Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lldb/source/Symbol/DWARFCallFrameInfo.cpp
39587 views
1
//===-- DWARFCallFrameInfo.cpp --------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "lldb/Symbol/DWARFCallFrameInfo.h"
10
#include "lldb/Core/Debugger.h"
11
#include "lldb/Core/Module.h"
12
#include "lldb/Core/Section.h"
13
#include "lldb/Core/dwarf.h"
14
#include "lldb/Host/Host.h"
15
#include "lldb/Symbol/ObjectFile.h"
16
#include "lldb/Symbol/UnwindPlan.h"
17
#include "lldb/Target/RegisterContext.h"
18
#include "lldb/Target/Thread.h"
19
#include "lldb/Utility/ArchSpec.h"
20
#include "lldb/Utility/LLDBLog.h"
21
#include "lldb/Utility/Log.h"
22
#include "lldb/Utility/Timer.h"
23
#include <cstring>
24
#include <list>
25
#include <optional>
26
27
using namespace lldb;
28
using namespace lldb_private;
29
using namespace lldb_private::dwarf;
30
31
// GetDwarfEHPtr
32
//
33
// Used for calls when the value type is specified by a DWARF EH Frame pointer
34
// encoding.
35
static uint64_t
36
GetGNUEHPointer(const DataExtractor &DE, offset_t *offset_ptr,
37
uint32_t eh_ptr_enc, addr_t pc_rel_addr, addr_t text_addr,
38
addr_t data_addr) //, BSDRelocs *data_relocs) const
39
{
40
if (eh_ptr_enc == DW_EH_PE_omit)
41
return ULLONG_MAX; // Value isn't in the buffer...
42
43
uint64_t baseAddress = 0;
44
uint64_t addressValue = 0;
45
const uint32_t addr_size = DE.GetAddressByteSize();
46
assert(addr_size == 4 || addr_size == 8);
47
48
bool signExtendValue = false;
49
// Decode the base part or adjust our offset
50
switch (eh_ptr_enc & 0x70) {
51
case DW_EH_PE_pcrel:
52
signExtendValue = true;
53
baseAddress = *offset_ptr;
54
if (pc_rel_addr != LLDB_INVALID_ADDRESS)
55
baseAddress += pc_rel_addr;
56
// else
57
// Log::GlobalWarning ("PC relative pointer encoding found with
58
// invalid pc relative address.");
59
break;
60
61
case DW_EH_PE_textrel:
62
signExtendValue = true;
63
if (text_addr != LLDB_INVALID_ADDRESS)
64
baseAddress = text_addr;
65
// else
66
// Log::GlobalWarning ("text relative pointer encoding being
67
// decoded with invalid text section address, setting base address
68
// to zero.");
69
break;
70
71
case DW_EH_PE_datarel:
72
signExtendValue = true;
73
if (data_addr != LLDB_INVALID_ADDRESS)
74
baseAddress = data_addr;
75
// else
76
// Log::GlobalWarning ("data relative pointer encoding being
77
// decoded with invalid data section address, setting base address
78
// to zero.");
79
break;
80
81
case DW_EH_PE_funcrel:
82
signExtendValue = true;
83
break;
84
85
case DW_EH_PE_aligned: {
86
// SetPointerSize should be called prior to extracting these so the pointer
87
// size is cached
88
assert(addr_size != 0);
89
if (addr_size) {
90
// Align to a address size boundary first
91
uint32_t alignOffset = *offset_ptr % addr_size;
92
if (alignOffset)
93
offset_ptr += addr_size - alignOffset;
94
}
95
} break;
96
97
default:
98
break;
99
}
100
101
// Decode the value part
102
switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING) {
103
case DW_EH_PE_absptr: {
104
addressValue = DE.GetAddress(offset_ptr);
105
// if (data_relocs)
106
// addressValue = data_relocs->Relocate(*offset_ptr -
107
// addr_size, *this, addressValue);
108
} break;
109
case DW_EH_PE_uleb128:
110
addressValue = DE.GetULEB128(offset_ptr);
111
break;
112
case DW_EH_PE_udata2:
113
addressValue = DE.GetU16(offset_ptr);
114
break;
115
case DW_EH_PE_udata4:
116
addressValue = DE.GetU32(offset_ptr);
117
break;
118
case DW_EH_PE_udata8:
119
addressValue = DE.GetU64(offset_ptr);
120
break;
121
case DW_EH_PE_sleb128:
122
addressValue = DE.GetSLEB128(offset_ptr);
123
break;
124
case DW_EH_PE_sdata2:
125
addressValue = (int16_t)DE.GetU16(offset_ptr);
126
break;
127
case DW_EH_PE_sdata4:
128
addressValue = (int32_t)DE.GetU32(offset_ptr);
129
break;
130
case DW_EH_PE_sdata8:
131
addressValue = (int64_t)DE.GetU64(offset_ptr);
132
break;
133
default:
134
// Unhandled encoding type
135
assert(eh_ptr_enc);
136
break;
137
}
138
139
// Since we promote everything to 64 bit, we may need to sign extend
140
if (signExtendValue && addr_size < sizeof(baseAddress)) {
141
uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull);
142
if (sign_bit & addressValue) {
143
uint64_t mask = ~sign_bit + 1;
144
addressValue |= mask;
145
}
146
}
147
return baseAddress + addressValue;
148
}
149
150
DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile &objfile,
151
SectionSP &section_sp, Type type)
152
: m_objfile(objfile), m_section_sp(section_sp), m_type(type) {}
153
154
bool DWARFCallFrameInfo::GetUnwindPlan(const Address &addr,
155
UnwindPlan &unwind_plan) {
156
return GetUnwindPlan(AddressRange(addr, 1), unwind_plan);
157
}
158
159
bool DWARFCallFrameInfo::GetUnwindPlan(const AddressRange &range,
160
UnwindPlan &unwind_plan) {
161
FDEEntryMap::Entry fde_entry;
162
Address addr = range.GetBaseAddress();
163
164
// Make sure that the Address we're searching for is the same object file as
165
// this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
166
ModuleSP module_sp = addr.GetModule();
167
if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
168
module_sp->GetObjectFile() != &m_objfile)
169
return false;
170
171
if (std::optional<FDEEntryMap::Entry> entry = GetFirstFDEEntryInRange(range))
172
return FDEToUnwindPlan(entry->data, addr, unwind_plan);
173
return false;
174
}
175
176
bool DWARFCallFrameInfo::GetAddressRange(Address addr, AddressRange &range) {
177
178
// Make sure that the Address we're searching for is the same object file as
179
// this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
180
ModuleSP module_sp = addr.GetModule();
181
if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
182
module_sp->GetObjectFile() != &m_objfile)
183
return false;
184
185
if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
186
return false;
187
GetFDEIndex();
188
FDEEntryMap::Entry *fde_entry =
189
m_fde_index.FindEntryThatContains(addr.GetFileAddress());
190
if (!fde_entry)
191
return false;
192
193
range = AddressRange(fde_entry->base, fde_entry->size,
194
m_objfile.GetSectionList());
195
return true;
196
}
197
198
std::optional<DWARFCallFrameInfo::FDEEntryMap::Entry>
199
DWARFCallFrameInfo::GetFirstFDEEntryInRange(const AddressRange &range) {
200
if (!m_section_sp || m_section_sp->IsEncrypted())
201
return std::nullopt;
202
203
GetFDEIndex();
204
205
addr_t start_file_addr = range.GetBaseAddress().GetFileAddress();
206
const FDEEntryMap::Entry *fde =
207
m_fde_index.FindEntryThatContainsOrFollows(start_file_addr);
208
if (fde && fde->DoesIntersect(
209
FDEEntryMap::Range(start_file_addr, range.GetByteSize())))
210
return *fde;
211
212
return std::nullopt;
213
}
214
215
void DWARFCallFrameInfo::GetFunctionAddressAndSizeVector(
216
FunctionAddressAndSizeVector &function_info) {
217
GetFDEIndex();
218
const size_t count = m_fde_index.GetSize();
219
function_info.Clear();
220
if (count > 0)
221
function_info.Reserve(count);
222
for (size_t i = 0; i < count; ++i) {
223
const FDEEntryMap::Entry *func_offset_data_entry =
224
m_fde_index.GetEntryAtIndex(i);
225
if (func_offset_data_entry) {
226
FunctionAddressAndSizeVector::Entry function_offset_entry(
227
func_offset_data_entry->base, func_offset_data_entry->size);
228
function_info.Append(function_offset_entry);
229
}
230
}
231
}
232
233
const DWARFCallFrameInfo::CIE *
234
DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset) {
235
cie_map_t::iterator pos = m_cie_map.find(cie_offset);
236
237
if (pos != m_cie_map.end()) {
238
// Parse and cache the CIE
239
if (pos->second == nullptr)
240
pos->second = ParseCIE(cie_offset);
241
242
return pos->second.get();
243
}
244
return nullptr;
245
}
246
247
DWARFCallFrameInfo::CIESP
248
DWARFCallFrameInfo::ParseCIE(const dw_offset_t cie_offset) {
249
CIESP cie_sp(new CIE(cie_offset));
250
lldb::offset_t offset = cie_offset;
251
if (!m_cfi_data_initialized)
252
GetCFIData();
253
uint32_t length = m_cfi_data.GetU32(&offset);
254
dw_offset_t cie_id, end_offset;
255
bool is_64bit = (length == UINT32_MAX);
256
if (is_64bit) {
257
length = m_cfi_data.GetU64(&offset);
258
cie_id = m_cfi_data.GetU64(&offset);
259
end_offset = cie_offset + length + 12;
260
} else {
261
cie_id = m_cfi_data.GetU32(&offset);
262
end_offset = cie_offset + length + 4;
263
}
264
if (length > 0 && ((m_type == DWARF && cie_id == UINT32_MAX) ||
265
(m_type == EH && cie_id == 0ul))) {
266
size_t i;
267
// cie.offset = cie_offset;
268
// cie.length = length;
269
// cie.cieID = cieID;
270
cie_sp->ptr_encoding = DW_EH_PE_absptr; // default
271
cie_sp->version = m_cfi_data.GetU8(&offset);
272
if (cie_sp->version > CFI_VERSION4) {
273
Debugger::ReportError(
274
llvm::formatv("CIE parse error: CFI version {0} is not supported",
275
cie_sp->version));
276
return nullptr;
277
}
278
279
for (i = 0; i < CFI_AUG_MAX_SIZE; ++i) {
280
cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
281
if (cie_sp->augmentation[i] == '\0') {
282
// Zero out remaining bytes in augmentation string
283
for (size_t j = i + 1; j < CFI_AUG_MAX_SIZE; ++j)
284
cie_sp->augmentation[j] = '\0';
285
286
break;
287
}
288
}
289
290
if (i == CFI_AUG_MAX_SIZE &&
291
cie_sp->augmentation[CFI_AUG_MAX_SIZE - 1] != '\0') {
292
Debugger::ReportError(llvm::formatv(
293
"CIE parse error: CIE augmentation string was too large "
294
"for the fixed sized buffer of {0} bytes.",
295
CFI_AUG_MAX_SIZE));
296
return nullptr;
297
}
298
299
// m_cfi_data uses address size from target architecture of the process may
300
// ignore these fields?
301
if (m_type == DWARF && cie_sp->version >= CFI_VERSION4) {
302
cie_sp->address_size = m_cfi_data.GetU8(&offset);
303
cie_sp->segment_size = m_cfi_data.GetU8(&offset);
304
}
305
306
cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
307
cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
308
309
cie_sp->return_addr_reg_num =
310
m_type == DWARF && cie_sp->version >= CFI_VERSION3
311
? static_cast<uint32_t>(m_cfi_data.GetULEB128(&offset))
312
: m_cfi_data.GetU8(&offset);
313
314
if (cie_sp->augmentation[0]) {
315
// Get the length of the eh_frame augmentation data which starts with a
316
// ULEB128 length in bytes
317
const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
318
const size_t aug_data_end = offset + aug_data_len;
319
const size_t aug_str_len = strlen(cie_sp->augmentation);
320
// A 'z' may be present as the first character of the string.
321
// If present, the Augmentation Data field shall be present. The contents
322
// of the Augmentation Data shall be interpreted according to other
323
// characters in the Augmentation String.
324
if (cie_sp->augmentation[0] == 'z') {
325
// Extract the Augmentation Data
326
size_t aug_str_idx = 0;
327
for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++) {
328
char aug = cie_sp->augmentation[aug_str_idx];
329
switch (aug) {
330
case 'L':
331
// Indicates the presence of one argument in the Augmentation Data
332
// of the CIE, and a corresponding argument in the Augmentation
333
// Data of the FDE. The argument in the Augmentation Data of the
334
// CIE is 1-byte and represents the pointer encoding used for the
335
// argument in the Augmentation Data of the FDE, which is the
336
// address of a language-specific data area (LSDA). The size of the
337
// LSDA pointer is specified by the pointer encoding used.
338
cie_sp->lsda_addr_encoding = m_cfi_data.GetU8(&offset);
339
break;
340
341
case 'P':
342
// Indicates the presence of two arguments in the Augmentation Data
343
// of the CIE. The first argument is 1-byte and represents the
344
// pointer encoding used for the second argument, which is the
345
// address of a personality routine handler. The size of the
346
// personality routine pointer is specified by the pointer encoding
347
// used.
348
//
349
// The address of the personality function will be stored at this
350
// location. Pre-execution, it will be all zero's so don't read it
351
// until we're trying to do an unwind & the reloc has been
352
// resolved.
353
{
354
uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
355
const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
356
cie_sp->personality_loc = GetGNUEHPointer(
357
m_cfi_data, &offset, arg_ptr_encoding, pc_rel_addr,
358
LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
359
}
360
break;
361
362
case 'R':
363
// A 'R' may be present at any position after the
364
// first character of the string. The Augmentation Data shall
365
// include a 1 byte argument that represents the pointer encoding
366
// for the address pointers used in the FDE. Example: 0x1B ==
367
// DW_EH_PE_pcrel | DW_EH_PE_sdata4
368
cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
369
break;
370
}
371
}
372
} else if (strcmp(cie_sp->augmentation, "eh") == 0) {
373
// If the Augmentation string has the value "eh", then the EH Data
374
// field shall be present
375
}
376
377
// Set the offset to be the end of the augmentation data just in case we
378
// didn't understand any of the data.
379
offset = (uint32_t)aug_data_end;
380
}
381
382
if (end_offset > offset) {
383
cie_sp->inst_offset = offset;
384
cie_sp->inst_length = end_offset - offset;
385
}
386
while (offset < end_offset) {
387
uint8_t inst = m_cfi_data.GetU8(&offset);
388
uint8_t primary_opcode = inst & 0xC0;
389
uint8_t extended_opcode = inst & 0x3F;
390
391
if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode,
392
cie_sp->data_align, offset,
393
cie_sp->initial_row))
394
break; // Stop if we hit an unrecognized opcode
395
}
396
}
397
398
return cie_sp;
399
}
400
401
void DWARFCallFrameInfo::GetCFIData() {
402
if (!m_cfi_data_initialized) {
403
Log *log = GetLog(LLDBLog::Unwind);
404
if (log)
405
m_objfile.GetModule()->LogMessage(log, "Reading EH frame info");
406
m_objfile.ReadSectionData(m_section_sp.get(), m_cfi_data);
407
m_cfi_data_initialized = true;
408
}
409
}
410
// Scan through the eh_frame or debug_frame section looking for FDEs and noting
411
// the start/end addresses of the functions and a pointer back to the
412
// function's FDE for later expansion. Internalize CIEs as we come across them.
413
414
void DWARFCallFrameInfo::GetFDEIndex() {
415
if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
416
return;
417
418
if (m_fde_index_initialized)
419
return;
420
421
std::lock_guard<std::mutex> guard(m_fde_index_mutex);
422
423
if (m_fde_index_initialized) // if two threads hit the locker
424
return;
425
426
LLDB_SCOPED_TIMERF("%s", m_objfile.GetFileSpec().GetFilename().AsCString(""));
427
428
bool clear_address_zeroth_bit = false;
429
if (ArchSpec arch = m_objfile.GetArchitecture()) {
430
if (arch.GetTriple().getArch() == llvm::Triple::arm ||
431
arch.GetTriple().getArch() == llvm::Triple::thumb)
432
clear_address_zeroth_bit = true;
433
}
434
435
lldb::offset_t offset = 0;
436
if (!m_cfi_data_initialized)
437
GetCFIData();
438
while (m_cfi_data.ValidOffsetForDataOfSize(offset, 8)) {
439
const dw_offset_t current_entry = offset;
440
dw_offset_t cie_id, next_entry, cie_offset;
441
uint32_t len = m_cfi_data.GetU32(&offset);
442
bool is_64bit = (len == UINT32_MAX);
443
if (is_64bit) {
444
len = m_cfi_data.GetU64(&offset);
445
cie_id = m_cfi_data.GetU64(&offset);
446
next_entry = current_entry + len + 12;
447
cie_offset = current_entry + 12 - cie_id;
448
} else {
449
cie_id = m_cfi_data.GetU32(&offset);
450
next_entry = current_entry + len + 4;
451
cie_offset = current_entry + 4 - cie_id;
452
}
453
454
if (next_entry > m_cfi_data.GetByteSize() + 1) {
455
Debugger::ReportError(llvm::formatv("Invalid fde/cie next entry offset "
456
"of {0:x} found in cie/fde at {1:x}",
457
next_entry, current_entry));
458
// Don't trust anything in this eh_frame section if we find blatantly
459
// invalid data.
460
m_fde_index.Clear();
461
m_fde_index_initialized = true;
462
return;
463
}
464
465
// An FDE entry contains CIE_pointer in debug_frame in same place as cie_id
466
// in eh_frame. CIE_pointer is an offset into the .debug_frame section. So,
467
// variable cie_offset should be equal to cie_id for debug_frame.
468
// FDE entries with cie_id == 0 shouldn't be ignored for it.
469
if ((cie_id == 0 && m_type == EH) || cie_id == UINT32_MAX || len == 0) {
470
auto cie_sp = ParseCIE(current_entry);
471
if (!cie_sp) {
472
// Cannot parse, the reason is already logged
473
m_fde_index.Clear();
474
m_fde_index_initialized = true;
475
return;
476
}
477
478
m_cie_map[current_entry] = std::move(cie_sp);
479
offset = next_entry;
480
continue;
481
}
482
483
if (m_type == DWARF)
484
cie_offset = cie_id;
485
486
if (cie_offset > m_cfi_data.GetByteSize()) {
487
Debugger::ReportError(llvm::formatv("Invalid cie offset of {0:x} "
488
"found in cie/fde at {1:x}",
489
cie_offset, current_entry));
490
// Don't trust anything in this eh_frame section if we find blatantly
491
// invalid data.
492
m_fde_index.Clear();
493
m_fde_index_initialized = true;
494
return;
495
}
496
497
const CIE *cie = GetCIE(cie_offset);
498
if (cie) {
499
const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
500
const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
501
const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
502
503
lldb::addr_t addr =
504
GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
505
text_addr, data_addr);
506
if (clear_address_zeroth_bit)
507
addr &= ~1ull;
508
509
lldb::addr_t length = GetGNUEHPointer(
510
m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
511
pc_rel_addr, text_addr, data_addr);
512
FDEEntryMap::Entry fde(addr, length, current_entry);
513
m_fde_index.Append(fde);
514
} else {
515
Debugger::ReportError(llvm::formatv(
516
"unable to find CIE at {0:x} for cie_id = {1:x} for entry at {2:x}.",
517
cie_offset, cie_id, current_entry));
518
}
519
offset = next_entry;
520
}
521
m_fde_index.Sort();
522
m_fde_index_initialized = true;
523
}
524
525
bool DWARFCallFrameInfo::FDEToUnwindPlan(dw_offset_t dwarf_offset,
526
Address startaddr,
527
UnwindPlan &unwind_plan) {
528
Log *log = GetLog(LLDBLog::Unwind);
529
lldb::offset_t offset = dwarf_offset;
530
lldb::offset_t current_entry = offset;
531
532
if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
533
return false;
534
535
if (!m_cfi_data_initialized)
536
GetCFIData();
537
538
uint32_t length = m_cfi_data.GetU32(&offset);
539
dw_offset_t cie_offset;
540
bool is_64bit = (length == UINT32_MAX);
541
if (is_64bit) {
542
length = m_cfi_data.GetU64(&offset);
543
cie_offset = m_cfi_data.GetU64(&offset);
544
} else {
545
cie_offset = m_cfi_data.GetU32(&offset);
546
}
547
548
// FDE entries with zeroth cie_offset may occur for debug_frame.
549
assert(!(m_type == EH && 0 == cie_offset) && cie_offset != UINT32_MAX);
550
551
// Translate the CIE_id from the eh_frame format, which is relative to the
552
// FDE offset, into a __eh_frame section offset
553
if (m_type == EH) {
554
unwind_plan.SetSourceName("eh_frame CFI");
555
cie_offset = current_entry + (is_64bit ? 12 : 4) - cie_offset;
556
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
557
} else {
558
unwind_plan.SetSourceName("DWARF CFI");
559
// In theory the debug_frame info should be valid at all call sites
560
// ("asynchronous unwind info" as it is sometimes called) but in practice
561
// gcc et al all emit call frame info for the prologue and call sites, but
562
// not for the epilogue or all the other locations during the function
563
// reliably.
564
unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
565
}
566
unwind_plan.SetSourcedFromCompiler(eLazyBoolYes);
567
568
const CIE *cie = GetCIE(cie_offset);
569
assert(cie != nullptr);
570
571
const dw_offset_t end_offset = current_entry + length + (is_64bit ? 12 : 4);
572
573
const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
574
const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
575
const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
576
lldb::addr_t range_base =
577
GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
578
text_addr, data_addr);
579
lldb::addr_t range_len = GetGNUEHPointer(
580
m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
581
pc_rel_addr, text_addr, data_addr);
582
AddressRange range(range_base, m_objfile.GetAddressByteSize(),
583
m_objfile.GetSectionList());
584
range.SetByteSize(range_len);
585
586
addr_t lsda_data_file_address = LLDB_INVALID_ADDRESS;
587
588
if (cie->augmentation[0] == 'z') {
589
uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
590
if (aug_data_len != 0 && cie->lsda_addr_encoding != DW_EH_PE_omit) {
591
offset_t saved_offset = offset;
592
lsda_data_file_address =
593
GetGNUEHPointer(m_cfi_data, &offset, cie->lsda_addr_encoding,
594
pc_rel_addr, text_addr, data_addr);
595
if (offset - saved_offset != aug_data_len) {
596
// There is more in the augmentation region than we know how to process;
597
// don't read anything.
598
lsda_data_file_address = LLDB_INVALID_ADDRESS;
599
}
600
offset = saved_offset;
601
}
602
offset += aug_data_len;
603
}
604
unwind_plan.SetUnwindPlanForSignalTrap(
605
strchr(cie->augmentation, 'S') ? eLazyBoolYes : eLazyBoolNo);
606
607
Address lsda_data;
608
Address personality_function_ptr;
609
610
if (lsda_data_file_address != LLDB_INVALID_ADDRESS &&
611
cie->personality_loc != LLDB_INVALID_ADDRESS) {
612
m_objfile.GetModule()->ResolveFileAddress(lsda_data_file_address,
613
lsda_data);
614
m_objfile.GetModule()->ResolveFileAddress(cie->personality_loc,
615
personality_function_ptr);
616
}
617
618
if (lsda_data.IsValid() && personality_function_ptr.IsValid()) {
619
unwind_plan.SetLSDAAddress(lsda_data);
620
unwind_plan.SetPersonalityFunctionPtr(personality_function_ptr);
621
}
622
623
uint32_t code_align = cie->code_align;
624
int32_t data_align = cie->data_align;
625
626
unwind_plan.SetPlanValidAddressRange(range);
627
UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
628
*cie_initial_row = cie->initial_row;
629
UnwindPlan::RowSP row(cie_initial_row);
630
631
unwind_plan.SetRegisterKind(GetRegisterKind());
632
unwind_plan.SetReturnAddressRegister(cie->return_addr_reg_num);
633
634
std::vector<UnwindPlan::RowSP> stack;
635
636
UnwindPlan::Row::RegisterLocation reg_location;
637
while (m_cfi_data.ValidOffset(offset) && offset < end_offset) {
638
uint8_t inst = m_cfi_data.GetU8(&offset);
639
uint8_t primary_opcode = inst & 0xC0;
640
uint8_t extended_opcode = inst & 0x3F;
641
642
if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, data_align,
643
offset, *row)) {
644
if (primary_opcode) {
645
switch (primary_opcode) {
646
case DW_CFA_advance_loc: // (Row Creation Instruction)
647
{ // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
648
// takes a single argument that represents a constant delta. The
649
// required action is to create a new table row with a location value
650
// that is computed by taking the current entry's location value and
651
// adding (delta * code_align). All other values in the new row are
652
// initially identical to the current row.
653
unwind_plan.AppendRow(row);
654
UnwindPlan::Row *newrow = new UnwindPlan::Row;
655
*newrow = *row.get();
656
row.reset(newrow);
657
row->SlideOffset(extended_opcode * code_align);
658
break;
659
}
660
661
case DW_CFA_restore: { // 0xC0 - high 2 bits are 0x3, lower 6 bits are
662
// register
663
// takes a single argument that represents a register number. The
664
// required action is to change the rule for the indicated register
665
// to the rule assigned it by the initial_instructions in the CIE.
666
uint32_t reg_num = extended_opcode;
667
// We only keep enough register locations around to unwind what is in
668
// our thread, and these are organized by the register index in that
669
// state, so we need to convert our eh_frame register number from the
670
// EH frame info, to a register index
671
672
if (unwind_plan.IsValidRowIndex(0) &&
673
unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
674
reg_location))
675
row->SetRegisterInfo(reg_num, reg_location);
676
else {
677
// If the register was not set in the first row, remove the
678
// register info to keep the unmodified value from the caller.
679
row->RemoveRegisterInfo(reg_num);
680
}
681
break;
682
}
683
}
684
} else {
685
switch (extended_opcode) {
686
case DW_CFA_set_loc: // 0x1 (Row Creation Instruction)
687
{
688
// DW_CFA_set_loc takes a single argument that represents an address.
689
// The required action is to create a new table row using the
690
// specified address as the location. All other values in the new row
691
// are initially identical to the current row. The new location value
692
// should always be greater than the current one.
693
unwind_plan.AppendRow(row);
694
UnwindPlan::Row *newrow = new UnwindPlan::Row;
695
*newrow = *row.get();
696
row.reset(newrow);
697
row->SetOffset(m_cfi_data.GetAddress(&offset) -
698
startaddr.GetFileAddress());
699
break;
700
}
701
702
case DW_CFA_advance_loc1: // 0x2 (Row Creation Instruction)
703
{
704
// takes a single uword argument that represents a constant delta.
705
// This instruction is identical to DW_CFA_advance_loc except for the
706
// encoding and size of the delta argument.
707
unwind_plan.AppendRow(row);
708
UnwindPlan::Row *newrow = new UnwindPlan::Row;
709
*newrow = *row.get();
710
row.reset(newrow);
711
row->SlideOffset(m_cfi_data.GetU8(&offset) * code_align);
712
break;
713
}
714
715
case DW_CFA_advance_loc2: // 0x3 (Row Creation Instruction)
716
{
717
// takes a single uword argument that represents a constant delta.
718
// This instruction is identical to DW_CFA_advance_loc except for the
719
// encoding and size of the delta argument.
720
unwind_plan.AppendRow(row);
721
UnwindPlan::Row *newrow = new UnwindPlan::Row;
722
*newrow = *row.get();
723
row.reset(newrow);
724
row->SlideOffset(m_cfi_data.GetU16(&offset) * code_align);
725
break;
726
}
727
728
case DW_CFA_advance_loc4: // 0x4 (Row Creation Instruction)
729
{
730
// takes a single uword argument that represents a constant delta.
731
// This instruction is identical to DW_CFA_advance_loc except for the
732
// encoding and size of the delta argument.
733
unwind_plan.AppendRow(row);
734
UnwindPlan::Row *newrow = new UnwindPlan::Row;
735
*newrow = *row.get();
736
row.reset(newrow);
737
row->SlideOffset(m_cfi_data.GetU32(&offset) * code_align);
738
break;
739
}
740
741
case DW_CFA_restore_extended: // 0x6
742
{
743
// takes a single unsigned LEB128 argument that represents a register
744
// number. This instruction is identical to DW_CFA_restore except for
745
// the encoding and size of the register argument.
746
uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
747
if (unwind_plan.IsValidRowIndex(0) &&
748
unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
749
reg_location))
750
row->SetRegisterInfo(reg_num, reg_location);
751
break;
752
}
753
754
case DW_CFA_remember_state: // 0xA
755
{
756
// These instructions define a stack of information. Encountering the
757
// DW_CFA_remember_state instruction means to save the rules for
758
// every register on the current row on the stack. Encountering the
759
// DW_CFA_restore_state instruction means to pop the set of rules off
760
// the stack and place them in the current row. (This operation is
761
// useful for compilers that move epilogue code into the body of a
762
// function.)
763
stack.push_back(row);
764
UnwindPlan::Row *newrow = new UnwindPlan::Row;
765
*newrow = *row.get();
766
row.reset(newrow);
767
break;
768
}
769
770
case DW_CFA_restore_state: // 0xB
771
{
772
// These instructions define a stack of information. Encountering the
773
// DW_CFA_remember_state instruction means to save the rules for
774
// every register on the current row on the stack. Encountering the
775
// DW_CFA_restore_state instruction means to pop the set of rules off
776
// the stack and place them in the current row. (This operation is
777
// useful for compilers that move epilogue code into the body of a
778
// function.)
779
if (stack.empty()) {
780
LLDB_LOG(log,
781
"DWARFCallFrameInfo::{0}(dwarf_offset: "
782
"{1:x16}, startaddr: [{2:x16}] encountered "
783
"DW_CFA_restore_state but state stack "
784
"is empty. Corrupt unwind info?",
785
__FUNCTION__, dwarf_offset, startaddr.GetFileAddress());
786
break;
787
}
788
lldb::addr_t offset = row->GetOffset();
789
row = stack.back();
790
stack.pop_back();
791
row->SetOffset(offset);
792
break;
793
}
794
795
case DW_CFA_GNU_args_size: // 0x2e
796
{
797
// The DW_CFA_GNU_args_size instruction takes an unsigned LEB128
798
// operand representing an argument size. This instruction specifies
799
// the total of the size of the arguments which have been pushed onto
800
// the stack.
801
802
// TODO: Figure out how we should handle this.
803
m_cfi_data.GetULEB128(&offset);
804
break;
805
}
806
807
case DW_CFA_val_offset: // 0x14
808
case DW_CFA_val_offset_sf: // 0x15
809
default:
810
break;
811
}
812
}
813
}
814
}
815
unwind_plan.AppendRow(row);
816
817
return true;
818
}
819
820
bool DWARFCallFrameInfo::HandleCommonDwarfOpcode(uint8_t primary_opcode,
821
uint8_t extended_opcode,
822
int32_t data_align,
823
lldb::offset_t &offset,
824
UnwindPlan::Row &row) {
825
UnwindPlan::Row::RegisterLocation reg_location;
826
827
if (primary_opcode) {
828
switch (primary_opcode) {
829
case DW_CFA_offset: { // 0x80 - high 2 bits are 0x2, lower 6 bits are
830
// register
831
// takes two arguments: an unsigned LEB128 constant representing a
832
// factored offset and a register number. The required action is to
833
// change the rule for the register indicated by the register number to
834
// be an offset(N) rule with a value of (N = factored offset *
835
// data_align).
836
uint8_t reg_num = extended_opcode;
837
int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
838
reg_location.SetAtCFAPlusOffset(op_offset);
839
row.SetRegisterInfo(reg_num, reg_location);
840
return true;
841
}
842
}
843
} else {
844
switch (extended_opcode) {
845
case DW_CFA_nop: // 0x0
846
return true;
847
848
case DW_CFA_offset_extended: // 0x5
849
{
850
// takes two unsigned LEB128 arguments representing a register number and
851
// a factored offset. This instruction is identical to DW_CFA_offset
852
// except for the encoding and size of the register argument.
853
uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
854
int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
855
UnwindPlan::Row::RegisterLocation reg_location;
856
reg_location.SetAtCFAPlusOffset(op_offset);
857
row.SetRegisterInfo(reg_num, reg_location);
858
return true;
859
}
860
861
case DW_CFA_undefined: // 0x7
862
{
863
// takes a single unsigned LEB128 argument that represents a register
864
// number. The required action is to set the rule for the specified
865
// register to undefined.
866
uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
867
UnwindPlan::Row::RegisterLocation reg_location;
868
reg_location.SetUndefined();
869
row.SetRegisterInfo(reg_num, reg_location);
870
return true;
871
}
872
873
case DW_CFA_same_value: // 0x8
874
{
875
// takes a single unsigned LEB128 argument that represents a register
876
// number. The required action is to set the rule for the specified
877
// register to same value.
878
uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
879
UnwindPlan::Row::RegisterLocation reg_location;
880
reg_location.SetSame();
881
row.SetRegisterInfo(reg_num, reg_location);
882
return true;
883
}
884
885
case DW_CFA_register: // 0x9
886
{
887
// takes two unsigned LEB128 arguments representing register numbers. The
888
// required action is to set the rule for the first register to be the
889
// second register.
890
uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
891
uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
892
UnwindPlan::Row::RegisterLocation reg_location;
893
reg_location.SetInRegister(other_reg_num);
894
row.SetRegisterInfo(reg_num, reg_location);
895
return true;
896
}
897
898
case DW_CFA_def_cfa: // 0xC (CFA Definition Instruction)
899
{
900
// Takes two unsigned LEB128 operands representing a register number and
901
// a (non-factored) offset. The required action is to define the current
902
// CFA rule to use the provided register and offset.
903
uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
904
int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
905
row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
906
return true;
907
}
908
909
case DW_CFA_def_cfa_register: // 0xD (CFA Definition Instruction)
910
{
911
// takes a single unsigned LEB128 argument representing a register
912
// number. The required action is to define the current CFA rule to use
913
// the provided register (but to keep the old offset).
914
uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
915
row.GetCFAValue().SetIsRegisterPlusOffset(reg_num,
916
row.GetCFAValue().GetOffset());
917
return true;
918
}
919
920
case DW_CFA_def_cfa_offset: // 0xE (CFA Definition Instruction)
921
{
922
// Takes a single unsigned LEB128 operand representing a (non-factored)
923
// offset. The required action is to define the current CFA rule to use
924
// the provided offset (but to keep the old register).
925
int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
926
row.GetCFAValue().SetIsRegisterPlusOffset(
927
row.GetCFAValue().GetRegisterNumber(), op_offset);
928
return true;
929
}
930
931
case DW_CFA_def_cfa_expression: // 0xF (CFA Definition Instruction)
932
{
933
size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
934
const uint8_t *block_data =
935
static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
936
row.GetCFAValue().SetIsDWARFExpression(block_data, block_len);
937
return true;
938
}
939
940
case DW_CFA_expression: // 0x10
941
{
942
// Takes two operands: an unsigned LEB128 value representing a register
943
// number, and a DW_FORM_block value representing a DWARF expression. The
944
// required action is to change the rule for the register indicated by
945
// the register number to be an expression(E) rule where E is the DWARF
946
// expression. That is, the DWARF expression computes the address. The
947
// value of the CFA is pushed on the DWARF evaluation stack prior to
948
// execution of the DWARF expression.
949
uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
950
uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
951
const uint8_t *block_data =
952
static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
953
UnwindPlan::Row::RegisterLocation reg_location;
954
reg_location.SetAtDWARFExpression(block_data, block_len);
955
row.SetRegisterInfo(reg_num, reg_location);
956
return true;
957
}
958
959
case DW_CFA_offset_extended_sf: // 0x11
960
{
961
// takes two operands: an unsigned LEB128 value representing a register
962
// number and a signed LEB128 factored offset. This instruction is
963
// identical to DW_CFA_offset_extended except that the second operand is
964
// signed and factored.
965
uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
966
int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
967
UnwindPlan::Row::RegisterLocation reg_location;
968
reg_location.SetAtCFAPlusOffset(op_offset);
969
row.SetRegisterInfo(reg_num, reg_location);
970
return true;
971
}
972
973
case DW_CFA_def_cfa_sf: // 0x12 (CFA Definition Instruction)
974
{
975
// Takes two operands: an unsigned LEB128 value representing a register
976
// number and a signed LEB128 factored offset. This instruction is
977
// identical to DW_CFA_def_cfa except that the second operand is signed
978
// and factored.
979
uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
980
int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
981
row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
982
return true;
983
}
984
985
case DW_CFA_def_cfa_offset_sf: // 0x13 (CFA Definition Instruction)
986
{
987
// takes a signed LEB128 operand representing a factored offset. This
988
// instruction is identical to DW_CFA_def_cfa_offset except that the
989
// operand is signed and factored.
990
int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
991
uint32_t cfa_regnum = row.GetCFAValue().GetRegisterNumber();
992
row.GetCFAValue().SetIsRegisterPlusOffset(cfa_regnum, op_offset);
993
return true;
994
}
995
996
case DW_CFA_val_expression: // 0x16
997
{
998
// takes two operands: an unsigned LEB128 value representing a register
999
// number, and a DW_FORM_block value representing a DWARF expression. The
1000
// required action is to change the rule for the register indicated by
1001
// the register number to be a val_expression(E) rule where E is the
1002
// DWARF expression. That is, the DWARF expression computes the value of
1003
// the given register. The value of the CFA is pushed on the DWARF
1004
// evaluation stack prior to execution of the DWARF expression.
1005
uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
1006
uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
1007
const uint8_t *block_data =
1008
(const uint8_t *)m_cfi_data.GetData(&offset, block_len);
1009
reg_location.SetIsDWARFExpression(block_data, block_len);
1010
row.SetRegisterInfo(reg_num, reg_location);
1011
return true;
1012
}
1013
}
1014
}
1015
return false;
1016
}
1017
1018
void DWARFCallFrameInfo::ForEachFDEEntries(
1019
const std::function<bool(lldb::addr_t, uint32_t, dw_offset_t)> &callback) {
1020
GetFDEIndex();
1021
1022
for (size_t i = 0, c = m_fde_index.GetSize(); i < c; ++i) {
1023
const FDEEntryMap::Entry &entry = m_fde_index.GetEntryRef(i);
1024
if (!callback(entry.base, entry.size, entry.data))
1025
break;
1026
}
1027
}
1028
1029