Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lldb/source/Plugins/UnwindAssembly/x86/x86AssemblyInspectionEngine.cpp
39648 views
1
//===-- x86AssemblyInspectionEngine.cpp -----------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "x86AssemblyInspectionEngine.h"
10
11
#include <memory>
12
13
#include "llvm-c/Disassembler.h"
14
15
#include "lldb/Core/Address.h"
16
#include "lldb/Symbol/UnwindPlan.h"
17
#include "lldb/Target/RegisterContext.h"
18
#include "lldb/Target/UnwindAssembly.h"
19
20
using namespace lldb_private;
21
using namespace lldb;
22
23
x86AssemblyInspectionEngine::x86AssemblyInspectionEngine(const ArchSpec &arch)
24
: m_cur_insn(nullptr), m_machine_ip_regnum(LLDB_INVALID_REGNUM),
25
m_machine_sp_regnum(LLDB_INVALID_REGNUM),
26
m_machine_fp_regnum(LLDB_INVALID_REGNUM),
27
m_machine_alt_fp_regnum(LLDB_INVALID_REGNUM),
28
m_lldb_ip_regnum(LLDB_INVALID_REGNUM),
29
m_lldb_sp_regnum(LLDB_INVALID_REGNUM),
30
m_lldb_fp_regnum(LLDB_INVALID_REGNUM),
31
m_lldb_alt_fp_regnum(LLDB_INVALID_REGNUM), m_reg_map(), m_arch(arch),
32
m_cpu(k_cpu_unspecified), m_wordsize(-1),
33
m_register_map_initialized(false), m_disasm_context() {
34
m_disasm_context =
35
::LLVMCreateDisasm(arch.GetTriple().getTriple().c_str(), nullptr,
36
/*TagType=*/1, nullptr, nullptr);
37
}
38
39
x86AssemblyInspectionEngine::~x86AssemblyInspectionEngine() {
40
::LLVMDisasmDispose(m_disasm_context);
41
}
42
43
void x86AssemblyInspectionEngine::Initialize(RegisterContextSP &reg_ctx) {
44
m_cpu = k_cpu_unspecified;
45
m_wordsize = -1;
46
m_register_map_initialized = false;
47
48
const llvm::Triple::ArchType cpu = m_arch.GetMachine();
49
if (cpu == llvm::Triple::x86)
50
m_cpu = k_i386;
51
else if (cpu == llvm::Triple::x86_64)
52
m_cpu = k_x86_64;
53
54
if (m_cpu == k_cpu_unspecified)
55
return;
56
57
if (reg_ctx.get() == nullptr)
58
return;
59
60
if (m_cpu == k_i386) {
61
m_machine_ip_regnum = k_machine_eip;
62
m_machine_sp_regnum = k_machine_esp;
63
m_machine_fp_regnum = k_machine_ebp;
64
m_machine_alt_fp_regnum = k_machine_ebx;
65
m_wordsize = 4;
66
67
struct lldb_reg_info reginfo;
68
reginfo.name = "eax";
69
m_reg_map[k_machine_eax] = reginfo;
70
reginfo.name = "edx";
71
m_reg_map[k_machine_edx] = reginfo;
72
reginfo.name = "esp";
73
m_reg_map[k_machine_esp] = reginfo;
74
reginfo.name = "esi";
75
m_reg_map[k_machine_esi] = reginfo;
76
reginfo.name = "eip";
77
m_reg_map[k_machine_eip] = reginfo;
78
reginfo.name = "ecx";
79
m_reg_map[k_machine_ecx] = reginfo;
80
reginfo.name = "ebx";
81
m_reg_map[k_machine_ebx] = reginfo;
82
reginfo.name = "ebp";
83
m_reg_map[k_machine_ebp] = reginfo;
84
reginfo.name = "edi";
85
m_reg_map[k_machine_edi] = reginfo;
86
} else {
87
m_machine_ip_regnum = k_machine_rip;
88
m_machine_sp_regnum = k_machine_rsp;
89
m_machine_fp_regnum = k_machine_rbp;
90
m_machine_alt_fp_regnum = k_machine_rbx;
91
m_wordsize = 8;
92
93
struct lldb_reg_info reginfo;
94
reginfo.name = "rax";
95
m_reg_map[k_machine_rax] = reginfo;
96
reginfo.name = "rdx";
97
m_reg_map[k_machine_rdx] = reginfo;
98
reginfo.name = "rsp";
99
m_reg_map[k_machine_rsp] = reginfo;
100
reginfo.name = "rsi";
101
m_reg_map[k_machine_rsi] = reginfo;
102
reginfo.name = "r8";
103
m_reg_map[k_machine_r8] = reginfo;
104
reginfo.name = "r10";
105
m_reg_map[k_machine_r10] = reginfo;
106
reginfo.name = "r12";
107
m_reg_map[k_machine_r12] = reginfo;
108
reginfo.name = "r14";
109
m_reg_map[k_machine_r14] = reginfo;
110
reginfo.name = "rip";
111
m_reg_map[k_machine_rip] = reginfo;
112
reginfo.name = "rcx";
113
m_reg_map[k_machine_rcx] = reginfo;
114
reginfo.name = "rbx";
115
m_reg_map[k_machine_rbx] = reginfo;
116
reginfo.name = "rbp";
117
m_reg_map[k_machine_rbp] = reginfo;
118
reginfo.name = "rdi";
119
m_reg_map[k_machine_rdi] = reginfo;
120
reginfo.name = "r9";
121
m_reg_map[k_machine_r9] = reginfo;
122
reginfo.name = "r11";
123
m_reg_map[k_machine_r11] = reginfo;
124
reginfo.name = "r13";
125
m_reg_map[k_machine_r13] = reginfo;
126
reginfo.name = "r15";
127
m_reg_map[k_machine_r15] = reginfo;
128
}
129
130
for (MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.begin();
131
it != m_reg_map.end(); ++it) {
132
const RegisterInfo *ri = reg_ctx->GetRegisterInfoByName(it->second.name);
133
if (ri)
134
it->second.lldb_regnum = ri->kinds[eRegisterKindLLDB];
135
}
136
137
uint32_t lldb_regno;
138
if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno))
139
m_lldb_sp_regnum = lldb_regno;
140
if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno))
141
m_lldb_fp_regnum = lldb_regno;
142
if (machine_regno_to_lldb_regno(m_machine_alt_fp_regnum, lldb_regno))
143
m_lldb_alt_fp_regnum = lldb_regno;
144
if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno))
145
m_lldb_ip_regnum = lldb_regno;
146
147
m_register_map_initialized = true;
148
}
149
150
void x86AssemblyInspectionEngine::Initialize(
151
std::vector<lldb_reg_info> &reg_info) {
152
m_cpu = k_cpu_unspecified;
153
m_wordsize = -1;
154
m_register_map_initialized = false;
155
156
const llvm::Triple::ArchType cpu = m_arch.GetMachine();
157
if (cpu == llvm::Triple::x86)
158
m_cpu = k_i386;
159
else if (cpu == llvm::Triple::x86_64)
160
m_cpu = k_x86_64;
161
162
if (m_cpu == k_cpu_unspecified)
163
return;
164
165
if (m_cpu == k_i386) {
166
m_machine_ip_regnum = k_machine_eip;
167
m_machine_sp_regnum = k_machine_esp;
168
m_machine_fp_regnum = k_machine_ebp;
169
m_machine_alt_fp_regnum = k_machine_ebx;
170
m_wordsize = 4;
171
172
struct lldb_reg_info reginfo;
173
reginfo.name = "eax";
174
m_reg_map[k_machine_eax] = reginfo;
175
reginfo.name = "edx";
176
m_reg_map[k_machine_edx] = reginfo;
177
reginfo.name = "esp";
178
m_reg_map[k_machine_esp] = reginfo;
179
reginfo.name = "esi";
180
m_reg_map[k_machine_esi] = reginfo;
181
reginfo.name = "eip";
182
m_reg_map[k_machine_eip] = reginfo;
183
reginfo.name = "ecx";
184
m_reg_map[k_machine_ecx] = reginfo;
185
reginfo.name = "ebx";
186
m_reg_map[k_machine_ebx] = reginfo;
187
reginfo.name = "ebp";
188
m_reg_map[k_machine_ebp] = reginfo;
189
reginfo.name = "edi";
190
m_reg_map[k_machine_edi] = reginfo;
191
} else {
192
m_machine_ip_regnum = k_machine_rip;
193
m_machine_sp_regnum = k_machine_rsp;
194
m_machine_fp_regnum = k_machine_rbp;
195
m_machine_alt_fp_regnum = k_machine_rbx;
196
m_wordsize = 8;
197
198
struct lldb_reg_info reginfo;
199
reginfo.name = "rax";
200
m_reg_map[k_machine_rax] = reginfo;
201
reginfo.name = "rdx";
202
m_reg_map[k_machine_rdx] = reginfo;
203
reginfo.name = "rsp";
204
m_reg_map[k_machine_rsp] = reginfo;
205
reginfo.name = "rsi";
206
m_reg_map[k_machine_rsi] = reginfo;
207
reginfo.name = "r8";
208
m_reg_map[k_machine_r8] = reginfo;
209
reginfo.name = "r10";
210
m_reg_map[k_machine_r10] = reginfo;
211
reginfo.name = "r12";
212
m_reg_map[k_machine_r12] = reginfo;
213
reginfo.name = "r14";
214
m_reg_map[k_machine_r14] = reginfo;
215
reginfo.name = "rip";
216
m_reg_map[k_machine_rip] = reginfo;
217
reginfo.name = "rcx";
218
m_reg_map[k_machine_rcx] = reginfo;
219
reginfo.name = "rbx";
220
m_reg_map[k_machine_rbx] = reginfo;
221
reginfo.name = "rbp";
222
m_reg_map[k_machine_rbp] = reginfo;
223
reginfo.name = "rdi";
224
m_reg_map[k_machine_rdi] = reginfo;
225
reginfo.name = "r9";
226
m_reg_map[k_machine_r9] = reginfo;
227
reginfo.name = "r11";
228
m_reg_map[k_machine_r11] = reginfo;
229
reginfo.name = "r13";
230
m_reg_map[k_machine_r13] = reginfo;
231
reginfo.name = "r15";
232
m_reg_map[k_machine_r15] = reginfo;
233
}
234
235
for (MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.begin();
236
it != m_reg_map.end(); ++it) {
237
for (size_t i = 0; i < reg_info.size(); ++i) {
238
if (::strcmp(reg_info[i].name, it->second.name) == 0) {
239
it->second.lldb_regnum = reg_info[i].lldb_regnum;
240
break;
241
}
242
}
243
}
244
245
uint32_t lldb_regno;
246
if (machine_regno_to_lldb_regno(m_machine_sp_regnum, lldb_regno))
247
m_lldb_sp_regnum = lldb_regno;
248
if (machine_regno_to_lldb_regno(m_machine_fp_regnum, lldb_regno))
249
m_lldb_fp_regnum = lldb_regno;
250
if (machine_regno_to_lldb_regno(m_machine_alt_fp_regnum, lldb_regno))
251
m_lldb_alt_fp_regnum = lldb_regno;
252
if (machine_regno_to_lldb_regno(m_machine_ip_regnum, lldb_regno))
253
m_lldb_ip_regnum = lldb_regno;
254
255
m_register_map_initialized = true;
256
}
257
258
// This function expects an x86 native register number (i.e. the bits stripped
259
// out of the actual instruction), not an lldb register number.
260
//
261
// FIXME: This is ABI dependent, it shouldn't be hardcoded here.
262
263
bool x86AssemblyInspectionEngine::nonvolatile_reg_p(int machine_regno) {
264
if (m_cpu == k_i386) {
265
switch (machine_regno) {
266
case k_machine_ebx:
267
case k_machine_ebp: // not actually a nonvolatile but often treated as such
268
// by convention
269
case k_machine_esi:
270
case k_machine_edi:
271
case k_machine_esp:
272
return true;
273
default:
274
return false;
275
}
276
}
277
if (m_cpu == k_x86_64) {
278
switch (machine_regno) {
279
case k_machine_rbx:
280
case k_machine_rsp:
281
case k_machine_rbp: // not actually a nonvolatile but often treated as such
282
// by convention
283
case k_machine_r12:
284
case k_machine_r13:
285
case k_machine_r14:
286
case k_machine_r15:
287
return true;
288
default:
289
return false;
290
}
291
}
292
return false;
293
}
294
295
// Macro to detect if this is a REX mode prefix byte.
296
#define REX_W_PREFIX_P(opcode) (((opcode) & (~0x5)) == 0x48)
297
298
// The high bit which should be added to the source register number (the "R"
299
// bit)
300
#define REX_W_SRCREG(opcode) (((opcode)&0x4) >> 2)
301
302
// The high bit which should be added to the destination register number (the
303
// "B" bit)
304
#define REX_W_DSTREG(opcode) ((opcode)&0x1)
305
306
// pushq %rbp [0x55]
307
bool x86AssemblyInspectionEngine::push_rbp_pattern_p() {
308
uint8_t *p = m_cur_insn;
309
return *p == 0x55;
310
}
311
312
// pushq $0 ; the first instruction in start() [0x6a 0x00]
313
bool x86AssemblyInspectionEngine::push_0_pattern_p() {
314
uint8_t *p = m_cur_insn;
315
return *p == 0x6a && *(p + 1) == 0x0;
316
}
317
318
// pushq $0
319
// pushl $0
320
bool x86AssemblyInspectionEngine::push_imm_pattern_p() {
321
uint8_t *p = m_cur_insn;
322
return *p == 0x68 || *p == 0x6a;
323
}
324
325
// pushl imm8(%esp)
326
//
327
// e.g. 0xff 0x74 0x24 0x20 - 'pushl 0x20(%esp)' (same byte pattern for 'pushq
328
// 0x20(%rsp)' in an x86_64 program)
329
//
330
// 0xff (with opcode bits '6' in next byte, PUSH r/m32) 0x74 (ModR/M byte with
331
// three bits used to specify the opcode)
332
// mod == b01, opcode == b110, R/M == b100
333
// "+disp8"
334
// 0x24 (SIB byte - scaled index = 0, r32 == esp) 0x20 imm8 value
335
336
bool x86AssemblyInspectionEngine::push_extended_pattern_p() {
337
if (*m_cur_insn == 0xff) {
338
// Get the 3 opcode bits from the ModR/M byte
339
uint8_t opcode = (*(m_cur_insn + 1) >> 3) & 7;
340
if (opcode == 6) {
341
// I'm only looking for 0xff /6 here - I
342
// don't really care what value is being pushed, just that we're pushing
343
// a 32/64 bit value on to the stack is enough.
344
return true;
345
}
346
}
347
return false;
348
}
349
350
// instructions only valid in 32-bit mode:
351
// 0x0e - push cs
352
// 0x16 - push ss
353
// 0x1e - push ds
354
// 0x06 - push es
355
bool x86AssemblyInspectionEngine::push_misc_reg_p() {
356
uint8_t p = *m_cur_insn;
357
if (m_wordsize == 4) {
358
if (p == 0x0e || p == 0x16 || p == 0x1e || p == 0x06)
359
return true;
360
}
361
return false;
362
}
363
364
// pushq %rbx
365
// pushl %ebx
366
bool x86AssemblyInspectionEngine::push_reg_p(int &regno) {
367
uint8_t *p = m_cur_insn;
368
int regno_prefix_bit = 0;
369
// If we have a rex prefix byte, check to see if a B bit is set
370
if (m_wordsize == 8 && (*p & 0xfe) == 0x40) {
371
regno_prefix_bit = (*p & 1) << 3;
372
p++;
373
}
374
if (*p >= 0x50 && *p <= 0x57) {
375
regno = (*p - 0x50) | regno_prefix_bit;
376
return true;
377
}
378
return false;
379
}
380
381
// movq %rsp, %rbp [0x48 0x8b 0xec] or [0x48 0x89 0xe5] movl %esp, %ebp [0x8b
382
// 0xec] or [0x89 0xe5]
383
bool x86AssemblyInspectionEngine::mov_rsp_rbp_pattern_p() {
384
uint8_t *p = m_cur_insn;
385
if (m_wordsize == 8 && *p == 0x48)
386
p++;
387
if (*(p) == 0x8b && *(p + 1) == 0xec)
388
return true;
389
if (*(p) == 0x89 && *(p + 1) == 0xe5)
390
return true;
391
return false;
392
}
393
394
// movq %rsp, %rbx [0x48 0x8b 0xdc] or [0x48 0x89 0xe3]
395
// movl %esp, %ebx [0x8b 0xdc] or [0x89 0xe3]
396
bool x86AssemblyInspectionEngine::mov_rsp_rbx_pattern_p() {
397
uint8_t *p = m_cur_insn;
398
if (m_wordsize == 8 && *p == 0x48)
399
p++;
400
if (*(p) == 0x8b && *(p + 1) == 0xdc)
401
return true;
402
if (*(p) == 0x89 && *(p + 1) == 0xe3)
403
return true;
404
return false;
405
}
406
407
// movq %rbp, %rsp [0x48 0x8b 0xe5] or [0x48 0x89 0xec]
408
// movl %ebp, %esp [0x8b 0xe5] or [0x89 0xec]
409
bool x86AssemblyInspectionEngine::mov_rbp_rsp_pattern_p() {
410
uint8_t *p = m_cur_insn;
411
if (m_wordsize == 8 && *p == 0x48)
412
p++;
413
if (*(p) == 0x8b && *(p + 1) == 0xe5)
414
return true;
415
if (*(p) == 0x89 && *(p + 1) == 0xec)
416
return true;
417
return false;
418
}
419
420
// movq %rbx, %rsp [0x48 0x8b 0xe3] or [0x48 0x89 0xdc]
421
// movl %ebx, %esp [0x8b 0xe3] or [0x89 0xdc]
422
bool x86AssemblyInspectionEngine::mov_rbx_rsp_pattern_p() {
423
uint8_t *p = m_cur_insn;
424
if (m_wordsize == 8 && *p == 0x48)
425
p++;
426
if (*(p) == 0x8b && *(p + 1) == 0xe3)
427
return true;
428
if (*(p) == 0x89 && *(p + 1) == 0xdc)
429
return true;
430
return false;
431
}
432
433
// subq $0x20, %rsp
434
bool x86AssemblyInspectionEngine::sub_rsp_pattern_p(int &amount) {
435
uint8_t *p = m_cur_insn;
436
if (m_wordsize == 8 && *p == 0x48)
437
p++;
438
// 8-bit immediate operand
439
if (*p == 0x83 && *(p + 1) == 0xec) {
440
amount = (int8_t) * (p + 2);
441
return true;
442
}
443
// 32-bit immediate operand
444
if (*p == 0x81 && *(p + 1) == 0xec) {
445
amount = (int32_t)extract_4(p + 2);
446
return true;
447
}
448
return false;
449
}
450
451
// addq $0x20, %rsp
452
bool x86AssemblyInspectionEngine::add_rsp_pattern_p(int &amount) {
453
uint8_t *p = m_cur_insn;
454
if (m_wordsize == 8 && *p == 0x48)
455
p++;
456
// 8-bit immediate operand
457
if (*p == 0x83 && *(p + 1) == 0xc4) {
458
amount = (int8_t) * (p + 2);
459
return true;
460
}
461
// 32-bit immediate operand
462
if (*p == 0x81 && *(p + 1) == 0xc4) {
463
amount = (int32_t)extract_4(p + 2);
464
return true;
465
}
466
return false;
467
}
468
469
// lea esp, [esp - 0x28]
470
// lea esp, [esp + 0x28]
471
bool x86AssemblyInspectionEngine::lea_rsp_pattern_p(int &amount) {
472
uint8_t *p = m_cur_insn;
473
if (m_wordsize == 8 && *p == 0x48)
474
p++;
475
476
// Check opcode
477
if (*p != 0x8d)
478
return false;
479
480
// 8 bit displacement
481
if (*(p + 1) == 0x64 && (*(p + 2) & 0x3f) == 0x24) {
482
amount = (int8_t) * (p + 3);
483
return true;
484
}
485
486
// 32 bit displacement
487
if (*(p + 1) == 0xa4 && (*(p + 2) & 0x3f) == 0x24) {
488
amount = (int32_t)extract_4(p + 3);
489
return true;
490
}
491
492
return false;
493
}
494
495
// lea -0x28(%ebp), %esp
496
// (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
497
bool x86AssemblyInspectionEngine::lea_rbp_rsp_pattern_p(int &amount) {
498
uint8_t *p = m_cur_insn;
499
if (m_wordsize == 8 && *p == 0x48)
500
p++;
501
502
// Check opcode
503
if (*p != 0x8d)
504
return false;
505
++p;
506
507
// 8 bit displacement
508
if (*p == 0x65) {
509
amount = (int8_t)p[1];
510
return true;
511
}
512
513
// 32 bit displacement
514
if (*p == 0xa5) {
515
amount = (int32_t)extract_4(p + 1);
516
return true;
517
}
518
519
return false;
520
}
521
522
// lea -0x28(%ebx), %esp
523
// (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
524
bool x86AssemblyInspectionEngine::lea_rbx_rsp_pattern_p(int &amount) {
525
uint8_t *p = m_cur_insn;
526
if (m_wordsize == 8 && *p == 0x48)
527
p++;
528
529
// Check opcode
530
if (*p != 0x8d)
531
return false;
532
++p;
533
534
// 8 bit displacement
535
if (*p == 0x63) {
536
amount = (int8_t)p[1];
537
return true;
538
}
539
540
// 32 bit displacement
541
if (*p == 0xa3) {
542
amount = (int32_t)extract_4(p + 1);
543
return true;
544
}
545
546
return false;
547
}
548
549
// and -0xfffffff0, %esp
550
// (32-bit and 64-bit variants, 8-bit and 32-bit displacement)
551
bool x86AssemblyInspectionEngine::and_rsp_pattern_p() {
552
uint8_t *p = m_cur_insn;
553
if (m_wordsize == 8 && *p == 0x48)
554
p++;
555
556
if (*p != 0x81 && *p != 0x83)
557
return false;
558
559
return *++p == 0xe4;
560
}
561
562
// popq %rbx
563
// popl %ebx
564
bool x86AssemblyInspectionEngine::pop_reg_p(int &regno) {
565
uint8_t *p = m_cur_insn;
566
int regno_prefix_bit = 0;
567
// If we have a rex prefix byte, check to see if a B bit is set
568
if (m_wordsize == 8 && (*p & 0xfe) == 0x40) {
569
regno_prefix_bit = (*p & 1) << 3;
570
p++;
571
}
572
if (*p >= 0x58 && *p <= 0x5f) {
573
regno = (*p - 0x58) | regno_prefix_bit;
574
return true;
575
}
576
return false;
577
}
578
579
// popq %rbp [0x5d]
580
// popl %ebp [0x5d]
581
bool x86AssemblyInspectionEngine::pop_rbp_pattern_p() {
582
uint8_t *p = m_cur_insn;
583
return (*p == 0x5d);
584
}
585
586
// instructions valid only in 32-bit mode:
587
// 0x1f - pop ds
588
// 0x07 - pop es
589
// 0x17 - pop ss
590
bool x86AssemblyInspectionEngine::pop_misc_reg_p() {
591
uint8_t p = *m_cur_insn;
592
if (m_wordsize == 4) {
593
if (p == 0x1f || p == 0x07 || p == 0x17)
594
return true;
595
}
596
return false;
597
}
598
599
// leave [0xc9]
600
bool x86AssemblyInspectionEngine::leave_pattern_p() {
601
uint8_t *p = m_cur_insn;
602
return (*p == 0xc9);
603
}
604
605
// call $0 [0xe8 0x0 0x0 0x0 0x0]
606
bool x86AssemblyInspectionEngine::call_next_insn_pattern_p() {
607
uint8_t *p = m_cur_insn;
608
return (*p == 0xe8) && (*(p + 1) == 0x0) && (*(p + 2) == 0x0) &&
609
(*(p + 3) == 0x0) && (*(p + 4) == 0x0);
610
}
611
612
// Look for an instruction sequence storing a nonvolatile register on to the
613
// stack frame.
614
615
// movq %rax, -0x10(%rbp) [0x48 0x89 0x45 0xf0]
616
// movl %eax, -0xc(%ebp) [0x89 0x45 0xf4]
617
618
// The offset value returned in rbp_offset will be positive -- but it must be
619
// subtraced from the frame base register to get the actual location. The
620
// positive value returned for the offset is a convention used elsewhere for
621
// CFA offsets et al.
622
623
bool x86AssemblyInspectionEngine::mov_reg_to_local_stack_frame_p(
624
int &regno, int &rbp_offset) {
625
uint8_t *p = m_cur_insn;
626
int src_reg_prefix_bit = 0;
627
int target_reg_prefix_bit = 0;
628
629
if (m_wordsize == 8 && REX_W_PREFIX_P(*p)) {
630
src_reg_prefix_bit = REX_W_SRCREG(*p) << 3;
631
target_reg_prefix_bit = REX_W_DSTREG(*p) << 3;
632
if (target_reg_prefix_bit == 1) {
633
// rbp/ebp don't need a prefix bit - we know this isn't the reg we care
634
// about.
635
return false;
636
}
637
p++;
638
}
639
640
if (*p == 0x89) {
641
/* Mask off the 3-5 bits which indicate the destination register
642
if this is a ModR/M byte. */
643
int opcode_destreg_masked_out = *(p + 1) & (~0x38);
644
645
/* Is this a ModR/M byte with Mod bits 01 and R/M bits 101
646
and three bits between them, e.g. 01nnn101
647
We're looking for a destination of ebp-disp8 or ebp-disp32. */
648
int immsize;
649
if (opcode_destreg_masked_out == 0x45)
650
immsize = 2;
651
else if (opcode_destreg_masked_out == 0x85)
652
immsize = 4;
653
else
654
return false;
655
656
int offset = 0;
657
if (immsize == 2)
658
offset = (int8_t) * (p + 2);
659
if (immsize == 4)
660
offset = (uint32_t)extract_4(p + 2);
661
if (offset > 0)
662
return false;
663
664
regno = ((*(p + 1) >> 3) & 0x7) | src_reg_prefix_bit;
665
rbp_offset = offset > 0 ? offset : -offset;
666
return true;
667
}
668
return false;
669
}
670
671
// Returns true if this is a jmp instruction where we can't
672
// know the destination address statically.
673
//
674
// ff e0 jmpq *%rax
675
// ff e1 jmpq *%rcx
676
// ff 60 28 jmpq *0x28(%rax)
677
// ff 60 60 jmpq *0x60(%rax)
678
bool x86AssemblyInspectionEngine::jmp_to_reg_p() {
679
if (*m_cur_insn != 0xff)
680
return false;
681
682
// The second byte is a ModR/M /4 byte, strip off the registers
683
uint8_t second_byte_sans_reg = *(m_cur_insn + 1) & ~7;
684
685
// [reg]
686
if (second_byte_sans_reg == 0x20)
687
return true;
688
689
// [reg]+disp8
690
if (second_byte_sans_reg == 0x60)
691
return true;
692
693
// [reg]+disp32
694
if (second_byte_sans_reg == 0xa0)
695
return true;
696
697
// reg
698
if (second_byte_sans_reg == 0xe0)
699
return true;
700
701
return false;
702
}
703
704
// Detect branches to fixed pc-relative offsets.
705
// Returns the offset from the address of the next instruction
706
// that may be branch/jumped to.
707
//
708
// Cannot determine the offset of a JMP that jumps to the address in
709
// a register ("jmpq *%rax") or offset from a register value
710
// ("jmpq *0x28(%rax)"), this method will return false on those
711
// instructions.
712
//
713
// These instructions all end in either a relative 8/16/32 bit value
714
// depending on the instruction and the current execution mode of the
715
// inferior process. Once we know the size of the opcode instruction,
716
// we can use the total instruction length to determine the size of
717
// the relative offset without having to compute it correctly.
718
719
bool x86AssemblyInspectionEngine::pc_rel_branch_or_jump_p (
720
const int instruction_length, int &offset)
721
{
722
int opcode_size = 0;
723
724
uint8_t b1 = m_cur_insn[0];
725
726
switch (b1) {
727
case 0x77: // JA/JNBE rel8
728
case 0x73: // JAE/JNB/JNC rel8
729
case 0x72: // JB/JC/JNAE rel8
730
case 0x76: // JBE/JNA rel8
731
case 0xe3: // JCXZ/JECXZ/JRCXZ rel8
732
case 0x74: // JE/JZ rel8
733
case 0x7f: // JG/JNLE rel8
734
case 0x7d: // JGE/JNL rel8
735
case 0x7c: // JL/JNGE rel8
736
case 0x7e: // JNG/JLE rel8
737
case 0x71: // JNO rel8
738
case 0x7b: // JNP/JPO rel8
739
case 0x79: // JNS rel8
740
case 0x75: // JNE/JNZ rel8
741
case 0x70: // JO rel8
742
case 0x7a: // JP/JPE rel8
743
case 0x78: // JS rel8
744
case 0xeb: // JMP rel8
745
case 0xe9: // JMP rel16/rel32
746
opcode_size = 1;
747
break;
748
default:
749
break;
750
}
751
if (b1 == 0x0f && opcode_size == 0) {
752
uint8_t b2 = m_cur_insn[1];
753
switch (b2) {
754
case 0x87: // JA/JNBE rel16/rel32
755
case 0x86: // JBE/JNA rel16/rel32
756
case 0x84: // JE/JZ rel16/rel32
757
case 0x8f: // JG/JNLE rel16/rel32
758
case 0x8d: // JNL/JGE rel16/rel32
759
case 0x8e: // JLE rel16/rel32
760
case 0x82: // JB/JC/JNAE rel16/rel32
761
case 0x83: // JAE/JNB/JNC rel16/rel32
762
case 0x85: // JNE/JNZ rel16/rel32
763
case 0x8c: // JL/JNGE rel16/rel32
764
case 0x81: // JNO rel16/rel32
765
case 0x8b: // JNP/JPO rel16/rel32
766
case 0x89: // JNS rel16/rel32
767
case 0x80: // JO rel16/rel32
768
case 0x8a: // JP rel16/rel32
769
case 0x88: // JS rel16/rel32
770
opcode_size = 2;
771
break;
772
default:
773
break;
774
}
775
}
776
777
if (opcode_size == 0)
778
return false;
779
780
offset = 0;
781
if (instruction_length - opcode_size == 1) {
782
int8_t rel8 = (int8_t) *(m_cur_insn + opcode_size);
783
offset = rel8;
784
} else if (instruction_length - opcode_size == 2) {
785
int16_t rel16 = extract_2_signed (m_cur_insn + opcode_size);
786
offset = rel16;
787
} else if (instruction_length - opcode_size == 4) {
788
int32_t rel32 = extract_4_signed (m_cur_insn + opcode_size);
789
offset = rel32;
790
} else {
791
return false;
792
}
793
return true;
794
}
795
796
// Returns true if this instruction is a intra-function branch or jump -
797
// a branch/jump within the bounds of this same function.
798
// Cannot predict where a jump through a register value ("jmpq *%rax")
799
// will go, so it will return false on that instruction.
800
bool x86AssemblyInspectionEngine::local_branch_p (
801
const addr_t current_func_text_offset,
802
const AddressRange &func_range,
803
const int instruction_length,
804
addr_t &target_insn_offset) {
805
int offset;
806
if (pc_rel_branch_or_jump_p (instruction_length, offset) && offset != 0) {
807
addr_t next_pc_value = current_func_text_offset + instruction_length;
808
if (offset < 0 && addr_t(-offset) > current_func_text_offset) {
809
// Branch target is before the start of this function
810
return false;
811
}
812
if (offset + next_pc_value > func_range.GetByteSize()) {
813
// Branch targets outside this function's bounds
814
return false;
815
}
816
// This instruction branches to target_insn_offset (byte offset into the function)
817
target_insn_offset = next_pc_value + offset;
818
return true;
819
}
820
return false;
821
}
822
823
// Returns true if this instruction is a inter-function branch or jump - a
824
// branch/jump to another function.
825
// Cannot predict where a jump through a register value ("jmpq *%rax")
826
// will go, so it will return false on that instruction.
827
bool x86AssemblyInspectionEngine::non_local_branch_p (
828
const addr_t current_func_text_offset,
829
const AddressRange &func_range,
830
const int instruction_length) {
831
int offset;
832
addr_t target_insn_offset;
833
if (pc_rel_branch_or_jump_p (instruction_length, offset)) {
834
return !local_branch_p(current_func_text_offset,func_range,instruction_length,target_insn_offset);
835
}
836
return false;
837
}
838
839
// ret [0xc3] or [0xcb] or [0xc2 imm16] or [0xca imm16]
840
bool x86AssemblyInspectionEngine::ret_pattern_p() {
841
uint8_t *p = m_cur_insn;
842
return *p == 0xc3 || *p == 0xc2 || *p == 0xca || *p == 0xcb;
843
}
844
845
uint16_t x86AssemblyInspectionEngine::extract_2(uint8_t *b) {
846
uint16_t v = 0;
847
for (int i = 1; i >= 0; i--)
848
v = (v << 8) | b[i];
849
return v;
850
}
851
852
int16_t x86AssemblyInspectionEngine::extract_2_signed(uint8_t *b) {
853
int16_t v = 0;
854
for (int i = 1; i >= 0; i--)
855
v = (v << 8) | b[i];
856
return v;
857
}
858
859
uint32_t x86AssemblyInspectionEngine::extract_4(uint8_t *b) {
860
uint32_t v = 0;
861
for (int i = 3; i >= 0; i--)
862
v = (v << 8) | b[i];
863
return v;
864
}
865
866
int32_t x86AssemblyInspectionEngine::extract_4_signed(uint8_t *b) {
867
int32_t v = 0;
868
for (int i = 3; i >= 0; i--)
869
v = (v << 8) | b[i];
870
return v;
871
}
872
873
874
bool x86AssemblyInspectionEngine::instruction_length(uint8_t *insn_p,
875
int &length,
876
uint32_t buffer_remaining_bytes) {
877
878
uint32_t max_op_byte_size = std::min(buffer_remaining_bytes, m_arch.GetMaximumOpcodeByteSize());
879
llvm::SmallVector<uint8_t, 32> opcode_data;
880
opcode_data.resize(max_op_byte_size);
881
882
char out_string[512];
883
const size_t inst_size =
884
::LLVMDisasmInstruction(m_disasm_context, insn_p, max_op_byte_size, 0,
885
out_string, sizeof(out_string));
886
887
length = inst_size;
888
return true;
889
}
890
891
bool x86AssemblyInspectionEngine::machine_regno_to_lldb_regno(
892
int machine_regno, uint32_t &lldb_regno) {
893
MachineRegnumToNameAndLLDBRegnum::iterator it = m_reg_map.find(machine_regno);
894
if (it != m_reg_map.end()) {
895
lldb_regno = it->second.lldb_regnum;
896
return true;
897
}
898
return false;
899
}
900
901
bool x86AssemblyInspectionEngine::GetNonCallSiteUnwindPlanFromAssembly(
902
uint8_t *data, size_t size, AddressRange &func_range,
903
UnwindPlan &unwind_plan) {
904
unwind_plan.Clear();
905
906
if (data == nullptr || size == 0)
907
return false;
908
909
if (!m_register_map_initialized)
910
return false;
911
912
if (m_disasm_context == nullptr)
913
return false;
914
915
addr_t current_func_text_offset = 0;
916
int current_sp_bytes_offset_from_fa = 0;
917
bool is_aligned = false;
918
UnwindPlan::Row::RegisterLocation initial_regloc;
919
UnwindPlan::RowSP row(new UnwindPlan::Row);
920
921
unwind_plan.SetPlanValidAddressRange(func_range);
922
unwind_plan.SetRegisterKind(eRegisterKindLLDB);
923
924
// At the start of the function, find the CFA by adding wordsize to the SP
925
// register
926
row->SetOffset(current_func_text_offset);
927
row->GetCFAValue().SetIsRegisterPlusOffset(m_lldb_sp_regnum, m_wordsize);
928
929
// caller's stack pointer value before the call insn is the CFA address
930
initial_regloc.SetIsCFAPlusOffset(0);
931
row->SetRegisterInfo(m_lldb_sp_regnum, initial_regloc);
932
933
// saved instruction pointer can be found at CFA - wordsize.
934
current_sp_bytes_offset_from_fa = m_wordsize;
935
initial_regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_fa);
936
row->SetRegisterInfo(m_lldb_ip_regnum, initial_regloc);
937
938
unwind_plan.AppendRow(row);
939
940
// Allocate a new Row, populate it with the existing Row contents.
941
UnwindPlan::Row *newrow = new UnwindPlan::Row;
942
*newrow = *row.get();
943
row.reset(newrow);
944
945
// Track which registers have been saved so far in the prologue. If we see
946
// another push of that register, it's not part of the prologue. The register
947
// numbers used here are the machine register #'s (i386_register_numbers,
948
// x86_64_register_numbers).
949
std::vector<bool> saved_registers(32, false);
950
951
// Once the prologue has completed we'll save a copy of the unwind
952
// instructions If there is an epilogue in the middle of the function, after
953
// that epilogue we'll reinstate the unwind setup -- we assume that some code
954
// path jumps over the mid-function epilogue
955
956
UnwindPlan::RowSP prologue_completed_row; // copy of prologue row of CFI
957
int prologue_completed_sp_bytes_offset_from_cfa = 0; // The sp value before the
958
// epilogue started executed
959
bool prologue_completed_is_aligned = false;
960
std::vector<bool> prologue_completed_saved_registers;
961
962
while (current_func_text_offset < size) {
963
int stack_offset, insn_len;
964
int machine_regno; // register numbers masked directly out of instructions
965
uint32_t lldb_regno; // register numbers in lldb's eRegisterKindLLDB
966
// numbering scheme
967
968
bool in_epilogue = false; // we're in the middle of an epilogue sequence
969
bool row_updated = false; // The UnwindPlan::Row 'row' has been updated
970
971
m_cur_insn = data + current_func_text_offset;
972
if (!instruction_length(m_cur_insn, insn_len, size - current_func_text_offset)
973
|| insn_len == 0
974
|| insn_len > kMaxInstructionByteSize) {
975
// An unrecognized/junk instruction
976
break;
977
}
978
979
auto &cfa_value = row->GetCFAValue();
980
auto &afa_value = row->GetAFAValue();
981
auto fa_value_ptr = is_aligned ? &afa_value : &cfa_value;
982
983
if (mov_rsp_rbp_pattern_p()) {
984
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
985
fa_value_ptr->SetIsRegisterPlusOffset(
986
m_lldb_fp_regnum, fa_value_ptr->GetOffset());
987
row_updated = true;
988
}
989
}
990
991
else if (mov_rsp_rbx_pattern_p()) {
992
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
993
fa_value_ptr->SetIsRegisterPlusOffset(
994
m_lldb_alt_fp_regnum, fa_value_ptr->GetOffset());
995
row_updated = true;
996
}
997
}
998
999
else if (and_rsp_pattern_p()) {
1000
current_sp_bytes_offset_from_fa = 0;
1001
afa_value.SetIsRegisterPlusOffset(
1002
m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
1003
fa_value_ptr = &afa_value;
1004
is_aligned = true;
1005
row_updated = true;
1006
}
1007
1008
else if (mov_rbp_rsp_pattern_p()) {
1009
if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_fp_regnum)
1010
{
1011
is_aligned = false;
1012
fa_value_ptr = &cfa_value;
1013
afa_value.SetUnspecified();
1014
row_updated = true;
1015
}
1016
if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum)
1017
current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset();
1018
}
1019
1020
else if (mov_rbx_rsp_pattern_p()) {
1021
if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_alt_fp_regnum)
1022
{
1023
is_aligned = false;
1024
fa_value_ptr = &cfa_value;
1025
afa_value.SetUnspecified();
1026
row_updated = true;
1027
}
1028
if (fa_value_ptr->GetRegisterNumber() == m_lldb_alt_fp_regnum)
1029
current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset();
1030
}
1031
1032
// This is the start() function (or a pthread equivalent), it starts with a
1033
// pushl $0x0 which puts the saved pc value of 0 on the stack. In this
1034
// case we want to pretend we didn't see a stack movement at all --
1035
// normally the saved pc value is already on the stack by the time the
1036
// function starts executing.
1037
else if (push_0_pattern_p()) {
1038
}
1039
1040
else if (push_reg_p(machine_regno)) {
1041
current_sp_bytes_offset_from_fa += m_wordsize;
1042
// the PUSH instruction has moved the stack pointer - if the FA is set
1043
// in terms of the stack pointer, we need to add a new row of
1044
// instructions.
1045
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1046
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
1047
row_updated = true;
1048
}
1049
// record where non-volatile (callee-saved, spilled) registers are saved
1050
// on the stack
1051
if (nonvolatile_reg_p(machine_regno) &&
1052
machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
1053
!saved_registers[machine_regno]) {
1054
UnwindPlan::Row::RegisterLocation regloc;
1055
if (is_aligned)
1056
regloc.SetAtAFAPlusOffset(-current_sp_bytes_offset_from_fa);
1057
else
1058
regloc.SetAtCFAPlusOffset(-current_sp_bytes_offset_from_fa);
1059
row->SetRegisterInfo(lldb_regno, regloc);
1060
saved_registers[machine_regno] = true;
1061
row_updated = true;
1062
}
1063
}
1064
1065
else if (pop_reg_p(machine_regno)) {
1066
current_sp_bytes_offset_from_fa -= m_wordsize;
1067
1068
if (nonvolatile_reg_p(machine_regno) &&
1069
machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
1070
saved_registers[machine_regno]) {
1071
saved_registers[machine_regno] = false;
1072
row->RemoveRegisterInfo(lldb_regno);
1073
1074
if (lldb_regno == fa_value_ptr->GetRegisterNumber()) {
1075
fa_value_ptr->SetIsRegisterPlusOffset(
1076
m_lldb_sp_regnum, fa_value_ptr->GetOffset());
1077
}
1078
1079
in_epilogue = true;
1080
row_updated = true;
1081
}
1082
1083
// the POP instruction has moved the stack pointer - if the FA is set in
1084
// terms of the stack pointer, we need to add a new row of instructions.
1085
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1086
fa_value_ptr->SetIsRegisterPlusOffset(
1087
m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
1088
row_updated = true;
1089
}
1090
}
1091
1092
else if (pop_misc_reg_p()) {
1093
current_sp_bytes_offset_from_fa -= m_wordsize;
1094
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1095
fa_value_ptr->SetIsRegisterPlusOffset(
1096
m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
1097
row_updated = true;
1098
}
1099
}
1100
1101
// The LEAVE instruction moves the value from rbp into rsp and pops a value
1102
// off the stack into rbp (restoring the caller's rbp value). It is the
1103
// opposite of ENTER, or 'push rbp, mov rsp rbp'.
1104
else if (leave_pattern_p()) {
1105
if (saved_registers[m_machine_fp_regnum]) {
1106
saved_registers[m_machine_fp_regnum] = false;
1107
row->RemoveRegisterInfo(m_lldb_fp_regnum);
1108
1109
row_updated = true;
1110
}
1111
1112
if (is_aligned && cfa_value.GetRegisterNumber() == m_lldb_fp_regnum)
1113
{
1114
is_aligned = false;
1115
fa_value_ptr = &cfa_value;
1116
afa_value.SetUnspecified();
1117
row_updated = true;
1118
}
1119
1120
if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum)
1121
{
1122
fa_value_ptr->SetIsRegisterPlusOffset(
1123
m_lldb_sp_regnum, fa_value_ptr->GetOffset());
1124
1125
current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset();
1126
}
1127
1128
current_sp_bytes_offset_from_fa -= m_wordsize;
1129
1130
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1131
fa_value_ptr->SetIsRegisterPlusOffset(
1132
m_lldb_sp_regnum, current_sp_bytes_offset_from_fa);
1133
row_updated = true;
1134
}
1135
1136
in_epilogue = true;
1137
}
1138
1139
else if (mov_reg_to_local_stack_frame_p(machine_regno, stack_offset) &&
1140
nonvolatile_reg_p(machine_regno) &&
1141
machine_regno_to_lldb_regno(machine_regno, lldb_regno) &&
1142
!saved_registers[machine_regno]) {
1143
saved_registers[machine_regno] = true;
1144
1145
UnwindPlan::Row::RegisterLocation regloc;
1146
1147
// stack_offset for 'movq %r15, -80(%rbp)' will be 80. In the Row, we
1148
// want to express this as the offset from the FA. If the frame base is
1149
// rbp (like the above instruction), the FA offset for rbp is probably
1150
// 16. So we want to say that the value is stored at the FA address -
1151
// 96.
1152
if (is_aligned)
1153
regloc.SetAtAFAPlusOffset(-(stack_offset + fa_value_ptr->GetOffset()));
1154
else
1155
regloc.SetAtCFAPlusOffset(-(stack_offset + fa_value_ptr->GetOffset()));
1156
1157
row->SetRegisterInfo(lldb_regno, regloc);
1158
1159
row_updated = true;
1160
}
1161
1162
else if (sub_rsp_pattern_p(stack_offset)) {
1163
current_sp_bytes_offset_from_fa += stack_offset;
1164
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1165
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
1166
row_updated = true;
1167
}
1168
}
1169
1170
else if (add_rsp_pattern_p(stack_offset)) {
1171
current_sp_bytes_offset_from_fa -= stack_offset;
1172
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1173
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
1174
row_updated = true;
1175
}
1176
in_epilogue = true;
1177
}
1178
1179
else if (push_extended_pattern_p() || push_imm_pattern_p() ||
1180
push_misc_reg_p()) {
1181
current_sp_bytes_offset_from_fa += m_wordsize;
1182
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1183
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
1184
row_updated = true;
1185
}
1186
}
1187
1188
else if (lea_rsp_pattern_p(stack_offset)) {
1189
current_sp_bytes_offset_from_fa -= stack_offset;
1190
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1191
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
1192
row_updated = true;
1193
}
1194
if (stack_offset > 0)
1195
in_epilogue = true;
1196
}
1197
1198
else if (lea_rbp_rsp_pattern_p(stack_offset)) {
1199
if (is_aligned &&
1200
cfa_value.GetRegisterNumber() == m_lldb_fp_regnum) {
1201
is_aligned = false;
1202
fa_value_ptr = &cfa_value;
1203
afa_value.SetUnspecified();
1204
row_updated = true;
1205
}
1206
if (fa_value_ptr->GetRegisterNumber() == m_lldb_fp_regnum) {
1207
current_sp_bytes_offset_from_fa =
1208
fa_value_ptr->GetOffset() - stack_offset;
1209
}
1210
}
1211
1212
else if (lea_rbx_rsp_pattern_p(stack_offset)) {
1213
if (is_aligned &&
1214
cfa_value.GetRegisterNumber() == m_lldb_alt_fp_regnum) {
1215
is_aligned = false;
1216
fa_value_ptr = &cfa_value;
1217
afa_value.SetUnspecified();
1218
row_updated = true;
1219
}
1220
if (fa_value_ptr->GetRegisterNumber() == m_lldb_alt_fp_regnum) {
1221
current_sp_bytes_offset_from_fa = fa_value_ptr->GetOffset() - stack_offset;
1222
}
1223
}
1224
1225
else if (prologue_completed_row.get() &&
1226
(ret_pattern_p() ||
1227
non_local_branch_p (current_func_text_offset, func_range, insn_len) ||
1228
jmp_to_reg_p())) {
1229
// Check if the current instruction is the end of an epilogue sequence,
1230
// and if so, re-instate the prologue-completed unwind state.
1231
1232
// The current instruction is a branch/jump outside this function,
1233
// a ret, or a jump through a register value which we cannot
1234
// determine the effcts of. Verify that the stack frame state
1235
// has been unwound to the same as it was at function entry to avoid
1236
// mis-identifying a JMP instruction as an epilogue.
1237
UnwindPlan::Row::RegisterLocation sp, pc;
1238
if (row->GetRegisterInfo(m_lldb_sp_regnum, sp) &&
1239
row->GetRegisterInfo(m_lldb_ip_regnum, pc)) {
1240
// Any ret instruction variant is definitely indicative of an
1241
// epilogue; for other insn patterns verify that we're back to
1242
// the original unwind state.
1243
if (ret_pattern_p() ||
1244
(sp.IsCFAPlusOffset() && sp.GetOffset() == 0 &&
1245
pc.IsAtCFAPlusOffset() && pc.GetOffset() == -m_wordsize)) {
1246
// Reinstate the saved prologue setup for any instructions that come
1247
// after the epilogue
1248
1249
UnwindPlan::Row *newrow = new UnwindPlan::Row;
1250
*newrow = *prologue_completed_row.get();
1251
row.reset(newrow);
1252
current_sp_bytes_offset_from_fa =
1253
prologue_completed_sp_bytes_offset_from_cfa;
1254
is_aligned = prologue_completed_is_aligned;
1255
1256
saved_registers.clear();
1257
saved_registers.resize(prologue_completed_saved_registers.size(), false);
1258
for (size_t i = 0; i < prologue_completed_saved_registers.size(); ++i) {
1259
saved_registers[i] = prologue_completed_saved_registers[i];
1260
}
1261
1262
in_epilogue = true;
1263
row_updated = true;
1264
}
1265
}
1266
}
1267
1268
// call next instruction
1269
// call 0
1270
// => pop %ebx
1271
// This is used in i386 programs to get the PIC base address for finding
1272
// global data
1273
else if (call_next_insn_pattern_p()) {
1274
current_sp_bytes_offset_from_fa += m_wordsize;
1275
if (fa_value_ptr->GetRegisterNumber() == m_lldb_sp_regnum) {
1276
fa_value_ptr->SetOffset(current_sp_bytes_offset_from_fa);
1277
row_updated = true;
1278
}
1279
}
1280
1281
if (row_updated) {
1282
if (current_func_text_offset + insn_len < size) {
1283
row->SetOffset(current_func_text_offset + insn_len);
1284
unwind_plan.AppendRow(row);
1285
// Allocate a new Row, populate it with the existing Row contents.
1286
newrow = new UnwindPlan::Row;
1287
*newrow = *row.get();
1288
row.reset(newrow);
1289
}
1290
}
1291
1292
if (!in_epilogue && row_updated) {
1293
// If we're not in an epilogue sequence, save the updated Row
1294
UnwindPlan::Row *newrow = new UnwindPlan::Row;
1295
*newrow = *row.get();
1296
prologue_completed_row.reset(newrow);
1297
1298
prologue_completed_saved_registers.clear();
1299
prologue_completed_saved_registers.resize(saved_registers.size(), false);
1300
for (size_t i = 0; i < saved_registers.size(); ++i) {
1301
prologue_completed_saved_registers[i] = saved_registers[i];
1302
}
1303
}
1304
1305
// We may change the sp value without adding a new Row necessarily -- keep
1306
// track of it either way.
1307
if (!in_epilogue) {
1308
prologue_completed_sp_bytes_offset_from_cfa =
1309
current_sp_bytes_offset_from_fa;
1310
prologue_completed_is_aligned = is_aligned;
1311
}
1312
1313
m_cur_insn = m_cur_insn + insn_len;
1314
current_func_text_offset += insn_len;
1315
}
1316
1317
unwind_plan.SetSourceName("assembly insn profiling");
1318
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
1319
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
1320
unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
1321
1322
return true;
1323
}
1324
1325
bool x86AssemblyInspectionEngine::AugmentUnwindPlanFromCallSite(
1326
uint8_t *data, size_t size, AddressRange &func_range,
1327
UnwindPlan &unwind_plan, RegisterContextSP &reg_ctx) {
1328
Address addr_start = func_range.GetBaseAddress();
1329
if (!addr_start.IsValid())
1330
return false;
1331
1332
// We either need a live RegisterContext, or we need the UnwindPlan to
1333
// already be in the lldb register numbering scheme.
1334
if (reg_ctx.get() == nullptr &&
1335
unwind_plan.GetRegisterKind() != eRegisterKindLLDB)
1336
return false;
1337
1338
// Is original unwind_plan valid?
1339
// unwind_plan should have at least one row which is ABI-default (CFA
1340
// register is sp), and another row in mid-function.
1341
if (unwind_plan.GetRowCount() < 2)
1342
return false;
1343
1344
UnwindPlan::RowSP first_row = unwind_plan.GetRowAtIndex(0);
1345
if (first_row->GetOffset() != 0)
1346
return false;
1347
uint32_t cfa_reg = first_row->GetCFAValue().GetRegisterNumber();
1348
if (unwind_plan.GetRegisterKind() != eRegisterKindLLDB) {
1349
cfa_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(
1350
unwind_plan.GetRegisterKind(),
1351
first_row->GetCFAValue().GetRegisterNumber());
1352
}
1353
if (cfa_reg != m_lldb_sp_regnum ||
1354
first_row->GetCFAValue().GetOffset() != m_wordsize)
1355
return false;
1356
1357
UnwindPlan::RowSP original_last_row = unwind_plan.GetRowForFunctionOffset(-1);
1358
1359
size_t offset = 0;
1360
int row_id = 1;
1361
bool unwind_plan_updated = false;
1362
UnwindPlan::RowSP row(new UnwindPlan::Row(*first_row));
1363
1364
// After a mid-function epilogue we will need to re-insert the original
1365
// unwind rules so unwinds work for the remainder of the function. These
1366
// aren't common with clang/gcc on x86 but it is possible.
1367
bool reinstate_unwind_state = false;
1368
1369
while (offset < size) {
1370
m_cur_insn = data + offset;
1371
int insn_len;
1372
if (!instruction_length(m_cur_insn, insn_len, size - offset) ||
1373
insn_len == 0 || insn_len > kMaxInstructionByteSize) {
1374
// An unrecognized/junk instruction.
1375
break;
1376
}
1377
1378
// Advance offsets.
1379
offset += insn_len;
1380
1381
// offset is pointing beyond the bounds of the function; stop looping.
1382
if (offset >= size)
1383
continue;
1384
1385
if (reinstate_unwind_state) {
1386
UnwindPlan::RowSP new_row(new UnwindPlan::Row());
1387
*new_row = *original_last_row;
1388
new_row->SetOffset(offset);
1389
unwind_plan.AppendRow(new_row);
1390
row = std::make_shared<UnwindPlan::Row>();
1391
*row = *new_row;
1392
reinstate_unwind_state = false;
1393
unwind_plan_updated = true;
1394
continue;
1395
}
1396
1397
// If we already have one row for this instruction, we can continue.
1398
while (row_id < unwind_plan.GetRowCount() &&
1399
unwind_plan.GetRowAtIndex(row_id)->GetOffset() <= offset) {
1400
row_id++;
1401
}
1402
UnwindPlan::RowSP original_row = unwind_plan.GetRowAtIndex(row_id - 1);
1403
if (original_row->GetOffset() == offset) {
1404
*row = *original_row;
1405
continue;
1406
}
1407
1408
if (row_id == 0) {
1409
// If we are here, compiler didn't generate CFI for prologue. This won't
1410
// happen to GCC or clang. In this case, bail out directly.
1411
return false;
1412
}
1413
1414
// Inspect the instruction to check if we need a new row for it.
1415
cfa_reg = row->GetCFAValue().GetRegisterNumber();
1416
if (unwind_plan.GetRegisterKind() != eRegisterKindLLDB) {
1417
cfa_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(
1418
unwind_plan.GetRegisterKind(),
1419
row->GetCFAValue().GetRegisterNumber());
1420
}
1421
if (cfa_reg == m_lldb_sp_regnum) {
1422
// CFA register is sp.
1423
1424
// call next instruction
1425
// call 0
1426
// => pop %ebx
1427
if (call_next_insn_pattern_p()) {
1428
row->SetOffset(offset);
1429
row->GetCFAValue().IncOffset(m_wordsize);
1430
1431
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1432
unwind_plan.InsertRow(new_row);
1433
unwind_plan_updated = true;
1434
continue;
1435
}
1436
1437
// push/pop register
1438
int regno;
1439
if (push_reg_p(regno)) {
1440
row->SetOffset(offset);
1441
row->GetCFAValue().IncOffset(m_wordsize);
1442
1443
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1444
unwind_plan.InsertRow(new_row);
1445
unwind_plan_updated = true;
1446
continue;
1447
}
1448
if (pop_reg_p(regno)) {
1449
// Technically, this might be a nonvolatile register recover in
1450
// epilogue. We should reset RegisterInfo for the register. But in
1451
// practice, previous rule for the register is still valid... So we
1452
// ignore this case.
1453
1454
row->SetOffset(offset);
1455
row->GetCFAValue().IncOffset(-m_wordsize);
1456
1457
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1458
unwind_plan.InsertRow(new_row);
1459
unwind_plan_updated = true;
1460
continue;
1461
}
1462
1463
if (pop_misc_reg_p()) {
1464
row->SetOffset(offset);
1465
row->GetCFAValue().IncOffset(-m_wordsize);
1466
1467
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1468
unwind_plan.InsertRow(new_row);
1469
unwind_plan_updated = true;
1470
continue;
1471
}
1472
1473
// push imm
1474
if (push_imm_pattern_p()) {
1475
row->SetOffset(offset);
1476
row->GetCFAValue().IncOffset(m_wordsize);
1477
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1478
unwind_plan.InsertRow(new_row);
1479
unwind_plan_updated = true;
1480
continue;
1481
}
1482
1483
// push extended
1484
if (push_extended_pattern_p() || push_misc_reg_p()) {
1485
row->SetOffset(offset);
1486
row->GetCFAValue().IncOffset(m_wordsize);
1487
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1488
unwind_plan.InsertRow(new_row);
1489
unwind_plan_updated = true;
1490
continue;
1491
}
1492
1493
// add/sub %rsp/%esp
1494
int amount;
1495
if (add_rsp_pattern_p(amount)) {
1496
row->SetOffset(offset);
1497
row->GetCFAValue().IncOffset(-amount);
1498
1499
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1500
unwind_plan.InsertRow(new_row);
1501
unwind_plan_updated = true;
1502
continue;
1503
}
1504
if (sub_rsp_pattern_p(amount)) {
1505
row->SetOffset(offset);
1506
row->GetCFAValue().IncOffset(amount);
1507
1508
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1509
unwind_plan.InsertRow(new_row);
1510
unwind_plan_updated = true;
1511
continue;
1512
}
1513
1514
// lea %rsp, [%rsp + $offset]
1515
if (lea_rsp_pattern_p(amount)) {
1516
row->SetOffset(offset);
1517
row->GetCFAValue().IncOffset(-amount);
1518
1519
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1520
unwind_plan.InsertRow(new_row);
1521
unwind_plan_updated = true;
1522
continue;
1523
}
1524
1525
if (ret_pattern_p()) {
1526
reinstate_unwind_state = true;
1527
continue;
1528
}
1529
} else if (cfa_reg == m_lldb_fp_regnum) {
1530
// CFA register is fp.
1531
1532
// The only case we care about is epilogue:
1533
// [0x5d] pop %rbp/%ebp
1534
// => [0xc3] ret
1535
if (pop_rbp_pattern_p() || leave_pattern_p()) {
1536
m_cur_insn++;
1537
if (ret_pattern_p()) {
1538
row->SetOffset(offset);
1539
row->GetCFAValue().SetIsRegisterPlusOffset(
1540
first_row->GetCFAValue().GetRegisterNumber(), m_wordsize);
1541
1542
UnwindPlan::RowSP new_row(new UnwindPlan::Row(*row));
1543
unwind_plan.InsertRow(new_row);
1544
unwind_plan_updated = true;
1545
reinstate_unwind_state = true;
1546
continue;
1547
}
1548
}
1549
} else {
1550
// CFA register is not sp or fp.
1551
1552
// This must be hand-written assembly.
1553
// Just trust eh_frame and assume we have finished.
1554
break;
1555
}
1556
}
1557
1558
unwind_plan.SetPlanValidAddressRange(func_range);
1559
if (unwind_plan_updated) {
1560
std::string unwind_plan_source(unwind_plan.GetSourceName().AsCString());
1561
unwind_plan_source += " plus augmentation from assembly parsing";
1562
unwind_plan.SetSourceName(unwind_plan_source.c_str());
1563
unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
1564
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
1565
}
1566
return true;
1567
}
1568
1569
bool x86AssemblyInspectionEngine::FindFirstNonPrologueInstruction(
1570
uint8_t *data, size_t size, size_t &offset) {
1571
offset = 0;
1572
1573
if (!m_register_map_initialized)
1574
return false;
1575
1576
if (m_disasm_context == nullptr)
1577
return false;
1578
1579
while (offset < size) {
1580
int regno;
1581
int insn_len;
1582
int scratch;
1583
1584
m_cur_insn = data + offset;
1585
if (!instruction_length(m_cur_insn, insn_len, size - offset)
1586
|| insn_len > kMaxInstructionByteSize
1587
|| insn_len == 0) {
1588
// An error parsing the instruction, i.e. probably data/garbage - stop
1589
// scanning
1590
break;
1591
}
1592
1593
if (push_rbp_pattern_p() || mov_rsp_rbp_pattern_p() ||
1594
sub_rsp_pattern_p(scratch) || push_reg_p(regno) ||
1595
mov_reg_to_local_stack_frame_p(regno, scratch) ||
1596
(lea_rsp_pattern_p(scratch) && offset == 0)) {
1597
offset += insn_len;
1598
continue;
1599
}
1600
//
1601
// Unknown non-prologue instruction - stop scanning
1602
break;
1603
}
1604
1605
return true;
1606
}
1607
1608