Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lldb/source/Symbol/Symtab.cpp
39587 views
1
//===-- Symtab.cpp --------------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include <map>
10
#include <set>
11
12
#include "lldb/Core/DataFileCache.h"
13
#include "lldb/Core/Module.h"
14
#include "lldb/Core/RichManglingContext.h"
15
#include "lldb/Core/Section.h"
16
#include "lldb/Symbol/ObjectFile.h"
17
#include "lldb/Symbol/Symbol.h"
18
#include "lldb/Symbol/SymbolContext.h"
19
#include "lldb/Symbol/Symtab.h"
20
#include "lldb/Target/Language.h"
21
#include "lldb/Utility/DataEncoder.h"
22
#include "lldb/Utility/Endian.h"
23
#include "lldb/Utility/RegularExpression.h"
24
#include "lldb/Utility/Stream.h"
25
#include "lldb/Utility/Timer.h"
26
27
#include "llvm/ADT/ArrayRef.h"
28
#include "llvm/ADT/StringRef.h"
29
#include "llvm/Support/DJB.h"
30
31
using namespace lldb;
32
using namespace lldb_private;
33
34
Symtab::Symtab(ObjectFile *objfile)
35
: m_objfile(objfile), m_symbols(), m_file_addr_to_index(*this),
36
m_name_to_symbol_indices(), m_mutex(),
37
m_file_addr_to_index_computed(false), m_name_indexes_computed(false),
38
m_loaded_from_cache(false), m_saved_to_cache(false) {
39
m_name_to_symbol_indices.emplace(std::make_pair(
40
lldb::eFunctionNameTypeNone, UniqueCStringMap<uint32_t>()));
41
m_name_to_symbol_indices.emplace(std::make_pair(
42
lldb::eFunctionNameTypeBase, UniqueCStringMap<uint32_t>()));
43
m_name_to_symbol_indices.emplace(std::make_pair(
44
lldb::eFunctionNameTypeMethod, UniqueCStringMap<uint32_t>()));
45
m_name_to_symbol_indices.emplace(std::make_pair(
46
lldb::eFunctionNameTypeSelector, UniqueCStringMap<uint32_t>()));
47
}
48
49
Symtab::~Symtab() = default;
50
51
void Symtab::Reserve(size_t count) {
52
// Clients should grab the mutex from this symbol table and lock it manually
53
// when calling this function to avoid performance issues.
54
m_symbols.reserve(count);
55
}
56
57
Symbol *Symtab::Resize(size_t count) {
58
// Clients should grab the mutex from this symbol table and lock it manually
59
// when calling this function to avoid performance issues.
60
m_symbols.resize(count);
61
return m_symbols.empty() ? nullptr : &m_symbols[0];
62
}
63
64
uint32_t Symtab::AddSymbol(const Symbol &symbol) {
65
// Clients should grab the mutex from this symbol table and lock it manually
66
// when calling this function to avoid performance issues.
67
uint32_t symbol_idx = m_symbols.size();
68
auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
69
name_to_index.Clear();
70
m_file_addr_to_index.Clear();
71
m_symbols.push_back(symbol);
72
m_file_addr_to_index_computed = false;
73
m_name_indexes_computed = false;
74
return symbol_idx;
75
}
76
77
size_t Symtab::GetNumSymbols() const {
78
std::lock_guard<std::recursive_mutex> guard(m_mutex);
79
return m_symbols.size();
80
}
81
82
void Symtab::SectionFileAddressesChanged() {
83
m_file_addr_to_index.Clear();
84
m_file_addr_to_index_computed = false;
85
}
86
87
void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order,
88
Mangled::NamePreference name_preference) {
89
std::lock_guard<std::recursive_mutex> guard(m_mutex);
90
91
// s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
92
s->Indent();
93
const FileSpec &file_spec = m_objfile->GetFileSpec();
94
const char *object_name = nullptr;
95
if (m_objfile->GetModule())
96
object_name = m_objfile->GetModule()->GetObjectName().GetCString();
97
98
if (file_spec)
99
s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64,
100
file_spec.GetPath().c_str(), object_name ? "(" : "",
101
object_name ? object_name : "", object_name ? ")" : "",
102
(uint64_t)m_symbols.size());
103
else
104
s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size());
105
106
if (!m_symbols.empty()) {
107
switch (sort_order) {
108
case eSortOrderNone: {
109
s->PutCString(":\n");
110
DumpSymbolHeader(s);
111
const_iterator begin = m_symbols.begin();
112
const_iterator end = m_symbols.end();
113
for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
114
s->Indent();
115
pos->Dump(s, target, std::distance(begin, pos), name_preference);
116
}
117
}
118
break;
119
120
case eSortOrderByName: {
121
// Although we maintain a lookup by exact name map, the table isn't
122
// sorted by name. So we must make the ordered symbol list up ourselves.
123
s->PutCString(" (sorted by name):\n");
124
DumpSymbolHeader(s);
125
126
std::multimap<llvm::StringRef, const Symbol *> name_map;
127
for (const Symbol &symbol : m_symbols)
128
name_map.emplace(symbol.GetName().GetStringRef(), &symbol);
129
130
for (const auto &name_to_symbol : name_map) {
131
const Symbol *symbol = name_to_symbol.second;
132
s->Indent();
133
symbol->Dump(s, target, symbol - &m_symbols[0], name_preference);
134
}
135
} break;
136
137
case eSortOrderBySize: {
138
s->PutCString(" (sorted by size):\n");
139
DumpSymbolHeader(s);
140
141
std::multimap<size_t, const Symbol *, std::greater<size_t>> size_map;
142
for (const Symbol &symbol : m_symbols)
143
size_map.emplace(symbol.GetByteSize(), &symbol);
144
145
size_t idx = 0;
146
for (const auto &size_to_symbol : size_map) {
147
const Symbol *symbol = size_to_symbol.second;
148
s->Indent();
149
symbol->Dump(s, target, idx++, name_preference);
150
}
151
} break;
152
153
case eSortOrderByAddress:
154
s->PutCString(" (sorted by address):\n");
155
DumpSymbolHeader(s);
156
if (!m_file_addr_to_index_computed)
157
InitAddressIndexes();
158
const size_t num_entries = m_file_addr_to_index.GetSize();
159
for (size_t i = 0; i < num_entries; ++i) {
160
s->Indent();
161
const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data;
162
m_symbols[symbol_idx].Dump(s, target, symbol_idx, name_preference);
163
}
164
break;
165
}
166
} else {
167
s->PutCString("\n");
168
}
169
}
170
171
void Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t> &indexes,
172
Mangled::NamePreference name_preference) const {
173
std::lock_guard<std::recursive_mutex> guard(m_mutex);
174
175
const size_t num_symbols = GetNumSymbols();
176
// s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
177
s->Indent();
178
s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n",
179
(uint64_t)indexes.size(), (uint64_t)m_symbols.size());
180
s->IndentMore();
181
182
if (!indexes.empty()) {
183
std::vector<uint32_t>::const_iterator pos;
184
std::vector<uint32_t>::const_iterator end = indexes.end();
185
DumpSymbolHeader(s);
186
for (pos = indexes.begin(); pos != end; ++pos) {
187
size_t idx = *pos;
188
if (idx < num_symbols) {
189
s->Indent();
190
m_symbols[idx].Dump(s, target, idx, name_preference);
191
}
192
}
193
}
194
s->IndentLess();
195
}
196
197
void Symtab::DumpSymbolHeader(Stream *s) {
198
s->Indent(" Debug symbol\n");
199
s->Indent(" |Synthetic symbol\n");
200
s->Indent(" ||Externally Visible\n");
201
s->Indent(" |||\n");
202
s->Indent("Index UserID DSX Type File Address/Value Load "
203
"Address Size Flags Name\n");
204
s->Indent("------- ------ --- --------------- ------------------ "
205
"------------------ ------------------ ---------- "
206
"----------------------------------\n");
207
}
208
209
static int CompareSymbolID(const void *key, const void *p) {
210
const user_id_t match_uid = *(const user_id_t *)key;
211
const user_id_t symbol_uid = ((const Symbol *)p)->GetID();
212
if (match_uid < symbol_uid)
213
return -1;
214
if (match_uid > symbol_uid)
215
return 1;
216
return 0;
217
}
218
219
Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const {
220
std::lock_guard<std::recursive_mutex> guard(m_mutex);
221
222
Symbol *symbol =
223
(Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(),
224
sizeof(m_symbols[0]), CompareSymbolID);
225
return symbol;
226
}
227
228
Symbol *Symtab::SymbolAtIndex(size_t idx) {
229
// Clients should grab the mutex from this symbol table and lock it manually
230
// when calling this function to avoid performance issues.
231
if (idx < m_symbols.size())
232
return &m_symbols[idx];
233
return nullptr;
234
}
235
236
const Symbol *Symtab::SymbolAtIndex(size_t idx) const {
237
// Clients should grab the mutex from this symbol table and lock it manually
238
// when calling this function to avoid performance issues.
239
if (idx < m_symbols.size())
240
return &m_symbols[idx];
241
return nullptr;
242
}
243
244
static bool lldb_skip_name(llvm::StringRef mangled,
245
Mangled::ManglingScheme scheme) {
246
switch (scheme) {
247
case Mangled::eManglingSchemeItanium: {
248
if (mangled.size() < 3 || !mangled.starts_with("_Z"))
249
return true;
250
251
// Avoid the following types of symbols in the index.
252
switch (mangled[2]) {
253
case 'G': // guard variables
254
case 'T': // virtual tables, VTT structures, typeinfo structures + names
255
case 'Z': // named local entities (if we eventually handle
256
// eSymbolTypeData, we will want this back)
257
return true;
258
259
default:
260
break;
261
}
262
263
// Include this name in the index.
264
return false;
265
}
266
267
// No filters for this scheme yet. Include all names in indexing.
268
case Mangled::eManglingSchemeMSVC:
269
case Mangled::eManglingSchemeRustV0:
270
case Mangled::eManglingSchemeD:
271
case Mangled::eManglingSchemeSwift:
272
return false;
273
274
// Don't try and demangle things we can't categorize.
275
case Mangled::eManglingSchemeNone:
276
return true;
277
}
278
llvm_unreachable("unknown scheme!");
279
}
280
281
void Symtab::InitNameIndexes() {
282
// Protected function, no need to lock mutex...
283
if (!m_name_indexes_computed) {
284
m_name_indexes_computed = true;
285
ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime());
286
LLDB_SCOPED_TIMER();
287
288
// Collect all loaded language plugins.
289
std::vector<Language *> languages;
290
Language::ForEach([&languages](Language *l) {
291
languages.push_back(l);
292
return true;
293
});
294
295
auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
296
auto &basename_to_index =
297
GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
298
auto &method_to_index =
299
GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
300
auto &selector_to_index =
301
GetNameToSymbolIndexMap(lldb::eFunctionNameTypeSelector);
302
// Create the name index vector to be able to quickly search by name
303
const size_t num_symbols = m_symbols.size();
304
name_to_index.Reserve(num_symbols);
305
306
// The "const char *" in "class_contexts" and backlog::value_type::second
307
// must come from a ConstString::GetCString()
308
std::set<const char *> class_contexts;
309
std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog;
310
backlog.reserve(num_symbols / 2);
311
312
// Instantiation of the demangler is expensive, so better use a single one
313
// for all entries during batch processing.
314
RichManglingContext rmc;
315
for (uint32_t value = 0; value < num_symbols; ++value) {
316
Symbol *symbol = &m_symbols[value];
317
318
// Don't let trampolines get into the lookup by name map If we ever need
319
// the trampoline symbols to be searchable by name we can remove this and
320
// then possibly add a new bool to any of the Symtab functions that
321
// lookup symbols by name to indicate if they want trampolines. We also
322
// don't want any synthetic symbols with auto generated names in the
323
// name lookups.
324
if (symbol->IsTrampoline() || symbol->IsSyntheticWithAutoGeneratedName())
325
continue;
326
327
// If the symbol's name string matched a Mangled::ManglingScheme, it is
328
// stored in the mangled field.
329
Mangled &mangled = symbol->GetMangled();
330
if (ConstString name = mangled.GetMangledName()) {
331
name_to_index.Append(name, value);
332
333
if (symbol->ContainsLinkerAnnotations()) {
334
// If the symbol has linker annotations, also add the version without
335
// the annotations.
336
ConstString stripped = ConstString(
337
m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
338
name_to_index.Append(stripped, value);
339
}
340
341
const SymbolType type = symbol->GetType();
342
if (type == eSymbolTypeCode || type == eSymbolTypeResolver) {
343
if (mangled.GetRichManglingInfo(rmc, lldb_skip_name)) {
344
RegisterMangledNameEntry(value, class_contexts, backlog, rmc);
345
continue;
346
}
347
}
348
}
349
350
// Symbol name strings that didn't match a Mangled::ManglingScheme, are
351
// stored in the demangled field.
352
if (ConstString name = mangled.GetDemangledName()) {
353
name_to_index.Append(name, value);
354
355
if (symbol->ContainsLinkerAnnotations()) {
356
// If the symbol has linker annotations, also add the version without
357
// the annotations.
358
name = ConstString(
359
m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
360
name_to_index.Append(name, value);
361
}
362
363
// If the demangled name turns out to be an ObjC name, and is a category
364
// name, add the version without categories to the index too.
365
for (Language *lang : languages) {
366
for (auto variant : lang->GetMethodNameVariants(name)) {
367
if (variant.GetType() & lldb::eFunctionNameTypeSelector)
368
selector_to_index.Append(variant.GetName(), value);
369
else if (variant.GetType() & lldb::eFunctionNameTypeFull)
370
name_to_index.Append(variant.GetName(), value);
371
else if (variant.GetType() & lldb::eFunctionNameTypeMethod)
372
method_to_index.Append(variant.GetName(), value);
373
else if (variant.GetType() & lldb::eFunctionNameTypeBase)
374
basename_to_index.Append(variant.GetName(), value);
375
}
376
}
377
}
378
}
379
380
for (const auto &record : backlog) {
381
RegisterBacklogEntry(record.first, record.second, class_contexts);
382
}
383
384
name_to_index.Sort();
385
name_to_index.SizeToFit();
386
selector_to_index.Sort();
387
selector_to_index.SizeToFit();
388
basename_to_index.Sort();
389
basename_to_index.SizeToFit();
390
method_to_index.Sort();
391
method_to_index.SizeToFit();
392
}
393
}
394
395
void Symtab::RegisterMangledNameEntry(
396
uint32_t value, std::set<const char *> &class_contexts,
397
std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog,
398
RichManglingContext &rmc) {
399
// Only register functions that have a base name.
400
llvm::StringRef base_name = rmc.ParseFunctionBaseName();
401
if (base_name.empty())
402
return;
403
404
// The base name will be our entry's name.
405
NameToIndexMap::Entry entry(ConstString(base_name), value);
406
llvm::StringRef decl_context = rmc.ParseFunctionDeclContextName();
407
408
// Register functions with no context.
409
if (decl_context.empty()) {
410
// This has to be a basename
411
auto &basename_to_index =
412
GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
413
basename_to_index.Append(entry);
414
// If there is no context (no namespaces or class scopes that come before
415
// the function name) then this also could be a fullname.
416
auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
417
name_to_index.Append(entry);
418
return;
419
}
420
421
// Make sure we have a pool-string pointer and see if we already know the
422
// context name.
423
const char *decl_context_ccstr = ConstString(decl_context).GetCString();
424
auto it = class_contexts.find(decl_context_ccstr);
425
426
auto &method_to_index =
427
GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
428
// Register constructors and destructors. They are methods and create
429
// declaration contexts.
430
if (rmc.IsCtorOrDtor()) {
431
method_to_index.Append(entry);
432
if (it == class_contexts.end())
433
class_contexts.insert(it, decl_context_ccstr);
434
return;
435
}
436
437
// Register regular methods with a known declaration context.
438
if (it != class_contexts.end()) {
439
method_to_index.Append(entry);
440
return;
441
}
442
443
// Regular methods in unknown declaration contexts are put to the backlog. We
444
// will revisit them once we processed all remaining symbols.
445
backlog.push_back(std::make_pair(entry, decl_context_ccstr));
446
}
447
448
void Symtab::RegisterBacklogEntry(
449
const NameToIndexMap::Entry &entry, const char *decl_context,
450
const std::set<const char *> &class_contexts) {
451
auto &method_to_index =
452
GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
453
auto it = class_contexts.find(decl_context);
454
if (it != class_contexts.end()) {
455
method_to_index.Append(entry);
456
} else {
457
// If we got here, we have something that had a context (was inside
458
// a namespace or class) yet we don't know the entry
459
method_to_index.Append(entry);
460
auto &basename_to_index =
461
GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
462
basename_to_index.Append(entry);
463
}
464
}
465
466
void Symtab::PreloadSymbols() {
467
std::lock_guard<std::recursive_mutex> guard(m_mutex);
468
InitNameIndexes();
469
}
470
471
void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes,
472
bool add_demangled, bool add_mangled,
473
NameToIndexMap &name_to_index_map) const {
474
LLDB_SCOPED_TIMER();
475
if (add_demangled || add_mangled) {
476
std::lock_guard<std::recursive_mutex> guard(m_mutex);
477
478
// Create the name index vector to be able to quickly search by name
479
const size_t num_indexes = indexes.size();
480
for (size_t i = 0; i < num_indexes; ++i) {
481
uint32_t value = indexes[i];
482
assert(i < m_symbols.size());
483
const Symbol *symbol = &m_symbols[value];
484
485
const Mangled &mangled = symbol->GetMangled();
486
if (add_demangled) {
487
if (ConstString name = mangled.GetDemangledName())
488
name_to_index_map.Append(name, value);
489
}
490
491
if (add_mangled) {
492
if (ConstString name = mangled.GetMangledName())
493
name_to_index_map.Append(name, value);
494
}
495
}
496
}
497
}
498
499
uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
500
std::vector<uint32_t> &indexes,
501
uint32_t start_idx,
502
uint32_t end_index) const {
503
std::lock_guard<std::recursive_mutex> guard(m_mutex);
504
505
uint32_t prev_size = indexes.size();
506
507
const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
508
509
for (uint32_t i = start_idx; i < count; ++i) {
510
if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
511
indexes.push_back(i);
512
}
513
514
return indexes.size() - prev_size;
515
}
516
517
uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue(
518
SymbolType symbol_type, uint32_t flags_value,
519
std::vector<uint32_t> &indexes, uint32_t start_idx,
520
uint32_t end_index) const {
521
std::lock_guard<std::recursive_mutex> guard(m_mutex);
522
523
uint32_t prev_size = indexes.size();
524
525
const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
526
527
for (uint32_t i = start_idx; i < count; ++i) {
528
if ((symbol_type == eSymbolTypeAny ||
529
m_symbols[i].GetType() == symbol_type) &&
530
m_symbols[i].GetFlags() == flags_value)
531
indexes.push_back(i);
532
}
533
534
return indexes.size() - prev_size;
535
}
536
537
uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
538
Debug symbol_debug_type,
539
Visibility symbol_visibility,
540
std::vector<uint32_t> &indexes,
541
uint32_t start_idx,
542
uint32_t end_index) const {
543
std::lock_guard<std::recursive_mutex> guard(m_mutex);
544
545
uint32_t prev_size = indexes.size();
546
547
const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
548
549
for (uint32_t i = start_idx; i < count; ++i) {
550
if (symbol_type == eSymbolTypeAny ||
551
m_symbols[i].GetType() == symbol_type) {
552
if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
553
indexes.push_back(i);
554
}
555
}
556
557
return indexes.size() - prev_size;
558
}
559
560
uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const {
561
if (!m_symbols.empty()) {
562
const Symbol *first_symbol = &m_symbols[0];
563
if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size())
564
return symbol - first_symbol;
565
}
566
return UINT32_MAX;
567
}
568
569
struct SymbolSortInfo {
570
const bool sort_by_load_addr;
571
const Symbol *symbols;
572
};
573
574
namespace {
575
struct SymbolIndexComparator {
576
const std::vector<Symbol> &symbols;
577
std::vector<lldb::addr_t> &addr_cache;
578
579
// Getting from the symbol to the Address to the File Address involves some
580
// work. Since there are potentially many symbols here, and we're using this
581
// for sorting so we're going to be computing the address many times, cache
582
// that in addr_cache. The array passed in has to be the same size as the
583
// symbols array passed into the member variable symbols, and should be
584
// initialized with LLDB_INVALID_ADDRESS.
585
// NOTE: You have to make addr_cache externally and pass it in because
586
// std::stable_sort
587
// makes copies of the comparator it is initially passed in, and you end up
588
// spending huge amounts of time copying this array...
589
590
SymbolIndexComparator(const std::vector<Symbol> &s,
591
std::vector<lldb::addr_t> &a)
592
: symbols(s), addr_cache(a) {
593
assert(symbols.size() == addr_cache.size());
594
}
595
bool operator()(uint32_t index_a, uint32_t index_b) {
596
addr_t value_a = addr_cache[index_a];
597
if (value_a == LLDB_INVALID_ADDRESS) {
598
value_a = symbols[index_a].GetAddressRef().GetFileAddress();
599
addr_cache[index_a] = value_a;
600
}
601
602
addr_t value_b = addr_cache[index_b];
603
if (value_b == LLDB_INVALID_ADDRESS) {
604
value_b = symbols[index_b].GetAddressRef().GetFileAddress();
605
addr_cache[index_b] = value_b;
606
}
607
608
if (value_a == value_b) {
609
// The if the values are equal, use the original symbol user ID
610
lldb::user_id_t uid_a = symbols[index_a].GetID();
611
lldb::user_id_t uid_b = symbols[index_b].GetID();
612
if (uid_a < uid_b)
613
return true;
614
if (uid_a > uid_b)
615
return false;
616
return false;
617
} else if (value_a < value_b)
618
return true;
619
620
return false;
621
}
622
};
623
}
624
625
void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes,
626
bool remove_duplicates) const {
627
std::lock_guard<std::recursive_mutex> guard(m_mutex);
628
LLDB_SCOPED_TIMER();
629
// No need to sort if we have zero or one items...
630
if (indexes.size() <= 1)
631
return;
632
633
// Sort the indexes in place using std::stable_sort.
634
// NOTE: The use of std::stable_sort instead of llvm::sort here is strictly
635
// for performance, not correctness. The indexes vector tends to be "close"
636
// to sorted, which the stable sort handles better.
637
638
std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS);
639
640
SymbolIndexComparator comparator(m_symbols, addr_cache);
641
std::stable_sort(indexes.begin(), indexes.end(), comparator);
642
643
// Remove any duplicates if requested
644
if (remove_duplicates) {
645
auto last = std::unique(indexes.begin(), indexes.end());
646
indexes.erase(last, indexes.end());
647
}
648
}
649
650
uint32_t Symtab::GetNameIndexes(ConstString symbol_name,
651
std::vector<uint32_t> &indexes) {
652
auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
653
const uint32_t count = name_to_index.GetValues(symbol_name, indexes);
654
if (count)
655
return count;
656
// Synthetic symbol names are not added to the name indexes, but they start
657
// with a prefix and end with a the symbol UserID. This allows users to find
658
// these symbols without having to add them to the name indexes. These
659
// queries will not happen very often since the names don't mean anything, so
660
// performance is not paramount in this case.
661
llvm::StringRef name = symbol_name.GetStringRef();
662
// String the synthetic prefix if the name starts with it.
663
if (!name.consume_front(Symbol::GetSyntheticSymbolPrefix()))
664
return 0; // Not a synthetic symbol name
665
666
// Extract the user ID from the symbol name
667
unsigned long long uid = 0;
668
if (getAsUnsignedInteger(name, /*Radix=*/10, uid))
669
return 0; // Failed to extract the user ID as an integer
670
Symbol *symbol = FindSymbolByID(uid);
671
if (symbol == nullptr)
672
return 0;
673
const uint32_t symbol_idx = GetIndexForSymbol(symbol);
674
if (symbol_idx == UINT32_MAX)
675
return 0;
676
indexes.push_back(symbol_idx);
677
return 1;
678
}
679
680
uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
681
std::vector<uint32_t> &indexes) {
682
std::lock_guard<std::recursive_mutex> guard(m_mutex);
683
684
if (symbol_name) {
685
if (!m_name_indexes_computed)
686
InitNameIndexes();
687
688
return GetNameIndexes(symbol_name, indexes);
689
}
690
return 0;
691
}
692
693
uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
694
Debug symbol_debug_type,
695
Visibility symbol_visibility,
696
std::vector<uint32_t> &indexes) {
697
std::lock_guard<std::recursive_mutex> guard(m_mutex);
698
699
LLDB_SCOPED_TIMER();
700
if (symbol_name) {
701
const size_t old_size = indexes.size();
702
if (!m_name_indexes_computed)
703
InitNameIndexes();
704
705
std::vector<uint32_t> all_name_indexes;
706
const size_t name_match_count =
707
GetNameIndexes(symbol_name, all_name_indexes);
708
for (size_t i = 0; i < name_match_count; ++i) {
709
if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type,
710
symbol_visibility))
711
indexes.push_back(all_name_indexes[i]);
712
}
713
return indexes.size() - old_size;
714
}
715
return 0;
716
}
717
718
uint32_t
719
Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name,
720
SymbolType symbol_type,
721
std::vector<uint32_t> &indexes) {
722
std::lock_guard<std::recursive_mutex> guard(m_mutex);
723
724
if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) {
725
std::vector<uint32_t>::iterator pos = indexes.begin();
726
while (pos != indexes.end()) {
727
if (symbol_type == eSymbolTypeAny ||
728
m_symbols[*pos].GetType() == symbol_type)
729
++pos;
730
else
731
pos = indexes.erase(pos);
732
}
733
}
734
return indexes.size();
735
}
736
737
uint32_t Symtab::AppendSymbolIndexesWithNameAndType(
738
ConstString symbol_name, SymbolType symbol_type,
739
Debug symbol_debug_type, Visibility symbol_visibility,
740
std::vector<uint32_t> &indexes) {
741
std::lock_guard<std::recursive_mutex> guard(m_mutex);
742
743
if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type,
744
symbol_visibility, indexes) > 0) {
745
std::vector<uint32_t>::iterator pos = indexes.begin();
746
while (pos != indexes.end()) {
747
if (symbol_type == eSymbolTypeAny ||
748
m_symbols[*pos].GetType() == symbol_type)
749
++pos;
750
else
751
pos = indexes.erase(pos);
752
}
753
}
754
return indexes.size();
755
}
756
757
uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
758
const RegularExpression &regexp, SymbolType symbol_type,
759
std::vector<uint32_t> &indexes, Mangled::NamePreference name_preference) {
760
std::lock_guard<std::recursive_mutex> guard(m_mutex);
761
762
uint32_t prev_size = indexes.size();
763
uint32_t sym_end = m_symbols.size();
764
765
for (uint32_t i = 0; i < sym_end; i++) {
766
if (symbol_type == eSymbolTypeAny ||
767
m_symbols[i].GetType() == symbol_type) {
768
const char *name =
769
m_symbols[i].GetMangled().GetName(name_preference).AsCString();
770
if (name) {
771
if (regexp.Execute(name))
772
indexes.push_back(i);
773
}
774
}
775
}
776
return indexes.size() - prev_size;
777
}
778
779
uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
780
const RegularExpression &regexp, SymbolType symbol_type,
781
Debug symbol_debug_type, Visibility symbol_visibility,
782
std::vector<uint32_t> &indexes, Mangled::NamePreference name_preference) {
783
std::lock_guard<std::recursive_mutex> guard(m_mutex);
784
785
uint32_t prev_size = indexes.size();
786
uint32_t sym_end = m_symbols.size();
787
788
for (uint32_t i = 0; i < sym_end; i++) {
789
if (symbol_type == eSymbolTypeAny ||
790
m_symbols[i].GetType() == symbol_type) {
791
if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
792
continue;
793
794
const char *name =
795
m_symbols[i].GetMangled().GetName(name_preference).AsCString();
796
if (name) {
797
if (regexp.Execute(name))
798
indexes.push_back(i);
799
}
800
}
801
}
802
return indexes.size() - prev_size;
803
}
804
805
Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type,
806
Debug symbol_debug_type,
807
Visibility symbol_visibility,
808
uint32_t &start_idx) {
809
std::lock_guard<std::recursive_mutex> guard(m_mutex);
810
811
const size_t count = m_symbols.size();
812
for (size_t idx = start_idx; idx < count; ++idx) {
813
if (symbol_type == eSymbolTypeAny ||
814
m_symbols[idx].GetType() == symbol_type) {
815
if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) {
816
start_idx = idx;
817
return &m_symbols[idx];
818
}
819
}
820
}
821
return nullptr;
822
}
823
824
void
825
Symtab::FindAllSymbolsWithNameAndType(ConstString name,
826
SymbolType symbol_type,
827
std::vector<uint32_t> &symbol_indexes) {
828
std::lock_guard<std::recursive_mutex> guard(m_mutex);
829
830
// Initialize all of the lookup by name indexes before converting NAME to a
831
// uniqued string NAME_STR below.
832
if (!m_name_indexes_computed)
833
InitNameIndexes();
834
835
if (name) {
836
// The string table did have a string that matched, but we need to check
837
// the symbols and match the symbol_type if any was given.
838
AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes);
839
}
840
}
841
842
void Symtab::FindAllSymbolsWithNameAndType(
843
ConstString name, SymbolType symbol_type, Debug symbol_debug_type,
844
Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) {
845
std::lock_guard<std::recursive_mutex> guard(m_mutex);
846
847
LLDB_SCOPED_TIMER();
848
// Initialize all of the lookup by name indexes before converting NAME to a
849
// uniqued string NAME_STR below.
850
if (!m_name_indexes_computed)
851
InitNameIndexes();
852
853
if (name) {
854
// The string table did have a string that matched, but we need to check
855
// the symbols and match the symbol_type if any was given.
856
AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
857
symbol_visibility, symbol_indexes);
858
}
859
}
860
861
void Symtab::FindAllSymbolsMatchingRexExAndType(
862
const RegularExpression &regex, SymbolType symbol_type,
863
Debug symbol_debug_type, Visibility symbol_visibility,
864
std::vector<uint32_t> &symbol_indexes,
865
Mangled::NamePreference name_preference) {
866
std::lock_guard<std::recursive_mutex> guard(m_mutex);
867
868
AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type,
869
symbol_visibility, symbol_indexes,
870
name_preference);
871
}
872
873
Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name,
874
SymbolType symbol_type,
875
Debug symbol_debug_type,
876
Visibility symbol_visibility) {
877
std::lock_guard<std::recursive_mutex> guard(m_mutex);
878
LLDB_SCOPED_TIMER();
879
if (!m_name_indexes_computed)
880
InitNameIndexes();
881
882
if (name) {
883
std::vector<uint32_t> matching_indexes;
884
// The string table did have a string that matched, but we need to check
885
// the symbols and match the symbol_type if any was given.
886
if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
887
symbol_visibility,
888
matching_indexes)) {
889
std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end();
890
for (pos = matching_indexes.begin(); pos != end; ++pos) {
891
Symbol *symbol = SymbolAtIndex(*pos);
892
893
if (symbol->Compare(name, symbol_type))
894
return symbol;
895
}
896
}
897
}
898
return nullptr;
899
}
900
901
typedef struct {
902
const Symtab *symtab;
903
const addr_t file_addr;
904
Symbol *match_symbol;
905
const uint32_t *match_index_ptr;
906
addr_t match_offset;
907
} SymbolSearchInfo;
908
909
// Add all the section file start address & size to the RangeVector, recusively
910
// adding any children sections.
911
static void AddSectionsToRangeMap(SectionList *sectlist,
912
RangeVector<addr_t, addr_t> &section_ranges) {
913
const int num_sections = sectlist->GetNumSections(0);
914
for (int i = 0; i < num_sections; i++) {
915
SectionSP sect_sp = sectlist->GetSectionAtIndex(i);
916
if (sect_sp) {
917
SectionList &child_sectlist = sect_sp->GetChildren();
918
919
// If this section has children, add the children to the RangeVector.
920
// Else add this section to the RangeVector.
921
if (child_sectlist.GetNumSections(0) > 0) {
922
AddSectionsToRangeMap(&child_sectlist, section_ranges);
923
} else {
924
size_t size = sect_sp->GetByteSize();
925
if (size > 0) {
926
addr_t base_addr = sect_sp->GetFileAddress();
927
RangeVector<addr_t, addr_t>::Entry entry;
928
entry.SetRangeBase(base_addr);
929
entry.SetByteSize(size);
930
section_ranges.Append(entry);
931
}
932
}
933
}
934
}
935
}
936
937
void Symtab::InitAddressIndexes() {
938
// Protected function, no need to lock mutex...
939
if (!m_file_addr_to_index_computed && !m_symbols.empty()) {
940
m_file_addr_to_index_computed = true;
941
942
FileRangeToIndexMap::Entry entry;
943
const_iterator begin = m_symbols.begin();
944
const_iterator end = m_symbols.end();
945
for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
946
if (pos->ValueIsAddress()) {
947
entry.SetRangeBase(pos->GetAddressRef().GetFileAddress());
948
entry.SetByteSize(pos->GetByteSize());
949
entry.data = std::distance(begin, pos);
950
m_file_addr_to_index.Append(entry);
951
}
952
}
953
const size_t num_entries = m_file_addr_to_index.GetSize();
954
if (num_entries > 0) {
955
m_file_addr_to_index.Sort();
956
957
// Create a RangeVector with the start & size of all the sections for
958
// this objfile. We'll need to check this for any FileRangeToIndexMap
959
// entries with an uninitialized size, which could potentially be a large
960
// number so reconstituting the weak pointer is busywork when it is
961
// invariant information.
962
SectionList *sectlist = m_objfile->GetSectionList();
963
RangeVector<addr_t, addr_t> section_ranges;
964
if (sectlist) {
965
AddSectionsToRangeMap(sectlist, section_ranges);
966
section_ranges.Sort();
967
}
968
969
// Iterate through the FileRangeToIndexMap and fill in the size for any
970
// entries that didn't already have a size from the Symbol (e.g. if we
971
// have a plain linker symbol with an address only, instead of debug info
972
// where we get an address and a size and a type, etc.)
973
for (size_t i = 0; i < num_entries; i++) {
974
FileRangeToIndexMap::Entry *entry =
975
m_file_addr_to_index.GetMutableEntryAtIndex(i);
976
if (entry->GetByteSize() == 0) {
977
addr_t curr_base_addr = entry->GetRangeBase();
978
const RangeVector<addr_t, addr_t>::Entry *containing_section =
979
section_ranges.FindEntryThatContains(curr_base_addr);
980
981
// Use the end of the section as the default max size of the symbol
982
addr_t sym_size = 0;
983
if (containing_section) {
984
sym_size =
985
containing_section->GetByteSize() -
986
(entry->GetRangeBase() - containing_section->GetRangeBase());
987
}
988
989
for (size_t j = i; j < num_entries; j++) {
990
FileRangeToIndexMap::Entry *next_entry =
991
m_file_addr_to_index.GetMutableEntryAtIndex(j);
992
addr_t next_base_addr = next_entry->GetRangeBase();
993
if (next_base_addr > curr_base_addr) {
994
addr_t size_to_next_symbol = next_base_addr - curr_base_addr;
995
996
// Take the difference between this symbol and the next one as
997
// its size, if it is less than the size of the section.
998
if (sym_size == 0 || size_to_next_symbol < sym_size) {
999
sym_size = size_to_next_symbol;
1000
}
1001
break;
1002
}
1003
}
1004
1005
if (sym_size > 0) {
1006
entry->SetByteSize(sym_size);
1007
Symbol &symbol = m_symbols[entry->data];
1008
symbol.SetByteSize(sym_size);
1009
symbol.SetSizeIsSynthesized(true);
1010
}
1011
}
1012
}
1013
1014
// Sort again in case the range size changes the ordering
1015
m_file_addr_to_index.Sort();
1016
}
1017
}
1018
}
1019
1020
void Symtab::Finalize() {
1021
std::lock_guard<std::recursive_mutex> guard(m_mutex);
1022
// Calculate the size of symbols inside InitAddressIndexes.
1023
InitAddressIndexes();
1024
// Shrink to fit the symbols so we don't waste memory
1025
m_symbols.shrink_to_fit();
1026
SaveToCache();
1027
}
1028
1029
Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) {
1030
std::lock_guard<std::recursive_mutex> guard(m_mutex);
1031
if (!m_file_addr_to_index_computed)
1032
InitAddressIndexes();
1033
1034
const FileRangeToIndexMap::Entry *entry =
1035
m_file_addr_to_index.FindEntryStartsAt(file_addr);
1036
if (entry) {
1037
Symbol *symbol = SymbolAtIndex(entry->data);
1038
if (symbol->GetFileAddress() == file_addr)
1039
return symbol;
1040
}
1041
return nullptr;
1042
}
1043
1044
Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) {
1045
std::lock_guard<std::recursive_mutex> guard(m_mutex);
1046
1047
if (!m_file_addr_to_index_computed)
1048
InitAddressIndexes();
1049
1050
const FileRangeToIndexMap::Entry *entry =
1051
m_file_addr_to_index.FindEntryThatContains(file_addr);
1052
if (entry) {
1053
Symbol *symbol = SymbolAtIndex(entry->data);
1054
if (symbol->ContainsFileAddress(file_addr))
1055
return symbol;
1056
}
1057
return nullptr;
1058
}
1059
1060
void Symtab::ForEachSymbolContainingFileAddress(
1061
addr_t file_addr, std::function<bool(Symbol *)> const &callback) {
1062
std::lock_guard<std::recursive_mutex> guard(m_mutex);
1063
1064
if (!m_file_addr_to_index_computed)
1065
InitAddressIndexes();
1066
1067
std::vector<uint32_t> all_addr_indexes;
1068
1069
// Get all symbols with file_addr
1070
const size_t addr_match_count =
1071
m_file_addr_to_index.FindEntryIndexesThatContain(file_addr,
1072
all_addr_indexes);
1073
1074
for (size_t i = 0; i < addr_match_count; ++i) {
1075
Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]);
1076
if (symbol->ContainsFileAddress(file_addr)) {
1077
if (!callback(symbol))
1078
break;
1079
}
1080
}
1081
}
1082
1083
void Symtab::SymbolIndicesToSymbolContextList(
1084
std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) {
1085
// No need to protect this call using m_mutex all other method calls are
1086
// already thread safe.
1087
1088
const bool merge_symbol_into_function = true;
1089
size_t num_indices = symbol_indexes.size();
1090
if (num_indices > 0) {
1091
SymbolContext sc;
1092
sc.module_sp = m_objfile->GetModule();
1093
for (size_t i = 0; i < num_indices; i++) {
1094
sc.symbol = SymbolAtIndex(symbol_indexes[i]);
1095
if (sc.symbol)
1096
sc_list.AppendIfUnique(sc, merge_symbol_into_function);
1097
}
1098
}
1099
}
1100
1101
void Symtab::FindFunctionSymbols(ConstString name, uint32_t name_type_mask,
1102
SymbolContextList &sc_list) {
1103
std::vector<uint32_t> symbol_indexes;
1104
1105
// eFunctionNameTypeAuto should be pre-resolved by a call to
1106
// Module::LookupInfo::LookupInfo()
1107
assert((name_type_mask & eFunctionNameTypeAuto) == 0);
1108
1109
if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) {
1110
std::vector<uint32_t> temp_symbol_indexes;
1111
FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes);
1112
1113
unsigned temp_symbol_indexes_size = temp_symbol_indexes.size();
1114
if (temp_symbol_indexes_size > 0) {
1115
std::lock_guard<std::recursive_mutex> guard(m_mutex);
1116
for (unsigned i = 0; i < temp_symbol_indexes_size; i++) {
1117
SymbolContext sym_ctx;
1118
sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]);
1119
if (sym_ctx.symbol) {
1120
switch (sym_ctx.symbol->GetType()) {
1121
case eSymbolTypeCode:
1122
case eSymbolTypeResolver:
1123
case eSymbolTypeReExported:
1124
case eSymbolTypeAbsolute:
1125
symbol_indexes.push_back(temp_symbol_indexes[i]);
1126
break;
1127
default:
1128
break;
1129
}
1130
}
1131
}
1132
}
1133
}
1134
1135
if (!m_name_indexes_computed)
1136
InitNameIndexes();
1137
1138
for (lldb::FunctionNameType type :
1139
{lldb::eFunctionNameTypeBase, lldb::eFunctionNameTypeMethod,
1140
lldb::eFunctionNameTypeSelector}) {
1141
if (name_type_mask & type) {
1142
auto map = GetNameToSymbolIndexMap(type);
1143
1144
const UniqueCStringMap<uint32_t>::Entry *match;
1145
for (match = map.FindFirstValueForName(name); match != nullptr;
1146
match = map.FindNextValueForName(match)) {
1147
symbol_indexes.push_back(match->value);
1148
}
1149
}
1150
}
1151
1152
if (!symbol_indexes.empty()) {
1153
llvm::sort(symbol_indexes);
1154
symbol_indexes.erase(
1155
std::unique(symbol_indexes.begin(), symbol_indexes.end()),
1156
symbol_indexes.end());
1157
SymbolIndicesToSymbolContextList(symbol_indexes, sc_list);
1158
}
1159
}
1160
1161
const Symbol *Symtab::GetParent(Symbol *child_symbol) const {
1162
uint32_t child_idx = GetIndexForSymbol(child_symbol);
1163
if (child_idx != UINT32_MAX && child_idx > 0) {
1164
for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) {
1165
const Symbol *symbol = SymbolAtIndex(idx);
1166
const uint32_t sibling_idx = symbol->GetSiblingIndex();
1167
if (sibling_idx != UINT32_MAX && sibling_idx > child_idx)
1168
return symbol;
1169
}
1170
}
1171
return nullptr;
1172
}
1173
1174
std::string Symtab::GetCacheKey() {
1175
std::string key;
1176
llvm::raw_string_ostream strm(key);
1177
// Symbol table can come from different object files for the same module. A
1178
// module can have one object file as the main executable and might have
1179
// another object file in a separate symbol file.
1180
strm << m_objfile->GetModule()->GetCacheKey() << "-symtab-"
1181
<< llvm::format_hex(m_objfile->GetCacheHash(), 10);
1182
return strm.str();
1183
}
1184
1185
void Symtab::SaveToCache() {
1186
DataFileCache *cache = Module::GetIndexCache();
1187
if (!cache)
1188
return; // Caching is not enabled.
1189
InitNameIndexes(); // Init the name indexes so we can cache them as well.
1190
const auto byte_order = endian::InlHostByteOrder();
1191
DataEncoder file(byte_order, /*addr_size=*/8);
1192
// Encode will return false if the symbol table's object file doesn't have
1193
// anything to make a signature from.
1194
if (Encode(file))
1195
if (cache->SetCachedData(GetCacheKey(), file.GetData()))
1196
SetWasSavedToCache();
1197
}
1198
1199
constexpr llvm::StringLiteral kIdentifierCStrMap("CMAP");
1200
1201
static void EncodeCStrMap(DataEncoder &encoder, ConstStringTable &strtab,
1202
const UniqueCStringMap<uint32_t> &cstr_map) {
1203
encoder.AppendData(kIdentifierCStrMap);
1204
encoder.AppendU32(cstr_map.GetSize());
1205
for (const auto &entry: cstr_map) {
1206
// Make sure there are no empty strings.
1207
assert((bool)entry.cstring);
1208
encoder.AppendU32(strtab.Add(entry.cstring));
1209
encoder.AppendU32(entry.value);
1210
}
1211
}
1212
1213
bool DecodeCStrMap(const DataExtractor &data, lldb::offset_t *offset_ptr,
1214
const StringTableReader &strtab,
1215
UniqueCStringMap<uint32_t> &cstr_map) {
1216
llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4);
1217
if (identifier != kIdentifierCStrMap)
1218
return false;
1219
const uint32_t count = data.GetU32(offset_ptr);
1220
cstr_map.Reserve(count);
1221
for (uint32_t i=0; i<count; ++i)
1222
{
1223
llvm::StringRef str(strtab.Get(data.GetU32(offset_ptr)));
1224
uint32_t value = data.GetU32(offset_ptr);
1225
// No empty strings in the name indexes in Symtab
1226
if (str.empty())
1227
return false;
1228
cstr_map.Append(ConstString(str), value);
1229
}
1230
// We must sort the UniqueCStringMap after decoding it since it is a vector
1231
// of UniqueCStringMap::Entry objects which contain a ConstString and type T.
1232
// ConstString objects are sorted by "const char *" and then type T and
1233
// the "const char *" are point values that will depend on the order in which
1234
// ConstString objects are created and in which of the 256 string pools they
1235
// are created in. So after we decode all of the entries, we must sort the
1236
// name map to ensure name lookups succeed. If we encode and decode within
1237
// the same process we wouldn't need to sort, so unit testing didn't catch
1238
// this issue when first checked in.
1239
cstr_map.Sort();
1240
return true;
1241
}
1242
1243
constexpr llvm::StringLiteral kIdentifierSymbolTable("SYMB");
1244
constexpr uint32_t CURRENT_CACHE_VERSION = 1;
1245
1246
/// The encoding format for the symbol table is as follows:
1247
///
1248
/// Signature signature;
1249
/// ConstStringTable strtab;
1250
/// Identifier four character code: 'SYMB'
1251
/// uint32_t version;
1252
/// uint32_t num_symbols;
1253
/// Symbol symbols[num_symbols];
1254
/// uint8_t num_cstr_maps;
1255
/// UniqueCStringMap<uint32_t> cstr_maps[num_cstr_maps]
1256
bool Symtab::Encode(DataEncoder &encoder) const {
1257
// Name indexes must be computed before calling this function.
1258
assert(m_name_indexes_computed);
1259
1260
// Encode the object file's signature
1261
CacheSignature signature(m_objfile);
1262
if (!signature.Encode(encoder))
1263
return false;
1264
ConstStringTable strtab;
1265
1266
// Encoder the symbol table into a separate encoder first. This allows us
1267
// gather all of the strings we willl need in "strtab" as we will need to
1268
// write the string table out before the symbol table.
1269
DataEncoder symtab_encoder(encoder.GetByteOrder(),
1270
encoder.GetAddressByteSize());
1271
symtab_encoder.AppendData(kIdentifierSymbolTable);
1272
// Encode the symtab data version.
1273
symtab_encoder.AppendU32(CURRENT_CACHE_VERSION);
1274
// Encode the number of symbols.
1275
symtab_encoder.AppendU32(m_symbols.size());
1276
// Encode the symbol data for all symbols.
1277
for (const auto &symbol: m_symbols)
1278
symbol.Encode(symtab_encoder, strtab);
1279
1280
// Emit a byte for how many C string maps we emit. We will fix this up after
1281
// we emit the C string maps since we skip emitting C string maps if they are
1282
// empty.
1283
size_t num_cmaps_offset = symtab_encoder.GetByteSize();
1284
uint8_t num_cmaps = 0;
1285
symtab_encoder.AppendU8(0);
1286
for (const auto &pair: m_name_to_symbol_indices) {
1287
if (pair.second.IsEmpty())
1288
continue;
1289
++num_cmaps;
1290
symtab_encoder.AppendU8(pair.first);
1291
EncodeCStrMap(symtab_encoder, strtab, pair.second);
1292
}
1293
if (num_cmaps > 0)
1294
symtab_encoder.PutU8(num_cmaps_offset, num_cmaps);
1295
1296
// Now that all strings have been gathered, we will emit the string table.
1297
strtab.Encode(encoder);
1298
// Followed by the symbol table data.
1299
encoder.AppendData(symtab_encoder.GetData());
1300
return true;
1301
}
1302
1303
bool Symtab::Decode(const DataExtractor &data, lldb::offset_t *offset_ptr,
1304
bool &signature_mismatch) {
1305
signature_mismatch = false;
1306
CacheSignature signature;
1307
StringTableReader strtab;
1308
{ // Scope for "elapsed" object below so it can measure the time parse.
1309
ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabParseTime());
1310
if (!signature.Decode(data, offset_ptr))
1311
return false;
1312
if (CacheSignature(m_objfile) != signature) {
1313
signature_mismatch = true;
1314
return false;
1315
}
1316
// We now decode the string table for all strings in the data cache file.
1317
if (!strtab.Decode(data, offset_ptr))
1318
return false;
1319
1320
// And now we can decode the symbol table with string table we just decoded.
1321
llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4);
1322
if (identifier != kIdentifierSymbolTable)
1323
return false;
1324
const uint32_t version = data.GetU32(offset_ptr);
1325
if (version != CURRENT_CACHE_VERSION)
1326
return false;
1327
const uint32_t num_symbols = data.GetU32(offset_ptr);
1328
if (num_symbols == 0)
1329
return true;
1330
m_symbols.resize(num_symbols);
1331
SectionList *sections = m_objfile->GetModule()->GetSectionList();
1332
for (uint32_t i=0; i<num_symbols; ++i) {
1333
if (!m_symbols[i].Decode(data, offset_ptr, sections, strtab))
1334
return false;
1335
}
1336
}
1337
1338
{ // Scope for "elapsed" object below so it can measure the time to index.
1339
ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime());
1340
const uint8_t num_cstr_maps = data.GetU8(offset_ptr);
1341
for (uint8_t i=0; i<num_cstr_maps; ++i) {
1342
uint8_t type = data.GetU8(offset_ptr);
1343
UniqueCStringMap<uint32_t> &cstr_map =
1344
GetNameToSymbolIndexMap((lldb::FunctionNameType)type);
1345
if (!DecodeCStrMap(data, offset_ptr, strtab, cstr_map))
1346
return false;
1347
}
1348
m_name_indexes_computed = true;
1349
}
1350
return true;
1351
}
1352
1353
bool Symtab::LoadFromCache() {
1354
DataFileCache *cache = Module::GetIndexCache();
1355
if (!cache)
1356
return false;
1357
1358
std::unique_ptr<llvm::MemoryBuffer> mem_buffer_up =
1359
cache->GetCachedData(GetCacheKey());
1360
if (!mem_buffer_up)
1361
return false;
1362
DataExtractor data(mem_buffer_up->getBufferStart(),
1363
mem_buffer_up->getBufferSize(),
1364
m_objfile->GetByteOrder(),
1365
m_objfile->GetAddressByteSize());
1366
bool signature_mismatch = false;
1367
lldb::offset_t offset = 0;
1368
const bool result = Decode(data, &offset, signature_mismatch);
1369
if (signature_mismatch)
1370
cache->RemoveCacheFile(GetCacheKey());
1371
if (result)
1372
SetWasLoadedFromCache();
1373
return result;
1374
}
1375
1376