetFrameBaseValue(value, &fb_err)) {
1784
int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
1785
value += fbreg_offset;
1786
stack.push_back(value);
1787
stack.back().SetValueType(Value::ValueType::LoadAddress);
1788
} else
1789
return fb_err.ToError();
1790
} else {
1791
return llvm::createStringError(
1792
"invalid stack frame in context for DW_OP_fbreg opcode");
1793
}
1794
} else {
1795
return llvm::createStringError(
1796
"NULL execution context for DW_OP_fbreg");
1797
}
1798
1799
break;
1800
1801
// OPCODE: DW_OP_nop
1802
// OPERANDS: none
1803
// DESCRIPTION: A place holder. It has no effect on the location stack
1804
// or any of its values.
1805
case DW_OP_nop:
1806
break;
1807
1808
// OPCODE: DW_OP_piece
1809
// OPERANDS: 1
1810
// ULEB128: byte size of the piece
1811
// DESCRIPTION: The operand describes the size in bytes of the piece of
1812
// the object referenced by the DWARF expression whose result is at the top
1813
// of the stack. If the piece is located in a register, but does not occupy
1814
// the entire register, the placement of the piece within that register is
1815
// defined by the ABI.
1816
//
1817
// Many compilers store a single variable in sets of registers, or store a
1818
// variable partially in memory and partially in registers. DW_OP_piece
1819
// provides a way of describing how large a part of a variable a particular
1820
// DWARF expression refers to.
1821
case DW_OP_piece: {
1822
LocationDescriptionKind piece_locdesc = dwarf4_location_description_kind;
1823
// Reset for the next piece.
1824
dwarf4_location_description_kind = Memory;
1825
1826
const uint64_t piece_byte_size = opcodes.GetULEB128(&offset);
1827
1828
if (piece_byte_size > 0) {
1829
Value curr_piece;
1830
1831
if (stack.empty()) {
1832
UpdateValueTypeFromLocationDescription(
1833
log, dwarf_cu, LocationDescriptionKind::Empty);
1834
// In a multi-piece expression, this means that the current piece is
1835
// not available. Fill with zeros for now by resizing the data and
1836
// appending it
1837
curr_piece.ResizeData(piece_byte_size);
1838
// Note that "0" is not a correct value for the unknown bits.
1839
// It would be better to also return a mask of valid bits together
1840
// with the expression result, so the debugger can print missing
1841
// members as "<optimized out>" or something.
1842
::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size);
1843
pieces.AppendDataToHostBuffer(curr_piece);
1844
} else {
1845
Status error;
1846
// Extract the current piece into "curr_piece"
1847
Value curr_piece_source_value(stack.back());
1848
stack.pop_back();
1849
UpdateValueTypeFromLocationDescription(log, dwarf_cu, piece_locdesc,
1850
&curr_piece_source_value);
1851
1852
const Value::ValueType curr_piece_source_value_type =
1853
curr_piece_source_value.GetValueType();
1854
Scalar &scalar = curr_piece_source_value.GetScalar();
1855
const lldb::addr_t addr = scalar.ULongLong(LLDB_INVALID_ADDRESS);
1856
switch (curr_piece_source_value_type) {
1857
case Value::ValueType::Invalid:
1858
return llvm::createStringError("invalid value type");
1859
case Value::ValueType::LoadAddress:
1860
case Value::ValueType::FileAddress: {
1861
if (target) {
1862
if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) {
1863
if (target->ReadMemory(addr, curr_piece.GetBuffer().GetBytes(),
1864
piece_byte_size, error,
1865
/*force_live_memory=*/false) !=
1866
piece_byte_size) {
1867
const char *addr_type = (curr_piece_source_value_type ==
1868
Value::ValueType::LoadAddress)
1869
? "load"
1870
: "file";
1871
return llvm::createStringError(
1872
"failed to read memory DW_OP_piece(%" PRIu64
1873
") from %s address 0x%" PRIx64,
1874
piece_byte_size, addr_type, addr);
1875
}
1876
} else {
1877
return llvm::createStringError(
1878
"failed to resize the piece memory buffer for "
1879
"DW_OP_piece(%" PRIu64 ")",
1880
piece_byte_size);
1881
}
1882
}
1883
} break;
1884
case Value::ValueType::HostAddress: {
1885
return llvm::createStringError(
1886
"failed to read memory DW_OP_piece(%" PRIu64
1887
") from host address 0x%" PRIx64,
1888
piece_byte_size, addr);
1889
} break;
1890
1891
case Value::ValueType::Scalar: {
1892
uint32_t bit_size = piece_byte_size * 8;
1893
uint32_t bit_offset = 0;
1894
if (!scalar.ExtractBitfield(
1895
bit_size, bit_offset)) {
1896
return llvm::createStringError(
1897
"unable to extract %" PRIu64 " bytes from a %" PRIu64
1898
" byte scalar value.",
1899
piece_byte_size,
1900
(uint64_t)curr_piece_source_value.GetScalar().GetByteSize());
1901
}
1902
// Create curr_piece with bit_size. By default Scalar
1903
// grows to the nearest host integer type.
1904
llvm::APInt fail_value(1, 0, false);
1905
llvm::APInt ap_int = scalar.UInt128(fail_value);
1906
assert(ap_int.getBitWidth() >= bit_size);
1907
llvm::ArrayRef<uint64_t> buf{ap_int.getRawData(),
1908
ap_int.getNumWords()};
1909
curr_piece.GetScalar() = Scalar(llvm::APInt(bit_size, buf));
1910
} break;
1911
}
1912
1913
// Check if this is the first piece?
1914
if (op_piece_offset == 0) {
1915
// This is the first piece, we should push it back onto the stack
1916
// so subsequent pieces will be able to access this piece and add
1917
// to it.
1918
if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
1919
return llvm::createStringError("failed to append piece data");
1920
}
1921
} else {
1922
// If this is the second or later piece there should be a value on
1923
// the stack.
1924
if (pieces.GetBuffer().GetByteSize() != op_piece_offset) {
1925
return llvm::createStringError(
1926
"DW_OP_piece for offset %" PRIu64
1927
" but top of stack is of size %" PRIu64,
1928
op_piece_offset, pieces.GetBuffer().GetByteSize());
1929
}
1930
1931
if (pieces.AppendDataToHostBuffer(curr_piece) == 0)
1932
return llvm::createStringError("failed to append piece data");
1933
}
1934
}
1935
op_piece_offset += piece_byte_size;
1936
}
1937
} break;
1938
1939
case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
1940
if (stack.size() < 1) {
1941
UpdateValueTypeFromLocationDescription(log, dwarf_cu,
1942
LocationDescriptionKind::Empty);
1943
// Reset for the next piece.
1944
dwarf4_location_description_kind = Memory;
1945
return llvm::createStringError(
1946
"expression stack needs at least 1 item for DW_OP_bit_piece");
1947
} else {
1948
UpdateValueTypeFromLocationDescription(
1949
log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
1950
// Reset for the next piece.
1951
dwarf4_location_description_kind = Memory;
1952
const uint64_t piece_bit_size = opcodes.GetULEB128(&offset);
1953
const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset);
1954
switch (stack.back().GetValueType()) {
1955
case Value::ValueType::Invalid:
1956
return llvm::createStringError(
1957
"unable to extract bit value from invalid value");
1958
case Value::ValueType::Scalar: {
1959
if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size,
1960
piece_bit_offset)) {
1961
return llvm::createStringError(
1962
"unable to extract %" PRIu64 " bit value with %" PRIu64
1963
" bit offset from a %" PRIu64 " bit scalar value.",
1964
piece_bit_size, piece_bit_offset,
1965
(uint64_t)(stack.back().GetScalar().GetByteSize() * 8));
1966
}
1967
} break;
1968
1969
case Value::ValueType::FileAddress:
1970
case Value::ValueType::LoadAddress:
1971
case Value::ValueType::HostAddress:
1972
return llvm::createStringError(
1973
"unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
1974
", bit_offset = %" PRIu64 ") from an address value.",
1975
piece_bit_size, piece_bit_offset);
1976
}
1977
}
1978
break;
1979
1980
// OPCODE: DW_OP_implicit_value
1981
// OPERANDS: 2
1982
// ULEB128 size of the value block in bytes
1983
// uint8_t* block bytes encoding value in target's memory
1984
// representation
1985
// DESCRIPTION: Value is immediately stored in block in the debug info with
1986
// the memory representation of the target.
1987
case DW_OP_implicit_value: {
1988
dwarf4_location_description_kind = Implicit;
1989
1990
const uint32_t len = opcodes.GetULEB128(&offset);
1991
const void *data = opcodes.GetData(&offset, len);
1992
1993
if (!data) {
1994
LLDB_LOG(log, "Evaluate_DW_OP_implicit_value: could not be read data");
1995
return llvm::createStringError("could not evaluate %s",
1996
DW_OP_value_to_name(op));
1997
}
1998
1999
Value result(data, len);
2000
stack.push_back(result);
2001
break;
2002
}
2003
2004
case DW_OP_implicit_pointer: {
2005
dwarf4_location_description_kind = Implicit;
2006
return llvm::createStringError("Could not evaluate %s.",
2007
DW_OP_value_to_name(op));
2008
}
2009
2010
// OPCODE: DW_OP_push_object_address
2011
// OPERANDS: none
2012
// DESCRIPTION: Pushes the address of the object currently being
2013
// evaluated as part of evaluation of a user presented expression. This
2014
// object may correspond to an independent variable described by its own
2015
// DIE or it may be a component of an array, structure, or class whose
2016
// address has been dynamically determined by an earlier step during user
2017
// expression evaluation.
2018
case DW_OP_push_object_address:
2019
if (object_address_ptr)
2020
stack.push_back(*object_address_ptr);
2021
else {
2022
return llvm::createStringError("DW_OP_push_object_address used without "
2023
"specifying an object address");
2024
}
2025
break;
2026
2027
// OPCODE: DW_OP_call2
2028
// OPERANDS:
2029
// uint16_t compile unit relative offset of a DIE
2030
// DESCRIPTION: Performs subroutine calls during evaluation
2031
// of a DWARF expression. The operand is the 2-byte unsigned offset of a
2032
// debugging information entry in the current compilation unit.
2033
//
2034
// Operand interpretation is exactly like that for DW_FORM_ref2.
2035
//
2036
// This operation transfers control of DWARF expression evaluation to the
2037
// DW_AT_location attribute of the referenced DIE. If there is no such
2038
// attribute, then there is no effect. Execution of the DWARF expression of
2039
// a DW_AT_location attribute may add to and/or remove from values on the
2040
// stack. Execution returns to the point following the call when the end of
2041
// the attribute is reached. Values on the stack at the time of the call
2042
// may be used as parameters by the called expression and values left on
2043
// the stack by the called expression may be used as return values by prior
2044
// agreement between the calling and called expressions.
2045
case DW_OP_call2:
2046
return llvm::createStringError("unimplemented opcode DW_OP_call2");
2047
// OPCODE: DW_OP_call4
2048
// OPERANDS: 1
2049
// uint32_t compile unit relative offset of a DIE
2050
// DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2051
// expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of
2052
// a debugging information entry in the current compilation unit.
2053
//
2054
// Operand interpretation DW_OP_call4 is exactly like that for
2055
// DW_FORM_ref4.
2056
//
2057
// This operation transfers control of DWARF expression evaluation to the
2058
// DW_AT_location attribute of the referenced DIE. If there is no such
2059
// attribute, then there is no effect. Execution of the DWARF expression of
2060
// a DW_AT_location attribute may add to and/or remove from values on the
2061
// stack. Execution returns to the point following the call when the end of
2062
// the attribute is reached. Values on the stack at the time of the call
2063
// may be used as parameters by the called expression and values left on
2064
// the stack by the called expression may be used as return values by prior
2065
// agreement between the calling and called expressions.
2066
case DW_OP_call4:
2067
return llvm::createStringError("unimplemented opcode DW_OP_call4");
2068
2069
// OPCODE: DW_OP_stack_value
2070
// OPERANDS: None
2071
// DESCRIPTION: Specifies that the object does not exist in memory but
2072
// rather is a constant value. The value from the top of the stack is the
2073
// value to be used. This is the actual object value and not the location.
2074
case DW_OP_stack_value:
2075
dwarf4_location_description_kind = Implicit;
2076
stack.back().SetValueType(Value::ValueType::Scalar);
2077
break;
2078
2079
// OPCODE: DW_OP_convert
2080
// OPERANDS: 1
2081
// A ULEB128 that is either a DIE offset of a
2082
// DW_TAG_base_type or 0 for the generic (pointer-sized) type.
2083
//
2084
// DESCRIPTION: Pop the top stack element, convert it to a
2085
// different type, and push the result.
2086
case DW_OP_convert: {
2087
const uint64_t die_offset = opcodes.GetULEB128(&offset);
2088
uint64_t bit_size;
2089
bool sign;
2090
if (die_offset == 0) {
2091
// The generic type has the size of an address on the target
2092
// machine and an unspecified signedness. Scalar has no
2093
// "unspecified signedness", so we use unsigned types.
2094
if (!module_sp)
2095
return llvm::createStringError("no module");
2096
sign = false;
2097
bit_size = module_sp->GetArchitecture().GetAddressByteSize() * 8;
2098
if (!bit_size)
2099
return llvm::createStringError("unspecified architecture");
2100
} else {
2101
// Retrieve the type DIE that the value is being converted to. This
2102
// offset is compile unit relative so we need to fix it up.
2103
const uint64_t abs_die_offset = die_offset + dwarf_cu->GetOffset();
2104
// FIXME: the constness has annoying ripple effects.
2105
DWARFDIE die = const_cast<DWARFUnit *>(dwarf_cu)->GetDIE(abs_die_offset);
2106
if (!die)
2107
return llvm::createStringError(
2108
"cannot resolve DW_OP_convert type DIE");
2109
uint64_t encoding =
2110
die.GetAttributeValueAsUnsigned(DW_AT_encoding, DW_ATE_hi_user);
2111
bit_size = die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8;
2112
if (!bit_size)
2113
bit_size = die.GetAttributeValueAsUnsigned(DW_AT_bit_size, 0);
2114
if (!bit_size)
2115
return llvm::createStringError(
2116
"unsupported type size in DW_OP_convert");
2117
switch (encoding) {
2118
case DW_ATE_signed:
2119
case DW_ATE_signed_char:
2120
sign = true;
2121
break;
2122
case DW_ATE_unsigned:
2123
case DW_ATE_unsigned_char:
2124
sign = false;
2125
break;
2126
default:
2127
return llvm::createStringError(
2128
"unsupported encoding in DW_OP_convert");
2129
}
2130
}
2131
Scalar &top = stack.back().ResolveValue(exe_ctx);
2132
top.TruncOrExtendTo(bit_size, sign);
2133
break;
2134
}
2135
2136
// OPCODE: DW_OP_call_frame_cfa
2137
// OPERANDS: None
2138
// DESCRIPTION: Specifies a DWARF expression that pushes the value of
2139
// the canonical frame address consistent with the call frame information
2140
// located in .debug_frame (or in the FDEs of the eh_frame section).
2141
case DW_OP_call_frame_cfa:
2142
if (frame) {
2143
// Note that we don't have to parse FDEs because this DWARF expression
2144
// is commonly evaluated with a valid stack frame.
2145
StackID id = frame->GetStackID();
2146
addr_t cfa = id.GetCallFrameAddress();
2147
if (cfa != LLDB_INVALID_ADDRESS) {
2148
stack.push_back(Scalar(cfa));
2149
stack.back().SetValueType(Value::ValueType::LoadAddress);
2150
} else {
2151
return llvm::createStringError(
2152
"stack frame does not include a canonical "
2153
"frame address for DW_OP_call_frame_cfa "
2154
"opcode");
2155
}
2156
} else {
2157
return llvm::createStringError("unvalid stack frame in context for "
2158
"DW_OP_call_frame_cfa opcode");
2159
}
2160
break;
2161
2162
// OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension
2163
// opcode, DW_OP_GNU_push_tls_address)
2164
// OPERANDS: none
2165
// DESCRIPTION: Pops a TLS offset from the stack, converts it to
2166
// an address in the current thread's thread-local storage block, and
2167
// pushes it on the stack.
2168
case DW_OP_form_tls_address:
2169
case DW_OP_GNU_push_tls_address: {
2170
if (stack.size() < 1) {
2171
if (op == DW_OP_form_tls_address)
2172
return llvm::createStringError(
2173
"DW_OP_form_tls_address needs an argument");
2174
else
2175
return llvm::createStringError(
2176
"DW_OP_GNU_push_tls_address needs an argument");
2177
}
2178
2179
if (!exe_ctx || !module_sp)
2180
return llvm::createStringError("no context to evaluate TLS within");
2181
2182
Thread *thread = exe_ctx->GetThreadPtr();
2183
if (!thread)
2184
return llvm::createStringError("no thread to evaluate TLS within");
2185
2186
// Lookup the TLS block address for this thread and module.
2187
const addr_t tls_file_addr =
2188
stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2189
const addr_t tls_load_addr =
2190
thread->GetThreadLocalData(module_sp, tls_file_addr);
2191
2192
if (tls_load_addr == LLDB_INVALID_ADDRESS)
2193
return llvm::createStringError(
2194
"no TLS data currently exists for this thread");
2195
2196
stack.back().GetScalar() = tls_load_addr;
2197
stack.back().SetValueType(Value::ValueType::LoadAddress);
2198
} break;
2199
2200
// OPCODE: DW_OP_addrx (DW_OP_GNU_addr_index is the legacy name.)
2201
// OPERANDS: 1
2202
// ULEB128: index to the .debug_addr section
2203
// DESCRIPTION: Pushes an address to the stack from the .debug_addr
2204
// section with the base address specified by the DW_AT_addr_base attribute
2205
// and the 0 based index is the ULEB128 encoded index.
2206
case DW_OP_addrx:
2207
case DW_OP_GNU_addr_index: {
2208
if (!dwarf_cu)
2209
return llvm::createStringError("DW_OP_GNU_addr_index found without a "
2210
"compile unit being specified");
2211
uint64_t index = opcodes.GetULEB128(&offset);
2212
lldb::addr_t value = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2213
stack.push_back(Scalar(value));
2214
if (target &&
2215
target->GetArchitecture().GetCore() == ArchSpec::eCore_wasm32) {
2216
// wasm file sections aren't mapped into memory, therefore addresses can
2217
// never point into a file section and are always LoadAddresses.
2218
stack.back().SetValueType(Value::ValueType::LoadAddress);
2219
} else {
2220
stack.back().SetValueType(Value::ValueType::FileAddress);
2221
}
2222
} break;
2223
2224
// OPCODE: DW_OP_GNU_const_index
2225
// OPERANDS: 1
2226
// ULEB128: index to the .debug_addr section
2227
// DESCRIPTION: Pushes an constant with the size of a machine address to
2228
// the stack from the .debug_addr section with the base address specified
2229
// by the DW_AT_addr_base attribute and the 0 based index is the ULEB128
2230
// encoded index.
2231
case DW_OP_GNU_const_index: {
2232
if (!dwarf_cu) {
2233
return llvm::createStringError("DW_OP_GNU_const_index found without a "
2234
"compile unit being specified");
2235
}
2236
uint64_t index = opcodes.GetULEB128(&offset);
2237
lldb::addr_t value = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2238
stack.push_back(Scalar(value));
2239
} break;
2240
2241
case DW_OP_GNU_entry_value:
2242
case DW_OP_entry_value: {
2243
if (llvm::Error err = Evaluate_DW_OP_entry_value(stack, exe_ctx, reg_ctx,
2244
opcodes, offset, log))
2245
return llvm::createStringError(
2246
"could not evaluate DW_OP_entry_value: %s",
2247
llvm::toString(std::move(err)).c_str());
2248
break;
2249
}
2250
2251
default:
2252
if (dwarf_cu) {
2253
if (dwarf_cu->GetSymbolFileDWARF().ParseVendorDWARFOpcode(
2254
op, opcodes, offset, stack)) {
2255
break;
2256
}
2257
}
2258
return llvm::createStringError(llvm::formatv(
2259
"Unhandled opcode {0} in DWARFExpression", LocationAtom(op)));
2260
}
2261
}
2262
2263
if (stack.empty()) {
2264
// Nothing on the stack, check if we created a piece value from DW_OP_piece
2265
// or DW_OP_bit_piece opcodes
2266
if (pieces.GetBuffer().GetByteSize())
2267
return pieces;
2268
2269
return llvm::createStringError("stack empty after evaluation");
2270
}
2271
2272
UpdateValueTypeFromLocationDescription(
2273
log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2274
2275
if (log && log->GetVerbose()) {
2276
size_t count = stack.size();
2277
LLDB_LOGF(log,
2278
"Stack after operation has %" PRIu64 " values:", (uint64_t)count);
2279
for (size_t i = 0; i < count; ++i) {
2280
StreamString new_value;
2281
new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
2282
stack[i].Dump(&new_value);
2283
LLDB_LOGF(log, " %s", new_value.GetData());
2284
}
2285
}
2286
return stack.back();
2287
}
2288
2289
bool DWARFExpression::ParseDWARFLocationList(
2290
const DWARFUnit *dwarf_cu, const DataExtractor &data,
2291
DWARFExpressionList *location_list) {
2292
location_list->Clear();
2293
std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
2294
dwarf_cu->GetLocationTable(data);
2295
Log *log = GetLog(LLDBLog::Expressions);
2296
auto lookup_addr =
2297
[&](uint32_t index) -> std::optional<llvm::object::SectionedAddress> {
2298
addr_t address = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2299
if (address == LLDB_INVALID_ADDRESS)
2300
return std::nullopt;
2301
return llvm::object::SectionedAddress{address};
2302
};
2303
auto process_list = [&](llvm::Expected<llvm::DWARFLocationExpression> loc) {
2304
if (!loc) {
2305
LLDB_LOG_ERROR(log, loc.takeError(), "{0}");
2306
return true;
2307
}
2308
auto buffer_sp =
2309
std::make_shared<DataBufferHeap>(loc->Expr.data(), loc->Expr.size());
2310
DWARFExpression expr = DWARFExpression(DataExtractor(
2311
buffer_sp, data.GetByteOrder(), data.GetAddressByteSize()));
2312
location_list->AddExpression(loc->Range->LowPC, loc->Range->HighPC, expr);
2313
return true;
2314
};
2315
llvm::Error error = loctable_up->visitAbsoluteLocationList(
2316
0, llvm::object::SectionedAddress{dwarf_cu->GetBaseAddress()},
2317
lookup_addr, process_list);
2318
location_list->Sort();
2319
if (error) {
2320
LLDB_LOG_ERROR(log, std::move(error), "{0}");
2321
return false;
2322
}
2323
return true;
2324
}
2325
2326
bool DWARFExpression::MatchesOperand(
2327
StackFrame &frame, const Instruction::Operand &operand) const {
2328
using namespace OperandMatchers;
2329
2330
RegisterContextSP reg_ctx_sp = frame.GetRegisterContext();
2331
if (!reg_ctx_sp) {
2332
return false;
2333
}
2334
2335
DataExtractor opcodes(m_data);
2336
2337
lldb::offset_t op_offset = 0;
2338
uint8_t opcode = opcodes.GetU8(&op_offset);
2339
2340
if (opcode == DW_OP_fbreg) {
2341
int64_t offset = opcodes.GetSLEB128(&op_offset);
2342
2343
DWARFExpressionList *fb_expr = frame.GetFrameBaseExpression(nullptr);
2344
if (!fb_expr) {
2345
return false;
2346
}
2347
2348
auto recurse = [&frame, fb_expr](const Instruction::Operand &child) {
2349
return fb_expr->MatchesOperand(frame, child);
2350
};
2351
2352
if (!offset &&
2353
MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2354
recurse)(operand)) {
2355
return true;
2356
}
2357
2358
return MatchUnaryOp(
2359
MatchOpType(Instruction::Operand::Type::Dereference),
2360
MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2361
MatchImmOp(offset), recurse))(operand);
2362
}
2363
2364
bool dereference = false;
2365
const RegisterInfo *reg = nullptr;
2366
int64_t offset = 0;
2367
2368
if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) {
2369
reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0);
2370
} else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) {
2371
offset = opcodes.GetSLEB128(&op_offset);
2372
reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0);
2373
} else if (opcode == DW_OP_regx) {
2374
uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2375
reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2376
} else if (opcode == DW_OP_bregx) {
2377
uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2378
offset = opcodes.GetSLEB128(&op_offset);
2379
reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2380
} else {
2381
return false;
2382
}
2383
2384
if (!reg) {
2385
return false;
2386
}
2387
2388
if (dereference) {
2389
if (!offset &&
2390
MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2391
MatchRegOp(*reg))(operand)) {
2392
return true;
2393
}
2394
2395
return MatchUnaryOp(
2396
MatchOpType(Instruction::Operand::Type::Dereference),
2397
MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2398
MatchRegOp(*reg),
2399
MatchImmOp(offset)))(operand);
2400
} else {
2401
return MatchRegOp(*reg)(operand);
2402
}
2403
}
2404
2405