Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lldb/source/Plugins/ExpressionParser/Clang/ClangExpressionParser.cpp
39648 views
1
//===-- ClangExpressionParser.cpp -----------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "clang/AST/ASTContext.h"
10
#include "clang/AST/ASTDiagnostic.h"
11
#include "clang/AST/ExternalASTSource.h"
12
#include "clang/AST/PrettyPrinter.h"
13
#include "clang/Basic/Builtins.h"
14
#include "clang/Basic/DiagnosticIDs.h"
15
#include "clang/Basic/SourceLocation.h"
16
#include "clang/Basic/TargetInfo.h"
17
#include "clang/Basic/Version.h"
18
#include "clang/CodeGen/CodeGenAction.h"
19
#include "clang/CodeGen/ModuleBuilder.h"
20
#include "clang/Edit/Commit.h"
21
#include "clang/Edit/EditedSource.h"
22
#include "clang/Edit/EditsReceiver.h"
23
#include "clang/Frontend/CompilerInstance.h"
24
#include "clang/Frontend/CompilerInvocation.h"
25
#include "clang/Frontend/FrontendActions.h"
26
#include "clang/Frontend/FrontendDiagnostic.h"
27
#include "clang/Frontend/FrontendPluginRegistry.h"
28
#include "clang/Frontend/TextDiagnosticBuffer.h"
29
#include "clang/Frontend/TextDiagnosticPrinter.h"
30
#include "clang/Lex/Preprocessor.h"
31
#include "clang/Parse/ParseAST.h"
32
#include "clang/Rewrite/Core/Rewriter.h"
33
#include "clang/Rewrite/Frontend/FrontendActions.h"
34
#include "clang/Sema/CodeCompleteConsumer.h"
35
#include "clang/Sema/Sema.h"
36
#include "clang/Sema/SemaConsumer.h"
37
38
#include "llvm/ADT/StringRef.h"
39
#include "llvm/ExecutionEngine/ExecutionEngine.h"
40
#include "llvm/Support/CrashRecoveryContext.h"
41
#include "llvm/Support/Debug.h"
42
#include "llvm/Support/FileSystem.h"
43
#include "llvm/Support/TargetSelect.h"
44
45
#include "llvm/IR/LLVMContext.h"
46
#include "llvm/IR/Module.h"
47
#include "llvm/Support/DynamicLibrary.h"
48
#include "llvm/Support/ErrorHandling.h"
49
#include "llvm/Support/MemoryBuffer.h"
50
#include "llvm/Support/Signals.h"
51
#include "llvm/TargetParser/Host.h"
52
53
#include "ClangDiagnostic.h"
54
#include "ClangExpressionParser.h"
55
#include "ClangUserExpression.h"
56
57
#include "ASTUtils.h"
58
#include "ClangASTSource.h"
59
#include "ClangDiagnostic.h"
60
#include "ClangExpressionDeclMap.h"
61
#include "ClangExpressionHelper.h"
62
#include "ClangExpressionParser.h"
63
#include "ClangHost.h"
64
#include "ClangModulesDeclVendor.h"
65
#include "ClangPersistentVariables.h"
66
#include "IRDynamicChecks.h"
67
#include "IRForTarget.h"
68
#include "ModuleDependencyCollector.h"
69
70
#include "Plugins/TypeSystem/Clang/TypeSystemClang.h"
71
#include "lldb/Core/Debugger.h"
72
#include "lldb/Core/Disassembler.h"
73
#include "lldb/Core/Module.h"
74
#include "lldb/Expression/IRExecutionUnit.h"
75
#include "lldb/Expression/IRInterpreter.h"
76
#include "lldb/Host/File.h"
77
#include "lldb/Host/HostInfo.h"
78
#include "lldb/Symbol/SymbolVendor.h"
79
#include "lldb/Target/ExecutionContext.h"
80
#include "lldb/Target/Language.h"
81
#include "lldb/Target/Process.h"
82
#include "lldb/Target/Target.h"
83
#include "lldb/Target/ThreadPlanCallFunction.h"
84
#include "lldb/Utility/DataBufferHeap.h"
85
#include "lldb/Utility/LLDBAssert.h"
86
#include "lldb/Utility/LLDBLog.h"
87
#include "lldb/Utility/Log.h"
88
#include "lldb/Utility/Stream.h"
89
#include "lldb/Utility/StreamString.h"
90
#include "lldb/Utility/StringList.h"
91
92
#include "Plugins/LanguageRuntime/ObjC/ObjCLanguageRuntime.h"
93
94
#include <cctype>
95
#include <memory>
96
#include <optional>
97
98
using namespace clang;
99
using namespace llvm;
100
using namespace lldb_private;
101
102
//===----------------------------------------------------------------------===//
103
// Utility Methods for Clang
104
//===----------------------------------------------------------------------===//
105
106
class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks {
107
ClangModulesDeclVendor &m_decl_vendor;
108
ClangPersistentVariables &m_persistent_vars;
109
clang::SourceManager &m_source_mgr;
110
StreamString m_error_stream;
111
bool m_has_errors = false;
112
113
public:
114
LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor,
115
ClangPersistentVariables &persistent_vars,
116
clang::SourceManager &source_mgr)
117
: m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars),
118
m_source_mgr(source_mgr) {}
119
120
void moduleImport(SourceLocation import_location, clang::ModuleIdPath path,
121
const clang::Module * /*null*/) override {
122
// Ignore modules that are imported in the wrapper code as these are not
123
// loaded by the user.
124
llvm::StringRef filename =
125
m_source_mgr.getPresumedLoc(import_location).getFilename();
126
if (filename == ClangExpressionSourceCode::g_prefix_file_name)
127
return;
128
129
SourceModule module;
130
131
for (const std::pair<IdentifierInfo *, SourceLocation> &component : path)
132
module.path.push_back(ConstString(component.first->getName()));
133
134
StreamString error_stream;
135
136
ClangModulesDeclVendor::ModuleVector exported_modules;
137
if (!m_decl_vendor.AddModule(module, &exported_modules, m_error_stream))
138
m_has_errors = true;
139
140
for (ClangModulesDeclVendor::ModuleID module : exported_modules)
141
m_persistent_vars.AddHandLoadedClangModule(module);
142
}
143
144
bool hasErrors() { return m_has_errors; }
145
146
llvm::StringRef getErrorString() { return m_error_stream.GetString(); }
147
};
148
149
static void AddAllFixIts(ClangDiagnostic *diag, const clang::Diagnostic &Info) {
150
for (auto &fix_it : Info.getFixItHints()) {
151
if (fix_it.isNull())
152
continue;
153
diag->AddFixitHint(fix_it);
154
}
155
}
156
157
class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer {
158
public:
159
ClangDiagnosticManagerAdapter(DiagnosticOptions &opts) {
160
DiagnosticOptions *options = new DiagnosticOptions(opts);
161
options->ShowPresumedLoc = true;
162
options->ShowLevel = false;
163
m_os = std::make_shared<llvm::raw_string_ostream>(m_output);
164
m_passthrough =
165
std::make_shared<clang::TextDiagnosticPrinter>(*m_os, options);
166
}
167
168
void ResetManager(DiagnosticManager *manager = nullptr) {
169
m_manager = manager;
170
}
171
172
/// Returns the last ClangDiagnostic message that the DiagnosticManager
173
/// received or a nullptr if the DiagnosticMangager hasn't seen any
174
/// Clang diagnostics yet.
175
ClangDiagnostic *MaybeGetLastClangDiag() const {
176
if (m_manager->Diagnostics().empty())
177
return nullptr;
178
lldb_private::Diagnostic *diag = m_manager->Diagnostics().back().get();
179
ClangDiagnostic *clang_diag = dyn_cast<ClangDiagnostic>(diag);
180
return clang_diag;
181
}
182
183
void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
184
const clang::Diagnostic &Info) override {
185
if (!m_manager) {
186
// We have no DiagnosticManager before/after parsing but we still could
187
// receive diagnostics (e.g., by the ASTImporter failing to copy decls
188
// when we move the expression result ot the ScratchASTContext). Let's at
189
// least log these diagnostics until we find a way to properly render
190
// them and display them to the user.
191
Log *log = GetLog(LLDBLog::Expressions);
192
if (log) {
193
llvm::SmallVector<char, 32> diag_str;
194
Info.FormatDiagnostic(diag_str);
195
diag_str.push_back('\0');
196
const char *plain_diag = diag_str.data();
197
LLDB_LOG(log, "Received diagnostic outside parsing: {0}", plain_diag);
198
}
199
return;
200
}
201
202
// Update error/warning counters.
203
DiagnosticConsumer::HandleDiagnostic(DiagLevel, Info);
204
205
// Render diagnostic message to m_output.
206
m_output.clear();
207
m_passthrough->HandleDiagnostic(DiagLevel, Info);
208
m_os->flush();
209
210
lldb::Severity severity;
211
bool make_new_diagnostic = true;
212
213
switch (DiagLevel) {
214
case DiagnosticsEngine::Level::Fatal:
215
case DiagnosticsEngine::Level::Error:
216
severity = lldb::eSeverityError;
217
break;
218
case DiagnosticsEngine::Level::Warning:
219
severity = lldb::eSeverityWarning;
220
break;
221
case DiagnosticsEngine::Level::Remark:
222
case DiagnosticsEngine::Level::Ignored:
223
severity = lldb::eSeverityInfo;
224
break;
225
case DiagnosticsEngine::Level::Note:
226
m_manager->AppendMessageToDiagnostic(m_output);
227
make_new_diagnostic = false;
228
229
// 'note:' diagnostics for errors and warnings can also contain Fix-Its.
230
// We add these Fix-Its to the last error diagnostic to make sure
231
// that we later have all Fix-Its related to an 'error' diagnostic when
232
// we apply them to the user expression.
233
auto *clang_diag = MaybeGetLastClangDiag();
234
// If we don't have a previous diagnostic there is nothing to do.
235
// If the previous diagnostic already has its own Fix-Its, assume that
236
// the 'note:' Fix-It is just an alternative way to solve the issue and
237
// ignore these Fix-Its.
238
if (!clang_diag || clang_diag->HasFixIts())
239
break;
240
// Ignore all Fix-Its that are not associated with an error.
241
if (clang_diag->GetSeverity() != lldb::eSeverityError)
242
break;
243
AddAllFixIts(clang_diag, Info);
244
break;
245
}
246
if (make_new_diagnostic) {
247
// ClangDiagnostic messages are expected to have no whitespace/newlines
248
// around them.
249
std::string stripped_output =
250
std::string(llvm::StringRef(m_output).trim());
251
252
auto new_diagnostic = std::make_unique<ClangDiagnostic>(
253
stripped_output, severity, Info.getID());
254
255
// Don't store away warning fixits, since the compiler doesn't have
256
// enough context in an expression for the warning to be useful.
257
// FIXME: Should we try to filter out FixIts that apply to our generated
258
// code, and not the user's expression?
259
if (severity == lldb::eSeverityError)
260
AddAllFixIts(new_diagnostic.get(), Info);
261
262
m_manager->AddDiagnostic(std::move(new_diagnostic));
263
}
264
}
265
266
void BeginSourceFile(const LangOptions &LO, const Preprocessor *PP) override {
267
m_passthrough->BeginSourceFile(LO, PP);
268
}
269
270
void EndSourceFile() override { m_passthrough->EndSourceFile(); }
271
272
private:
273
DiagnosticManager *m_manager = nullptr;
274
std::shared_ptr<clang::TextDiagnosticPrinter> m_passthrough;
275
/// Output stream of m_passthrough.
276
std::shared_ptr<llvm::raw_string_ostream> m_os;
277
/// Output string filled by m_os.
278
std::string m_output;
279
};
280
281
static void SetupModuleHeaderPaths(CompilerInstance *compiler,
282
std::vector<std::string> include_directories,
283
lldb::TargetSP target_sp) {
284
Log *log = GetLog(LLDBLog::Expressions);
285
286
HeaderSearchOptions &search_opts = compiler->getHeaderSearchOpts();
287
288
for (const std::string &dir : include_directories) {
289
search_opts.AddPath(dir, frontend::System, false, true);
290
LLDB_LOG(log, "Added user include dir: {0}", dir);
291
}
292
293
llvm::SmallString<128> module_cache;
294
const auto &props = ModuleList::GetGlobalModuleListProperties();
295
props.GetClangModulesCachePath().GetPath(module_cache);
296
search_opts.ModuleCachePath = std::string(module_cache.str());
297
LLDB_LOG(log, "Using module cache path: {0}", module_cache.c_str());
298
299
search_opts.ResourceDir = GetClangResourceDir().GetPath();
300
301
search_opts.ImplicitModuleMaps = true;
302
}
303
304
/// Iff the given identifier is a C++ keyword, remove it from the
305
/// identifier table (i.e., make the token a normal identifier).
306
static void RemoveCppKeyword(IdentifierTable &idents, llvm::StringRef token) {
307
// FIXME: 'using' is used by LLDB for local variables, so we can't remove
308
// this keyword without breaking this functionality.
309
if (token == "using")
310
return;
311
// GCC's '__null' is used by LLDB to define NULL/Nil/nil.
312
if (token == "__null")
313
return;
314
315
LangOptions cpp_lang_opts;
316
cpp_lang_opts.CPlusPlus = true;
317
cpp_lang_opts.CPlusPlus11 = true;
318
cpp_lang_opts.CPlusPlus20 = true;
319
320
clang::IdentifierInfo &ii = idents.get(token);
321
// The identifier has to be a C++-exclusive keyword. if not, then there is
322
// nothing to do.
323
if (!ii.isCPlusPlusKeyword(cpp_lang_opts))
324
return;
325
// If the token is already an identifier, then there is nothing to do.
326
if (ii.getTokenID() == clang::tok::identifier)
327
return;
328
// Otherwise the token is a C++ keyword, so turn it back into a normal
329
// identifier.
330
ii.revertTokenIDToIdentifier();
331
}
332
333
/// Remove all C++ keywords from the given identifier table.
334
static void RemoveAllCppKeywords(IdentifierTable &idents) {
335
#define KEYWORD(NAME, FLAGS) RemoveCppKeyword(idents, llvm::StringRef(#NAME));
336
#include "clang/Basic/TokenKinds.def"
337
}
338
339
/// Configures Clang diagnostics for the expression parser.
340
static void SetupDefaultClangDiagnostics(CompilerInstance &compiler) {
341
// List of Clang warning groups that are not useful when parsing expressions.
342
const std::vector<const char *> groupsToIgnore = {
343
"unused-value",
344
"odr",
345
"unused-getter-return-value",
346
};
347
for (const char *group : groupsToIgnore) {
348
compiler.getDiagnostics().setSeverityForGroup(
349
clang::diag::Flavor::WarningOrError, group,
350
clang::diag::Severity::Ignored, SourceLocation());
351
}
352
}
353
354
//===----------------------------------------------------------------------===//
355
// Implementation of ClangExpressionParser
356
//===----------------------------------------------------------------------===//
357
358
ClangExpressionParser::ClangExpressionParser(
359
ExecutionContextScope *exe_scope, Expression &expr,
360
bool generate_debug_info, std::vector<std::string> include_directories,
361
std::string filename)
362
: ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(),
363
m_pp_callbacks(nullptr),
364
m_include_directories(std::move(include_directories)),
365
m_filename(std::move(filename)) {
366
Log *log = GetLog(LLDBLog::Expressions);
367
368
// We can't compile expressions without a target. So if the exe_scope is
369
// null or doesn't have a target, then we just need to get out of here. I'll
370
// lldbassert and not make any of the compiler objects since
371
// I can't return errors directly from the constructor. Further calls will
372
// check if the compiler was made and
373
// bag out if it wasn't.
374
375
if (!exe_scope) {
376
lldbassert(exe_scope &&
377
"Can't make an expression parser with a null scope.");
378
return;
379
}
380
381
lldb::TargetSP target_sp;
382
target_sp = exe_scope->CalculateTarget();
383
if (!target_sp) {
384
lldbassert(target_sp.get() &&
385
"Can't make an expression parser with a null target.");
386
return;
387
}
388
389
// 1. Create a new compiler instance.
390
m_compiler = std::make_unique<CompilerInstance>();
391
392
// Make sure clang uses the same VFS as LLDB.
393
m_compiler->createFileManager(FileSystem::Instance().GetVirtualFileSystem());
394
395
// Defaults to lldb::eLanguageTypeUnknown.
396
lldb::LanguageType frame_lang = expr.Language().AsLanguageType();
397
398
std::string abi;
399
ArchSpec target_arch;
400
target_arch = target_sp->GetArchitecture();
401
402
const auto target_machine = target_arch.GetMachine();
403
404
// If the expression is being evaluated in the context of an existing stack
405
// frame, we introspect to see if the language runtime is available.
406
407
lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame();
408
lldb::ProcessSP process_sp = exe_scope->CalculateProcess();
409
410
// Make sure the user hasn't provided a preferred execution language with
411
// `expression --language X -- ...`
412
if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown)
413
frame_lang = frame_sp->GetLanguage().AsLanguageType();
414
415
if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) {
416
LLDB_LOGF(log, "Frame has language of type %s",
417
Language::GetNameForLanguageType(frame_lang));
418
}
419
420
// 2. Configure the compiler with a set of default options that are
421
// appropriate for most situations.
422
if (target_arch.IsValid()) {
423
std::string triple = target_arch.GetTriple().str();
424
m_compiler->getTargetOpts().Triple = triple;
425
LLDB_LOGF(log, "Using %s as the target triple",
426
m_compiler->getTargetOpts().Triple.c_str());
427
} else {
428
// If we get here we don't have a valid target and just have to guess.
429
// Sometimes this will be ok to just use the host target triple (when we
430
// evaluate say "2+3", but other expressions like breakpoint conditions and
431
// other things that _are_ target specific really shouldn't just be using
432
// the host triple. In such a case the language runtime should expose an
433
// overridden options set (3), below.
434
m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple();
435
LLDB_LOGF(log, "Using default target triple of %s",
436
m_compiler->getTargetOpts().Triple.c_str());
437
}
438
// Now add some special fixes for known architectures: Any arm32 iOS
439
// environment, but not on arm64
440
if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos &&
441
m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos &&
442
m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) {
443
m_compiler->getTargetOpts().ABI = "apcs-gnu";
444
}
445
// Supported subsets of x86
446
if (target_machine == llvm::Triple::x86 ||
447
target_machine == llvm::Triple::x86_64) {
448
m_compiler->getTargetOpts().FeaturesAsWritten.push_back("+sse");
449
m_compiler->getTargetOpts().FeaturesAsWritten.push_back("+sse2");
450
}
451
452
// Set the target CPU to generate code for. This will be empty for any CPU
453
// that doesn't really need to make a special
454
// CPU string.
455
m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU();
456
457
// Set the target ABI
458
abi = GetClangTargetABI(target_arch);
459
if (!abi.empty())
460
m_compiler->getTargetOpts().ABI = abi;
461
462
// 3. Create and install the target on the compiler.
463
m_compiler->createDiagnostics();
464
// Limit the number of error diagnostics we emit.
465
// A value of 0 means no limit for both LLDB and Clang.
466
m_compiler->getDiagnostics().setErrorLimit(target_sp->GetExprErrorLimit());
467
468
auto target_info = TargetInfo::CreateTargetInfo(
469
m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts);
470
if (log) {
471
LLDB_LOGF(log, "Target datalayout string: '%s'",
472
target_info->getDataLayoutString());
473
LLDB_LOGF(log, "Target ABI: '%s'", target_info->getABI().str().c_str());
474
LLDB_LOGF(log, "Target vector alignment: %d",
475
target_info->getMaxVectorAlign());
476
}
477
m_compiler->setTarget(target_info);
478
479
assert(m_compiler->hasTarget());
480
481
// 4. Set language options.
482
lldb::LanguageType language = expr.Language().AsLanguageType();
483
LangOptions &lang_opts = m_compiler->getLangOpts();
484
485
switch (language) {
486
case lldb::eLanguageTypeC:
487
case lldb::eLanguageTypeC89:
488
case lldb::eLanguageTypeC99:
489
case lldb::eLanguageTypeC11:
490
// FIXME: the following language option is a temporary workaround,
491
// to "ask for C, get C++."
492
// For now, the expression parser must use C++ anytime the language is a C
493
// family language, because the expression parser uses features of C++ to
494
// capture values.
495
lang_opts.CPlusPlus = true;
496
break;
497
case lldb::eLanguageTypeObjC:
498
lang_opts.ObjC = true;
499
// FIXME: the following language option is a temporary workaround,
500
// to "ask for ObjC, get ObjC++" (see comment above).
501
lang_opts.CPlusPlus = true;
502
503
// Clang now sets as default C++14 as the default standard (with
504
// GNU extensions), so we do the same here to avoid mismatches that
505
// cause compiler error when evaluating expressions (e.g. nullptr not found
506
// as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see
507
// two lines below) so we decide to be consistent with that, but this could
508
// be re-evaluated in the future.
509
lang_opts.CPlusPlus11 = true;
510
break;
511
case lldb::eLanguageTypeC_plus_plus_20:
512
lang_opts.CPlusPlus20 = true;
513
[[fallthrough]];
514
case lldb::eLanguageTypeC_plus_plus_17:
515
// FIXME: add a separate case for CPlusPlus14. Currently folded into C++17
516
// because C++14 is the default standard for Clang but enabling CPlusPlus14
517
// expression evaluatino doesn't pass the test-suite cleanly.
518
lang_opts.CPlusPlus14 = true;
519
lang_opts.CPlusPlus17 = true;
520
[[fallthrough]];
521
case lldb::eLanguageTypeC_plus_plus:
522
case lldb::eLanguageTypeC_plus_plus_11:
523
case lldb::eLanguageTypeC_plus_plus_14:
524
lang_opts.CPlusPlus11 = true;
525
m_compiler->getHeaderSearchOpts().UseLibcxx = true;
526
[[fallthrough]];
527
case lldb::eLanguageTypeC_plus_plus_03:
528
lang_opts.CPlusPlus = true;
529
if (process_sp
530
// We're stopped in a frame without debug-info. The user probably
531
// intends to make global queries (which should include Objective-C).
532
&& !(frame_sp && frame_sp->HasDebugInformation()))
533
lang_opts.ObjC =
534
process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr;
535
break;
536
case lldb::eLanguageTypeObjC_plus_plus:
537
case lldb::eLanguageTypeUnknown:
538
default:
539
lang_opts.ObjC = true;
540
lang_opts.CPlusPlus = true;
541
lang_opts.CPlusPlus11 = true;
542
m_compiler->getHeaderSearchOpts().UseLibcxx = true;
543
break;
544
}
545
546
lang_opts.Bool = true;
547
lang_opts.WChar = true;
548
lang_opts.Blocks = true;
549
lang_opts.DebuggerSupport =
550
true; // Features specifically for debugger clients
551
if (expr.DesiredResultType() == Expression::eResultTypeId)
552
lang_opts.DebuggerCastResultToId = true;
553
554
lang_opts.CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str())
555
.CharIsSignedByDefault();
556
557
// Spell checking is a nice feature, but it ends up completing a lot of types
558
// that we didn't strictly speaking need to complete. As a result, we spend a
559
// long time parsing and importing debug information.
560
lang_opts.SpellChecking = false;
561
562
auto *clang_expr = dyn_cast<ClangUserExpression>(&m_expr);
563
if (clang_expr && clang_expr->DidImportCxxModules()) {
564
LLDB_LOG(log, "Adding lang options for importing C++ modules");
565
566
lang_opts.Modules = true;
567
// We want to implicitly build modules.
568
lang_opts.ImplicitModules = true;
569
// To automatically import all submodules when we import 'std'.
570
lang_opts.ModulesLocalVisibility = false;
571
572
// We use the @import statements, so we need this:
573
// FIXME: We could use the modules-ts, but that currently doesn't work.
574
lang_opts.ObjC = true;
575
576
// Options we need to parse libc++ code successfully.
577
// FIXME: We should ask the driver for the appropriate default flags.
578
lang_opts.GNUMode = true;
579
lang_opts.GNUKeywords = true;
580
lang_opts.CPlusPlus11 = true;
581
lang_opts.BuiltinHeadersInSystemModules = true;
582
583
// The Darwin libc expects this macro to be set.
584
lang_opts.GNUCVersion = 40201;
585
586
SetupModuleHeaderPaths(m_compiler.get(), m_include_directories,
587
target_sp);
588
}
589
590
if (process_sp && lang_opts.ObjC) {
591
if (auto *runtime = ObjCLanguageRuntime::Get(*process_sp)) {
592
switch (runtime->GetRuntimeVersion()) {
593
case ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2:
594
lang_opts.ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7));
595
break;
596
case ObjCLanguageRuntime::ObjCRuntimeVersions::eObjC_VersionUnknown:
597
case ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V1:
598
lang_opts.ObjCRuntime.set(ObjCRuntime::FragileMacOSX,
599
VersionTuple(10, 7));
600
break;
601
case ObjCLanguageRuntime::ObjCRuntimeVersions::eGNUstep_libobjc2:
602
lang_opts.ObjCRuntime.set(ObjCRuntime::GNUstep, VersionTuple(2, 0));
603
break;
604
}
605
606
if (runtime->HasNewLiteralsAndIndexing())
607
lang_opts.DebuggerObjCLiteral = true;
608
}
609
}
610
611
lang_opts.ThreadsafeStatics = false;
612
lang_opts.AccessControl = false; // Debuggers get universal access
613
lang_opts.DollarIdents = true; // $ indicates a persistent variable name
614
// We enable all builtin functions beside the builtins from libc/libm (e.g.
615
// 'fopen'). Those libc functions are already correctly handled by LLDB, and
616
// additionally enabling them as expandable builtins is breaking Clang.
617
lang_opts.NoBuiltin = true;
618
619
// Set CodeGen options
620
m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
621
m_compiler->getCodeGenOpts().InstrumentFunctions = false;
622
m_compiler->getCodeGenOpts().setFramePointer(
623
CodeGenOptions::FramePointerKind::All);
624
if (generate_debug_info)
625
m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo);
626
else
627
m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo);
628
629
// Disable some warnings.
630
SetupDefaultClangDiagnostics(*m_compiler);
631
632
// Inform the target of the language options
633
//
634
// FIXME: We shouldn't need to do this, the target should be immutable once
635
// created. This complexity should be lifted elsewhere.
636
m_compiler->getTarget().adjust(m_compiler->getDiagnostics(),
637
m_compiler->getLangOpts());
638
639
// 5. Set up the diagnostic buffer for reporting errors
640
641
auto diag_mgr = new ClangDiagnosticManagerAdapter(
642
m_compiler->getDiagnostics().getDiagnosticOptions());
643
m_compiler->getDiagnostics().setClient(diag_mgr);
644
645
// 6. Set up the source management objects inside the compiler
646
m_compiler->createFileManager();
647
if (!m_compiler->hasSourceManager())
648
m_compiler->createSourceManager(m_compiler->getFileManager());
649
m_compiler->createPreprocessor(TU_Complete);
650
651
switch (language) {
652
case lldb::eLanguageTypeC:
653
case lldb::eLanguageTypeC89:
654
case lldb::eLanguageTypeC99:
655
case lldb::eLanguageTypeC11:
656
case lldb::eLanguageTypeObjC:
657
// This is not a C++ expression but we enabled C++ as explained above.
658
// Remove all C++ keywords from the PP so that the user can still use
659
// variables that have C++ keywords as names (e.g. 'int template;').
660
RemoveAllCppKeywords(m_compiler->getPreprocessor().getIdentifierTable());
661
break;
662
default:
663
break;
664
}
665
666
if (auto *clang_persistent_vars = llvm::cast<ClangPersistentVariables>(
667
target_sp->GetPersistentExpressionStateForLanguage(
668
lldb::eLanguageTypeC))) {
669
if (std::shared_ptr<ClangModulesDeclVendor> decl_vendor =
670
clang_persistent_vars->GetClangModulesDeclVendor()) {
671
std::unique_ptr<PPCallbacks> pp_callbacks(
672
new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars,
673
m_compiler->getSourceManager()));
674
m_pp_callbacks =
675
static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get());
676
m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks));
677
}
678
}
679
680
// 7. Most of this we get from the CompilerInstance, but we also want to give
681
// the context an ExternalASTSource.
682
683
auto &PP = m_compiler->getPreprocessor();
684
auto &builtin_context = PP.getBuiltinInfo();
685
builtin_context.initializeBuiltins(PP.getIdentifierTable(),
686
m_compiler->getLangOpts());
687
688
m_compiler->createASTContext();
689
clang::ASTContext &ast_context = m_compiler->getASTContext();
690
691
m_ast_context = std::make_shared<TypeSystemClang>(
692
"Expression ASTContext for '" + m_filename + "'", ast_context);
693
694
std::string module_name("$__lldb_module");
695
696
m_llvm_context = std::make_unique<LLVMContext>();
697
m_code_generator.reset(CreateLLVMCodeGen(
698
m_compiler->getDiagnostics(), module_name,
699
&m_compiler->getVirtualFileSystem(), m_compiler->getHeaderSearchOpts(),
700
m_compiler->getPreprocessorOpts(), m_compiler->getCodeGenOpts(),
701
*m_llvm_context));
702
}
703
704
ClangExpressionParser::~ClangExpressionParser() = default;
705
706
namespace {
707
708
/// \class CodeComplete
709
///
710
/// A code completion consumer for the clang Sema that is responsible for
711
/// creating the completion suggestions when a user requests completion
712
/// of an incomplete `expr` invocation.
713
class CodeComplete : public CodeCompleteConsumer {
714
CodeCompletionTUInfo m_info;
715
716
std::string m_expr;
717
unsigned m_position = 0;
718
/// The printing policy we use when printing declarations for our completion
719
/// descriptions.
720
clang::PrintingPolicy m_desc_policy;
721
722
struct CompletionWithPriority {
723
CompletionResult::Completion completion;
724
/// See CodeCompletionResult::Priority;
725
unsigned Priority;
726
727
/// Establishes a deterministic order in a list of CompletionWithPriority.
728
/// The order returned here is the order in which the completions are
729
/// displayed to the user.
730
bool operator<(const CompletionWithPriority &o) const {
731
// High priority results should come first.
732
if (Priority != o.Priority)
733
return Priority > o.Priority;
734
735
// Identical priority, so just make sure it's a deterministic order.
736
return completion.GetUniqueKey() < o.completion.GetUniqueKey();
737
}
738
};
739
740
/// The stored completions.
741
/// Warning: These are in a non-deterministic order until they are sorted
742
/// and returned back to the caller.
743
std::vector<CompletionWithPriority> m_completions;
744
745
/// Returns true if the given character can be used in an identifier.
746
/// This also returns true for numbers because for completion we usually
747
/// just iterate backwards over iterators.
748
///
749
/// Note: lldb uses '$' in its internal identifiers, so we also allow this.
750
static bool IsIdChar(char c) {
751
return c == '_' || std::isalnum(c) || c == '$';
752
}
753
754
/// Returns true if the given character is used to separate arguments
755
/// in the command line of lldb.
756
static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; }
757
758
/// Drops all tokens in front of the expression that are unrelated for
759
/// the completion of the cmd line. 'unrelated' means here that the token
760
/// is not interested for the lldb completion API result.
761
StringRef dropUnrelatedFrontTokens(StringRef cmd) const {
762
if (cmd.empty())
763
return cmd;
764
765
// If we are at the start of a word, then all tokens are unrelated to
766
// the current completion logic.
767
if (IsTokenSeparator(cmd.back()))
768
return StringRef();
769
770
// Remove all previous tokens from the string as they are unrelated
771
// to completing the current token.
772
StringRef to_remove = cmd;
773
while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) {
774
to_remove = to_remove.drop_back();
775
}
776
cmd = cmd.drop_front(to_remove.size());
777
778
return cmd;
779
}
780
781
/// Removes the last identifier token from the given cmd line.
782
StringRef removeLastToken(StringRef cmd) const {
783
while (!cmd.empty() && IsIdChar(cmd.back())) {
784
cmd = cmd.drop_back();
785
}
786
return cmd;
787
}
788
789
/// Attempts to merge the given completion from the given position into the
790
/// existing command. Returns the completion string that can be returned to
791
/// the lldb completion API.
792
std::string mergeCompletion(StringRef existing, unsigned pos,
793
StringRef completion) const {
794
StringRef existing_command = existing.substr(0, pos);
795
// We rewrite the last token with the completion, so let's drop that
796
// token from the command.
797
existing_command = removeLastToken(existing_command);
798
// We also should remove all previous tokens from the command as they
799
// would otherwise be added to the completion that already has the
800
// completion.
801
existing_command = dropUnrelatedFrontTokens(existing_command);
802
return existing_command.str() + completion.str();
803
}
804
805
public:
806
/// Constructs a CodeComplete consumer that can be attached to a Sema.
807
///
808
/// \param[out] expr
809
/// The whole expression string that we are currently parsing. This
810
/// string needs to be equal to the input the user typed, and NOT the
811
/// final code that Clang is parsing.
812
/// \param[out] position
813
/// The character position of the user cursor in the `expr` parameter.
814
///
815
CodeComplete(clang::LangOptions ops, std::string expr, unsigned position)
816
: CodeCompleteConsumer(CodeCompleteOptions()),
817
m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr),
818
m_position(position), m_desc_policy(ops) {
819
820
// Ensure that the printing policy is producing a description that is as
821
// short as possible.
822
m_desc_policy.SuppressScope = true;
823
m_desc_policy.SuppressTagKeyword = true;
824
m_desc_policy.FullyQualifiedName = false;
825
m_desc_policy.TerseOutput = true;
826
m_desc_policy.IncludeNewlines = false;
827
m_desc_policy.UseVoidForZeroParams = false;
828
m_desc_policy.Bool = true;
829
}
830
831
/// \name Code-completion filtering
832
/// Check if the result should be filtered out.
833
bool isResultFilteredOut(StringRef Filter,
834
CodeCompletionResult Result) override {
835
// This code is mostly copied from CodeCompleteConsumer.
836
switch (Result.Kind) {
837
case CodeCompletionResult::RK_Declaration:
838
return !(
839
Result.Declaration->getIdentifier() &&
840
Result.Declaration->getIdentifier()->getName().starts_with(Filter));
841
case CodeCompletionResult::RK_Keyword:
842
return !StringRef(Result.Keyword).starts_with(Filter);
843
case CodeCompletionResult::RK_Macro:
844
return !Result.Macro->getName().starts_with(Filter);
845
case CodeCompletionResult::RK_Pattern:
846
return !StringRef(Result.Pattern->getAsString()).starts_with(Filter);
847
}
848
// If we trigger this assert or the above switch yields a warning, then
849
// CodeCompletionResult has been enhanced with more kinds of completion
850
// results. Expand the switch above in this case.
851
assert(false && "Unknown completion result type?");
852
// If we reach this, then we should just ignore whatever kind of unknown
853
// result we got back. We probably can't turn it into any kind of useful
854
// completion suggestion with the existing code.
855
return true;
856
}
857
858
private:
859
/// Generate the completion strings for the given CodeCompletionResult.
860
/// Note that this function has to process results that could come in
861
/// non-deterministic order, so this function should have no side effects.
862
/// To make this easier to enforce, this function and all its parameters
863
/// should always be const-qualified.
864
/// \return Returns std::nullopt if no completion should be provided for the
865
/// given CodeCompletionResult.
866
std::optional<CompletionWithPriority>
867
getCompletionForResult(const CodeCompletionResult &R) const {
868
std::string ToInsert;
869
std::string Description;
870
// Handle the different completion kinds that come from the Sema.
871
switch (R.Kind) {
872
case CodeCompletionResult::RK_Declaration: {
873
const NamedDecl *D = R.Declaration;
874
ToInsert = R.Declaration->getNameAsString();
875
// If we have a function decl that has no arguments we want to
876
// complete the empty parantheses for the user. If the function has
877
// arguments, we at least complete the opening bracket.
878
if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) {
879
if (F->getNumParams() == 0)
880
ToInsert += "()";
881
else
882
ToInsert += "(";
883
raw_string_ostream OS(Description);
884
F->print(OS, m_desc_policy, false);
885
OS.flush();
886
} else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
887
Description = V->getType().getAsString(m_desc_policy);
888
} else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) {
889
Description = F->getType().getAsString(m_desc_policy);
890
} else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) {
891
// If we try to complete a namespace, then we can directly append
892
// the '::'.
893
if (!N->isAnonymousNamespace())
894
ToInsert += "::";
895
}
896
break;
897
}
898
case CodeCompletionResult::RK_Keyword:
899
ToInsert = R.Keyword;
900
break;
901
case CodeCompletionResult::RK_Macro:
902
ToInsert = R.Macro->getName().str();
903
break;
904
case CodeCompletionResult::RK_Pattern:
905
ToInsert = R.Pattern->getTypedText();
906
break;
907
}
908
// We also filter some internal lldb identifiers here. The user
909
// shouldn't see these.
910
if (llvm::StringRef(ToInsert).starts_with("$__lldb_"))
911
return std::nullopt;
912
if (ToInsert.empty())
913
return std::nullopt;
914
// Merge the suggested Token into the existing command line to comply
915
// with the kind of result the lldb API expects.
916
std::string CompletionSuggestion =
917
mergeCompletion(m_expr, m_position, ToInsert);
918
919
CompletionResult::Completion completion(CompletionSuggestion, Description,
920
CompletionMode::Normal);
921
return {{completion, R.Priority}};
922
}
923
924
public:
925
/// Adds the completions to the given CompletionRequest.
926
void GetCompletions(CompletionRequest &request) {
927
// Bring m_completions into a deterministic order and pass it on to the
928
// CompletionRequest.
929
llvm::sort(m_completions);
930
931
for (const CompletionWithPriority &C : m_completions)
932
request.AddCompletion(C.completion.GetCompletion(),
933
C.completion.GetDescription(),
934
C.completion.GetMode());
935
}
936
937
/// \name Code-completion callbacks
938
/// Process the finalized code-completion results.
939
void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context,
940
CodeCompletionResult *Results,
941
unsigned NumResults) override {
942
943
// The Sema put the incomplete token we try to complete in here during
944
// lexing, so we need to retrieve it here to know what we are completing.
945
StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter();
946
947
// Iterate over all the results. Filter out results we don't want and
948
// process the rest.
949
for (unsigned I = 0; I != NumResults; ++I) {
950
// Filter the results with the information from the Sema.
951
if (!Filter.empty() && isResultFilteredOut(Filter, Results[I]))
952
continue;
953
954
CodeCompletionResult &R = Results[I];
955
std::optional<CompletionWithPriority> CompletionAndPriority =
956
getCompletionForResult(R);
957
if (!CompletionAndPriority)
958
continue;
959
m_completions.push_back(*CompletionAndPriority);
960
}
961
}
962
963
/// \param S the semantic-analyzer object for which code-completion is being
964
/// done.
965
///
966
/// \param CurrentArg the index of the current argument.
967
///
968
/// \param Candidates an array of overload candidates.
969
///
970
/// \param NumCandidates the number of overload candidates
971
void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
972
OverloadCandidate *Candidates,
973
unsigned NumCandidates,
974
SourceLocation OpenParLoc,
975
bool Braced) override {
976
// At the moment we don't filter out any overloaded candidates.
977
}
978
979
CodeCompletionAllocator &getAllocator() override {
980
return m_info.getAllocator();
981
}
982
983
CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; }
984
};
985
} // namespace
986
987
bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line,
988
unsigned pos, unsigned typed_pos) {
989
DiagnosticManager mgr;
990
// We need the raw user expression here because that's what the CodeComplete
991
// class uses to provide completion suggestions.
992
// However, the `Text` method only gives us the transformed expression here.
993
// To actually get the raw user input here, we have to cast our expression to
994
// the LLVMUserExpression which exposes the right API. This should never fail
995
// as we always have a ClangUserExpression whenever we call this.
996
ClangUserExpression *llvm_expr = cast<ClangUserExpression>(&m_expr);
997
CodeComplete CC(m_compiler->getLangOpts(), llvm_expr->GetUserText(),
998
typed_pos);
999
// We don't need a code generator for parsing.
1000
m_code_generator.reset();
1001
// Start parsing the expression with our custom code completion consumer.
1002
ParseInternal(mgr, &CC, line, pos);
1003
CC.GetCompletions(request);
1004
return true;
1005
}
1006
1007
unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) {
1008
return ParseInternal(diagnostic_manager);
1009
}
1010
1011
unsigned
1012
ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager,
1013
CodeCompleteConsumer *completion_consumer,
1014
unsigned completion_line,
1015
unsigned completion_column) {
1016
ClangDiagnosticManagerAdapter *adapter =
1017
static_cast<ClangDiagnosticManagerAdapter *>(
1018
m_compiler->getDiagnostics().getClient());
1019
1020
adapter->ResetManager(&diagnostic_manager);
1021
1022
const char *expr_text = m_expr.Text();
1023
1024
clang::SourceManager &source_mgr = m_compiler->getSourceManager();
1025
bool created_main_file = false;
1026
1027
// Clang wants to do completion on a real file known by Clang's file manager,
1028
// so we have to create one to make this work.
1029
// TODO: We probably could also simulate to Clang's file manager that there
1030
// is a real file that contains our code.
1031
bool should_create_file = completion_consumer != nullptr;
1032
1033
// We also want a real file on disk if we generate full debug info.
1034
should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() ==
1035
codegenoptions::FullDebugInfo;
1036
1037
if (should_create_file) {
1038
int temp_fd = -1;
1039
llvm::SmallString<128> result_path;
1040
if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) {
1041
tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr");
1042
std::string temp_source_path = tmpdir_file_spec.GetPath();
1043
llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path);
1044
} else {
1045
llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path);
1046
}
1047
1048
if (temp_fd != -1) {
1049
lldb_private::NativeFile file(temp_fd, File::eOpenOptionWriteOnly, true);
1050
const size_t expr_text_len = strlen(expr_text);
1051
size_t bytes_written = expr_text_len;
1052
if (file.Write(expr_text, bytes_written).Success()) {
1053
if (bytes_written == expr_text_len) {
1054
file.Close();
1055
if (auto fileEntry = m_compiler->getFileManager().getOptionalFileRef(
1056
result_path)) {
1057
source_mgr.setMainFileID(source_mgr.createFileID(
1058
*fileEntry,
1059
SourceLocation(), SrcMgr::C_User));
1060
created_main_file = true;
1061
}
1062
}
1063
}
1064
}
1065
}
1066
1067
if (!created_main_file) {
1068
std::unique_ptr<MemoryBuffer> memory_buffer =
1069
MemoryBuffer::getMemBufferCopy(expr_text, m_filename);
1070
source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer)));
1071
}
1072
1073
adapter->BeginSourceFile(m_compiler->getLangOpts(),
1074
&m_compiler->getPreprocessor());
1075
1076
ClangExpressionHelper *type_system_helper =
1077
dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1078
1079
// If we want to parse for code completion, we need to attach our code
1080
// completion consumer to the Sema and specify a completion position.
1081
// While parsing the Sema will call this consumer with the provided
1082
// completion suggestions.
1083
if (completion_consumer) {
1084
auto main_file =
1085
source_mgr.getFileEntryRefForID(source_mgr.getMainFileID());
1086
auto &PP = m_compiler->getPreprocessor();
1087
// Lines and columns start at 1 in Clang, but code completion positions are
1088
// indexed from 0, so we need to add 1 to the line and column here.
1089
++completion_line;
1090
++completion_column;
1091
PP.SetCodeCompletionPoint(*main_file, completion_line, completion_column);
1092
}
1093
1094
ASTConsumer *ast_transformer =
1095
type_system_helper->ASTTransformer(m_code_generator.get());
1096
1097
std::unique_ptr<clang::ASTConsumer> Consumer;
1098
if (ast_transformer) {
1099
Consumer = std::make_unique<ASTConsumerForwarder>(ast_transformer);
1100
} else if (m_code_generator) {
1101
Consumer = std::make_unique<ASTConsumerForwarder>(m_code_generator.get());
1102
} else {
1103
Consumer = std::make_unique<ASTConsumer>();
1104
}
1105
1106
clang::ASTContext &ast_context = m_compiler->getASTContext();
1107
1108
m_compiler->setSema(new Sema(m_compiler->getPreprocessor(), ast_context,
1109
*Consumer, TU_Complete, completion_consumer));
1110
m_compiler->setASTConsumer(std::move(Consumer));
1111
1112
if (ast_context.getLangOpts().Modules) {
1113
m_compiler->createASTReader();
1114
m_ast_context->setSema(&m_compiler->getSema());
1115
}
1116
1117
ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap();
1118
if (decl_map) {
1119
decl_map->InstallCodeGenerator(&m_compiler->getASTConsumer());
1120
decl_map->InstallDiagnosticManager(diagnostic_manager);
1121
1122
clang::ExternalASTSource *ast_source = decl_map->CreateProxy();
1123
1124
if (ast_context.getExternalSource()) {
1125
auto module_wrapper =
1126
new ExternalASTSourceWrapper(ast_context.getExternalSource());
1127
1128
auto ast_source_wrapper = new ExternalASTSourceWrapper(ast_source);
1129
1130
auto multiplexer =
1131
new SemaSourceWithPriorities(*module_wrapper, *ast_source_wrapper);
1132
IntrusiveRefCntPtr<ExternalASTSource> Source(multiplexer);
1133
ast_context.setExternalSource(Source);
1134
} else {
1135
ast_context.setExternalSource(ast_source);
1136
}
1137
decl_map->InstallASTContext(*m_ast_context);
1138
}
1139
1140
// Check that the ASTReader is properly attached to ASTContext and Sema.
1141
if (ast_context.getLangOpts().Modules) {
1142
assert(m_compiler->getASTContext().getExternalSource() &&
1143
"ASTContext doesn't know about the ASTReader?");
1144
assert(m_compiler->getSema().getExternalSource() &&
1145
"Sema doesn't know about the ASTReader?");
1146
}
1147
1148
{
1149
llvm::CrashRecoveryContextCleanupRegistrar<Sema> CleanupSema(
1150
&m_compiler->getSema());
1151
ParseAST(m_compiler->getSema(), false, false);
1152
}
1153
1154
// Make sure we have no pointer to the Sema we are about to destroy.
1155
if (ast_context.getLangOpts().Modules)
1156
m_ast_context->setSema(nullptr);
1157
// Destroy the Sema. This is necessary because we want to emulate the
1158
// original behavior of ParseAST (which also destroys the Sema after parsing).
1159
m_compiler->setSema(nullptr);
1160
1161
adapter->EndSourceFile();
1162
1163
unsigned num_errors = adapter->getNumErrors();
1164
1165
if (m_pp_callbacks && m_pp_callbacks->hasErrors()) {
1166
num_errors++;
1167
diagnostic_manager.PutString(lldb::eSeverityError,
1168
"while importing modules:");
1169
diagnostic_manager.AppendMessageToDiagnostic(
1170
m_pp_callbacks->getErrorString());
1171
}
1172
1173
if (!num_errors) {
1174
type_system_helper->CommitPersistentDecls();
1175
}
1176
1177
adapter->ResetManager();
1178
1179
return num_errors;
1180
}
1181
1182
std::string
1183
ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) {
1184
std::string abi;
1185
1186
if (target_arch.IsMIPS()) {
1187
switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) {
1188
case ArchSpec::eMIPSABI_N64:
1189
abi = "n64";
1190
break;
1191
case ArchSpec::eMIPSABI_N32:
1192
abi = "n32";
1193
break;
1194
case ArchSpec::eMIPSABI_O32:
1195
abi = "o32";
1196
break;
1197
default:
1198
break;
1199
}
1200
}
1201
return abi;
1202
}
1203
1204
/// Applies the given Fix-It hint to the given commit.
1205
static void ApplyFixIt(const FixItHint &fixit, clang::edit::Commit &commit) {
1206
// This is cobbed from clang::Rewrite::FixItRewriter.
1207
if (fixit.CodeToInsert.empty()) {
1208
if (fixit.InsertFromRange.isValid()) {
1209
commit.insertFromRange(fixit.RemoveRange.getBegin(),
1210
fixit.InsertFromRange, /*afterToken=*/false,
1211
fixit.BeforePreviousInsertions);
1212
return;
1213
}
1214
commit.remove(fixit.RemoveRange);
1215
return;
1216
}
1217
if (fixit.RemoveRange.isTokenRange() ||
1218
fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) {
1219
commit.replace(fixit.RemoveRange, fixit.CodeToInsert);
1220
return;
1221
}
1222
commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert,
1223
/*afterToken=*/false, fixit.BeforePreviousInsertions);
1224
}
1225
1226
bool ClangExpressionParser::RewriteExpression(
1227
DiagnosticManager &diagnostic_manager) {
1228
clang::SourceManager &source_manager = m_compiler->getSourceManager();
1229
clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(),
1230
nullptr);
1231
clang::edit::Commit commit(editor);
1232
clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts());
1233
1234
class RewritesReceiver : public edit::EditsReceiver {
1235
Rewriter &rewrite;
1236
1237
public:
1238
RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {}
1239
1240
void insert(SourceLocation loc, StringRef text) override {
1241
rewrite.InsertText(loc, text);
1242
}
1243
void replace(CharSourceRange range, StringRef text) override {
1244
rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text);
1245
}
1246
};
1247
1248
RewritesReceiver rewrites_receiver(rewriter);
1249
1250
const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics();
1251
size_t num_diags = diagnostics.size();
1252
if (num_diags == 0)
1253
return false;
1254
1255
for (const auto &diag : diagnostic_manager.Diagnostics()) {
1256
const auto *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag.get());
1257
if (!diagnostic)
1258
continue;
1259
if (!diagnostic->HasFixIts())
1260
continue;
1261
for (const FixItHint &fixit : diagnostic->FixIts())
1262
ApplyFixIt(fixit, commit);
1263
}
1264
1265
// FIXME - do we want to try to propagate specific errors here?
1266
if (!commit.isCommitable())
1267
return false;
1268
else if (!editor.commit(commit))
1269
return false;
1270
1271
// Now play all the edits, and stash the result in the diagnostic manager.
1272
editor.applyRewrites(rewrites_receiver);
1273
RewriteBuffer &main_file_buffer =
1274
rewriter.getEditBuffer(source_manager.getMainFileID());
1275
1276
std::string fixed_expression;
1277
llvm::raw_string_ostream out_stream(fixed_expression);
1278
1279
main_file_buffer.write(out_stream);
1280
out_stream.flush();
1281
diagnostic_manager.SetFixedExpression(fixed_expression);
1282
1283
return true;
1284
}
1285
1286
static bool FindFunctionInModule(ConstString &mangled_name,
1287
llvm::Module *module, const char *orig_name) {
1288
for (const auto &func : module->getFunctionList()) {
1289
const StringRef &name = func.getName();
1290
if (name.contains(orig_name)) {
1291
mangled_name.SetString(name);
1292
return true;
1293
}
1294
}
1295
1296
return false;
1297
}
1298
1299
lldb_private::Status ClangExpressionParser::DoPrepareForExecution(
1300
lldb::addr_t &func_addr, lldb::addr_t &func_end,
1301
lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx,
1302
bool &can_interpret, ExecutionPolicy execution_policy) {
1303
func_addr = LLDB_INVALID_ADDRESS;
1304
func_end = LLDB_INVALID_ADDRESS;
1305
Log *log = GetLog(LLDBLog::Expressions);
1306
1307
lldb_private::Status err;
1308
1309
std::unique_ptr<llvm::Module> llvm_module_up(
1310
m_code_generator->ReleaseModule());
1311
1312
if (!llvm_module_up) {
1313
err.SetErrorToGenericError();
1314
err.SetErrorString("IR doesn't contain a module");
1315
return err;
1316
}
1317
1318
ConstString function_name;
1319
1320
if (execution_policy != eExecutionPolicyTopLevel) {
1321
// Find the actual name of the function (it's often mangled somehow)
1322
1323
if (!FindFunctionInModule(function_name, llvm_module_up.get(),
1324
m_expr.FunctionName())) {
1325
err.SetErrorToGenericError();
1326
err.SetErrorStringWithFormat("Couldn't find %s() in the module",
1327
m_expr.FunctionName());
1328
return err;
1329
} else {
1330
LLDB_LOGF(log, "Found function %s for %s", function_name.AsCString(),
1331
m_expr.FunctionName());
1332
}
1333
}
1334
1335
SymbolContext sc;
1336
1337
if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) {
1338
sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything);
1339
} else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) {
1340
sc.target_sp = target_sp;
1341
}
1342
1343
LLVMUserExpression::IRPasses custom_passes;
1344
{
1345
auto lang = m_expr.Language();
1346
LLDB_LOGF(log, "%s - Current expression language is %s\n", __FUNCTION__,
1347
lang.GetDescription().data());
1348
lldb::ProcessSP process_sp = exe_ctx.GetProcessSP();
1349
if (process_sp && lang != lldb::eLanguageTypeUnknown) {
1350
auto runtime = process_sp->GetLanguageRuntime(lang.AsLanguageType());
1351
if (runtime)
1352
runtime->GetIRPasses(custom_passes);
1353
}
1354
}
1355
1356
if (custom_passes.EarlyPasses) {
1357
LLDB_LOGF(log,
1358
"%s - Running Early IR Passes from LanguageRuntime on "
1359
"expression module '%s'",
1360
__FUNCTION__, m_expr.FunctionName());
1361
1362
custom_passes.EarlyPasses->run(*llvm_module_up);
1363
}
1364
1365
execution_unit_sp = std::make_shared<IRExecutionUnit>(
1366
m_llvm_context, // handed off here
1367
llvm_module_up, // handed off here
1368
function_name, exe_ctx.GetTargetSP(), sc,
1369
m_compiler->getTargetOpts().Features);
1370
1371
ClangExpressionHelper *type_system_helper =
1372
dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1373
ClangExpressionDeclMap *decl_map =
1374
type_system_helper->DeclMap(); // result can be NULL
1375
1376
if (decl_map) {
1377
StreamString error_stream;
1378
IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(),
1379
*execution_unit_sp, error_stream,
1380
function_name.AsCString());
1381
1382
if (!ir_for_target.runOnModule(*execution_unit_sp->GetModule())) {
1383
err.SetErrorString(error_stream.GetString());
1384
return err;
1385
}
1386
1387
Process *process = exe_ctx.GetProcessPtr();
1388
1389
if (execution_policy != eExecutionPolicyAlways &&
1390
execution_policy != eExecutionPolicyTopLevel) {
1391
lldb_private::Status interpret_error;
1392
1393
bool interpret_function_calls =
1394
!process ? false : process->CanInterpretFunctionCalls();
1395
can_interpret = IRInterpreter::CanInterpret(
1396
*execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(),
1397
interpret_error, interpret_function_calls);
1398
1399
if (!can_interpret && execution_policy == eExecutionPolicyNever) {
1400
err.SetErrorStringWithFormat(
1401
"Can't evaluate the expression without a running target due to: %s",
1402
interpret_error.AsCString());
1403
return err;
1404
}
1405
}
1406
1407
if (!process && execution_policy == eExecutionPolicyAlways) {
1408
err.SetErrorString("Expression needed to run in the target, but the "
1409
"target can't be run");
1410
return err;
1411
}
1412
1413
if (!process && execution_policy == eExecutionPolicyTopLevel) {
1414
err.SetErrorString("Top-level code needs to be inserted into a runnable "
1415
"target, but the target can't be run");
1416
return err;
1417
}
1418
1419
if (execution_policy == eExecutionPolicyAlways ||
1420
(execution_policy != eExecutionPolicyTopLevel && !can_interpret)) {
1421
if (m_expr.NeedsValidation() && process) {
1422
if (!process->GetDynamicCheckers()) {
1423
ClangDynamicCheckerFunctions *dynamic_checkers =
1424
new ClangDynamicCheckerFunctions();
1425
1426
DiagnosticManager install_diags;
1427
if (Error Err = dynamic_checkers->Install(install_diags, exe_ctx)) {
1428
std::string ErrMsg = "couldn't install checkers: " + toString(std::move(Err));
1429
if (install_diags.Diagnostics().size())
1430
ErrMsg = ErrMsg + "\n" + install_diags.GetString().c_str();
1431
err.SetErrorString(ErrMsg);
1432
return err;
1433
}
1434
1435
process->SetDynamicCheckers(dynamic_checkers);
1436
1437
LLDB_LOGF(log, "== [ClangExpressionParser::PrepareForExecution] "
1438
"Finished installing dynamic checkers ==");
1439
}
1440
1441
if (auto *checker_funcs = llvm::dyn_cast<ClangDynamicCheckerFunctions>(
1442
process->GetDynamicCheckers())) {
1443
IRDynamicChecks ir_dynamic_checks(*checker_funcs,
1444
function_name.AsCString());
1445
1446
llvm::Module *module = execution_unit_sp->GetModule();
1447
if (!module || !ir_dynamic_checks.runOnModule(*module)) {
1448
err.SetErrorToGenericError();
1449
err.SetErrorString("Couldn't add dynamic checks to the expression");
1450
return err;
1451
}
1452
1453
if (custom_passes.LatePasses) {
1454
LLDB_LOGF(log,
1455
"%s - Running Late IR Passes from LanguageRuntime on "
1456
"expression module '%s'",
1457
__FUNCTION__, m_expr.FunctionName());
1458
1459
custom_passes.LatePasses->run(*module);
1460
}
1461
}
1462
}
1463
}
1464
1465
if (execution_policy == eExecutionPolicyAlways ||
1466
execution_policy == eExecutionPolicyTopLevel || !can_interpret) {
1467
execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1468
}
1469
} else {
1470
execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1471
}
1472
1473
return err;
1474
}
1475
1476