Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lldb/source/Target/Memory.cpp
39587 views
1
//===-- Memory.cpp --------------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "lldb/Target/Memory.h"
10
#include "lldb/Target/Process.h"
11
#include "lldb/Utility/DataBufferHeap.h"
12
#include "lldb/Utility/LLDBLog.h"
13
#include "lldb/Utility/Log.h"
14
#include "lldb/Utility/RangeMap.h"
15
#include "lldb/Utility/State.h"
16
17
#include <cinttypes>
18
#include <memory>
19
20
using namespace lldb;
21
using namespace lldb_private;
22
23
// MemoryCache constructor
24
MemoryCache::MemoryCache(Process &process)
25
: m_mutex(), m_L1_cache(), m_L2_cache(), m_invalid_ranges(),
26
m_process(process),
27
m_L2_cache_line_byte_size(process.GetMemoryCacheLineSize()) {}
28
29
// Destructor
30
MemoryCache::~MemoryCache() = default;
31
32
void MemoryCache::Clear(bool clear_invalid_ranges) {
33
std::lock_guard<std::recursive_mutex> guard(m_mutex);
34
m_L1_cache.clear();
35
m_L2_cache.clear();
36
if (clear_invalid_ranges)
37
m_invalid_ranges.Clear();
38
m_L2_cache_line_byte_size = m_process.GetMemoryCacheLineSize();
39
}
40
41
void MemoryCache::AddL1CacheData(lldb::addr_t addr, const void *src,
42
size_t src_len) {
43
AddL1CacheData(
44
addr, DataBufferSP(new DataBufferHeap(DataBufferHeap(src, src_len))));
45
}
46
47
void MemoryCache::AddL1CacheData(lldb::addr_t addr,
48
const DataBufferSP &data_buffer_sp) {
49
std::lock_guard<std::recursive_mutex> guard(m_mutex);
50
m_L1_cache[addr] = data_buffer_sp;
51
}
52
53
void MemoryCache::Flush(addr_t addr, size_t size) {
54
if (size == 0)
55
return;
56
57
std::lock_guard<std::recursive_mutex> guard(m_mutex);
58
59
// Erase any blocks from the L1 cache that intersect with the flush range
60
if (!m_L1_cache.empty()) {
61
AddrRange flush_range(addr, size);
62
BlockMap::iterator pos = m_L1_cache.upper_bound(addr);
63
if (pos != m_L1_cache.begin()) {
64
--pos;
65
}
66
while (pos != m_L1_cache.end()) {
67
AddrRange chunk_range(pos->first, pos->second->GetByteSize());
68
if (!chunk_range.DoesIntersect(flush_range))
69
break;
70
pos = m_L1_cache.erase(pos);
71
}
72
}
73
74
if (!m_L2_cache.empty()) {
75
const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size;
76
const addr_t end_addr = (addr + size - 1);
77
const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size);
78
const addr_t last_cache_line_addr =
79
end_addr - (end_addr % cache_line_byte_size);
80
// Watch for overflow where size will cause us to go off the end of the
81
// 64 bit address space
82
uint32_t num_cache_lines;
83
if (last_cache_line_addr >= first_cache_line_addr)
84
num_cache_lines = ((last_cache_line_addr - first_cache_line_addr) /
85
cache_line_byte_size) +
86
1;
87
else
88
num_cache_lines =
89
(UINT64_MAX - first_cache_line_addr + 1) / cache_line_byte_size;
90
91
uint32_t cache_idx = 0;
92
for (addr_t curr_addr = first_cache_line_addr; cache_idx < num_cache_lines;
93
curr_addr += cache_line_byte_size, ++cache_idx) {
94
BlockMap::iterator pos = m_L2_cache.find(curr_addr);
95
if (pos != m_L2_cache.end())
96
m_L2_cache.erase(pos);
97
}
98
}
99
}
100
101
void MemoryCache::AddInvalidRange(lldb::addr_t base_addr,
102
lldb::addr_t byte_size) {
103
if (byte_size > 0) {
104
std::lock_guard<std::recursive_mutex> guard(m_mutex);
105
InvalidRanges::Entry range(base_addr, byte_size);
106
m_invalid_ranges.Append(range);
107
m_invalid_ranges.Sort();
108
}
109
}
110
111
bool MemoryCache::RemoveInvalidRange(lldb::addr_t base_addr,
112
lldb::addr_t byte_size) {
113
if (byte_size > 0) {
114
std::lock_guard<std::recursive_mutex> guard(m_mutex);
115
const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr);
116
if (idx != UINT32_MAX) {
117
const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex(idx);
118
if (entry->GetRangeBase() == base_addr &&
119
entry->GetByteSize() == byte_size)
120
return m_invalid_ranges.RemoveEntryAtIndex(idx);
121
}
122
}
123
return false;
124
}
125
126
lldb::DataBufferSP MemoryCache::GetL2CacheLine(lldb::addr_t line_base_addr,
127
Status &error) {
128
// This function assumes that the address given is aligned correctly.
129
assert((line_base_addr % m_L2_cache_line_byte_size) == 0);
130
131
std::lock_guard<std::recursive_mutex> guard(m_mutex);
132
auto pos = m_L2_cache.find(line_base_addr);
133
if (pos != m_L2_cache.end())
134
return pos->second;
135
136
auto data_buffer_heap_sp =
137
std::make_shared<DataBufferHeap>(m_L2_cache_line_byte_size, 0);
138
size_t process_bytes_read = m_process.ReadMemoryFromInferior(
139
line_base_addr, data_buffer_heap_sp->GetBytes(),
140
data_buffer_heap_sp->GetByteSize(), error);
141
142
// If we failed a read, not much we can do.
143
if (process_bytes_read == 0)
144
return lldb::DataBufferSP();
145
146
// If we didn't get a complete read, we can still cache what we did get.
147
if (process_bytes_read < m_L2_cache_line_byte_size)
148
data_buffer_heap_sp->SetByteSize(process_bytes_read);
149
150
m_L2_cache[line_base_addr] = data_buffer_heap_sp;
151
return data_buffer_heap_sp;
152
}
153
154
size_t MemoryCache::Read(addr_t addr, void *dst, size_t dst_len,
155
Status &error) {
156
if (!dst || dst_len == 0)
157
return 0;
158
159
std::lock_guard<std::recursive_mutex> guard(m_mutex);
160
// FIXME: We should do a more thorough check to make sure that we're not
161
// overlapping with any invalid ranges (e.g. Read 0x100 - 0x200 but there's an
162
// invalid range 0x180 - 0x280). `FindEntryThatContains` has an implementation
163
// that takes a range, but it only checks to see if the argument is contained
164
// by an existing invalid range. It cannot check if the argument contains
165
// invalid ranges and cannot check for overlaps.
166
if (m_invalid_ranges.FindEntryThatContains(addr)) {
167
error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64, addr);
168
return 0;
169
}
170
171
// Check the L1 cache for a range that contains the entire memory read.
172
// L1 cache contains chunks of memory that are not required to be the size of
173
// an L2 cache line. We avoid trying to do partial reads from the L1 cache to
174
// simplify the implementation.
175
if (!m_L1_cache.empty()) {
176
AddrRange read_range(addr, dst_len);
177
BlockMap::iterator pos = m_L1_cache.upper_bound(addr);
178
if (pos != m_L1_cache.begin()) {
179
--pos;
180
}
181
AddrRange chunk_range(pos->first, pos->second->GetByteSize());
182
if (chunk_range.Contains(read_range)) {
183
memcpy(dst, pos->second->GetBytes() + (addr - chunk_range.GetRangeBase()),
184
dst_len);
185
return dst_len;
186
}
187
}
188
189
// If the size of the read is greater than the size of an L2 cache line, we'll
190
// just read from the inferior. If that read is successful, we'll cache what
191
// we read in the L1 cache for future use.
192
if (dst_len > m_L2_cache_line_byte_size) {
193
size_t bytes_read =
194
m_process.ReadMemoryFromInferior(addr, dst, dst_len, error);
195
if (bytes_read > 0)
196
AddL1CacheData(addr, dst, bytes_read);
197
return bytes_read;
198
}
199
200
// If the size of the read fits inside one L2 cache line, we'll try reading
201
// from the L2 cache. Note that if the range of memory we're reading sits
202
// between two contiguous cache lines, we'll touch two cache lines instead of
203
// just one.
204
205
// We're going to have all of our loads and reads be cache line aligned.
206
addr_t cache_line_offset = addr % m_L2_cache_line_byte_size;
207
addr_t cache_line_base_addr = addr - cache_line_offset;
208
DataBufferSP first_cache_line = GetL2CacheLine(cache_line_base_addr, error);
209
// If we get nothing, then the read to the inferior likely failed. Nothing to
210
// do here.
211
if (!first_cache_line)
212
return 0;
213
214
// If the cache line was not filled out completely and the offset is greater
215
// than what we have available, we can't do anything further here.
216
if (cache_line_offset >= first_cache_line->GetByteSize())
217
return 0;
218
219
uint8_t *dst_buf = (uint8_t *)dst;
220
size_t bytes_left = dst_len;
221
size_t read_size = first_cache_line->GetByteSize() - cache_line_offset;
222
if (read_size > bytes_left)
223
read_size = bytes_left;
224
225
memcpy(dst_buf + dst_len - bytes_left,
226
first_cache_line->GetBytes() + cache_line_offset, read_size);
227
bytes_left -= read_size;
228
229
// If the cache line was not filled out completely and we still have data to
230
// read, we can't do anything further.
231
if (first_cache_line->GetByteSize() < m_L2_cache_line_byte_size &&
232
bytes_left > 0)
233
return dst_len - bytes_left;
234
235
// We'll hit this scenario if our read straddles two cache lines.
236
if (bytes_left > 0) {
237
cache_line_base_addr += m_L2_cache_line_byte_size;
238
239
// FIXME: Until we are able to more thoroughly check for invalid ranges, we
240
// will have to check the second line to see if it is in an invalid range as
241
// well. See the check near the beginning of the function for more details.
242
if (m_invalid_ranges.FindEntryThatContains(cache_line_base_addr)) {
243
error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64,
244
cache_line_base_addr);
245
return dst_len - bytes_left;
246
}
247
248
DataBufferSP second_cache_line =
249
GetL2CacheLine(cache_line_base_addr, error);
250
if (!second_cache_line)
251
return dst_len - bytes_left;
252
253
read_size = bytes_left;
254
if (read_size > second_cache_line->GetByteSize())
255
read_size = second_cache_line->GetByteSize();
256
257
memcpy(dst_buf + dst_len - bytes_left, second_cache_line->GetBytes(),
258
read_size);
259
bytes_left -= read_size;
260
261
return dst_len - bytes_left;
262
}
263
264
return dst_len;
265
}
266
267
AllocatedBlock::AllocatedBlock(lldb::addr_t addr, uint32_t byte_size,
268
uint32_t permissions, uint32_t chunk_size)
269
: m_range(addr, byte_size), m_permissions(permissions),
270
m_chunk_size(chunk_size)
271
{
272
// The entire address range is free to start with.
273
m_free_blocks.Append(m_range);
274
assert(byte_size > chunk_size);
275
}
276
277
AllocatedBlock::~AllocatedBlock() = default;
278
279
lldb::addr_t AllocatedBlock::ReserveBlock(uint32_t size) {
280
// We must return something valid for zero bytes.
281
if (size == 0)
282
size = 1;
283
Log *log = GetLog(LLDBLog::Process);
284
285
const size_t free_count = m_free_blocks.GetSize();
286
for (size_t i=0; i<free_count; ++i)
287
{
288
auto &free_block = m_free_blocks.GetEntryRef(i);
289
const lldb::addr_t range_size = free_block.GetByteSize();
290
if (range_size >= size)
291
{
292
// We found a free block that is big enough for our data. Figure out how
293
// many chunks we will need and calculate the resulting block size we
294
// will reserve.
295
addr_t addr = free_block.GetRangeBase();
296
size_t num_chunks = CalculateChunksNeededForSize(size);
297
lldb::addr_t block_size = num_chunks * m_chunk_size;
298
lldb::addr_t bytes_left = range_size - block_size;
299
if (bytes_left == 0)
300
{
301
// The newly allocated block will take all of the bytes in this
302
// available block, so we can just add it to the allocated ranges and
303
// remove the range from the free ranges.
304
m_reserved_blocks.Insert(free_block, false);
305
m_free_blocks.RemoveEntryAtIndex(i);
306
}
307
else
308
{
309
// Make the new allocated range and add it to the allocated ranges.
310
Range<lldb::addr_t, uint32_t> reserved_block(free_block);
311
reserved_block.SetByteSize(block_size);
312
// Insert the reserved range and don't combine it with other blocks in
313
// the reserved blocks list.
314
m_reserved_blocks.Insert(reserved_block, false);
315
// Adjust the free range in place since we won't change the sorted
316
// ordering of the m_free_blocks list.
317
free_block.SetRangeBase(reserved_block.GetRangeEnd());
318
free_block.SetByteSize(bytes_left);
319
}
320
LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, addr);
321
return addr;
322
}
323
}
324
325
LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size,
326
LLDB_INVALID_ADDRESS);
327
return LLDB_INVALID_ADDRESS;
328
}
329
330
bool AllocatedBlock::FreeBlock(addr_t addr) {
331
bool success = false;
332
auto entry_idx = m_reserved_blocks.FindEntryIndexThatContains(addr);
333
if (entry_idx != UINT32_MAX)
334
{
335
m_free_blocks.Insert(m_reserved_blocks.GetEntryRef(entry_idx), true);
336
m_reserved_blocks.RemoveEntryAtIndex(entry_idx);
337
success = true;
338
}
339
Log *log = GetLog(LLDBLog::Process);
340
LLDB_LOGV(log, "({0}) (addr = {1:x}) => {2}", this, addr, success);
341
return success;
342
}
343
344
AllocatedMemoryCache::AllocatedMemoryCache(Process &process)
345
: m_process(process), m_mutex(), m_memory_map() {}
346
347
AllocatedMemoryCache::~AllocatedMemoryCache() = default;
348
349
void AllocatedMemoryCache::Clear(bool deallocate_memory) {
350
std::lock_guard<std::recursive_mutex> guard(m_mutex);
351
if (m_process.IsAlive() && deallocate_memory) {
352
PermissionsToBlockMap::iterator pos, end = m_memory_map.end();
353
for (pos = m_memory_map.begin(); pos != end; ++pos)
354
m_process.DoDeallocateMemory(pos->second->GetBaseAddress());
355
}
356
m_memory_map.clear();
357
}
358
359
AllocatedMemoryCache::AllocatedBlockSP
360
AllocatedMemoryCache::AllocatePage(uint32_t byte_size, uint32_t permissions,
361
uint32_t chunk_size, Status &error) {
362
AllocatedBlockSP block_sp;
363
const size_t page_size = 4096;
364
const size_t num_pages = (byte_size + page_size - 1) / page_size;
365
const size_t page_byte_size = num_pages * page_size;
366
367
addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error);
368
369
Log *log = GetLog(LLDBLog::Process);
370
if (log) {
371
LLDB_LOGF(log,
372
"Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32
373
", permissions = %s) => 0x%16.16" PRIx64,
374
(uint32_t)page_byte_size, GetPermissionsAsCString(permissions),
375
(uint64_t)addr);
376
}
377
378
if (addr != LLDB_INVALID_ADDRESS) {
379
block_sp = std::make_shared<AllocatedBlock>(addr, page_byte_size,
380
permissions, chunk_size);
381
m_memory_map.insert(std::make_pair(permissions, block_sp));
382
}
383
return block_sp;
384
}
385
386
lldb::addr_t AllocatedMemoryCache::AllocateMemory(size_t byte_size,
387
uint32_t permissions,
388
Status &error) {
389
std::lock_guard<std::recursive_mutex> guard(m_mutex);
390
391
addr_t addr = LLDB_INVALID_ADDRESS;
392
std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator>
393
range = m_memory_map.equal_range(permissions);
394
395
for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second;
396
++pos) {
397
addr = (*pos).second->ReserveBlock(byte_size);
398
if (addr != LLDB_INVALID_ADDRESS)
399
break;
400
}
401
402
if (addr == LLDB_INVALID_ADDRESS) {
403
AllocatedBlockSP block_sp(AllocatePage(byte_size, permissions, 16, error));
404
405
if (block_sp)
406
addr = block_sp->ReserveBlock(byte_size);
407
}
408
Log *log = GetLog(LLDBLog::Process);
409
LLDB_LOGF(log,
410
"AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32
411
", permissions = %s) => 0x%16.16" PRIx64,
412
(uint32_t)byte_size, GetPermissionsAsCString(permissions),
413
(uint64_t)addr);
414
return addr;
415
}
416
417
bool AllocatedMemoryCache::DeallocateMemory(lldb::addr_t addr) {
418
std::lock_guard<std::recursive_mutex> guard(m_mutex);
419
420
PermissionsToBlockMap::iterator pos, end = m_memory_map.end();
421
bool success = false;
422
for (pos = m_memory_map.begin(); pos != end; ++pos) {
423
if (pos->second->Contains(addr)) {
424
success = pos->second->FreeBlock(addr);
425
break;
426
}
427
}
428
Log *log = GetLog(LLDBLog::Process);
429
LLDB_LOGF(log,
430
"AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64
431
") => %i",
432
(uint64_t)addr, success);
433
return success;
434
}
435
436