Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lldb/source/Plugins/ABI/PowerPC/ABISysV_ppc.cpp
39645 views
1
//===-- ABISysV_ppc.cpp ---------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "ABISysV_ppc.h"
10
11
#include "llvm/ADT/STLExtras.h"
12
#include "llvm/TargetParser/Triple.h"
13
14
#include "lldb/Core/Module.h"
15
#include "lldb/Core/PluginManager.h"
16
#include "lldb/Core/Value.h"
17
#include "lldb/Core/ValueObjectConstResult.h"
18
#include "lldb/Core/ValueObjectMemory.h"
19
#include "lldb/Core/ValueObjectRegister.h"
20
#include "lldb/Symbol/UnwindPlan.h"
21
#include "lldb/Target/Process.h"
22
#include "lldb/Target/RegisterContext.h"
23
#include "lldb/Target/StackFrame.h"
24
#include "lldb/Target/Target.h"
25
#include "lldb/Target/Thread.h"
26
#include "lldb/Utility/ConstString.h"
27
#include "lldb/Utility/DataExtractor.h"
28
#include "lldb/Utility/LLDBLog.h"
29
#include "lldb/Utility/Log.h"
30
#include "lldb/Utility/RegisterValue.h"
31
#include "lldb/Utility/Status.h"
32
#include <optional>
33
34
using namespace lldb;
35
using namespace lldb_private;
36
37
LLDB_PLUGIN_DEFINE(ABISysV_ppc)
38
39
enum dwarf_regnums {
40
dwarf_r0 = 0,
41
dwarf_r1,
42
dwarf_r2,
43
dwarf_r3,
44
dwarf_r4,
45
dwarf_r5,
46
dwarf_r6,
47
dwarf_r7,
48
dwarf_r8,
49
dwarf_r9,
50
dwarf_r10,
51
dwarf_r11,
52
dwarf_r12,
53
dwarf_r13,
54
dwarf_r14,
55
dwarf_r15,
56
dwarf_r16,
57
dwarf_r17,
58
dwarf_r18,
59
dwarf_r19,
60
dwarf_r20,
61
dwarf_r21,
62
dwarf_r22,
63
dwarf_r23,
64
dwarf_r24,
65
dwarf_r25,
66
dwarf_r26,
67
dwarf_r27,
68
dwarf_r28,
69
dwarf_r29,
70
dwarf_r30,
71
dwarf_r31,
72
dwarf_f0,
73
dwarf_f1,
74
dwarf_f2,
75
dwarf_f3,
76
dwarf_f4,
77
dwarf_f5,
78
dwarf_f6,
79
dwarf_f7,
80
dwarf_f8,
81
dwarf_f9,
82
dwarf_f10,
83
dwarf_f11,
84
dwarf_f12,
85
dwarf_f13,
86
dwarf_f14,
87
dwarf_f15,
88
dwarf_f16,
89
dwarf_f17,
90
dwarf_f18,
91
dwarf_f19,
92
dwarf_f20,
93
dwarf_f21,
94
dwarf_f22,
95
dwarf_f23,
96
dwarf_f24,
97
dwarf_f25,
98
dwarf_f26,
99
dwarf_f27,
100
dwarf_f28,
101
dwarf_f29,
102
dwarf_f30,
103
dwarf_f31,
104
dwarf_cr,
105
dwarf_fpscr,
106
dwarf_xer = 101,
107
dwarf_lr = 108,
108
dwarf_ctr,
109
dwarf_pc,
110
dwarf_cfa,
111
};
112
113
// Note that the size and offset will be updated by platform-specific classes.
114
#define DEFINE_GPR(reg, alt, kind1, kind2, kind3, kind4) \
115
{ \
116
#reg, alt, 8, 0, eEncodingUint, eFormatHex, {kind1, kind2, kind3, kind4 }, \
117
nullptr, nullptr, nullptr, \
118
}
119
120
static const RegisterInfo g_register_infos[] = {
121
// General purpose registers. eh_frame, DWARF,
122
// Generic, Process Plugin
123
DEFINE_GPR(r0, nullptr, dwarf_r0, dwarf_r0, LLDB_INVALID_REGNUM,
124
LLDB_INVALID_REGNUM),
125
DEFINE_GPR(r1, nullptr, dwarf_r1, dwarf_r1, LLDB_REGNUM_GENERIC_SP,
126
LLDB_INVALID_REGNUM),
127
DEFINE_GPR(r2, nullptr, dwarf_r2, dwarf_r2, LLDB_INVALID_REGNUM,
128
LLDB_INVALID_REGNUM),
129
DEFINE_GPR(r3, nullptr, dwarf_r3, dwarf_r3, LLDB_REGNUM_GENERIC_ARG1,
130
LLDB_INVALID_REGNUM),
131
DEFINE_GPR(r4, nullptr, dwarf_r4, dwarf_r4, LLDB_REGNUM_GENERIC_ARG2,
132
LLDB_INVALID_REGNUM),
133
DEFINE_GPR(r5, nullptr, dwarf_r5, dwarf_r5, LLDB_REGNUM_GENERIC_ARG3,
134
LLDB_INVALID_REGNUM),
135
DEFINE_GPR(r6, nullptr, dwarf_r6, dwarf_r6, LLDB_REGNUM_GENERIC_ARG4,
136
LLDB_INVALID_REGNUM),
137
DEFINE_GPR(r7, nullptr, dwarf_r7, dwarf_r7, LLDB_REGNUM_GENERIC_ARG5,
138
LLDB_INVALID_REGNUM),
139
DEFINE_GPR(r8, nullptr, dwarf_r8, dwarf_r8, LLDB_REGNUM_GENERIC_ARG6,
140
LLDB_INVALID_REGNUM),
141
DEFINE_GPR(r9, nullptr, dwarf_r9, dwarf_r9, LLDB_REGNUM_GENERIC_ARG7,
142
LLDB_INVALID_REGNUM),
143
DEFINE_GPR(r10, nullptr, dwarf_r10, dwarf_r10, LLDB_REGNUM_GENERIC_ARG8,
144
LLDB_INVALID_REGNUM),
145
DEFINE_GPR(r11, nullptr, dwarf_r11, dwarf_r11, LLDB_INVALID_REGNUM,
146
LLDB_INVALID_REGNUM),
147
DEFINE_GPR(r12, nullptr, dwarf_r12, dwarf_r12, LLDB_INVALID_REGNUM,
148
LLDB_INVALID_REGNUM),
149
DEFINE_GPR(r13, nullptr, dwarf_r13, dwarf_r13, LLDB_INVALID_REGNUM,
150
LLDB_INVALID_REGNUM),
151
DEFINE_GPR(r14, nullptr, dwarf_r14, dwarf_r14, LLDB_INVALID_REGNUM,
152
LLDB_INVALID_REGNUM),
153
DEFINE_GPR(r15, nullptr, dwarf_r15, dwarf_r15, LLDB_INVALID_REGNUM,
154
LLDB_INVALID_REGNUM),
155
DEFINE_GPR(r16, nullptr, dwarf_r16, dwarf_r16, LLDB_INVALID_REGNUM,
156
LLDB_INVALID_REGNUM),
157
DEFINE_GPR(r17, nullptr, dwarf_r17, dwarf_r17, LLDB_INVALID_REGNUM,
158
LLDB_INVALID_REGNUM),
159
DEFINE_GPR(r18, nullptr, dwarf_r18, dwarf_r18, LLDB_INVALID_REGNUM,
160
LLDB_INVALID_REGNUM),
161
DEFINE_GPR(r19, nullptr, dwarf_r19, dwarf_r19, LLDB_INVALID_REGNUM,
162
LLDB_INVALID_REGNUM),
163
DEFINE_GPR(r20, nullptr, dwarf_r20, dwarf_r20, LLDB_INVALID_REGNUM,
164
LLDB_INVALID_REGNUM),
165
DEFINE_GPR(r21, nullptr, dwarf_r21, dwarf_r21, LLDB_INVALID_REGNUM,
166
LLDB_INVALID_REGNUM),
167
DEFINE_GPR(r22, nullptr, dwarf_r22, dwarf_r22, LLDB_INVALID_REGNUM,
168
LLDB_INVALID_REGNUM),
169
DEFINE_GPR(r23, nullptr, dwarf_r23, dwarf_r23, LLDB_INVALID_REGNUM,
170
LLDB_INVALID_REGNUM),
171
DEFINE_GPR(r24, nullptr, dwarf_r24, dwarf_r24, LLDB_INVALID_REGNUM,
172
LLDB_INVALID_REGNUM),
173
DEFINE_GPR(r25, nullptr, dwarf_r25, dwarf_r25, LLDB_INVALID_REGNUM,
174
LLDB_INVALID_REGNUM),
175
DEFINE_GPR(r26, nullptr, dwarf_r26, dwarf_r26, LLDB_INVALID_REGNUM,
176
LLDB_INVALID_REGNUM),
177
DEFINE_GPR(r27, nullptr, dwarf_r27, dwarf_r27, LLDB_INVALID_REGNUM,
178
LLDB_INVALID_REGNUM),
179
DEFINE_GPR(r28, nullptr, dwarf_r28, dwarf_r28, LLDB_INVALID_REGNUM,
180
LLDB_INVALID_REGNUM),
181
DEFINE_GPR(r29, nullptr, dwarf_r29, dwarf_r29, LLDB_INVALID_REGNUM,
182
LLDB_INVALID_REGNUM),
183
DEFINE_GPR(r30, nullptr, dwarf_r30, dwarf_r30, LLDB_INVALID_REGNUM,
184
LLDB_INVALID_REGNUM),
185
DEFINE_GPR(r31, nullptr, dwarf_r31, dwarf_r31, LLDB_INVALID_REGNUM,
186
LLDB_INVALID_REGNUM),
187
DEFINE_GPR(lr, nullptr, dwarf_lr, dwarf_lr, LLDB_REGNUM_GENERIC_RA,
188
LLDB_INVALID_REGNUM),
189
DEFINE_GPR(cr, nullptr, dwarf_cr, dwarf_cr, LLDB_REGNUM_GENERIC_FLAGS,
190
LLDB_INVALID_REGNUM),
191
DEFINE_GPR(xer, nullptr, dwarf_xer, dwarf_xer, LLDB_INVALID_REGNUM,
192
LLDB_INVALID_REGNUM),
193
DEFINE_GPR(ctr, nullptr, dwarf_ctr, dwarf_ctr, LLDB_INVALID_REGNUM,
194
LLDB_INVALID_REGNUM),
195
DEFINE_GPR(pc, nullptr, dwarf_pc, dwarf_pc, LLDB_REGNUM_GENERIC_PC,
196
LLDB_INVALID_REGNUM),
197
{nullptr,
198
nullptr,
199
8,
200
0,
201
eEncodingUint,
202
eFormatHex,
203
{dwarf_cfa, dwarf_cfa, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM},
204
nullptr,
205
nullptr,
206
nullptr,
207
}};
208
209
static const uint32_t k_num_register_infos = std::size(g_register_infos);
210
211
const lldb_private::RegisterInfo *
212
ABISysV_ppc::GetRegisterInfoArray(uint32_t &count) {
213
count = k_num_register_infos;
214
return g_register_infos;
215
}
216
217
size_t ABISysV_ppc::GetRedZoneSize() const { return 224; }
218
219
// Static Functions
220
221
ABISP
222
ABISysV_ppc::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) {
223
if (arch.GetTriple().getArch() == llvm::Triple::ppc) {
224
return ABISP(
225
new ABISysV_ppc(std::move(process_sp), MakeMCRegisterInfo(arch)));
226
}
227
return ABISP();
228
}
229
230
bool ABISysV_ppc::PrepareTrivialCall(Thread &thread, addr_t sp,
231
addr_t func_addr, addr_t return_addr,
232
llvm::ArrayRef<addr_t> args) const {
233
Log *log = GetLog(LLDBLog::Expressions);
234
235
if (log) {
236
StreamString s;
237
s.Printf("ABISysV_ppc::PrepareTrivialCall (tid = 0x%" PRIx64
238
", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64
239
", return_addr = 0x%" PRIx64,
240
thread.GetID(), (uint64_t)sp, (uint64_t)func_addr,
241
(uint64_t)return_addr);
242
243
for (size_t i = 0; i < args.size(); ++i)
244
s.Printf(", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1),
245
args[i]);
246
s.PutCString(")");
247
log->PutString(s.GetString());
248
}
249
250
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
251
if (!reg_ctx)
252
return false;
253
254
const RegisterInfo *reg_info = nullptr;
255
256
if (args.size() > 8) // TODO handle more than 8 arguments
257
return false;
258
259
for (size_t i = 0; i < args.size(); ++i) {
260
reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
261
LLDB_REGNUM_GENERIC_ARG1 + i);
262
LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s",
263
static_cast<uint64_t>(i + 1), args[i], reg_info->name);
264
if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
265
return false;
266
}
267
268
// First, align the SP
269
270
LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64,
271
(uint64_t)sp, (uint64_t)(sp & ~0xfull));
272
273
sp &= ~(0xfull); // 16-byte alignment
274
275
sp -= 8;
276
277
Status error;
278
const RegisterInfo *pc_reg_info =
279
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
280
const RegisterInfo *sp_reg_info =
281
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
282
ProcessSP process_sp(thread.GetProcess());
283
284
RegisterValue reg_value;
285
286
LLDB_LOGF(log,
287
"Pushing the return address onto the stack: 0x%" PRIx64
288
": 0x%" PRIx64,
289
(uint64_t)sp, (uint64_t)return_addr);
290
291
// Save return address onto the stack
292
if (!process_sp->WritePointerToMemory(sp, return_addr, error))
293
return false;
294
295
// %r1 is set to the actual stack value.
296
297
LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp);
298
299
if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp))
300
return false;
301
302
// %pc is set to the address of the called function.
303
304
LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr);
305
306
if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr))
307
return false;
308
309
return true;
310
}
311
312
static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width,
313
bool is_signed, Thread &thread,
314
uint32_t *argument_register_ids,
315
unsigned int &current_argument_register,
316
addr_t &current_stack_argument) {
317
if (bit_width > 64)
318
return false; // Scalar can't hold large integer arguments
319
320
if (current_argument_register < 6) {
321
scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
322
argument_register_ids[current_argument_register], 0);
323
current_argument_register++;
324
if (is_signed)
325
scalar.SignExtend(bit_width);
326
} else {
327
uint32_t byte_size = (bit_width + (8 - 1)) / 8;
328
Status error;
329
if (thread.GetProcess()->ReadScalarIntegerFromMemory(
330
current_stack_argument, byte_size, is_signed, scalar, error)) {
331
current_stack_argument += byte_size;
332
return true;
333
}
334
return false;
335
}
336
return true;
337
}
338
339
bool ABISysV_ppc::GetArgumentValues(Thread &thread, ValueList &values) const {
340
unsigned int num_values = values.GetSize();
341
unsigned int value_index;
342
343
// Extract the register context so we can read arguments from registers
344
345
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
346
347
if (!reg_ctx)
348
return false;
349
350
// Get the pointer to the first stack argument so we have a place to start
351
// when reading data
352
353
addr_t sp = reg_ctx->GetSP(0);
354
355
if (!sp)
356
return false;
357
358
addr_t current_stack_argument = sp + 48; // jump over return address
359
360
uint32_t argument_register_ids[8];
361
362
argument_register_ids[0] =
363
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG1)
364
->kinds[eRegisterKindLLDB];
365
argument_register_ids[1] =
366
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG2)
367
->kinds[eRegisterKindLLDB];
368
argument_register_ids[2] =
369
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG3)
370
->kinds[eRegisterKindLLDB];
371
argument_register_ids[3] =
372
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG4)
373
->kinds[eRegisterKindLLDB];
374
argument_register_ids[4] =
375
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG5)
376
->kinds[eRegisterKindLLDB];
377
argument_register_ids[5] =
378
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG6)
379
->kinds[eRegisterKindLLDB];
380
argument_register_ids[6] =
381
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG7)
382
->kinds[eRegisterKindLLDB];
383
argument_register_ids[7] =
384
reg_ctx->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_ARG8)
385
->kinds[eRegisterKindLLDB];
386
387
unsigned int current_argument_register = 0;
388
389
for (value_index = 0; value_index < num_values; ++value_index) {
390
Value *value = values.GetValueAtIndex(value_index);
391
392
if (!value)
393
return false;
394
395
// We currently only support extracting values with Clang QualTypes. Do we
396
// care about others?
397
CompilerType compiler_type = value->GetCompilerType();
398
std::optional<uint64_t> bit_size = compiler_type.GetBitSize(&thread);
399
if (!bit_size)
400
return false;
401
bool is_signed;
402
if (compiler_type.IsIntegerOrEnumerationType(is_signed))
403
ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed, thread,
404
argument_register_ids, current_argument_register,
405
current_stack_argument);
406
else if (compiler_type.IsPointerType())
407
ReadIntegerArgument(value->GetScalar(), *bit_size, false, thread,
408
argument_register_ids, current_argument_register,
409
current_stack_argument);
410
}
411
412
return true;
413
}
414
415
Status ABISysV_ppc::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
416
lldb::ValueObjectSP &new_value_sp) {
417
Status error;
418
if (!new_value_sp) {
419
error.SetErrorString("Empty value object for return value.");
420
return error;
421
}
422
423
CompilerType compiler_type = new_value_sp->GetCompilerType();
424
if (!compiler_type) {
425
error.SetErrorString("Null clang type for return value.");
426
return error;
427
}
428
429
Thread *thread = frame_sp->GetThread().get();
430
431
bool is_signed;
432
uint32_t count;
433
bool is_complex;
434
435
RegisterContext *reg_ctx = thread->GetRegisterContext().get();
436
437
bool set_it_simple = false;
438
if (compiler_type.IsIntegerOrEnumerationType(is_signed) ||
439
compiler_type.IsPointerType()) {
440
const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("r3", 0);
441
442
DataExtractor data;
443
Status data_error;
444
size_t num_bytes = new_value_sp->GetData(data, data_error);
445
if (data_error.Fail()) {
446
error.SetErrorStringWithFormat(
447
"Couldn't convert return value to raw data: %s",
448
data_error.AsCString());
449
return error;
450
}
451
lldb::offset_t offset = 0;
452
if (num_bytes <= 8) {
453
uint64_t raw_value = data.GetMaxU64(&offset, num_bytes);
454
455
if (reg_ctx->WriteRegisterFromUnsigned(reg_info, raw_value))
456
set_it_simple = true;
457
} else {
458
error.SetErrorString("We don't support returning longer than 64 bit "
459
"integer values at present.");
460
}
461
} else if (compiler_type.IsFloatingPointType(count, is_complex)) {
462
if (is_complex)
463
error.SetErrorString(
464
"We don't support returning complex values at present");
465
else {
466
std::optional<uint64_t> bit_width =
467
compiler_type.GetBitSize(frame_sp.get());
468
if (!bit_width) {
469
error.SetErrorString("can't get type size");
470
return error;
471
}
472
if (*bit_width <= 64) {
473
DataExtractor data;
474
Status data_error;
475
size_t num_bytes = new_value_sp->GetData(data, data_error);
476
if (data_error.Fail()) {
477
error.SetErrorStringWithFormat(
478
"Couldn't convert return value to raw data: %s",
479
data_error.AsCString());
480
return error;
481
}
482
483
unsigned char buffer[16];
484
ByteOrder byte_order = data.GetByteOrder();
485
486
data.CopyByteOrderedData(0, num_bytes, buffer, 16, byte_order);
487
set_it_simple = true;
488
} else {
489
// FIXME - don't know how to do 80 bit long doubles yet.
490
error.SetErrorString(
491
"We don't support returning float values > 64 bits at present");
492
}
493
}
494
}
495
496
if (!set_it_simple) {
497
// Okay we've got a structure or something that doesn't fit in a simple
498
// register. We should figure out where it really goes, but we don't
499
// support this yet.
500
error.SetErrorString("We only support setting simple integer and float "
501
"return types at present.");
502
}
503
504
return error;
505
}
506
507
ValueObjectSP ABISysV_ppc::GetReturnValueObjectSimple(
508
Thread &thread, CompilerType &return_compiler_type) const {
509
ValueObjectSP return_valobj_sp;
510
Value value;
511
512
if (!return_compiler_type)
513
return return_valobj_sp;
514
515
// value.SetContext (Value::eContextTypeClangType, return_value_type);
516
value.SetCompilerType(return_compiler_type);
517
518
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
519
if (!reg_ctx)
520
return return_valobj_sp;
521
522
const uint32_t type_flags = return_compiler_type.GetTypeInfo();
523
if (type_flags & eTypeIsScalar) {
524
value.SetValueType(Value::ValueType::Scalar);
525
526
bool success = false;
527
if (type_flags & eTypeIsInteger) {
528
// Extract the register context so we can read arguments from registers
529
530
std::optional<uint64_t> byte_size =
531
return_compiler_type.GetByteSize(&thread);
532
if (!byte_size)
533
return return_valobj_sp;
534
uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
535
reg_ctx->GetRegisterInfoByName("r3", 0), 0);
536
const bool is_signed = (type_flags & eTypeIsSigned) != 0;
537
switch (*byte_size) {
538
default:
539
break;
540
541
case sizeof(uint64_t):
542
if (is_signed)
543
value.GetScalar() = (int64_t)(raw_value);
544
else
545
value.GetScalar() = (uint64_t)(raw_value);
546
success = true;
547
break;
548
549
case sizeof(uint32_t):
550
if (is_signed)
551
value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
552
else
553
value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
554
success = true;
555
break;
556
557
case sizeof(uint16_t):
558
if (is_signed)
559
value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
560
else
561
value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
562
success = true;
563
break;
564
565
case sizeof(uint8_t):
566
if (is_signed)
567
value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
568
else
569
value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
570
success = true;
571
break;
572
}
573
} else if (type_flags & eTypeIsFloat) {
574
if (type_flags & eTypeIsComplex) {
575
// Don't handle complex yet.
576
} else {
577
std::optional<uint64_t> byte_size =
578
return_compiler_type.GetByteSize(&thread);
579
if (byte_size && *byte_size <= sizeof(long double)) {
580
const RegisterInfo *f1_info = reg_ctx->GetRegisterInfoByName("f1", 0);
581
RegisterValue f1_value;
582
if (reg_ctx->ReadRegister(f1_info, f1_value)) {
583
DataExtractor data;
584
if (f1_value.GetData(data)) {
585
lldb::offset_t offset = 0;
586
if (*byte_size == sizeof(float)) {
587
value.GetScalar() = (float)data.GetFloat(&offset);
588
success = true;
589
} else if (*byte_size == sizeof(double)) {
590
value.GetScalar() = (double)data.GetDouble(&offset);
591
success = true;
592
}
593
}
594
}
595
}
596
}
597
}
598
599
if (success)
600
return_valobj_sp = ValueObjectConstResult::Create(
601
thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
602
} else if (type_flags & eTypeIsPointer) {
603
unsigned r3_id =
604
reg_ctx->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB];
605
value.GetScalar() =
606
(uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id, 0);
607
value.SetValueType(Value::ValueType::Scalar);
608
return_valobj_sp = ValueObjectConstResult::Create(
609
thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
610
} else if (type_flags & eTypeIsVector) {
611
std::optional<uint64_t> byte_size =
612
return_compiler_type.GetByteSize(&thread);
613
if (byte_size && *byte_size > 0) {
614
const RegisterInfo *altivec_reg = reg_ctx->GetRegisterInfoByName("v2", 0);
615
if (altivec_reg) {
616
if (*byte_size <= altivec_reg->byte_size) {
617
ProcessSP process_sp(thread.GetProcess());
618
if (process_sp) {
619
std::unique_ptr<DataBufferHeap> heap_data_up(
620
new DataBufferHeap(*byte_size, 0));
621
const ByteOrder byte_order = process_sp->GetByteOrder();
622
RegisterValue reg_value;
623
if (reg_ctx->ReadRegister(altivec_reg, reg_value)) {
624
Status error;
625
if (reg_value.GetAsMemoryData(
626
*altivec_reg, heap_data_up->GetBytes(),
627
heap_data_up->GetByteSize(), byte_order, error)) {
628
DataExtractor data(DataBufferSP(heap_data_up.release()),
629
byte_order,
630
process_sp->GetTarget()
631
.GetArchitecture()
632
.GetAddressByteSize());
633
return_valobj_sp = ValueObjectConstResult::Create(
634
&thread, return_compiler_type, ConstString(""), data);
635
}
636
}
637
}
638
}
639
}
640
}
641
}
642
643
return return_valobj_sp;
644
}
645
646
ValueObjectSP ABISysV_ppc::GetReturnValueObjectImpl(
647
Thread &thread, CompilerType &return_compiler_type) const {
648
ValueObjectSP return_valobj_sp;
649
650
if (!return_compiler_type)
651
return return_valobj_sp;
652
653
ExecutionContext exe_ctx(thread.shared_from_this());
654
return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
655
if (return_valobj_sp)
656
return return_valobj_sp;
657
658
RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
659
if (!reg_ctx_sp)
660
return return_valobj_sp;
661
662
std::optional<uint64_t> bit_width = return_compiler_type.GetBitSize(&thread);
663
if (!bit_width)
664
return return_valobj_sp;
665
if (return_compiler_type.IsAggregateType()) {
666
Target *target = exe_ctx.GetTargetPtr();
667
bool is_memory = true;
668
if (*bit_width <= 128) {
669
ByteOrder target_byte_order = target->GetArchitecture().GetByteOrder();
670
WritableDataBufferSP data_sp(new DataBufferHeap(16, 0));
671
DataExtractor return_ext(data_sp, target_byte_order,
672
target->GetArchitecture().GetAddressByteSize());
673
674
const RegisterInfo *r3_info = reg_ctx_sp->GetRegisterInfoByName("r3", 0);
675
const RegisterInfo *rdx_info =
676
reg_ctx_sp->GetRegisterInfoByName("rdx", 0);
677
678
RegisterValue r3_value, rdx_value;
679
reg_ctx_sp->ReadRegister(r3_info, r3_value);
680
reg_ctx_sp->ReadRegister(rdx_info, rdx_value);
681
682
DataExtractor r3_data, rdx_data;
683
684
r3_value.GetData(r3_data);
685
rdx_value.GetData(rdx_data);
686
687
uint32_t integer_bytes =
688
0; // Tracks how much of the r3/rds registers we've consumed so far
689
690
const uint32_t num_children = return_compiler_type.GetNumFields();
691
692
// Since we are in the small struct regime, assume we are not in memory.
693
is_memory = false;
694
695
for (uint32_t idx = 0; idx < num_children; idx++) {
696
std::string name;
697
uint64_t field_bit_offset = 0;
698
bool is_signed;
699
bool is_complex;
700
uint32_t count;
701
702
CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(
703
idx, name, &field_bit_offset, nullptr, nullptr);
704
std::optional<uint64_t> field_bit_width =
705
field_compiler_type.GetBitSize(&thread);
706
if (!field_bit_width)
707
return return_valobj_sp;
708
709
// If there are any unaligned fields, this is stored in memory.
710
if (field_bit_offset % *field_bit_width != 0) {
711
is_memory = true;
712
break;
713
}
714
715
uint32_t field_byte_width = *field_bit_width / 8;
716
uint32_t field_byte_offset = field_bit_offset / 8;
717
718
DataExtractor *copy_from_extractor = nullptr;
719
uint32_t copy_from_offset = 0;
720
721
if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
722
field_compiler_type.IsPointerType()) {
723
if (integer_bytes < 8) {
724
if (integer_bytes + field_byte_width <= 8) {
725
// This is in RAX, copy from register to our result structure:
726
copy_from_extractor = &r3_data;
727
copy_from_offset = integer_bytes;
728
integer_bytes += field_byte_width;
729
} else {
730
// The next field wouldn't fit in the remaining space, so we
731
// pushed it to rdx.
732
copy_from_extractor = &rdx_data;
733
copy_from_offset = 0;
734
integer_bytes = 8 + field_byte_width;
735
}
736
} else if (integer_bytes + field_byte_width <= 16) {
737
copy_from_extractor = &rdx_data;
738
copy_from_offset = integer_bytes - 8;
739
integer_bytes += field_byte_width;
740
} else {
741
// The last field didn't fit. I can't see how that would happen
742
// w/o the overall size being greater than 16 bytes. For now,
743
// return a nullptr return value object.
744
return return_valobj_sp;
745
}
746
} else if (field_compiler_type.IsFloatingPointType(count, is_complex)) {
747
// Structs with long doubles are always passed in memory.
748
if (*field_bit_width == 128) {
749
is_memory = true;
750
break;
751
} else if (*field_bit_width == 64) {
752
copy_from_offset = 0;
753
} else if (*field_bit_width == 32) {
754
// This one is kind of complicated. If we are in an "eightbyte"
755
// with another float, we'll be stuffed into an xmm register with
756
// it. If we are in an "eightbyte" with one or more ints, then we
757
// will be stuffed into the appropriate GPR with them.
758
bool in_gpr;
759
if (field_byte_offset % 8 == 0) {
760
// We are at the beginning of one of the eightbytes, so check the
761
// next element (if any)
762
if (idx == num_children - 1)
763
in_gpr = false;
764
else {
765
uint64_t next_field_bit_offset = 0;
766
CompilerType next_field_compiler_type =
767
return_compiler_type.GetFieldAtIndex(idx + 1, name,
768
&next_field_bit_offset,
769
nullptr, nullptr);
770
if (next_field_compiler_type.IsIntegerOrEnumerationType(
771
is_signed))
772
in_gpr = true;
773
else {
774
copy_from_offset = 0;
775
in_gpr = false;
776
}
777
}
778
} else if (field_byte_offset % 4 == 0) {
779
// We are inside of an eightbyte, so see if the field before us
780
// is floating point: This could happen if somebody put padding
781
// in the structure.
782
if (idx == 0)
783
in_gpr = false;
784
else {
785
uint64_t prev_field_bit_offset = 0;
786
CompilerType prev_field_compiler_type =
787
return_compiler_type.GetFieldAtIndex(idx - 1, name,
788
&prev_field_bit_offset,
789
nullptr, nullptr);
790
if (prev_field_compiler_type.IsIntegerOrEnumerationType(
791
is_signed))
792
in_gpr = true;
793
else {
794
copy_from_offset = 4;
795
in_gpr = false;
796
}
797
}
798
} else {
799
is_memory = true;
800
continue;
801
}
802
803
// Okay, we've figured out whether we are in GPR or XMM, now figure
804
// out which one.
805
if (in_gpr) {
806
if (integer_bytes < 8) {
807
// This is in RAX, copy from register to our result structure:
808
copy_from_extractor = &r3_data;
809
copy_from_offset = integer_bytes;
810
integer_bytes += field_byte_width;
811
} else {
812
copy_from_extractor = &rdx_data;
813
copy_from_offset = integer_bytes - 8;
814
integer_bytes += field_byte_width;
815
}
816
}
817
}
818
}
819
820
// These two tests are just sanity checks. If I somehow get the type
821
// calculation wrong above it is better to just return nothing than to
822
// assert or crash.
823
if (!copy_from_extractor)
824
return return_valobj_sp;
825
if (copy_from_offset + field_byte_width >
826
copy_from_extractor->GetByteSize())
827
return return_valobj_sp;
828
829
copy_from_extractor->CopyByteOrderedData(
830
copy_from_offset, field_byte_width,
831
data_sp->GetBytes() + field_byte_offset, field_byte_width,
832
target_byte_order);
833
}
834
835
if (!is_memory) {
836
// The result is in our data buffer. Let's make a variable object out
837
// of it:
838
return_valobj_sp = ValueObjectConstResult::Create(
839
&thread, return_compiler_type, ConstString(""), return_ext);
840
}
841
}
842
843
// FIXME: This is just taking a guess, r3 may very well no longer hold the
844
// return storage location.
845
// If we are going to do this right, when we make a new frame we should
846
// check to see if it uses a memory return, and if we are at the first
847
// instruction and if so stash away the return location. Then we would
848
// only return the memory return value if we know it is valid.
849
850
if (is_memory) {
851
unsigned r3_id =
852
reg_ctx_sp->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB];
853
lldb::addr_t storage_addr =
854
(uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id,
855
0);
856
return_valobj_sp = ValueObjectMemory::Create(
857
&thread, "", Address(storage_addr, nullptr), return_compiler_type);
858
}
859
}
860
861
return return_valobj_sp;
862
}
863
864
bool ABISysV_ppc::CreateFunctionEntryUnwindPlan(UnwindPlan &unwind_plan) {
865
unwind_plan.Clear();
866
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
867
868
uint32_t lr_reg_num = dwarf_lr;
869
uint32_t sp_reg_num = dwarf_r1;
870
uint32_t pc_reg_num = dwarf_pc;
871
872
UnwindPlan::RowSP row(new UnwindPlan::Row);
873
874
// Our Call Frame Address is the stack pointer value
875
row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 0);
876
877
// The previous PC is in the LR
878
row->SetRegisterLocationToRegister(pc_reg_num, lr_reg_num, true);
879
unwind_plan.AppendRow(row);
880
881
// All other registers are the same.
882
883
unwind_plan.SetSourceName("ppc at-func-entry default");
884
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
885
886
return true;
887
}
888
889
bool ABISysV_ppc::CreateDefaultUnwindPlan(UnwindPlan &unwind_plan) {
890
unwind_plan.Clear();
891
unwind_plan.SetRegisterKind(eRegisterKindDWARF);
892
893
uint32_t sp_reg_num = dwarf_r1;
894
uint32_t pc_reg_num = dwarf_lr;
895
896
UnwindPlan::RowSP row(new UnwindPlan::Row);
897
898
const int32_t ptr_size = 4;
899
row->SetUnspecifiedRegistersAreUndefined(true);
900
row->GetCFAValue().SetIsRegisterDereferenced(sp_reg_num);
901
902
row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * 1, true);
903
row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
904
905
unwind_plan.AppendRow(row);
906
unwind_plan.SetSourceName("ppc default unwind plan");
907
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
908
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
909
unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
910
unwind_plan.SetReturnAddressRegister(dwarf_lr);
911
return true;
912
}
913
914
bool ABISysV_ppc::RegisterIsVolatile(const RegisterInfo *reg_info) {
915
return !RegisterIsCalleeSaved(reg_info);
916
}
917
918
// See "Register Usage" in the
919
// "System V Application Binary Interface"
920
// "64-bit PowerPC ELF Application Binary Interface Supplement" current version
921
// is 1.9 released 2004 at http://refspecs.linuxfoundation.org/ELF/ppc/PPC-
922
// elf64abi-1.9.pdf
923
924
bool ABISysV_ppc::RegisterIsCalleeSaved(const RegisterInfo *reg_info) {
925
if (reg_info) {
926
// Preserved registers are :
927
// r1,r2,r13-r31
928
// f14-f31 (not yet)
929
// v20-v31 (not yet)
930
// vrsave (not yet)
931
932
const char *name = reg_info->name;
933
if (name[0] == 'r') {
934
if ((name[1] == '1' || name[1] == '2') && name[2] == '\0')
935
return true;
936
if (name[1] == '1' && name[2] > '2')
937
return true;
938
if ((name[1] == '2' || name[1] == '3') && name[2] != '\0')
939
return true;
940
}
941
942
if (name[0] == 'f' && name[1] >= '0' && name[1] <= '9') {
943
if (name[3] == '1' && name[4] >= '4')
944
return true;
945
if ((name[3] == '2' || name[3] == '3') && name[4] != '\0')
946
return true;
947
}
948
949
if (name[0] == 's' && name[1] == 'p' && name[2] == '\0') // sp
950
return true;
951
if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0') // fp
952
return true;
953
if (name[0] == 'p' && name[1] == 'c' && name[2] == '\0') // pc
954
return true;
955
}
956
return false;
957
}
958
959
void ABISysV_ppc::Initialize() {
960
PluginManager::RegisterPlugin(GetPluginNameStatic(),
961
"System V ABI for ppc targets", CreateInstance);
962
}
963
964
void ABISysV_ppc::Terminate() {
965
PluginManager::UnregisterPlugin(CreateInstance);
966
}
967
968