Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lldb/source/Expression/IRMemoryMap.cpp
39587 views
1
//===-- IRMemoryMap.cpp ---------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "lldb/Expression/IRMemoryMap.h"
10
#include "lldb/Target/MemoryRegionInfo.h"
11
#include "lldb/Target/Process.h"
12
#include "lldb/Target/Target.h"
13
#include "lldb/Utility/DataBufferHeap.h"
14
#include "lldb/Utility/DataExtractor.h"
15
#include "lldb/Utility/LLDBAssert.h"
16
#include "lldb/Utility/LLDBLog.h"
17
#include "lldb/Utility/Log.h"
18
#include "lldb/Utility/Scalar.h"
19
#include "lldb/Utility/Status.h"
20
21
using namespace lldb_private;
22
23
IRMemoryMap::IRMemoryMap(lldb::TargetSP target_sp) : m_target_wp(target_sp) {
24
if (target_sp)
25
m_process_wp = target_sp->GetProcessSP();
26
}
27
28
IRMemoryMap::~IRMemoryMap() {
29
lldb::ProcessSP process_sp = m_process_wp.lock();
30
31
if (process_sp) {
32
AllocationMap::iterator iter;
33
34
Status err;
35
36
while ((iter = m_allocations.begin()) != m_allocations.end()) {
37
err.Clear();
38
if (iter->second.m_leak)
39
m_allocations.erase(iter);
40
else
41
Free(iter->first, err);
42
}
43
}
44
}
45
46
lldb::addr_t IRMemoryMap::FindSpace(size_t size) {
47
// The FindSpace algorithm's job is to find a region of memory that the
48
// underlying process is unlikely to be using.
49
//
50
// The memory returned by this function will never be written to. The only
51
// point is that it should not shadow process memory if possible, so that
52
// expressions processing real values from the process do not use the wrong
53
// data.
54
//
55
// If the process can in fact allocate memory (CanJIT() lets us know this)
56
// then this can be accomplished just be allocating memory in the inferior.
57
// Then no guessing is required.
58
59
lldb::TargetSP target_sp = m_target_wp.lock();
60
lldb::ProcessSP process_sp = m_process_wp.lock();
61
62
const bool process_is_alive = process_sp && process_sp->IsAlive();
63
64
lldb::addr_t ret = LLDB_INVALID_ADDRESS;
65
if (size == 0)
66
return ret;
67
68
if (process_is_alive && process_sp->CanJIT()) {
69
Status alloc_error;
70
71
ret = process_sp->AllocateMemory(size, lldb::ePermissionsReadable |
72
lldb::ePermissionsWritable,
73
alloc_error);
74
75
if (!alloc_error.Success())
76
return LLDB_INVALID_ADDRESS;
77
else
78
return ret;
79
}
80
81
// At this point we know that we need to hunt.
82
//
83
// First, go to the end of the existing allocations we've made if there are
84
// any allocations. Otherwise start at the beginning of memory.
85
86
if (m_allocations.empty()) {
87
ret = 0x0;
88
} else {
89
auto back = m_allocations.rbegin();
90
lldb::addr_t addr = back->first;
91
size_t alloc_size = back->second.m_size;
92
ret = llvm::alignTo(addr + alloc_size, 4096);
93
}
94
95
uint64_t end_of_memory;
96
switch (GetAddressByteSize()) {
97
case 2:
98
end_of_memory = 0xffffull;
99
break;
100
case 4:
101
end_of_memory = 0xffffffffull;
102
break;
103
case 8:
104
end_of_memory = 0xffffffffffffffffull;
105
break;
106
default:
107
lldbassert(false && "Invalid address size.");
108
return LLDB_INVALID_ADDRESS;
109
}
110
111
// Now, if it's possible to use the GetMemoryRegionInfo API to detect mapped
112
// regions, walk forward through memory until a region is found that has
113
// adequate space for our allocation.
114
if (process_is_alive) {
115
MemoryRegionInfo region_info;
116
Status err = process_sp->GetMemoryRegionInfo(ret, region_info);
117
if (err.Success()) {
118
while (true) {
119
if (region_info.GetReadable() != MemoryRegionInfo::OptionalBool::eNo ||
120
region_info.GetWritable() != MemoryRegionInfo::OptionalBool::eNo ||
121
region_info.GetExecutable() !=
122
MemoryRegionInfo::OptionalBool::eNo) {
123
if (region_info.GetRange().GetRangeEnd() - 1 >= end_of_memory) {
124
ret = LLDB_INVALID_ADDRESS;
125
break;
126
} else {
127
ret = region_info.GetRange().GetRangeEnd();
128
}
129
} else if (ret + size < region_info.GetRange().GetRangeEnd()) {
130
return ret;
131
} else {
132
// ret stays the same. We just need to walk a bit further.
133
}
134
135
err = process_sp->GetMemoryRegionInfo(
136
region_info.GetRange().GetRangeEnd(), region_info);
137
if (err.Fail()) {
138
lldbassert(0 && "GetMemoryRegionInfo() succeeded, then failed");
139
ret = LLDB_INVALID_ADDRESS;
140
break;
141
}
142
}
143
}
144
}
145
146
// We've tried our algorithm, and it didn't work. Now we have to reset back
147
// to the end of the allocations we've already reported, or use a 'sensible'
148
// default if this is our first allocation.
149
if (m_allocations.empty()) {
150
uint64_t alloc_address = target_sp->GetExprAllocAddress();
151
if (alloc_address > 0) {
152
if (alloc_address >= end_of_memory) {
153
lldbassert(0 && "The allocation address for expression evaluation must "
154
"be within process address space");
155
return LLDB_INVALID_ADDRESS;
156
}
157
ret = alloc_address;
158
} else {
159
uint32_t address_byte_size = GetAddressByteSize();
160
if (address_byte_size != UINT32_MAX) {
161
switch (address_byte_size) {
162
case 2:
163
ret = 0x8000ull;
164
break;
165
case 4:
166
ret = 0xee000000ull;
167
break;
168
case 8:
169
ret = 0xdead0fff00000000ull;
170
break;
171
default:
172
lldbassert(false && "Invalid address size.");
173
return LLDB_INVALID_ADDRESS;
174
}
175
}
176
}
177
} else {
178
auto back = m_allocations.rbegin();
179
lldb::addr_t addr = back->first;
180
size_t alloc_size = back->second.m_size;
181
uint64_t align = target_sp->GetExprAllocAlign();
182
if (align == 0)
183
align = 4096;
184
ret = llvm::alignTo(addr + alloc_size, align);
185
}
186
187
return ret;
188
}
189
190
IRMemoryMap::AllocationMap::iterator
191
IRMemoryMap::FindAllocation(lldb::addr_t addr, size_t size) {
192
if (addr == LLDB_INVALID_ADDRESS)
193
return m_allocations.end();
194
195
AllocationMap::iterator iter = m_allocations.lower_bound(addr);
196
197
if (iter == m_allocations.end() || iter->first > addr) {
198
if (iter == m_allocations.begin())
199
return m_allocations.end();
200
iter--;
201
}
202
203
if (iter->first <= addr && iter->first + iter->second.m_size >= addr + size)
204
return iter;
205
206
return m_allocations.end();
207
}
208
209
bool IRMemoryMap::IntersectsAllocation(lldb::addr_t addr, size_t size) const {
210
if (addr == LLDB_INVALID_ADDRESS)
211
return false;
212
213
AllocationMap::const_iterator iter = m_allocations.lower_bound(addr);
214
215
// Since we only know that the returned interval begins at a location greater
216
// than or equal to where the given interval begins, it's possible that the
217
// given interval intersects either the returned interval or the previous
218
// interval. Thus, we need to check both. Note that we only need to check
219
// these two intervals. Since all intervals are disjoint it is not possible
220
// that an adjacent interval does not intersect, but a non-adjacent interval
221
// does intersect.
222
if (iter != m_allocations.end()) {
223
if (AllocationsIntersect(addr, size, iter->second.m_process_start,
224
iter->second.m_size))
225
return true;
226
}
227
228
if (iter != m_allocations.begin()) {
229
--iter;
230
if (AllocationsIntersect(addr, size, iter->second.m_process_start,
231
iter->second.m_size))
232
return true;
233
}
234
235
return false;
236
}
237
238
bool IRMemoryMap::AllocationsIntersect(lldb::addr_t addr1, size_t size1,
239
lldb::addr_t addr2, size_t size2) {
240
// Given two half open intervals [A, B) and [X, Y), the only 6 permutations
241
// that satisfy A<B and X<Y are the following:
242
// A B X Y
243
// A X B Y (intersects)
244
// A X Y B (intersects)
245
// X A B Y (intersects)
246
// X A Y B (intersects)
247
// X Y A B
248
// The first is B <= X, and the last is Y <= A. So the condition is !(B <= X
249
// || Y <= A)), or (X < B && A < Y)
250
return (addr2 < (addr1 + size1)) && (addr1 < (addr2 + size2));
251
}
252
253
lldb::ByteOrder IRMemoryMap::GetByteOrder() {
254
lldb::ProcessSP process_sp = m_process_wp.lock();
255
256
if (process_sp)
257
return process_sp->GetByteOrder();
258
259
lldb::TargetSP target_sp = m_target_wp.lock();
260
261
if (target_sp)
262
return target_sp->GetArchitecture().GetByteOrder();
263
264
return lldb::eByteOrderInvalid;
265
}
266
267
uint32_t IRMemoryMap::GetAddressByteSize() {
268
lldb::ProcessSP process_sp = m_process_wp.lock();
269
270
if (process_sp)
271
return process_sp->GetAddressByteSize();
272
273
lldb::TargetSP target_sp = m_target_wp.lock();
274
275
if (target_sp)
276
return target_sp->GetArchitecture().GetAddressByteSize();
277
278
return UINT32_MAX;
279
}
280
281
ExecutionContextScope *IRMemoryMap::GetBestExecutionContextScope() const {
282
lldb::ProcessSP process_sp = m_process_wp.lock();
283
284
if (process_sp)
285
return process_sp.get();
286
287
lldb::TargetSP target_sp = m_target_wp.lock();
288
289
if (target_sp)
290
return target_sp.get();
291
292
return nullptr;
293
}
294
295
IRMemoryMap::Allocation::Allocation(lldb::addr_t process_alloc,
296
lldb::addr_t process_start, size_t size,
297
uint32_t permissions, uint8_t alignment,
298
AllocationPolicy policy)
299
: m_process_alloc(process_alloc), m_process_start(process_start),
300
m_size(size), m_policy(policy), m_leak(false), m_permissions(permissions),
301
m_alignment(alignment) {
302
switch (policy) {
303
default:
304
llvm_unreachable("Invalid AllocationPolicy");
305
case eAllocationPolicyHostOnly:
306
case eAllocationPolicyMirror:
307
m_data.SetByteSize(size);
308
break;
309
case eAllocationPolicyProcessOnly:
310
break;
311
}
312
}
313
314
lldb::addr_t IRMemoryMap::Malloc(size_t size, uint8_t alignment,
315
uint32_t permissions, AllocationPolicy policy,
316
bool zero_memory, Status &error) {
317
lldb_private::Log *log(GetLog(LLDBLog::Expressions));
318
error.Clear();
319
320
lldb::ProcessSP process_sp;
321
lldb::addr_t allocation_address = LLDB_INVALID_ADDRESS;
322
lldb::addr_t aligned_address = LLDB_INVALID_ADDRESS;
323
324
size_t allocation_size;
325
326
if (size == 0) {
327
// FIXME: Malloc(0) should either return an invalid address or assert, in
328
// order to cut down on unnecessary allocations.
329
allocation_size = alignment;
330
} else {
331
// Round up the requested size to an aligned value.
332
allocation_size = llvm::alignTo(size, alignment);
333
334
// The process page cache does not see the requested alignment. We can't
335
// assume its result will be any more than 1-byte aligned. To work around
336
// this, request `alignment - 1` additional bytes.
337
allocation_size += alignment - 1;
338
}
339
340
switch (policy) {
341
default:
342
error.SetErrorToGenericError();
343
error.SetErrorString("Couldn't malloc: invalid allocation policy");
344
return LLDB_INVALID_ADDRESS;
345
case eAllocationPolicyHostOnly:
346
allocation_address = FindSpace(allocation_size);
347
if (allocation_address == LLDB_INVALID_ADDRESS) {
348
error.SetErrorToGenericError();
349
error.SetErrorString("Couldn't malloc: address space is full");
350
return LLDB_INVALID_ADDRESS;
351
}
352
break;
353
case eAllocationPolicyMirror:
354
process_sp = m_process_wp.lock();
355
LLDB_LOGF(log,
356
"IRMemoryMap::%s process_sp=0x%" PRIxPTR
357
", process_sp->CanJIT()=%s, process_sp->IsAlive()=%s",
358
__FUNCTION__, reinterpret_cast<uintptr_t>(process_sp.get()),
359
process_sp && process_sp->CanJIT() ? "true" : "false",
360
process_sp && process_sp->IsAlive() ? "true" : "false");
361
if (process_sp && process_sp->CanJIT() && process_sp->IsAlive()) {
362
if (!zero_memory)
363
allocation_address =
364
process_sp->AllocateMemory(allocation_size, permissions, error);
365
else
366
allocation_address =
367
process_sp->CallocateMemory(allocation_size, permissions, error);
368
369
if (!error.Success())
370
return LLDB_INVALID_ADDRESS;
371
} else {
372
LLDB_LOGF(log,
373
"IRMemoryMap::%s switching to eAllocationPolicyHostOnly "
374
"due to failed condition (see previous expr log message)",
375
__FUNCTION__);
376
policy = eAllocationPolicyHostOnly;
377
allocation_address = FindSpace(allocation_size);
378
if (allocation_address == LLDB_INVALID_ADDRESS) {
379
error.SetErrorToGenericError();
380
error.SetErrorString("Couldn't malloc: address space is full");
381
return LLDB_INVALID_ADDRESS;
382
}
383
}
384
break;
385
case eAllocationPolicyProcessOnly:
386
process_sp = m_process_wp.lock();
387
if (process_sp) {
388
if (process_sp->CanJIT() && process_sp->IsAlive()) {
389
if (!zero_memory)
390
allocation_address =
391
process_sp->AllocateMemory(allocation_size, permissions, error);
392
else
393
allocation_address =
394
process_sp->CallocateMemory(allocation_size, permissions, error);
395
396
if (!error.Success())
397
return LLDB_INVALID_ADDRESS;
398
} else {
399
error.SetErrorToGenericError();
400
error.SetErrorString(
401
"Couldn't malloc: process doesn't support allocating memory");
402
return LLDB_INVALID_ADDRESS;
403
}
404
} else {
405
error.SetErrorToGenericError();
406
error.SetErrorString("Couldn't malloc: process doesn't exist, and this "
407
"memory must be in the process");
408
return LLDB_INVALID_ADDRESS;
409
}
410
break;
411
}
412
413
lldb::addr_t mask = alignment - 1;
414
aligned_address = (allocation_address + mask) & (~mask);
415
416
m_allocations.emplace(
417
std::piecewise_construct, std::forward_as_tuple(aligned_address),
418
std::forward_as_tuple(allocation_address, aligned_address,
419
allocation_size, permissions, alignment, policy));
420
421
if (zero_memory) {
422
Status write_error;
423
std::vector<uint8_t> zero_buf(size, 0);
424
WriteMemory(aligned_address, zero_buf.data(), size, write_error);
425
}
426
427
if (log) {
428
const char *policy_string;
429
430
switch (policy) {
431
default:
432
policy_string = "<invalid policy>";
433
break;
434
case eAllocationPolicyHostOnly:
435
policy_string = "eAllocationPolicyHostOnly";
436
break;
437
case eAllocationPolicyProcessOnly:
438
policy_string = "eAllocationPolicyProcessOnly";
439
break;
440
case eAllocationPolicyMirror:
441
policy_string = "eAllocationPolicyMirror";
442
break;
443
}
444
445
LLDB_LOGF(log,
446
"IRMemoryMap::Malloc (%" PRIu64 ", 0x%" PRIx64 ", 0x%" PRIx64
447
", %s) -> 0x%" PRIx64,
448
(uint64_t)allocation_size, (uint64_t)alignment,
449
(uint64_t)permissions, policy_string, aligned_address);
450
}
451
452
return aligned_address;
453
}
454
455
void IRMemoryMap::Leak(lldb::addr_t process_address, Status &error) {
456
error.Clear();
457
458
AllocationMap::iterator iter = m_allocations.find(process_address);
459
460
if (iter == m_allocations.end()) {
461
error.SetErrorToGenericError();
462
error.SetErrorString("Couldn't leak: allocation doesn't exist");
463
return;
464
}
465
466
Allocation &allocation = iter->second;
467
468
allocation.m_leak = true;
469
}
470
471
void IRMemoryMap::Free(lldb::addr_t process_address, Status &error) {
472
error.Clear();
473
474
AllocationMap::iterator iter = m_allocations.find(process_address);
475
476
if (iter == m_allocations.end()) {
477
error.SetErrorToGenericError();
478
error.SetErrorString("Couldn't free: allocation doesn't exist");
479
return;
480
}
481
482
Allocation &allocation = iter->second;
483
484
switch (allocation.m_policy) {
485
default:
486
case eAllocationPolicyHostOnly: {
487
lldb::ProcessSP process_sp = m_process_wp.lock();
488
if (process_sp) {
489
if (process_sp->CanJIT() && process_sp->IsAlive())
490
process_sp->DeallocateMemory(
491
allocation.m_process_alloc); // FindSpace allocated this for real
492
}
493
494
break;
495
}
496
case eAllocationPolicyMirror:
497
case eAllocationPolicyProcessOnly: {
498
lldb::ProcessSP process_sp = m_process_wp.lock();
499
if (process_sp)
500
process_sp->DeallocateMemory(allocation.m_process_alloc);
501
}
502
}
503
504
if (lldb_private::Log *log = GetLog(LLDBLog::Expressions)) {
505
LLDB_LOGF(log,
506
"IRMemoryMap::Free (0x%" PRIx64 ") freed [0x%" PRIx64
507
"..0x%" PRIx64 ")",
508
(uint64_t)process_address, iter->second.m_process_start,
509
iter->second.m_process_start + iter->second.m_size);
510
}
511
512
m_allocations.erase(iter);
513
}
514
515
bool IRMemoryMap::GetAllocSize(lldb::addr_t address, size_t &size) {
516
AllocationMap::iterator iter = FindAllocation(address, size);
517
if (iter == m_allocations.end())
518
return false;
519
520
Allocation &al = iter->second;
521
522
if (address > (al.m_process_start + al.m_size)) {
523
size = 0;
524
return false;
525
}
526
527
if (address > al.m_process_start) {
528
int dif = address - al.m_process_start;
529
size = al.m_size - dif;
530
return true;
531
}
532
533
size = al.m_size;
534
return true;
535
}
536
537
void IRMemoryMap::WriteMemory(lldb::addr_t process_address,
538
const uint8_t *bytes, size_t size,
539
Status &error) {
540
error.Clear();
541
542
AllocationMap::iterator iter = FindAllocation(process_address, size);
543
544
if (iter == m_allocations.end()) {
545
lldb::ProcessSP process_sp = m_process_wp.lock();
546
547
if (process_sp) {
548
process_sp->WriteMemory(process_address, bytes, size, error);
549
return;
550
}
551
552
error.SetErrorToGenericError();
553
error.SetErrorString("Couldn't write: no allocation contains the target "
554
"range and the process doesn't exist");
555
return;
556
}
557
558
Allocation &allocation = iter->second;
559
560
uint64_t offset = process_address - allocation.m_process_start;
561
562
lldb::ProcessSP process_sp;
563
564
switch (allocation.m_policy) {
565
default:
566
error.SetErrorToGenericError();
567
error.SetErrorString("Couldn't write: invalid allocation policy");
568
return;
569
case eAllocationPolicyHostOnly:
570
if (!allocation.m_data.GetByteSize()) {
571
error.SetErrorToGenericError();
572
error.SetErrorString("Couldn't write: data buffer is empty");
573
return;
574
}
575
::memcpy(allocation.m_data.GetBytes() + offset, bytes, size);
576
break;
577
case eAllocationPolicyMirror:
578
if (!allocation.m_data.GetByteSize()) {
579
error.SetErrorToGenericError();
580
error.SetErrorString("Couldn't write: data buffer is empty");
581
return;
582
}
583
::memcpy(allocation.m_data.GetBytes() + offset, bytes, size);
584
process_sp = m_process_wp.lock();
585
if (process_sp) {
586
process_sp->WriteMemory(process_address, bytes, size, error);
587
if (!error.Success())
588
return;
589
}
590
break;
591
case eAllocationPolicyProcessOnly:
592
process_sp = m_process_wp.lock();
593
if (process_sp) {
594
process_sp->WriteMemory(process_address, bytes, size, error);
595
if (!error.Success())
596
return;
597
}
598
break;
599
}
600
601
if (lldb_private::Log *log = GetLog(LLDBLog::Expressions)) {
602
LLDB_LOGF(log,
603
"IRMemoryMap::WriteMemory (0x%" PRIx64 ", 0x%" PRIxPTR
604
", 0x%" PRId64 ") went to [0x%" PRIx64 "..0x%" PRIx64 ")",
605
(uint64_t)process_address, reinterpret_cast<uintptr_t>(bytes), (uint64_t)size,
606
(uint64_t)allocation.m_process_start,
607
(uint64_t)allocation.m_process_start +
608
(uint64_t)allocation.m_size);
609
}
610
}
611
612
void IRMemoryMap::WriteScalarToMemory(lldb::addr_t process_address,
613
Scalar &scalar, size_t size,
614
Status &error) {
615
error.Clear();
616
617
if (size == UINT32_MAX)
618
size = scalar.GetByteSize();
619
620
if (size > 0) {
621
uint8_t buf[32];
622
const size_t mem_size =
623
scalar.GetAsMemoryData(buf, size, GetByteOrder(), error);
624
if (mem_size > 0) {
625
return WriteMemory(process_address, buf, mem_size, error);
626
} else {
627
error.SetErrorToGenericError();
628
error.SetErrorString(
629
"Couldn't write scalar: failed to get scalar as memory data");
630
}
631
} else {
632
error.SetErrorToGenericError();
633
error.SetErrorString("Couldn't write scalar: its size was zero");
634
}
635
}
636
637
void IRMemoryMap::WritePointerToMemory(lldb::addr_t process_address,
638
lldb::addr_t address, Status &error) {
639
error.Clear();
640
641
Scalar scalar(address);
642
643
WriteScalarToMemory(process_address, scalar, GetAddressByteSize(), error);
644
}
645
646
void IRMemoryMap::ReadMemory(uint8_t *bytes, lldb::addr_t process_address,
647
size_t size, Status &error) {
648
error.Clear();
649
650
AllocationMap::iterator iter = FindAllocation(process_address, size);
651
652
if (iter == m_allocations.end()) {
653
lldb::ProcessSP process_sp = m_process_wp.lock();
654
655
if (process_sp) {
656
process_sp->ReadMemory(process_address, bytes, size, error);
657
return;
658
}
659
660
lldb::TargetSP target_sp = m_target_wp.lock();
661
662
if (target_sp) {
663
Address absolute_address(process_address);
664
target_sp->ReadMemory(absolute_address, bytes, size, error, true);
665
return;
666
}
667
668
error.SetErrorToGenericError();
669
error.SetErrorString("Couldn't read: no allocation contains the target "
670
"range, and neither the process nor the target exist");
671
return;
672
}
673
674
Allocation &allocation = iter->second;
675
676
uint64_t offset = process_address - allocation.m_process_start;
677
678
if (offset > allocation.m_size) {
679
error.SetErrorToGenericError();
680
error.SetErrorString("Couldn't read: data is not in the allocation");
681
return;
682
}
683
684
lldb::ProcessSP process_sp;
685
686
switch (allocation.m_policy) {
687
default:
688
error.SetErrorToGenericError();
689
error.SetErrorString("Couldn't read: invalid allocation policy");
690
return;
691
case eAllocationPolicyHostOnly:
692
if (!allocation.m_data.GetByteSize()) {
693
error.SetErrorToGenericError();
694
error.SetErrorString("Couldn't read: data buffer is empty");
695
return;
696
}
697
if (allocation.m_data.GetByteSize() < offset + size) {
698
error.SetErrorToGenericError();
699
error.SetErrorString("Couldn't read: not enough underlying data");
700
return;
701
}
702
703
::memcpy(bytes, allocation.m_data.GetBytes() + offset, size);
704
break;
705
case eAllocationPolicyMirror:
706
process_sp = m_process_wp.lock();
707
if (process_sp) {
708
process_sp->ReadMemory(process_address, bytes, size, error);
709
if (!error.Success())
710
return;
711
} else {
712
if (!allocation.m_data.GetByteSize()) {
713
error.SetErrorToGenericError();
714
error.SetErrorString("Couldn't read: data buffer is empty");
715
return;
716
}
717
::memcpy(bytes, allocation.m_data.GetBytes() + offset, size);
718
}
719
break;
720
case eAllocationPolicyProcessOnly:
721
process_sp = m_process_wp.lock();
722
if (process_sp) {
723
process_sp->ReadMemory(process_address, bytes, size, error);
724
if (!error.Success())
725
return;
726
}
727
break;
728
}
729
730
if (lldb_private::Log *log = GetLog(LLDBLog::Expressions)) {
731
LLDB_LOGF(log,
732
"IRMemoryMap::ReadMemory (0x%" PRIx64 ", 0x%" PRIxPTR
733
", 0x%" PRId64 ") came from [0x%" PRIx64 "..0x%" PRIx64 ")",
734
(uint64_t)process_address, reinterpret_cast<uintptr_t>(bytes), (uint64_t)size,
735
(uint64_t)allocation.m_process_start,
736
(uint64_t)allocation.m_process_start +
737
(uint64_t)allocation.m_size);
738
}
739
}
740
741
void IRMemoryMap::ReadScalarFromMemory(Scalar &scalar,
742
lldb::addr_t process_address,
743
size_t size, Status &error) {
744
error.Clear();
745
746
if (size > 0) {
747
DataBufferHeap buf(size, 0);
748
ReadMemory(buf.GetBytes(), process_address, size, error);
749
750
if (!error.Success())
751
return;
752
753
DataExtractor extractor(buf.GetBytes(), buf.GetByteSize(), GetByteOrder(),
754
GetAddressByteSize());
755
756
lldb::offset_t offset = 0;
757
758
switch (size) {
759
default:
760
error.SetErrorToGenericError();
761
error.SetErrorStringWithFormat(
762
"Couldn't read scalar: unsupported size %" PRIu64, (uint64_t)size);
763
return;
764
case 1:
765
scalar = extractor.GetU8(&offset);
766
break;
767
case 2:
768
scalar = extractor.GetU16(&offset);
769
break;
770
case 4:
771
scalar = extractor.GetU32(&offset);
772
break;
773
case 8:
774
scalar = extractor.GetU64(&offset);
775
break;
776
}
777
} else {
778
error.SetErrorToGenericError();
779
error.SetErrorString("Couldn't read scalar: its size was zero");
780
}
781
}
782
783
void IRMemoryMap::ReadPointerFromMemory(lldb::addr_t *address,
784
lldb::addr_t process_address,
785
Status &error) {
786
error.Clear();
787
788
Scalar pointer_scalar;
789
ReadScalarFromMemory(pointer_scalar, process_address, GetAddressByteSize(),
790
error);
791
792
if (!error.Success())
793
return;
794
795
*address = pointer_scalar.ULongLong();
796
}
797
798
void IRMemoryMap::GetMemoryData(DataExtractor &extractor,
799
lldb::addr_t process_address, size_t size,
800
Status &error) {
801
error.Clear();
802
803
if (size > 0) {
804
AllocationMap::iterator iter = FindAllocation(process_address, size);
805
806
if (iter == m_allocations.end()) {
807
error.SetErrorToGenericError();
808
error.SetErrorStringWithFormat(
809
"Couldn't find an allocation containing [0x%" PRIx64 "..0x%" PRIx64
810
")",
811
process_address, process_address + size);
812
return;
813
}
814
815
Allocation &allocation = iter->second;
816
817
switch (allocation.m_policy) {
818
default:
819
error.SetErrorToGenericError();
820
error.SetErrorString(
821
"Couldn't get memory data: invalid allocation policy");
822
return;
823
case eAllocationPolicyProcessOnly:
824
error.SetErrorToGenericError();
825
error.SetErrorString(
826
"Couldn't get memory data: memory is only in the target");
827
return;
828
case eAllocationPolicyMirror: {
829
lldb::ProcessSP process_sp = m_process_wp.lock();
830
831
if (!allocation.m_data.GetByteSize()) {
832
error.SetErrorToGenericError();
833
error.SetErrorString("Couldn't get memory data: data buffer is empty");
834
return;
835
}
836
if (process_sp) {
837
process_sp->ReadMemory(allocation.m_process_start,
838
allocation.m_data.GetBytes(),
839
allocation.m_data.GetByteSize(), error);
840
if (!error.Success())
841
return;
842
uint64_t offset = process_address - allocation.m_process_start;
843
extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size,
844
GetByteOrder(), GetAddressByteSize());
845
return;
846
}
847
} break;
848
case eAllocationPolicyHostOnly:
849
if (!allocation.m_data.GetByteSize()) {
850
error.SetErrorToGenericError();
851
error.SetErrorString("Couldn't get memory data: data buffer is empty");
852
return;
853
}
854
uint64_t offset = process_address - allocation.m_process_start;
855
extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size,
856
GetByteOrder(), GetAddressByteSize());
857
return;
858
}
859
} else {
860
error.SetErrorToGenericError();
861
error.SetErrorString("Couldn't get memory data: its size was zero");
862
return;
863
}
864
}
865
866