Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lldb/source/Target/Process.cpp
39587 views
1
//===-- Process.cpp -------------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include <atomic>
10
#include <memory>
11
#include <mutex>
12
#include <optional>
13
14
#include "llvm/ADT/ScopeExit.h"
15
#include "llvm/Support/ScopedPrinter.h"
16
#include "llvm/Support/Threading.h"
17
18
#include "lldb/Breakpoint/BreakpointLocation.h"
19
#include "lldb/Breakpoint/StoppointCallbackContext.h"
20
#include "lldb/Core/Debugger.h"
21
#include "lldb/Core/Module.h"
22
#include "lldb/Core/ModuleSpec.h"
23
#include "lldb/Core/PluginManager.h"
24
#include "lldb/Core/Progress.h"
25
#include "lldb/Expression/DiagnosticManager.h"
26
#include "lldb/Expression/DynamicCheckerFunctions.h"
27
#include "lldb/Expression/UserExpression.h"
28
#include "lldb/Expression/UtilityFunction.h"
29
#include "lldb/Host/ConnectionFileDescriptor.h"
30
#include "lldb/Host/FileSystem.h"
31
#include "lldb/Host/Host.h"
32
#include "lldb/Host/HostInfo.h"
33
#include "lldb/Host/OptionParser.h"
34
#include "lldb/Host/Pipe.h"
35
#include "lldb/Host/Terminal.h"
36
#include "lldb/Host/ThreadLauncher.h"
37
#include "lldb/Interpreter/CommandInterpreter.h"
38
#include "lldb/Interpreter/OptionArgParser.h"
39
#include "lldb/Interpreter/OptionValueProperties.h"
40
#include "lldb/Symbol/Function.h"
41
#include "lldb/Symbol/Symbol.h"
42
#include "lldb/Target/ABI.h"
43
#include "lldb/Target/AssertFrameRecognizer.h"
44
#include "lldb/Target/DynamicLoader.h"
45
#include "lldb/Target/InstrumentationRuntime.h"
46
#include "lldb/Target/JITLoader.h"
47
#include "lldb/Target/JITLoaderList.h"
48
#include "lldb/Target/Language.h"
49
#include "lldb/Target/LanguageRuntime.h"
50
#include "lldb/Target/MemoryHistory.h"
51
#include "lldb/Target/MemoryRegionInfo.h"
52
#include "lldb/Target/OperatingSystem.h"
53
#include "lldb/Target/Platform.h"
54
#include "lldb/Target/Process.h"
55
#include "lldb/Target/RegisterContext.h"
56
#include "lldb/Target/StopInfo.h"
57
#include "lldb/Target/StructuredDataPlugin.h"
58
#include "lldb/Target/SystemRuntime.h"
59
#include "lldb/Target/Target.h"
60
#include "lldb/Target/TargetList.h"
61
#include "lldb/Target/Thread.h"
62
#include "lldb/Target/ThreadPlan.h"
63
#include "lldb/Target/ThreadPlanBase.h"
64
#include "lldb/Target/ThreadPlanCallFunction.h"
65
#include "lldb/Target/ThreadPlanStack.h"
66
#include "lldb/Target/UnixSignals.h"
67
#include "lldb/Target/VerboseTrapFrameRecognizer.h"
68
#include "lldb/Utility/AddressableBits.h"
69
#include "lldb/Utility/Event.h"
70
#include "lldb/Utility/LLDBLog.h"
71
#include "lldb/Utility/Log.h"
72
#include "lldb/Utility/NameMatches.h"
73
#include "lldb/Utility/ProcessInfo.h"
74
#include "lldb/Utility/SelectHelper.h"
75
#include "lldb/Utility/State.h"
76
#include "lldb/Utility/Timer.h"
77
78
using namespace lldb;
79
using namespace lldb_private;
80
using namespace std::chrono;
81
82
// Comment out line below to disable memory caching, overriding the process
83
// setting target.process.disable-memory-cache
84
#define ENABLE_MEMORY_CACHING
85
86
#ifdef ENABLE_MEMORY_CACHING
87
#define DISABLE_MEM_CACHE_DEFAULT false
88
#else
89
#define DISABLE_MEM_CACHE_DEFAULT true
90
#endif
91
92
class ProcessOptionValueProperties
93
: public Cloneable<ProcessOptionValueProperties, OptionValueProperties> {
94
public:
95
ProcessOptionValueProperties(llvm::StringRef name) : Cloneable(name) {}
96
97
const Property *
98
GetPropertyAtIndex(size_t idx,
99
const ExecutionContext *exe_ctx) const override {
100
// When getting the value for a key from the process options, we will
101
// always try and grab the setting from the current process if there is
102
// one. Else we just use the one from this instance.
103
if (exe_ctx) {
104
Process *process = exe_ctx->GetProcessPtr();
105
if (process) {
106
ProcessOptionValueProperties *instance_properties =
107
static_cast<ProcessOptionValueProperties *>(
108
process->GetValueProperties().get());
109
if (this != instance_properties)
110
return instance_properties->ProtectedGetPropertyAtIndex(idx);
111
}
112
}
113
return ProtectedGetPropertyAtIndex(idx);
114
}
115
};
116
117
class ProcessMemoryIterator {
118
public:
119
ProcessMemoryIterator(Process &process, lldb::addr_t base)
120
: m_process(process), m_base_addr(base) {}
121
122
bool IsValid() { return m_is_valid; }
123
124
uint8_t operator[](lldb::addr_t offset) {
125
if (!IsValid())
126
return 0;
127
128
uint8_t retval = 0;
129
Status error;
130
if (0 == m_process.ReadMemory(m_base_addr + offset, &retval, 1, error)) {
131
m_is_valid = false;
132
return 0;
133
}
134
135
return retval;
136
}
137
138
private:
139
Process &m_process;
140
const lldb::addr_t m_base_addr;
141
bool m_is_valid = true;
142
};
143
144
static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = {
145
{
146
eFollowParent,
147
"parent",
148
"Continue tracing the parent process and detach the child.",
149
},
150
{
151
eFollowChild,
152
"child",
153
"Trace the child process and detach the parent.",
154
},
155
};
156
157
#define LLDB_PROPERTIES_process
158
#include "TargetProperties.inc"
159
160
enum {
161
#define LLDB_PROPERTIES_process
162
#include "TargetPropertiesEnum.inc"
163
ePropertyExperimental,
164
};
165
166
#define LLDB_PROPERTIES_process_experimental
167
#include "TargetProperties.inc"
168
169
enum {
170
#define LLDB_PROPERTIES_process_experimental
171
#include "TargetPropertiesEnum.inc"
172
};
173
174
class ProcessExperimentalOptionValueProperties
175
: public Cloneable<ProcessExperimentalOptionValueProperties,
176
OptionValueProperties> {
177
public:
178
ProcessExperimentalOptionValueProperties()
179
: Cloneable(Properties::GetExperimentalSettingsName()) {}
180
};
181
182
ProcessExperimentalProperties::ProcessExperimentalProperties()
183
: Properties(OptionValuePropertiesSP(
184
new ProcessExperimentalOptionValueProperties())) {
185
m_collection_sp->Initialize(g_process_experimental_properties);
186
}
187
188
ProcessProperties::ProcessProperties(lldb_private::Process *process)
189
: Properties(),
190
m_process(process) // Can be nullptr for global ProcessProperties
191
{
192
if (process == nullptr) {
193
// Global process properties, set them up one time
194
m_collection_sp = std::make_shared<ProcessOptionValueProperties>("process");
195
m_collection_sp->Initialize(g_process_properties);
196
m_collection_sp->AppendProperty(
197
"thread", "Settings specific to threads.", true,
198
Thread::GetGlobalProperties().GetValueProperties());
199
} else {
200
m_collection_sp =
201
OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties());
202
m_collection_sp->SetValueChangedCallback(
203
ePropertyPythonOSPluginPath,
204
[this] { m_process->LoadOperatingSystemPlugin(true); });
205
}
206
207
m_experimental_properties_up =
208
std::make_unique<ProcessExperimentalProperties>();
209
m_collection_sp->AppendProperty(
210
Properties::GetExperimentalSettingsName(),
211
"Experimental settings - setting these won't produce "
212
"errors if the setting is not present.",
213
true, m_experimental_properties_up->GetValueProperties());
214
}
215
216
ProcessProperties::~ProcessProperties() = default;
217
218
bool ProcessProperties::GetDisableMemoryCache() const {
219
const uint32_t idx = ePropertyDisableMemCache;
220
return GetPropertyAtIndexAs<bool>(
221
idx, g_process_properties[idx].default_uint_value != 0);
222
}
223
224
uint64_t ProcessProperties::GetMemoryCacheLineSize() const {
225
const uint32_t idx = ePropertyMemCacheLineSize;
226
return GetPropertyAtIndexAs<uint64_t>(
227
idx, g_process_properties[idx].default_uint_value);
228
}
229
230
Args ProcessProperties::GetExtraStartupCommands() const {
231
Args args;
232
const uint32_t idx = ePropertyExtraStartCommand;
233
m_collection_sp->GetPropertyAtIndexAsArgs(idx, args);
234
return args;
235
}
236
237
void ProcessProperties::SetExtraStartupCommands(const Args &args) {
238
const uint32_t idx = ePropertyExtraStartCommand;
239
m_collection_sp->SetPropertyAtIndexFromArgs(idx, args);
240
}
241
242
FileSpec ProcessProperties::GetPythonOSPluginPath() const {
243
const uint32_t idx = ePropertyPythonOSPluginPath;
244
return GetPropertyAtIndexAs<FileSpec>(idx, {});
245
}
246
247
uint32_t ProcessProperties::GetVirtualAddressableBits() const {
248
const uint32_t idx = ePropertyVirtualAddressableBits;
249
return GetPropertyAtIndexAs<uint64_t>(
250
idx, g_process_properties[idx].default_uint_value);
251
}
252
253
void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) {
254
const uint32_t idx = ePropertyVirtualAddressableBits;
255
SetPropertyAtIndex(idx, static_cast<uint64_t>(bits));
256
}
257
258
uint32_t ProcessProperties::GetHighmemVirtualAddressableBits() const {
259
const uint32_t idx = ePropertyHighmemVirtualAddressableBits;
260
return GetPropertyAtIndexAs<uint64_t>(
261
idx, g_process_properties[idx].default_uint_value);
262
}
263
264
void ProcessProperties::SetHighmemVirtualAddressableBits(uint32_t bits) {
265
const uint32_t idx = ePropertyHighmemVirtualAddressableBits;
266
SetPropertyAtIndex(idx, static_cast<uint64_t>(bits));
267
}
268
269
void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) {
270
const uint32_t idx = ePropertyPythonOSPluginPath;
271
SetPropertyAtIndex(idx, file);
272
}
273
274
bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const {
275
const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
276
return GetPropertyAtIndexAs<bool>(
277
idx, g_process_properties[idx].default_uint_value != 0);
278
}
279
280
void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) {
281
const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
282
SetPropertyAtIndex(idx, ignore);
283
}
284
285
bool ProcessProperties::GetUnwindOnErrorInExpressions() const {
286
const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
287
return GetPropertyAtIndexAs<bool>(
288
idx, g_process_properties[idx].default_uint_value != 0);
289
}
290
291
void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) {
292
const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
293
SetPropertyAtIndex(idx, ignore);
294
}
295
296
bool ProcessProperties::GetStopOnSharedLibraryEvents() const {
297
const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
298
return GetPropertyAtIndexAs<bool>(
299
idx, g_process_properties[idx].default_uint_value != 0);
300
}
301
302
void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) {
303
const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
304
SetPropertyAtIndex(idx, stop);
305
}
306
307
bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const {
308
const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
309
return GetPropertyAtIndexAs<bool>(
310
idx, g_process_properties[idx].default_uint_value != 0);
311
}
312
313
void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) {
314
const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
315
SetPropertyAtIndex(idx, disable);
316
m_process->Flush();
317
}
318
319
bool ProcessProperties::GetDetachKeepsStopped() const {
320
const uint32_t idx = ePropertyDetachKeepsStopped;
321
return GetPropertyAtIndexAs<bool>(
322
idx, g_process_properties[idx].default_uint_value != 0);
323
}
324
325
void ProcessProperties::SetDetachKeepsStopped(bool stop) {
326
const uint32_t idx = ePropertyDetachKeepsStopped;
327
SetPropertyAtIndex(idx, stop);
328
}
329
330
bool ProcessProperties::GetWarningsOptimization() const {
331
const uint32_t idx = ePropertyWarningOptimization;
332
return GetPropertyAtIndexAs<bool>(
333
idx, g_process_properties[idx].default_uint_value != 0);
334
}
335
336
bool ProcessProperties::GetWarningsUnsupportedLanguage() const {
337
const uint32_t idx = ePropertyWarningUnsupportedLanguage;
338
return GetPropertyAtIndexAs<bool>(
339
idx, g_process_properties[idx].default_uint_value != 0);
340
}
341
342
bool ProcessProperties::GetStopOnExec() const {
343
const uint32_t idx = ePropertyStopOnExec;
344
return GetPropertyAtIndexAs<bool>(
345
idx, g_process_properties[idx].default_uint_value != 0);
346
}
347
348
std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const {
349
const uint32_t idx = ePropertyUtilityExpressionTimeout;
350
uint64_t value = GetPropertyAtIndexAs<uint64_t>(
351
idx, g_process_properties[idx].default_uint_value);
352
return std::chrono::seconds(value);
353
}
354
355
std::chrono::seconds ProcessProperties::GetInterruptTimeout() const {
356
const uint32_t idx = ePropertyInterruptTimeout;
357
uint64_t value = GetPropertyAtIndexAs<uint64_t>(
358
idx, g_process_properties[idx].default_uint_value);
359
return std::chrono::seconds(value);
360
}
361
362
bool ProcessProperties::GetSteppingRunsAllThreads() const {
363
const uint32_t idx = ePropertySteppingRunsAllThreads;
364
return GetPropertyAtIndexAs<bool>(
365
idx, g_process_properties[idx].default_uint_value != 0);
366
}
367
368
bool ProcessProperties::GetOSPluginReportsAllThreads() const {
369
const bool fail_value = true;
370
const Property *exp_property =
371
m_collection_sp->GetPropertyAtIndex(ePropertyExperimental);
372
OptionValueProperties *exp_values =
373
exp_property->GetValue()->GetAsProperties();
374
if (!exp_values)
375
return fail_value;
376
377
return exp_values
378
->GetPropertyAtIndexAs<bool>(ePropertyOSPluginReportsAllThreads)
379
.value_or(fail_value);
380
}
381
382
void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) {
383
const Property *exp_property =
384
m_collection_sp->GetPropertyAtIndex(ePropertyExperimental);
385
OptionValueProperties *exp_values =
386
exp_property->GetValue()->GetAsProperties();
387
if (exp_values)
388
exp_values->SetPropertyAtIndex(ePropertyOSPluginReportsAllThreads,
389
does_report);
390
}
391
392
FollowForkMode ProcessProperties::GetFollowForkMode() const {
393
const uint32_t idx = ePropertyFollowForkMode;
394
return GetPropertyAtIndexAs<FollowForkMode>(
395
idx, static_cast<FollowForkMode>(
396
g_process_properties[idx].default_uint_value));
397
}
398
399
ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
400
llvm::StringRef plugin_name,
401
ListenerSP listener_sp,
402
const FileSpec *crash_file_path,
403
bool can_connect) {
404
static uint32_t g_process_unique_id = 0;
405
406
ProcessSP process_sp;
407
ProcessCreateInstance create_callback = nullptr;
408
if (!plugin_name.empty()) {
409
create_callback =
410
PluginManager::GetProcessCreateCallbackForPluginName(plugin_name);
411
if (create_callback) {
412
process_sp = create_callback(target_sp, listener_sp, crash_file_path,
413
can_connect);
414
if (process_sp) {
415
if (process_sp->CanDebug(target_sp, true)) {
416
process_sp->m_process_unique_id = ++g_process_unique_id;
417
} else
418
process_sp.reset();
419
}
420
}
421
} else {
422
for (uint32_t idx = 0;
423
(create_callback =
424
PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr;
425
++idx) {
426
process_sp = create_callback(target_sp, listener_sp, crash_file_path,
427
can_connect);
428
if (process_sp) {
429
if (process_sp->CanDebug(target_sp, false)) {
430
process_sp->m_process_unique_id = ++g_process_unique_id;
431
break;
432
} else
433
process_sp.reset();
434
}
435
}
436
}
437
return process_sp;
438
}
439
440
llvm::StringRef Process::GetStaticBroadcasterClass() {
441
static constexpr llvm::StringLiteral class_name("lldb.process");
442
return class_name;
443
}
444
445
Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
446
: Process(target_sp, listener_sp, UnixSignals::CreateForHost()) {
447
// This constructor just delegates to the full Process constructor,
448
// defaulting to using the Host's UnixSignals.
449
}
450
451
Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
452
const UnixSignalsSP &unix_signals_sp)
453
: ProcessProperties(this),
454
Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
455
Process::GetStaticBroadcasterClass().str()),
456
m_target_wp(target_sp), m_public_state(eStateUnloaded),
457
m_private_state(eStateUnloaded),
458
m_private_state_broadcaster(nullptr,
459
"lldb.process.internal_state_broadcaster"),
460
m_private_state_control_broadcaster(
461
nullptr, "lldb.process.internal_state_control_broadcaster"),
462
m_private_state_listener_sp(
463
Listener::MakeListener("lldb.process.internal_state_listener")),
464
m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
465
m_thread_id_to_index_id_map(), m_exit_status(-1),
466
m_thread_list_real(*this), m_thread_list(*this), m_thread_plans(*this),
467
m_extended_thread_list(*this), m_extended_thread_stop_id(0),
468
m_queue_list(this), m_queue_list_stop_id(0),
469
m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
470
m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
471
m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
472
m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
473
m_memory_cache(*this), m_allocated_memory_cache(*this),
474
m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
475
m_private_run_lock(), m_currently_handling_do_on_removals(false),
476
m_resume_requested(false), m_finalizing(false), m_destructing(false),
477
m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
478
m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
479
m_can_interpret_function_calls(false), m_run_thread_plan_lock(),
480
m_can_jit(eCanJITDontKnow) {
481
CheckInWithManager();
482
483
Log *log = GetLog(LLDBLog::Object);
484
LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
485
486
if (!m_unix_signals_sp)
487
m_unix_signals_sp = std::make_shared<UnixSignals>();
488
489
SetEventName(eBroadcastBitStateChanged, "state-changed");
490
SetEventName(eBroadcastBitInterrupt, "interrupt");
491
SetEventName(eBroadcastBitSTDOUT, "stdout-available");
492
SetEventName(eBroadcastBitSTDERR, "stderr-available");
493
SetEventName(eBroadcastBitProfileData, "profile-data-available");
494
SetEventName(eBroadcastBitStructuredData, "structured-data-available");
495
496
m_private_state_control_broadcaster.SetEventName(
497
eBroadcastInternalStateControlStop, "control-stop");
498
m_private_state_control_broadcaster.SetEventName(
499
eBroadcastInternalStateControlPause, "control-pause");
500
m_private_state_control_broadcaster.SetEventName(
501
eBroadcastInternalStateControlResume, "control-resume");
502
503
// The listener passed into process creation is the primary listener:
504
// It always listens for all the event bits for Process:
505
SetPrimaryListener(listener_sp);
506
507
m_private_state_listener_sp->StartListeningForEvents(
508
&m_private_state_broadcaster,
509
eBroadcastBitStateChanged | eBroadcastBitInterrupt);
510
511
m_private_state_listener_sp->StartListeningForEvents(
512
&m_private_state_control_broadcaster,
513
eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause |
514
eBroadcastInternalStateControlResume);
515
// We need something valid here, even if just the default UnixSignalsSP.
516
assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
517
518
// Allow the platform to override the default cache line size
519
OptionValueSP value_sp =
520
m_collection_sp->GetPropertyAtIndex(ePropertyMemCacheLineSize)
521
->GetValue();
522
uint64_t platform_cache_line_size =
523
target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
524
if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
525
value_sp->SetValueAs(platform_cache_line_size);
526
527
// FIXME: Frame recognizer registration should not be done in Target.
528
// We should have a plugin do the registration instead, for example, a
529
// common C LanguageRuntime plugin.
530
RegisterAssertFrameRecognizer(this);
531
RegisterVerboseTrapFrameRecognizer(*this);
532
}
533
534
Process::~Process() {
535
Log *log = GetLog(LLDBLog::Object);
536
LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
537
StopPrivateStateThread();
538
539
// ThreadList::Clear() will try to acquire this process's mutex, so
540
// explicitly clear the thread list here to ensure that the mutex is not
541
// destroyed before the thread list.
542
m_thread_list.Clear();
543
}
544
545
ProcessProperties &Process::GetGlobalProperties() {
546
// NOTE: intentional leak so we don't crash if global destructor chain gets
547
// called as other threads still use the result of this function
548
static ProcessProperties *g_settings_ptr =
549
new ProcessProperties(nullptr);
550
return *g_settings_ptr;
551
}
552
553
void Process::Finalize(bool destructing) {
554
if (m_finalizing.exchange(true))
555
return;
556
if (destructing)
557
m_destructing.exchange(true);
558
559
// Destroy the process. This will call the virtual function DoDestroy under
560
// the hood, giving our derived class a chance to do the ncessary tear down.
561
DestroyImpl(false);
562
563
// Clear our broadcaster before we proceed with destroying
564
Broadcaster::Clear();
565
566
// Do any cleanup needed prior to being destructed... Subclasses that
567
// override this method should call this superclass method as well.
568
569
// We need to destroy the loader before the derived Process class gets
570
// destroyed since it is very likely that undoing the loader will require
571
// access to the real process.
572
m_dynamic_checkers_up.reset();
573
m_abi_sp.reset();
574
m_os_up.reset();
575
m_system_runtime_up.reset();
576
m_dyld_up.reset();
577
m_jit_loaders_up.reset();
578
m_thread_plans.Clear();
579
m_thread_list_real.Destroy();
580
m_thread_list.Destroy();
581
m_extended_thread_list.Destroy();
582
m_queue_list.Clear();
583
m_queue_list_stop_id = 0;
584
m_watchpoint_resource_list.Clear();
585
std::vector<Notifications> empty_notifications;
586
m_notifications.swap(empty_notifications);
587
m_image_tokens.clear();
588
m_memory_cache.Clear();
589
m_allocated_memory_cache.Clear(/*deallocate_memory=*/true);
590
{
591
std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
592
m_language_runtimes.clear();
593
}
594
m_instrumentation_runtimes.clear();
595
m_next_event_action_up.reset();
596
// Clear the last natural stop ID since it has a strong reference to this
597
// process
598
m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
599
// We have to be very careful here as the m_private_state_listener might
600
// contain events that have ProcessSP values in them which can keep this
601
// process around forever. These events need to be cleared out.
602
m_private_state_listener_sp->Clear();
603
m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
604
m_public_run_lock.SetStopped();
605
m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
606
m_private_run_lock.SetStopped();
607
m_structured_data_plugin_map.clear();
608
}
609
610
void Process::RegisterNotificationCallbacks(const Notifications &callbacks) {
611
m_notifications.push_back(callbacks);
612
if (callbacks.initialize != nullptr)
613
callbacks.initialize(callbacks.baton, this);
614
}
615
616
bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) {
617
std::vector<Notifications>::iterator pos, end = m_notifications.end();
618
for (pos = m_notifications.begin(); pos != end; ++pos) {
619
if (pos->baton == callbacks.baton &&
620
pos->initialize == callbacks.initialize &&
621
pos->process_state_changed == callbacks.process_state_changed) {
622
m_notifications.erase(pos);
623
return true;
624
}
625
}
626
return false;
627
}
628
629
void Process::SynchronouslyNotifyStateChanged(StateType state) {
630
std::vector<Notifications>::iterator notification_pos,
631
notification_end = m_notifications.end();
632
for (notification_pos = m_notifications.begin();
633
notification_pos != notification_end; ++notification_pos) {
634
if (notification_pos->process_state_changed)
635
notification_pos->process_state_changed(notification_pos->baton, this,
636
state);
637
}
638
}
639
640
// FIXME: We need to do some work on events before the general Listener sees
641
// them.
642
// For instance if we are continuing from a breakpoint, we need to ensure that
643
// we do the little "insert real insn, step & stop" trick. But we can't do
644
// that when the event is delivered by the broadcaster - since that is done on
645
// the thread that is waiting for new events, so if we needed more than one
646
// event for our handling, we would stall. So instead we do it when we fetch
647
// the event off of the queue.
648
//
649
650
StateType Process::GetNextEvent(EventSP &event_sp) {
651
StateType state = eStateInvalid;
652
653
if (GetPrimaryListener()->GetEventForBroadcaster(this, event_sp,
654
std::chrono::seconds(0)) &&
655
event_sp)
656
state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
657
658
return state;
659
}
660
661
void Process::SyncIOHandler(uint32_t iohandler_id,
662
const Timeout<std::micro> &timeout) {
663
// don't sync (potentially context switch) in case where there is no process
664
// IO
665
if (!ProcessIOHandlerExists())
666
return;
667
668
auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
669
670
Log *log = GetLog(LLDBLog::Process);
671
if (Result) {
672
LLDB_LOG(
673
log,
674
"waited from m_iohandler_sync to change from {0}. New value is {1}.",
675
iohandler_id, *Result);
676
} else {
677
LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
678
iohandler_id);
679
}
680
}
681
682
StateType Process::WaitForProcessToStop(
683
const Timeout<std::micro> &timeout, EventSP *event_sp_ptr, bool wait_always,
684
ListenerSP hijack_listener_sp, Stream *stream, bool use_run_lock,
685
SelectMostRelevant select_most_relevant) {
686
// We can't just wait for a "stopped" event, because the stopped event may
687
// have restarted the target. We have to actually check each event, and in
688
// the case of a stopped event check the restarted flag on the event.
689
if (event_sp_ptr)
690
event_sp_ptr->reset();
691
StateType state = GetState();
692
// If we are exited or detached, we won't ever get back to any other valid
693
// state...
694
if (state == eStateDetached || state == eStateExited)
695
return state;
696
697
Log *log = GetLog(LLDBLog::Process);
698
LLDB_LOG(log, "timeout = {0}", timeout);
699
700
if (!wait_always && StateIsStoppedState(state, true) &&
701
StateIsStoppedState(GetPrivateState(), true)) {
702
LLDB_LOGF(log,
703
"Process::%s returning without waiting for events; process "
704
"private and public states are already 'stopped'.",
705
__FUNCTION__);
706
// We need to toggle the run lock as this won't get done in
707
// SetPublicState() if the process is hijacked.
708
if (hijack_listener_sp && use_run_lock)
709
m_public_run_lock.SetStopped();
710
return state;
711
}
712
713
while (state != eStateInvalid) {
714
EventSP event_sp;
715
state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
716
if (event_sp_ptr && event_sp)
717
*event_sp_ptr = event_sp;
718
719
bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
720
Process::HandleProcessStateChangedEvent(
721
event_sp, stream, select_most_relevant, pop_process_io_handler);
722
723
switch (state) {
724
case eStateCrashed:
725
case eStateDetached:
726
case eStateExited:
727
case eStateUnloaded:
728
// We need to toggle the run lock as this won't get done in
729
// SetPublicState() if the process is hijacked.
730
if (hijack_listener_sp && use_run_lock)
731
m_public_run_lock.SetStopped();
732
return state;
733
case eStateStopped:
734
if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
735
continue;
736
else {
737
// We need to toggle the run lock as this won't get done in
738
// SetPublicState() if the process is hijacked.
739
if (hijack_listener_sp && use_run_lock)
740
m_public_run_lock.SetStopped();
741
return state;
742
}
743
default:
744
continue;
745
}
746
}
747
return state;
748
}
749
750
bool Process::HandleProcessStateChangedEvent(
751
const EventSP &event_sp, Stream *stream,
752
SelectMostRelevant select_most_relevant,
753
bool &pop_process_io_handler) {
754
const bool handle_pop = pop_process_io_handler;
755
756
pop_process_io_handler = false;
757
ProcessSP process_sp =
758
Process::ProcessEventData::GetProcessFromEvent(event_sp.get());
759
760
if (!process_sp)
761
return false;
762
763
StateType event_state =
764
Process::ProcessEventData::GetStateFromEvent(event_sp.get());
765
if (event_state == eStateInvalid)
766
return false;
767
768
switch (event_state) {
769
case eStateInvalid:
770
case eStateUnloaded:
771
case eStateAttaching:
772
case eStateLaunching:
773
case eStateStepping:
774
case eStateDetached:
775
if (stream)
776
stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
777
StateAsCString(event_state));
778
if (event_state == eStateDetached)
779
pop_process_io_handler = true;
780
break;
781
782
case eStateConnected:
783
case eStateRunning:
784
// Don't be chatty when we run...
785
break;
786
787
case eStateExited:
788
if (stream)
789
process_sp->GetStatus(*stream);
790
pop_process_io_handler = true;
791
break;
792
793
case eStateStopped:
794
case eStateCrashed:
795
case eStateSuspended:
796
// Make sure the program hasn't been auto-restarted:
797
if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
798
if (stream) {
799
size_t num_reasons =
800
Process::ProcessEventData::GetNumRestartedReasons(event_sp.get());
801
if (num_reasons > 0) {
802
// FIXME: Do we want to report this, or would that just be annoyingly
803
// chatty?
804
if (num_reasons == 1) {
805
const char *reason =
806
Process::ProcessEventData::GetRestartedReasonAtIndex(
807
event_sp.get(), 0);
808
stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
809
process_sp->GetID(),
810
reason ? reason : "<UNKNOWN REASON>");
811
} else {
812
stream->Printf("Process %" PRIu64
813
" stopped and restarted, reasons:\n",
814
process_sp->GetID());
815
816
for (size_t i = 0; i < num_reasons; i++) {
817
const char *reason =
818
Process::ProcessEventData::GetRestartedReasonAtIndex(
819
event_sp.get(), i);
820
stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
821
}
822
}
823
}
824
}
825
} else {
826
StopInfoSP curr_thread_stop_info_sp;
827
// Lock the thread list so it doesn't change on us, this is the scope for
828
// the locker:
829
{
830
ThreadList &thread_list = process_sp->GetThreadList();
831
std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
832
833
ThreadSP curr_thread(thread_list.GetSelectedThread());
834
ThreadSP thread;
835
StopReason curr_thread_stop_reason = eStopReasonInvalid;
836
bool prefer_curr_thread = false;
837
if (curr_thread && curr_thread->IsValid()) {
838
curr_thread_stop_reason = curr_thread->GetStopReason();
839
switch (curr_thread_stop_reason) {
840
case eStopReasonNone:
841
case eStopReasonInvalid:
842
// Don't prefer the current thread if it didn't stop for a reason.
843
break;
844
case eStopReasonSignal: {
845
// We need to do the same computation we do for other threads
846
// below in case the current thread happens to be the one that
847
// stopped for the no-stop signal.
848
uint64_t signo = curr_thread->GetStopInfo()->GetValue();
849
if (process_sp->GetUnixSignals()->GetShouldStop(signo))
850
prefer_curr_thread = true;
851
} break;
852
default:
853
prefer_curr_thread = true;
854
break;
855
}
856
curr_thread_stop_info_sp = curr_thread->GetStopInfo();
857
}
858
859
if (!prefer_curr_thread) {
860
// Prefer a thread that has just completed its plan over another
861
// thread as current thread.
862
ThreadSP plan_thread;
863
ThreadSP other_thread;
864
865
const size_t num_threads = thread_list.GetSize();
866
size_t i;
867
for (i = 0; i < num_threads; ++i) {
868
thread = thread_list.GetThreadAtIndex(i);
869
StopReason thread_stop_reason = thread->GetStopReason();
870
switch (thread_stop_reason) {
871
case eStopReasonInvalid:
872
case eStopReasonNone:
873
break;
874
875
case eStopReasonSignal: {
876
// Don't select a signal thread if we weren't going to stop at
877
// that signal. We have to have had another reason for stopping
878
// here, and the user doesn't want to see this thread.
879
uint64_t signo = thread->GetStopInfo()->GetValue();
880
if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
881
if (!other_thread)
882
other_thread = thread;
883
}
884
break;
885
}
886
case eStopReasonTrace:
887
case eStopReasonBreakpoint:
888
case eStopReasonWatchpoint:
889
case eStopReasonException:
890
case eStopReasonExec:
891
case eStopReasonFork:
892
case eStopReasonVFork:
893
case eStopReasonVForkDone:
894
case eStopReasonThreadExiting:
895
case eStopReasonInstrumentation:
896
case eStopReasonProcessorTrace:
897
if (!other_thread)
898
other_thread = thread;
899
break;
900
case eStopReasonPlanComplete:
901
if (!plan_thread)
902
plan_thread = thread;
903
break;
904
}
905
}
906
if (plan_thread)
907
thread_list.SetSelectedThreadByID(plan_thread->GetID());
908
else if (other_thread)
909
thread_list.SetSelectedThreadByID(other_thread->GetID());
910
else {
911
if (curr_thread && curr_thread->IsValid())
912
thread = curr_thread;
913
else
914
thread = thread_list.GetThreadAtIndex(0);
915
916
if (thread)
917
thread_list.SetSelectedThreadByID(thread->GetID());
918
}
919
}
920
}
921
// Drop the ThreadList mutex by here, since GetThreadStatus below might
922
// have to run code, e.g. for Data formatters, and if we hold the
923
// ThreadList mutex, then the process is going to have a hard time
924
// restarting the process.
925
if (stream) {
926
Debugger &debugger = process_sp->GetTarget().GetDebugger();
927
if (debugger.GetTargetList().GetSelectedTarget().get() ==
928
&process_sp->GetTarget()) {
929
ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
930
931
if (!thread_sp || !thread_sp->IsValid())
932
return false;
933
934
const bool only_threads_with_stop_reason = true;
935
const uint32_t start_frame =
936
thread_sp->GetSelectedFrameIndex(select_most_relevant);
937
const uint32_t num_frames = 1;
938
const uint32_t num_frames_with_source = 1;
939
const bool stop_format = true;
940
941
process_sp->GetStatus(*stream);
942
process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
943
start_frame, num_frames,
944
num_frames_with_source,
945
stop_format);
946
if (curr_thread_stop_info_sp) {
947
lldb::addr_t crashing_address;
948
ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
949
curr_thread_stop_info_sp, &crashing_address);
950
if (valobj_sp) {
951
const ValueObject::GetExpressionPathFormat format =
952
ValueObject::GetExpressionPathFormat::
953
eGetExpressionPathFormatHonorPointers;
954
stream->PutCString("Likely cause: ");
955
valobj_sp->GetExpressionPath(*stream, format);
956
stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
957
}
958
}
959
} else {
960
uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
961
process_sp->GetTarget().shared_from_this());
962
if (target_idx != UINT32_MAX)
963
stream->Printf("Target %d: (", target_idx);
964
else
965
stream->Printf("Target <unknown index>: (");
966
process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
967
stream->Printf(") stopped.\n");
968
}
969
}
970
971
// Pop the process IO handler
972
pop_process_io_handler = true;
973
}
974
break;
975
}
976
977
if (handle_pop && pop_process_io_handler)
978
process_sp->PopProcessIOHandler();
979
980
return true;
981
}
982
983
bool Process::HijackProcessEvents(ListenerSP listener_sp) {
984
if (listener_sp) {
985
return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
986
eBroadcastBitInterrupt);
987
} else
988
return false;
989
}
990
991
void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
992
993
StateType Process::GetStateChangedEvents(EventSP &event_sp,
994
const Timeout<std::micro> &timeout,
995
ListenerSP hijack_listener_sp) {
996
Log *log = GetLog(LLDBLog::Process);
997
LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
998
999
ListenerSP listener_sp = hijack_listener_sp;
1000
if (!listener_sp)
1001
listener_sp = GetPrimaryListener();
1002
1003
StateType state = eStateInvalid;
1004
if (listener_sp->GetEventForBroadcasterWithType(
1005
this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
1006
timeout)) {
1007
if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1008
state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1009
else
1010
LLDB_LOG(log, "got no event or was interrupted.");
1011
}
1012
1013
LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
1014
return state;
1015
}
1016
1017
Event *Process::PeekAtStateChangedEvents() {
1018
Log *log = GetLog(LLDBLog::Process);
1019
1020
LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
1021
1022
Event *event_ptr;
1023
event_ptr = GetPrimaryListener()->PeekAtNextEventForBroadcasterWithType(
1024
this, eBroadcastBitStateChanged);
1025
if (log) {
1026
if (event_ptr) {
1027
LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
1028
StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr)));
1029
} else {
1030
LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
1031
}
1032
}
1033
return event_ptr;
1034
}
1035
1036
StateType
1037
Process::GetStateChangedEventsPrivate(EventSP &event_sp,
1038
const Timeout<std::micro> &timeout) {
1039
Log *log = GetLog(LLDBLog::Process);
1040
LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1041
1042
StateType state = eStateInvalid;
1043
if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
1044
&m_private_state_broadcaster,
1045
eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
1046
timeout))
1047
if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1048
state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1049
1050
LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
1051
state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
1052
return state;
1053
}
1054
1055
bool Process::GetEventsPrivate(EventSP &event_sp,
1056
const Timeout<std::micro> &timeout,
1057
bool control_only) {
1058
Log *log = GetLog(LLDBLog::Process);
1059
LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1060
1061
if (control_only)
1062
return m_private_state_listener_sp->GetEventForBroadcaster(
1063
&m_private_state_control_broadcaster, event_sp, timeout);
1064
else
1065
return m_private_state_listener_sp->GetEvent(event_sp, timeout);
1066
}
1067
1068
bool Process::IsRunning() const {
1069
return StateIsRunningState(m_public_state.GetValue());
1070
}
1071
1072
int Process::GetExitStatus() {
1073
std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1074
1075
if (m_public_state.GetValue() == eStateExited)
1076
return m_exit_status;
1077
return -1;
1078
}
1079
1080
const char *Process::GetExitDescription() {
1081
std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1082
1083
if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
1084
return m_exit_string.c_str();
1085
return nullptr;
1086
}
1087
1088
bool Process::SetExitStatus(int status, llvm::StringRef exit_string) {
1089
// Use a mutex to protect setting the exit status.
1090
std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1091
1092
Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1093
LLDB_LOG(log, "(plugin = {0} status = {1} ({1:x8}), description=\"{2}\")",
1094
GetPluginName(), status, exit_string);
1095
1096
// We were already in the exited state
1097
if (m_private_state.GetValue() == eStateExited) {
1098
LLDB_LOG(
1099
log,
1100
"(plugin = {0}) ignoring exit status because state was already set "
1101
"to eStateExited",
1102
GetPluginName());
1103
return false;
1104
}
1105
1106
m_exit_status = status;
1107
if (!exit_string.empty())
1108
m_exit_string = exit_string.str();
1109
else
1110
m_exit_string.clear();
1111
1112
// Clear the last natural stop ID since it has a strong reference to this
1113
// process
1114
m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
1115
1116
SetPrivateState(eStateExited);
1117
1118
// Allow subclasses to do some cleanup
1119
DidExit();
1120
1121
return true;
1122
}
1123
1124
bool Process::IsAlive() {
1125
switch (m_private_state.GetValue()) {
1126
case eStateConnected:
1127
case eStateAttaching:
1128
case eStateLaunching:
1129
case eStateStopped:
1130
case eStateRunning:
1131
case eStateStepping:
1132
case eStateCrashed:
1133
case eStateSuspended:
1134
return true;
1135
default:
1136
return false;
1137
}
1138
}
1139
1140
// This static callback can be used to watch for local child processes on the
1141
// current host. The child process exits, the process will be found in the
1142
// global target list (we want to be completely sure that the
1143
// lldb_private::Process doesn't go away before we can deliver the signal.
1144
bool Process::SetProcessExitStatus(
1145
lldb::pid_t pid, bool exited,
1146
int signo, // Zero for no signal
1147
int exit_status // Exit value of process if signal is zero
1148
) {
1149
Log *log = GetLog(LLDBLog::Process);
1150
LLDB_LOGF(log,
1151
"Process::SetProcessExitStatus (pid=%" PRIu64
1152
", exited=%i, signal=%i, exit_status=%i)\n",
1153
pid, exited, signo, exit_status);
1154
1155
if (exited) {
1156
TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
1157
if (target_sp) {
1158
ProcessSP process_sp(target_sp->GetProcessSP());
1159
if (process_sp) {
1160
llvm::StringRef signal_str =
1161
process_sp->GetUnixSignals()->GetSignalAsStringRef(signo);
1162
process_sp->SetExitStatus(exit_status, signal_str);
1163
}
1164
}
1165
return true;
1166
}
1167
return false;
1168
}
1169
1170
bool Process::UpdateThreadList(ThreadList &old_thread_list,
1171
ThreadList &new_thread_list) {
1172
m_thread_plans.ClearThreadCache();
1173
return DoUpdateThreadList(old_thread_list, new_thread_list);
1174
}
1175
1176
void Process::UpdateThreadListIfNeeded() {
1177
const uint32_t stop_id = GetStopID();
1178
if (m_thread_list.GetSize(false) == 0 ||
1179
stop_id != m_thread_list.GetStopID()) {
1180
bool clear_unused_threads = true;
1181
const StateType state = GetPrivateState();
1182
if (StateIsStoppedState(state, true)) {
1183
std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
1184
m_thread_list.SetStopID(stop_id);
1185
1186
// m_thread_list does have its own mutex, but we need to hold onto the
1187
// mutex between the call to UpdateThreadList(...) and the
1188
// os->UpdateThreadList(...) so it doesn't change on us
1189
ThreadList &old_thread_list = m_thread_list;
1190
ThreadList real_thread_list(*this);
1191
ThreadList new_thread_list(*this);
1192
// Always update the thread list with the protocol specific thread list,
1193
// but only update if "true" is returned
1194
if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
1195
// Don't call into the OperatingSystem to update the thread list if we
1196
// are shutting down, since that may call back into the SBAPI's,
1197
// requiring the API lock which is already held by whoever is shutting
1198
// us down, causing a deadlock.
1199
OperatingSystem *os = GetOperatingSystem();
1200
if (os && !m_destroy_in_process) {
1201
// Clear any old backing threads where memory threads might have been
1202
// backed by actual threads from the lldb_private::Process subclass
1203
size_t num_old_threads = old_thread_list.GetSize(false);
1204
for (size_t i = 0; i < num_old_threads; ++i)
1205
old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
1206
// See if the OS plugin reports all threads. If it does, then
1207
// it is safe to clear unseen thread's plans here. Otherwise we
1208
// should preserve them in case they show up again:
1209
clear_unused_threads = GetOSPluginReportsAllThreads();
1210
1211
// Turn off dynamic types to ensure we don't run any expressions.
1212
// Objective-C can run an expression to determine if a SBValue is a
1213
// dynamic type or not and we need to avoid this. OperatingSystem
1214
// plug-ins can't run expressions that require running code...
1215
1216
Target &target = GetTarget();
1217
const lldb::DynamicValueType saved_prefer_dynamic =
1218
target.GetPreferDynamicValue();
1219
if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1220
target.SetPreferDynamicValue(lldb::eNoDynamicValues);
1221
1222
// Now let the OperatingSystem plug-in update the thread list
1223
1224
os->UpdateThreadList(
1225
old_thread_list, // Old list full of threads created by OS plug-in
1226
real_thread_list, // The actual thread list full of threads
1227
// created by each lldb_private::Process
1228
// subclass
1229
new_thread_list); // The new thread list that we will show to the
1230
// user that gets filled in
1231
1232
if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1233
target.SetPreferDynamicValue(saved_prefer_dynamic);
1234
} else {
1235
// No OS plug-in, the new thread list is the same as the real thread
1236
// list.
1237
new_thread_list = real_thread_list;
1238
}
1239
1240
m_thread_list_real.Update(real_thread_list);
1241
m_thread_list.Update(new_thread_list);
1242
m_thread_list.SetStopID(stop_id);
1243
1244
if (GetLastNaturalStopID() != m_extended_thread_stop_id) {
1245
// Clear any extended threads that we may have accumulated previously
1246
m_extended_thread_list.Clear();
1247
m_extended_thread_stop_id = GetLastNaturalStopID();
1248
1249
m_queue_list.Clear();
1250
m_queue_list_stop_id = GetLastNaturalStopID();
1251
}
1252
}
1253
// Now update the plan stack map.
1254
// If we do have an OS plugin, any absent real threads in the
1255
// m_thread_list have already been removed from the ThreadPlanStackMap.
1256
// So any remaining threads are OS Plugin threads, and those we want to
1257
// preserve in case they show up again.
1258
m_thread_plans.Update(m_thread_list, clear_unused_threads);
1259
}
1260
}
1261
}
1262
1263
ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) {
1264
return m_thread_plans.Find(tid);
1265
}
1266
1267
bool Process::PruneThreadPlansForTID(lldb::tid_t tid) {
1268
return m_thread_plans.PrunePlansForTID(tid);
1269
}
1270
1271
void Process::PruneThreadPlans() {
1272
m_thread_plans.Update(GetThreadList(), true, false);
1273
}
1274
1275
bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid,
1276
lldb::DescriptionLevel desc_level,
1277
bool internal, bool condense_trivial,
1278
bool skip_unreported_plans) {
1279
return m_thread_plans.DumpPlansForTID(
1280
strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans);
1281
}
1282
void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level,
1283
bool internal, bool condense_trivial,
1284
bool skip_unreported_plans) {
1285
m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial,
1286
skip_unreported_plans);
1287
}
1288
1289
void Process::UpdateQueueListIfNeeded() {
1290
if (m_system_runtime_up) {
1291
if (m_queue_list.GetSize() == 0 ||
1292
m_queue_list_stop_id != GetLastNaturalStopID()) {
1293
const StateType state = GetPrivateState();
1294
if (StateIsStoppedState(state, true)) {
1295
m_system_runtime_up->PopulateQueueList(m_queue_list);
1296
m_queue_list_stop_id = GetLastNaturalStopID();
1297
}
1298
}
1299
}
1300
}
1301
1302
ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) {
1303
OperatingSystem *os = GetOperatingSystem();
1304
if (os)
1305
return os->CreateThread(tid, context);
1306
return ThreadSP();
1307
}
1308
1309
uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) {
1310
return AssignIndexIDToThread(thread_id);
1311
}
1312
1313
bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
1314
return (m_thread_id_to_index_id_map.find(thread_id) !=
1315
m_thread_id_to_index_id_map.end());
1316
}
1317
1318
uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) {
1319
uint32_t result = 0;
1320
std::map<uint64_t, uint32_t>::iterator iterator =
1321
m_thread_id_to_index_id_map.find(thread_id);
1322
if (iterator == m_thread_id_to_index_id_map.end()) {
1323
result = ++m_thread_index_id;
1324
m_thread_id_to_index_id_map[thread_id] = result;
1325
} else {
1326
result = iterator->second;
1327
}
1328
1329
return result;
1330
}
1331
1332
StateType Process::GetState() {
1333
if (CurrentThreadIsPrivateStateThread())
1334
return m_private_state.GetValue();
1335
else
1336
return m_public_state.GetValue();
1337
}
1338
1339
void Process::SetPublicState(StateType new_state, bool restarted) {
1340
const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1341
if (new_state_is_stopped) {
1342
// This will only set the time if the public stop time has no value, so
1343
// it is ok to call this multiple times. With a public stop we can't look
1344
// at the stop ID because many private stops might have happened, so we
1345
// can't check for a stop ID of zero. This allows the "statistics" command
1346
// to dump the time it takes to reach somewhere in your code, like a
1347
// breakpoint you set.
1348
GetTarget().GetStatistics().SetFirstPublicStopTime();
1349
}
1350
1351
Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1352
LLDB_LOGF(log, "(plugin = %s, state = %s, restarted = %i)",
1353
GetPluginName().data(), StateAsCString(new_state), restarted);
1354
const StateType old_state = m_public_state.GetValue();
1355
m_public_state.SetValue(new_state);
1356
1357
// On the transition from Run to Stopped, we unlock the writer end of the run
1358
// lock. The lock gets locked in Resume, which is the public API to tell the
1359
// program to run.
1360
if (!StateChangedIsExternallyHijacked()) {
1361
if (new_state == eStateDetached) {
1362
LLDB_LOGF(log,
1363
"(plugin = %s, state = %s) -- unlocking run lock for detach",
1364
GetPluginName().data(), StateAsCString(new_state));
1365
m_public_run_lock.SetStopped();
1366
} else {
1367
const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1368
if ((old_state_is_stopped != new_state_is_stopped)) {
1369
if (new_state_is_stopped && !restarted) {
1370
LLDB_LOGF(log, "(plugin = %s, state = %s) -- unlocking run lock",
1371
GetPluginName().data(), StateAsCString(new_state));
1372
m_public_run_lock.SetStopped();
1373
}
1374
}
1375
}
1376
}
1377
}
1378
1379
Status Process::Resume() {
1380
Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1381
LLDB_LOGF(log, "(plugin = %s) -- locking run lock", GetPluginName().data());
1382
if (!m_public_run_lock.TrySetRunning()) {
1383
Status error("Resume request failed - process still running.");
1384
LLDB_LOGF(log, "(plugin = %s) -- TrySetRunning failed, not resuming.",
1385
GetPluginName().data());
1386
return error;
1387
}
1388
Status error = PrivateResume();
1389
if (!error.Success()) {
1390
// Undo running state change
1391
m_public_run_lock.SetStopped();
1392
}
1393
return error;
1394
}
1395
1396
Status Process::ResumeSynchronous(Stream *stream) {
1397
Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1398
LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
1399
if (!m_public_run_lock.TrySetRunning()) {
1400
Status error("Resume request failed - process still running.");
1401
LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1402
return error;
1403
}
1404
1405
ListenerSP listener_sp(
1406
Listener::MakeListener(ResumeSynchronousHijackListenerName.data()));
1407
HijackProcessEvents(listener_sp);
1408
1409
Status error = PrivateResume();
1410
if (error.Success()) {
1411
StateType state =
1412
WaitForProcessToStop(std::nullopt, nullptr, true, listener_sp, stream,
1413
true /* use_run_lock */, SelectMostRelevantFrame);
1414
const bool must_be_alive =
1415
false; // eStateExited is ok, so this must be false
1416
if (!StateIsStoppedState(state, must_be_alive))
1417
error.SetErrorStringWithFormat(
1418
"process not in stopped state after synchronous resume: %s",
1419
StateAsCString(state));
1420
} else {
1421
// Undo running state change
1422
m_public_run_lock.SetStopped();
1423
}
1424
1425
// Undo the hijacking of process events...
1426
RestoreProcessEvents();
1427
1428
return error;
1429
}
1430
1431
bool Process::StateChangedIsExternallyHijacked() {
1432
if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1433
llvm::StringRef hijacking_name = GetHijackingListenerName();
1434
if (!hijacking_name.starts_with("lldb.internal"))
1435
return true;
1436
}
1437
return false;
1438
}
1439
1440
bool Process::StateChangedIsHijackedForSynchronousResume() {
1441
if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1442
llvm::StringRef hijacking_name = GetHijackingListenerName();
1443
if (hijacking_name == ResumeSynchronousHijackListenerName)
1444
return true;
1445
}
1446
return false;
1447
}
1448
1449
StateType Process::GetPrivateState() { return m_private_state.GetValue(); }
1450
1451
void Process::SetPrivateState(StateType new_state) {
1452
// Use m_destructing not m_finalizing here. If we are finalizing a process
1453
// that we haven't started tearing down, we'd like to be able to nicely
1454
// detach if asked, but that requires the event system be live. That will
1455
// not be true for an in-the-middle-of-being-destructed Process, since the
1456
// event system relies on Process::shared_from_this, which may have already
1457
// been destroyed.
1458
if (m_destructing)
1459
return;
1460
1461
Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind));
1462
bool state_changed = false;
1463
1464
LLDB_LOGF(log, "(plugin = %s, state = %s)", GetPluginName().data(),
1465
StateAsCString(new_state));
1466
1467
std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
1468
std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
1469
1470
const StateType old_state = m_private_state.GetValueNoLock();
1471
state_changed = old_state != new_state;
1472
1473
const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1474
const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1475
if (old_state_is_stopped != new_state_is_stopped) {
1476
if (new_state_is_stopped)
1477
m_private_run_lock.SetStopped();
1478
else
1479
m_private_run_lock.SetRunning();
1480
}
1481
1482
if (state_changed) {
1483
m_private_state.SetValueNoLock(new_state);
1484
EventSP event_sp(
1485
new Event(eBroadcastBitStateChanged,
1486
new ProcessEventData(shared_from_this(), new_state)));
1487
if (StateIsStoppedState(new_state, false)) {
1488
// Note, this currently assumes that all threads in the list stop when
1489
// the process stops. In the future we will want to support a debugging
1490
// model where some threads continue to run while others are stopped.
1491
// When that happens we will either need a way for the thread list to
1492
// identify which threads are stopping or create a special thread list
1493
// containing only threads which actually stopped.
1494
//
1495
// The process plugin is responsible for managing the actual behavior of
1496
// the threads and should have stopped any threads that are going to stop
1497
// before we get here.
1498
m_thread_list.DidStop();
1499
1500
if (m_mod_id.BumpStopID() == 0)
1501
GetTarget().GetStatistics().SetFirstPrivateStopTime();
1502
1503
if (!m_mod_id.IsLastResumeForUserExpression())
1504
m_mod_id.SetStopEventForLastNaturalStopID(event_sp);
1505
m_memory_cache.Clear();
1506
LLDB_LOGF(log, "(plugin = %s, state = %s, stop_id = %u",
1507
GetPluginName().data(), StateAsCString(new_state),
1508
m_mod_id.GetStopID());
1509
}
1510
1511
m_private_state_broadcaster.BroadcastEvent(event_sp);
1512
} else {
1513
LLDB_LOGF(log, "(plugin = %s, state = %s) state didn't change. Ignoring...",
1514
GetPluginName().data(), StateAsCString(new_state));
1515
}
1516
}
1517
1518
void Process::SetRunningUserExpression(bool on) {
1519
m_mod_id.SetRunningUserExpression(on);
1520
}
1521
1522
void Process::SetRunningUtilityFunction(bool on) {
1523
m_mod_id.SetRunningUtilityFunction(on);
1524
}
1525
1526
addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; }
1527
1528
const lldb::ABISP &Process::GetABI() {
1529
if (!m_abi_sp)
1530
m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1531
return m_abi_sp;
1532
}
1533
1534
std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() {
1535
std::vector<LanguageRuntime *> language_runtimes;
1536
1537
if (m_finalizing)
1538
return language_runtimes;
1539
1540
std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1541
// Before we pass off a copy of the language runtimes, we must make sure that
1542
// our collection is properly populated. It's possible that some of the
1543
// language runtimes were not loaded yet, either because nobody requested it
1544
// yet or the proper condition for loading wasn't yet met (e.g. libc++.so
1545
// hadn't been loaded).
1546
for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
1547
if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
1548
language_runtimes.emplace_back(runtime);
1549
}
1550
1551
return language_runtimes;
1552
}
1553
1554
LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) {
1555
if (m_finalizing)
1556
return nullptr;
1557
1558
LanguageRuntime *runtime = nullptr;
1559
1560
std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1561
LanguageRuntimeCollection::iterator pos;
1562
pos = m_language_runtimes.find(language);
1563
if (pos == m_language_runtimes.end() || !pos->second) {
1564
lldb::LanguageRuntimeSP runtime_sp(
1565
LanguageRuntime::FindPlugin(this, language));
1566
1567
m_language_runtimes[language] = runtime_sp;
1568
runtime = runtime_sp.get();
1569
} else
1570
runtime = pos->second.get();
1571
1572
if (runtime)
1573
// It's possible that a language runtime can support multiple LanguageTypes,
1574
// for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
1575
// eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
1576
// primary language type and make sure that our runtime supports it.
1577
assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
1578
1579
return runtime;
1580
}
1581
1582
bool Process::IsPossibleDynamicValue(ValueObject &in_value) {
1583
if (m_finalizing)
1584
return false;
1585
1586
if (in_value.IsDynamic())
1587
return false;
1588
LanguageType known_type = in_value.GetObjectRuntimeLanguage();
1589
1590
if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
1591
LanguageRuntime *runtime = GetLanguageRuntime(known_type);
1592
return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
1593
}
1594
1595
for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
1596
if (runtime->CouldHaveDynamicValue(in_value))
1597
return true;
1598
}
1599
1600
return false;
1601
}
1602
1603
void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) {
1604
m_dynamic_checkers_up.reset(dynamic_checkers);
1605
}
1606
1607
StopPointSiteList<BreakpointSite> &Process::GetBreakpointSiteList() {
1608
return m_breakpoint_site_list;
1609
}
1610
1611
const StopPointSiteList<BreakpointSite> &
1612
Process::GetBreakpointSiteList() const {
1613
return m_breakpoint_site_list;
1614
}
1615
1616
void Process::DisableAllBreakpointSites() {
1617
m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
1618
// bp_site->SetEnabled(true);
1619
DisableBreakpointSite(bp_site);
1620
});
1621
}
1622
1623
Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) {
1624
Status error(DisableBreakpointSiteByID(break_id));
1625
1626
if (error.Success())
1627
m_breakpoint_site_list.Remove(break_id);
1628
1629
return error;
1630
}
1631
1632
Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) {
1633
Status error;
1634
BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1635
if (bp_site_sp) {
1636
if (bp_site_sp->IsEnabled())
1637
error = DisableBreakpointSite(bp_site_sp.get());
1638
} else {
1639
error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1640
break_id);
1641
}
1642
1643
return error;
1644
}
1645
1646
Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) {
1647
Status error;
1648
BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1649
if (bp_site_sp) {
1650
if (!bp_site_sp->IsEnabled())
1651
error = EnableBreakpointSite(bp_site_sp.get());
1652
} else {
1653
error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1654
break_id);
1655
}
1656
return error;
1657
}
1658
1659
lldb::break_id_t
1660
Process::CreateBreakpointSite(const BreakpointLocationSP &constituent,
1661
bool use_hardware) {
1662
addr_t load_addr = LLDB_INVALID_ADDRESS;
1663
1664
bool show_error = true;
1665
switch (GetState()) {
1666
case eStateInvalid:
1667
case eStateUnloaded:
1668
case eStateConnected:
1669
case eStateAttaching:
1670
case eStateLaunching:
1671
case eStateDetached:
1672
case eStateExited:
1673
show_error = false;
1674
break;
1675
1676
case eStateStopped:
1677
case eStateRunning:
1678
case eStateStepping:
1679
case eStateCrashed:
1680
case eStateSuspended:
1681
show_error = IsAlive();
1682
break;
1683
}
1684
1685
// Reset the IsIndirect flag here, in case the location changes from pointing
1686
// to a indirect symbol to a regular symbol.
1687
constituent->SetIsIndirect(false);
1688
1689
if (constituent->ShouldResolveIndirectFunctions()) {
1690
Symbol *symbol = constituent->GetAddress().CalculateSymbolContextSymbol();
1691
if (symbol && symbol->IsIndirect()) {
1692
Status error;
1693
Address symbol_address = symbol->GetAddress();
1694
load_addr = ResolveIndirectFunction(&symbol_address, error);
1695
if (!error.Success() && show_error) {
1696
GetTarget().GetDebugger().GetErrorStream().Printf(
1697
"warning: failed to resolve indirect function at 0x%" PRIx64
1698
" for breakpoint %i.%i: %s\n",
1699
symbol->GetLoadAddress(&GetTarget()),
1700
constituent->GetBreakpoint().GetID(), constituent->GetID(),
1701
error.AsCString() ? error.AsCString() : "unknown error");
1702
return LLDB_INVALID_BREAK_ID;
1703
}
1704
Address resolved_address(load_addr);
1705
load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
1706
constituent->SetIsIndirect(true);
1707
} else
1708
load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1709
} else
1710
load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1711
1712
if (load_addr != LLDB_INVALID_ADDRESS) {
1713
BreakpointSiteSP bp_site_sp;
1714
1715
// Look up this breakpoint site. If it exists, then add this new
1716
// constituent, otherwise create a new breakpoint site and add it.
1717
1718
bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
1719
1720
if (bp_site_sp) {
1721
bp_site_sp->AddConstituent(constituent);
1722
constituent->SetBreakpointSite(bp_site_sp);
1723
return bp_site_sp->GetID();
1724
} else {
1725
bp_site_sp.reset(
1726
new BreakpointSite(constituent, load_addr, use_hardware));
1727
if (bp_site_sp) {
1728
Status error = EnableBreakpointSite(bp_site_sp.get());
1729
if (error.Success()) {
1730
constituent->SetBreakpointSite(bp_site_sp);
1731
return m_breakpoint_site_list.Add(bp_site_sp);
1732
} else {
1733
if (show_error || use_hardware) {
1734
// Report error for setting breakpoint...
1735
GetTarget().GetDebugger().GetErrorStream().Printf(
1736
"warning: failed to set breakpoint site at 0x%" PRIx64
1737
" for breakpoint %i.%i: %s\n",
1738
load_addr, constituent->GetBreakpoint().GetID(),
1739
constituent->GetID(),
1740
error.AsCString() ? error.AsCString() : "unknown error");
1741
}
1742
}
1743
}
1744
}
1745
}
1746
// We failed to enable the breakpoint
1747
return LLDB_INVALID_BREAK_ID;
1748
}
1749
1750
void Process::RemoveConstituentFromBreakpointSite(
1751
lldb::user_id_t constituent_id, lldb::user_id_t constituent_loc_id,
1752
BreakpointSiteSP &bp_site_sp) {
1753
uint32_t num_constituents =
1754
bp_site_sp->RemoveConstituent(constituent_id, constituent_loc_id);
1755
if (num_constituents == 0) {
1756
// Don't try to disable the site if we don't have a live process anymore.
1757
if (IsAlive())
1758
DisableBreakpointSite(bp_site_sp.get());
1759
m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
1760
}
1761
}
1762
1763
size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size,
1764
uint8_t *buf) const {
1765
size_t bytes_removed = 0;
1766
StopPointSiteList<BreakpointSite> bp_sites_in_range;
1767
1768
if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
1769
bp_sites_in_range)) {
1770
bp_sites_in_range.ForEach([bp_addr, size,
1771
buf](BreakpointSite *bp_site) -> void {
1772
if (bp_site->GetType() == BreakpointSite::eSoftware) {
1773
addr_t intersect_addr;
1774
size_t intersect_size;
1775
size_t opcode_offset;
1776
if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
1777
&intersect_size, &opcode_offset)) {
1778
assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
1779
assert(bp_addr < intersect_addr + intersect_size &&
1780
intersect_addr + intersect_size <= bp_addr + size);
1781
assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
1782
size_t buf_offset = intersect_addr - bp_addr;
1783
::memcpy(buf + buf_offset,
1784
bp_site->GetSavedOpcodeBytes() + opcode_offset,
1785
intersect_size);
1786
}
1787
}
1788
});
1789
}
1790
return bytes_removed;
1791
}
1792
1793
size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) {
1794
PlatformSP platform_sp(GetTarget().GetPlatform());
1795
if (platform_sp)
1796
return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
1797
return 0;
1798
}
1799
1800
Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) {
1801
Status error;
1802
assert(bp_site != nullptr);
1803
Log *log = GetLog(LLDBLog::Breakpoints);
1804
const addr_t bp_addr = bp_site->GetLoadAddress();
1805
LLDB_LOGF(
1806
log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
1807
bp_site->GetID(), (uint64_t)bp_addr);
1808
if (bp_site->IsEnabled()) {
1809
LLDB_LOGF(
1810
log,
1811
"Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1812
" -- already enabled",
1813
bp_site->GetID(), (uint64_t)bp_addr);
1814
return error;
1815
}
1816
1817
if (bp_addr == LLDB_INVALID_ADDRESS) {
1818
error.SetErrorString("BreakpointSite contains an invalid load address.");
1819
return error;
1820
}
1821
// Ask the lldb::Process subclass to fill in the correct software breakpoint
1822
// trap for the breakpoint site
1823
const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
1824
1825
if (bp_opcode_size == 0) {
1826
error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() "
1827
"returned zero, unable to get breakpoint "
1828
"trap for address 0x%" PRIx64,
1829
bp_addr);
1830
} else {
1831
const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
1832
1833
if (bp_opcode_bytes == nullptr) {
1834
error.SetErrorString(
1835
"BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1836
return error;
1837
}
1838
1839
// Save the original opcode by reading it
1840
if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
1841
error) == bp_opcode_size) {
1842
// Write a software breakpoint in place of the original opcode
1843
if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
1844
bp_opcode_size) {
1845
uint8_t verify_bp_opcode_bytes[64];
1846
if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
1847
error) == bp_opcode_size) {
1848
if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
1849
bp_opcode_size) == 0) {
1850
bp_site->SetEnabled(true);
1851
bp_site->SetType(BreakpointSite::eSoftware);
1852
LLDB_LOGF(log,
1853
"Process::EnableSoftwareBreakpoint (site_id = %d) "
1854
"addr = 0x%" PRIx64 " -- SUCCESS",
1855
bp_site->GetID(), (uint64_t)bp_addr);
1856
} else
1857
error.SetErrorString(
1858
"failed to verify the breakpoint trap in memory.");
1859
} else
1860
error.SetErrorString(
1861
"Unable to read memory to verify breakpoint trap.");
1862
} else
1863
error.SetErrorString("Unable to write breakpoint trap to memory.");
1864
} else
1865
error.SetErrorString("Unable to read memory at breakpoint address.");
1866
}
1867
if (log && error.Fail())
1868
LLDB_LOGF(
1869
log,
1870
"Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1871
" -- FAILED: %s",
1872
bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1873
return error;
1874
}
1875
1876
Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) {
1877
Status error;
1878
assert(bp_site != nullptr);
1879
Log *log = GetLog(LLDBLog::Breakpoints);
1880
addr_t bp_addr = bp_site->GetLoadAddress();
1881
lldb::user_id_t breakID = bp_site->GetID();
1882
LLDB_LOGF(log,
1883
"Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1884
") addr = 0x%" PRIx64,
1885
breakID, (uint64_t)bp_addr);
1886
1887
if (bp_site->IsHardware()) {
1888
error.SetErrorString("Breakpoint site is a hardware breakpoint.");
1889
} else if (bp_site->IsEnabled()) {
1890
const size_t break_op_size = bp_site->GetByteSize();
1891
const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
1892
if (break_op_size > 0) {
1893
// Clear a software breakpoint instruction
1894
uint8_t curr_break_op[8];
1895
assert(break_op_size <= sizeof(curr_break_op));
1896
bool break_op_found = false;
1897
1898
// Read the breakpoint opcode
1899
if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
1900
break_op_size) {
1901
bool verify = false;
1902
// Make sure the breakpoint opcode exists at this address
1903
if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
1904
break_op_found = true;
1905
// We found a valid breakpoint opcode at this address, now restore
1906
// the saved opcode.
1907
if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
1908
break_op_size, error) == break_op_size) {
1909
verify = true;
1910
} else
1911
error.SetErrorString(
1912
"Memory write failed when restoring original opcode.");
1913
} else {
1914
error.SetErrorString(
1915
"Original breakpoint trap is no longer in memory.");
1916
// Set verify to true and so we can check if the original opcode has
1917
// already been restored
1918
verify = true;
1919
}
1920
1921
if (verify) {
1922
uint8_t verify_opcode[8];
1923
assert(break_op_size < sizeof(verify_opcode));
1924
// Verify that our original opcode made it back to the inferior
1925
if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
1926
break_op_size) {
1927
// compare the memory we just read with the original opcode
1928
if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
1929
break_op_size) == 0) {
1930
// SUCCESS
1931
bp_site->SetEnabled(false);
1932
LLDB_LOGF(log,
1933
"Process::DisableSoftwareBreakpoint (site_id = %d) "
1934
"addr = 0x%" PRIx64 " -- SUCCESS",
1935
bp_site->GetID(), (uint64_t)bp_addr);
1936
return error;
1937
} else {
1938
if (break_op_found)
1939
error.SetErrorString("Failed to restore original opcode.");
1940
}
1941
} else
1942
error.SetErrorString("Failed to read memory to verify that "
1943
"breakpoint trap was restored.");
1944
}
1945
} else
1946
error.SetErrorString(
1947
"Unable to read memory that should contain the breakpoint trap.");
1948
}
1949
} else {
1950
LLDB_LOGF(
1951
log,
1952
"Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1953
" -- already disabled",
1954
bp_site->GetID(), (uint64_t)bp_addr);
1955
return error;
1956
}
1957
1958
LLDB_LOGF(
1959
log,
1960
"Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1961
" -- FAILED: %s",
1962
bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1963
return error;
1964
}
1965
1966
// Uncomment to verify memory caching works after making changes to caching
1967
// code
1968
//#define VERIFY_MEMORY_READS
1969
1970
size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
1971
if (ABISP abi_sp = GetABI())
1972
addr = abi_sp->FixAnyAddress(addr);
1973
1974
error.Clear();
1975
if (!GetDisableMemoryCache()) {
1976
#if defined(VERIFY_MEMORY_READS)
1977
// Memory caching is enabled, with debug verification
1978
1979
if (buf && size) {
1980
// Uncomment the line below to make sure memory caching is working.
1981
// I ran this through the test suite and got no assertions, so I am
1982
// pretty confident this is working well. If any changes are made to
1983
// memory caching, uncomment the line below and test your changes!
1984
1985
// Verify all memory reads by using the cache first, then redundantly
1986
// reading the same memory from the inferior and comparing to make sure
1987
// everything is exactly the same.
1988
std::string verify_buf(size, '\0');
1989
assert(verify_buf.size() == size);
1990
const size_t cache_bytes_read =
1991
m_memory_cache.Read(this, addr, buf, size, error);
1992
Status verify_error;
1993
const size_t verify_bytes_read =
1994
ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
1995
verify_buf.size(), verify_error);
1996
assert(cache_bytes_read == verify_bytes_read);
1997
assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
1998
assert(verify_error.Success() == error.Success());
1999
return cache_bytes_read;
2000
}
2001
return 0;
2002
#else // !defined(VERIFY_MEMORY_READS)
2003
// Memory caching is enabled, without debug verification
2004
2005
return m_memory_cache.Read(addr, buf, size, error);
2006
#endif // defined (VERIFY_MEMORY_READS)
2007
} else {
2008
// Memory caching is disabled
2009
2010
return ReadMemoryFromInferior(addr, buf, size, error);
2011
}
2012
}
2013
2014
void Process::DoFindInMemory(lldb::addr_t start_addr, lldb::addr_t end_addr,
2015
const uint8_t *buf, size_t size,
2016
AddressRanges &matches, size_t alignment,
2017
size_t max_matches) {
2018
// Inputs are already validated in FindInMemory() functions.
2019
assert(buf != nullptr);
2020
assert(size > 0);
2021
assert(alignment > 0);
2022
assert(max_matches > 0);
2023
assert(start_addr != LLDB_INVALID_ADDRESS);
2024
assert(end_addr != LLDB_INVALID_ADDRESS);
2025
assert(start_addr < end_addr);
2026
2027
lldb::addr_t start = llvm::alignTo(start_addr, alignment);
2028
while (matches.size() < max_matches && (start + size) < end_addr) {
2029
const lldb::addr_t found_addr = FindInMemory(start, end_addr, buf, size);
2030
if (found_addr == LLDB_INVALID_ADDRESS)
2031
break;
2032
2033
if (found_addr % alignment) {
2034
// We need to check the alignment because the FindInMemory uses a special
2035
// algorithm to efficiently search mememory but doesn't support alignment.
2036
start = llvm::alignTo(start + 1, alignment);
2037
continue;
2038
}
2039
2040
matches.emplace_back(found_addr, size);
2041
start = found_addr + alignment;
2042
}
2043
}
2044
2045
AddressRanges Process::FindRangesInMemory(const uint8_t *buf, uint64_t size,
2046
const AddressRanges &ranges,
2047
size_t alignment, size_t max_matches,
2048
Status &error) {
2049
AddressRanges matches;
2050
if (buf == nullptr) {
2051
error.SetErrorString("buffer is null");
2052
return matches;
2053
}
2054
if (size == 0) {
2055
error.SetErrorString("buffer size is zero");
2056
return matches;
2057
}
2058
if (ranges.empty()) {
2059
error.SetErrorString("empty ranges");
2060
return matches;
2061
}
2062
if (alignment == 0) {
2063
error.SetErrorString("alignment must be greater than zero");
2064
return matches;
2065
}
2066
if (max_matches == 0) {
2067
error.SetErrorString("max_matches must be greater than zero");
2068
return matches;
2069
}
2070
2071
int resolved_ranges = 0;
2072
Target &target = GetTarget();
2073
for (size_t i = 0; i < ranges.size(); ++i) {
2074
if (matches.size() >= max_matches)
2075
break;
2076
const AddressRange &range = ranges[i];
2077
if (range.IsValid() == false)
2078
continue;
2079
2080
const lldb::addr_t start_addr =
2081
range.GetBaseAddress().GetLoadAddress(&target);
2082
if (start_addr == LLDB_INVALID_ADDRESS)
2083
continue;
2084
2085
++resolved_ranges;
2086
const lldb::addr_t end_addr = start_addr + range.GetByteSize();
2087
DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment,
2088
max_matches);
2089
}
2090
2091
if (resolved_ranges > 0)
2092
error.Clear();
2093
else
2094
error.SetErrorString("unable to resolve any ranges");
2095
2096
return matches;
2097
}
2098
2099
lldb::addr_t Process::FindInMemory(const uint8_t *buf, uint64_t size,
2100
const AddressRange &range, size_t alignment,
2101
Status &error) {
2102
if (buf == nullptr) {
2103
error.SetErrorString("buffer is null");
2104
return LLDB_INVALID_ADDRESS;
2105
}
2106
if (size == 0) {
2107
error.SetErrorString("buffer size is zero");
2108
return LLDB_INVALID_ADDRESS;
2109
}
2110
if (!range.IsValid()) {
2111
error.SetErrorString("range is invalid");
2112
return LLDB_INVALID_ADDRESS;
2113
}
2114
if (alignment == 0) {
2115
error.SetErrorString("alignment must be greater than zero");
2116
return LLDB_INVALID_ADDRESS;
2117
}
2118
2119
Target &target = GetTarget();
2120
const lldb::addr_t start_addr =
2121
range.GetBaseAddress().GetLoadAddress(&target);
2122
if (start_addr == LLDB_INVALID_ADDRESS) {
2123
error.SetErrorString("range load address is invalid");
2124
return LLDB_INVALID_ADDRESS;
2125
}
2126
const lldb::addr_t end_addr = start_addr + range.GetByteSize();
2127
2128
AddressRanges matches;
2129
DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment, 1);
2130
if (matches.empty())
2131
return LLDB_INVALID_ADDRESS;
2132
2133
error.Clear();
2134
return matches[0].GetBaseAddress().GetLoadAddress(&target);
2135
}
2136
2137
size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
2138
Status &error) {
2139
char buf[256];
2140
out_str.clear();
2141
addr_t curr_addr = addr;
2142
while (true) {
2143
size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
2144
if (length == 0)
2145
break;
2146
out_str.append(buf, length);
2147
// If we got "length - 1" bytes, we didn't get the whole C string, we need
2148
// to read some more characters
2149
if (length == sizeof(buf) - 1)
2150
curr_addr += length;
2151
else
2152
break;
2153
}
2154
return out_str.size();
2155
}
2156
2157
// Deprecated in favor of ReadStringFromMemory which has wchar support and
2158
// correct code to find null terminators.
2159
size_t Process::ReadCStringFromMemory(addr_t addr, char *dst,
2160
size_t dst_max_len,
2161
Status &result_error) {
2162
size_t total_cstr_len = 0;
2163
if (dst && dst_max_len) {
2164
result_error.Clear();
2165
// NULL out everything just to be safe
2166
memset(dst, 0, dst_max_len);
2167
Status error;
2168
addr_t curr_addr = addr;
2169
const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
2170
size_t bytes_left = dst_max_len - 1;
2171
char *curr_dst = dst;
2172
2173
while (bytes_left > 0) {
2174
addr_t cache_line_bytes_left =
2175
cache_line_size - (curr_addr % cache_line_size);
2176
addr_t bytes_to_read =
2177
std::min<addr_t>(bytes_left, cache_line_bytes_left);
2178
size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2179
2180
if (bytes_read == 0) {
2181
result_error = error;
2182
dst[total_cstr_len] = '\0';
2183
break;
2184
}
2185
const size_t len = strlen(curr_dst);
2186
2187
total_cstr_len += len;
2188
2189
if (len < bytes_to_read)
2190
break;
2191
2192
curr_dst += bytes_read;
2193
curr_addr += bytes_read;
2194
bytes_left -= bytes_read;
2195
}
2196
} else {
2197
if (dst == nullptr)
2198
result_error.SetErrorString("invalid arguments");
2199
else
2200
result_error.Clear();
2201
}
2202
return total_cstr_len;
2203
}
2204
2205
size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
2206
Status &error) {
2207
LLDB_SCOPED_TIMER();
2208
2209
if (ABISP abi_sp = GetABI())
2210
addr = abi_sp->FixAnyAddress(addr);
2211
2212
if (buf == nullptr || size == 0)
2213
return 0;
2214
2215
size_t bytes_read = 0;
2216
uint8_t *bytes = (uint8_t *)buf;
2217
2218
while (bytes_read < size) {
2219
const size_t curr_size = size - bytes_read;
2220
const size_t curr_bytes_read =
2221
DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
2222
bytes_read += curr_bytes_read;
2223
if (curr_bytes_read == curr_size || curr_bytes_read == 0)
2224
break;
2225
}
2226
2227
// Replace any software breakpoint opcodes that fall into this range back
2228
// into "buf" before we return
2229
if (bytes_read > 0)
2230
RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
2231
return bytes_read;
2232
}
2233
2234
uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,
2235
size_t integer_byte_size,
2236
uint64_t fail_value,
2237
Status &error) {
2238
Scalar scalar;
2239
if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
2240
error))
2241
return scalar.ULongLong(fail_value);
2242
return fail_value;
2243
}
2244
2245
int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,
2246
size_t integer_byte_size,
2247
int64_t fail_value,
2248
Status &error) {
2249
Scalar scalar;
2250
if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
2251
error))
2252
return scalar.SLongLong(fail_value);
2253
return fail_value;
2254
}
2255
2256
addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) {
2257
Scalar scalar;
2258
if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
2259
error))
2260
return scalar.ULongLong(LLDB_INVALID_ADDRESS);
2261
return LLDB_INVALID_ADDRESS;
2262
}
2263
2264
bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
2265
Status &error) {
2266
Scalar scalar;
2267
const uint32_t addr_byte_size = GetAddressByteSize();
2268
if (addr_byte_size <= 4)
2269
scalar = (uint32_t)ptr_value;
2270
else
2271
scalar = ptr_value;
2272
return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
2273
addr_byte_size;
2274
}
2275
2276
size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
2277
Status &error) {
2278
size_t bytes_written = 0;
2279
const uint8_t *bytes = (const uint8_t *)buf;
2280
2281
while (bytes_written < size) {
2282
const size_t curr_size = size - bytes_written;
2283
const size_t curr_bytes_written = DoWriteMemory(
2284
addr + bytes_written, bytes + bytes_written, curr_size, error);
2285
bytes_written += curr_bytes_written;
2286
if (curr_bytes_written == curr_size || curr_bytes_written == 0)
2287
break;
2288
}
2289
return bytes_written;
2290
}
2291
2292
size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
2293
Status &error) {
2294
if (ABISP abi_sp = GetABI())
2295
addr = abi_sp->FixAnyAddress(addr);
2296
2297
#if defined(ENABLE_MEMORY_CACHING)
2298
m_memory_cache.Flush(addr, size);
2299
#endif
2300
2301
if (buf == nullptr || size == 0)
2302
return 0;
2303
2304
m_mod_id.BumpMemoryID();
2305
2306
// We need to write any data that would go where any current software traps
2307
// (enabled software breakpoints) any software traps (breakpoints) that we
2308
// may have placed in our tasks memory.
2309
2310
StopPointSiteList<BreakpointSite> bp_sites_in_range;
2311
if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
2312
return WriteMemoryPrivate(addr, buf, size, error);
2313
2314
// No breakpoint sites overlap
2315
if (bp_sites_in_range.IsEmpty())
2316
return WriteMemoryPrivate(addr, buf, size, error);
2317
2318
const uint8_t *ubuf = (const uint8_t *)buf;
2319
uint64_t bytes_written = 0;
2320
2321
bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
2322
&error](BreakpointSite *bp) -> void {
2323
if (error.Fail())
2324
return;
2325
2326
if (bp->GetType() != BreakpointSite::eSoftware)
2327
return;
2328
2329
addr_t intersect_addr;
2330
size_t intersect_size;
2331
size_t opcode_offset;
2332
const bool intersects = bp->IntersectsRange(
2333
addr, size, &intersect_addr, &intersect_size, &opcode_offset);
2334
UNUSED_IF_ASSERT_DISABLED(intersects);
2335
assert(intersects);
2336
assert(addr <= intersect_addr && intersect_addr < addr + size);
2337
assert(addr < intersect_addr + intersect_size &&
2338
intersect_addr + intersect_size <= addr + size);
2339
assert(opcode_offset + intersect_size <= bp->GetByteSize());
2340
2341
// Check for bytes before this breakpoint
2342
const addr_t curr_addr = addr + bytes_written;
2343
if (intersect_addr > curr_addr) {
2344
// There are some bytes before this breakpoint that we need to just
2345
// write to memory
2346
size_t curr_size = intersect_addr - curr_addr;
2347
size_t curr_bytes_written =
2348
WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
2349
bytes_written += curr_bytes_written;
2350
if (curr_bytes_written != curr_size) {
2351
// We weren't able to write all of the requested bytes, we are
2352
// done looping and will return the number of bytes that we have
2353
// written so far.
2354
if (error.Success())
2355
error.SetErrorToGenericError();
2356
}
2357
}
2358
// Now write any bytes that would cover up any software breakpoints
2359
// directly into the breakpoint opcode buffer
2360
::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
2361
intersect_size);
2362
bytes_written += intersect_size;
2363
});
2364
2365
// Write any remaining bytes after the last breakpoint if we have any left
2366
if (bytes_written < size)
2367
bytes_written +=
2368
WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
2369
size - bytes_written, error);
2370
2371
return bytes_written;
2372
}
2373
2374
size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
2375
size_t byte_size, Status &error) {
2376
if (byte_size == UINT32_MAX)
2377
byte_size = scalar.GetByteSize();
2378
if (byte_size > 0) {
2379
uint8_t buf[32];
2380
const size_t mem_size =
2381
scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
2382
if (mem_size > 0)
2383
return WriteMemory(addr, buf, mem_size, error);
2384
else
2385
error.SetErrorString("failed to get scalar as memory data");
2386
} else {
2387
error.SetErrorString("invalid scalar value");
2388
}
2389
return 0;
2390
}
2391
2392
size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size,
2393
bool is_signed, Scalar &scalar,
2394
Status &error) {
2395
uint64_t uval = 0;
2396
if (byte_size == 0) {
2397
error.SetErrorString("byte size is zero");
2398
} else if (byte_size & (byte_size - 1)) {
2399
error.SetErrorStringWithFormat("byte size %u is not a power of 2",
2400
byte_size);
2401
} else if (byte_size <= sizeof(uval)) {
2402
const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
2403
if (bytes_read == byte_size) {
2404
DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
2405
GetAddressByteSize());
2406
lldb::offset_t offset = 0;
2407
if (byte_size <= 4)
2408
scalar = data.GetMaxU32(&offset, byte_size);
2409
else
2410
scalar = data.GetMaxU64(&offset, byte_size);
2411
if (is_signed)
2412
scalar.SignExtend(byte_size * 8);
2413
return bytes_read;
2414
}
2415
} else {
2416
error.SetErrorStringWithFormat(
2417
"byte size of %u is too large for integer scalar type", byte_size);
2418
}
2419
return 0;
2420
}
2421
2422
Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
2423
Status error;
2424
for (const auto &Entry : entries) {
2425
WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
2426
error);
2427
if (!error.Success())
2428
break;
2429
}
2430
return error;
2431
}
2432
2433
#define USE_ALLOCATE_MEMORY_CACHE 1
2434
addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
2435
Status &error) {
2436
if (GetPrivateState() != eStateStopped) {
2437
error.SetErrorToGenericError();
2438
return LLDB_INVALID_ADDRESS;
2439
}
2440
2441
#if defined(USE_ALLOCATE_MEMORY_CACHE)
2442
return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
2443
#else
2444
addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
2445
Log *log = GetLog(LLDBLog::Process);
2446
LLDB_LOGF(log,
2447
"Process::AllocateMemory(size=%" PRIu64
2448
", permissions=%s) => 0x%16.16" PRIx64
2449
" (m_stop_id = %u m_memory_id = %u)",
2450
(uint64_t)size, GetPermissionsAsCString(permissions),
2451
(uint64_t)allocated_addr, m_mod_id.GetStopID(),
2452
m_mod_id.GetMemoryID());
2453
return allocated_addr;
2454
#endif
2455
}
2456
2457
addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
2458
Status &error) {
2459
addr_t return_addr = AllocateMemory(size, permissions, error);
2460
if (error.Success()) {
2461
std::string buffer(size, 0);
2462
WriteMemory(return_addr, buffer.c_str(), size, error);
2463
}
2464
return return_addr;
2465
}
2466
2467
bool Process::CanJIT() {
2468
if (m_can_jit == eCanJITDontKnow) {
2469
Log *log = GetLog(LLDBLog::Process);
2470
Status err;
2471
2472
uint64_t allocated_memory = AllocateMemory(
2473
8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
2474
err);
2475
2476
if (err.Success()) {
2477
m_can_jit = eCanJITYes;
2478
LLDB_LOGF(log,
2479
"Process::%s pid %" PRIu64
2480
" allocation test passed, CanJIT () is true",
2481
__FUNCTION__, GetID());
2482
} else {
2483
m_can_jit = eCanJITNo;
2484
LLDB_LOGF(log,
2485
"Process::%s pid %" PRIu64
2486
" allocation test failed, CanJIT () is false: %s",
2487
__FUNCTION__, GetID(), err.AsCString());
2488
}
2489
2490
DeallocateMemory(allocated_memory);
2491
}
2492
2493
return m_can_jit == eCanJITYes;
2494
}
2495
2496
void Process::SetCanJIT(bool can_jit) {
2497
m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
2498
}
2499
2500
void Process::SetCanRunCode(bool can_run_code) {
2501
SetCanJIT(can_run_code);
2502
m_can_interpret_function_calls = can_run_code;
2503
}
2504
2505
Status Process::DeallocateMemory(addr_t ptr) {
2506
Status error;
2507
#if defined(USE_ALLOCATE_MEMORY_CACHE)
2508
if (!m_allocated_memory_cache.DeallocateMemory(ptr)) {
2509
error.SetErrorStringWithFormat(
2510
"deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
2511
}
2512
#else
2513
error = DoDeallocateMemory(ptr);
2514
2515
Log *log = GetLog(LLDBLog::Process);
2516
LLDB_LOGF(log,
2517
"Process::DeallocateMemory(addr=0x%16.16" PRIx64
2518
") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2519
ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
2520
m_mod_id.GetMemoryID());
2521
#endif
2522
return error;
2523
}
2524
2525
bool Process::GetWatchpointReportedAfter() {
2526
if (std::optional<bool> subclass_override = DoGetWatchpointReportedAfter())
2527
return *subclass_override;
2528
2529
bool reported_after = true;
2530
const ArchSpec &arch = GetTarget().GetArchitecture();
2531
if (!arch.IsValid())
2532
return reported_after;
2533
llvm::Triple triple = arch.GetTriple();
2534
2535
if (triple.isMIPS() || triple.isPPC64() || triple.isRISCV() ||
2536
triple.isAArch64() || triple.isArmMClass() || triple.isARM())
2537
reported_after = false;
2538
2539
return reported_after;
2540
}
2541
2542
ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
2543
lldb::addr_t header_addr,
2544
size_t size_to_read) {
2545
Log *log = GetLog(LLDBLog::Host);
2546
if (log) {
2547
LLDB_LOGF(log,
2548
"Process::ReadModuleFromMemory reading %s binary from memory",
2549
file_spec.GetPath().c_str());
2550
}
2551
ModuleSP module_sp(new Module(file_spec, ArchSpec()));
2552
if (module_sp) {
2553
Status error;
2554
std::unique_ptr<Progress> progress_up;
2555
// Reading an ObjectFile from a local corefile is very fast,
2556
// only print a progress update if we're reading from a
2557
// live session which might go over gdb remote serial protocol.
2558
if (IsLiveDebugSession())
2559
progress_up = std::make_unique<Progress>(
2560
"Reading binary from memory", file_spec.GetFilename().GetString());
2561
2562
ObjectFile *objfile = module_sp->GetMemoryObjectFile(
2563
shared_from_this(), header_addr, error, size_to_read);
2564
if (objfile)
2565
return module_sp;
2566
}
2567
return ModuleSP();
2568
}
2569
2570
bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr,
2571
uint32_t &permissions) {
2572
MemoryRegionInfo range_info;
2573
permissions = 0;
2574
Status error(GetMemoryRegionInfo(load_addr, range_info));
2575
if (!error.Success())
2576
return false;
2577
if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
2578
range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
2579
range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
2580
return false;
2581
}
2582
permissions = range_info.GetLLDBPermissions();
2583
return true;
2584
}
2585
2586
Status Process::EnableWatchpoint(WatchpointSP wp_sp, bool notify) {
2587
Status error;
2588
error.SetErrorString("watchpoints are not supported");
2589
return error;
2590
}
2591
2592
Status Process::DisableWatchpoint(WatchpointSP wp_sp, bool notify) {
2593
Status error;
2594
error.SetErrorString("watchpoints are not supported");
2595
return error;
2596
}
2597
2598
StateType
2599
Process::WaitForProcessStopPrivate(EventSP &event_sp,
2600
const Timeout<std::micro> &timeout) {
2601
StateType state;
2602
2603
while (true) {
2604
event_sp.reset();
2605
state = GetStateChangedEventsPrivate(event_sp, timeout);
2606
2607
if (StateIsStoppedState(state, false))
2608
break;
2609
2610
// If state is invalid, then we timed out
2611
if (state == eStateInvalid)
2612
break;
2613
2614
if (event_sp)
2615
HandlePrivateEvent(event_sp);
2616
}
2617
return state;
2618
}
2619
2620
void Process::LoadOperatingSystemPlugin(bool flush) {
2621
std::lock_guard<std::recursive_mutex> guard(m_thread_mutex);
2622
if (flush)
2623
m_thread_list.Clear();
2624
m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
2625
if (flush)
2626
Flush();
2627
}
2628
2629
Status Process::Launch(ProcessLaunchInfo &launch_info) {
2630
StateType state_after_launch = eStateInvalid;
2631
EventSP first_stop_event_sp;
2632
Status status =
2633
LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp);
2634
if (status.Fail())
2635
return status;
2636
2637
if (state_after_launch != eStateStopped &&
2638
state_after_launch != eStateCrashed)
2639
return Status();
2640
2641
// Note, the stop event was consumed above, but not handled. This
2642
// was done to give DidLaunch a chance to run. The target is either
2643
// stopped or crashed. Directly set the state. This is done to
2644
// prevent a stop message with a bunch of spurious output on thread
2645
// status, as well as not pop a ProcessIOHandler.
2646
SetPublicState(state_after_launch, false);
2647
2648
if (PrivateStateThreadIsValid())
2649
ResumePrivateStateThread();
2650
else
2651
StartPrivateStateThread();
2652
2653
// Target was stopped at entry as was intended. Need to notify the
2654
// listeners about it.
2655
if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
2656
HandlePrivateEvent(first_stop_event_sp);
2657
2658
return Status();
2659
}
2660
2661
Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state,
2662
EventSP &event_sp) {
2663
Status error;
2664
m_abi_sp.reset();
2665
m_dyld_up.reset();
2666
m_jit_loaders_up.reset();
2667
m_system_runtime_up.reset();
2668
m_os_up.reset();
2669
2670
{
2671
std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
2672
m_process_input_reader.reset();
2673
}
2674
2675
Module *exe_module = GetTarget().GetExecutableModulePointer();
2676
2677
// The "remote executable path" is hooked up to the local Executable
2678
// module. But we should be able to debug a remote process even if the
2679
// executable module only exists on the remote. However, there needs to
2680
// be a way to express this path, without actually having a module.
2681
// The way to do that is to set the ExecutableFile in the LaunchInfo.
2682
// Figure that out here:
2683
2684
FileSpec exe_spec_to_use;
2685
if (!exe_module) {
2686
if (!launch_info.GetExecutableFile() && !launch_info.IsScriptedProcess()) {
2687
error.SetErrorString("executable module does not exist");
2688
return error;
2689
}
2690
exe_spec_to_use = launch_info.GetExecutableFile();
2691
} else
2692
exe_spec_to_use = exe_module->GetFileSpec();
2693
2694
if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
2695
// Install anything that might need to be installed prior to launching.
2696
// For host systems, this will do nothing, but if we are connected to a
2697
// remote platform it will install any needed binaries
2698
error = GetTarget().Install(&launch_info);
2699
if (error.Fail())
2700
return error;
2701
}
2702
2703
// Listen and queue events that are broadcasted during the process launch.
2704
ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack"));
2705
HijackProcessEvents(listener_sp);
2706
auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); });
2707
2708
if (PrivateStateThreadIsValid())
2709
PausePrivateStateThread();
2710
2711
error = WillLaunch(exe_module);
2712
if (error.Fail()) {
2713
std::string local_exec_file_path = exe_spec_to_use.GetPath();
2714
return Status("file doesn't exist: '%s'", local_exec_file_path.c_str());
2715
}
2716
2717
const bool restarted = false;
2718
SetPublicState(eStateLaunching, restarted);
2719
m_should_detach = false;
2720
2721
if (m_public_run_lock.TrySetRunning()) {
2722
// Now launch using these arguments.
2723
error = DoLaunch(exe_module, launch_info);
2724
} else {
2725
// This shouldn't happen
2726
error.SetErrorString("failed to acquire process run lock");
2727
}
2728
2729
if (error.Fail()) {
2730
if (GetID() != LLDB_INVALID_PROCESS_ID) {
2731
SetID(LLDB_INVALID_PROCESS_ID);
2732
const char *error_string = error.AsCString();
2733
if (error_string == nullptr)
2734
error_string = "launch failed";
2735
SetExitStatus(-1, error_string);
2736
}
2737
return error;
2738
}
2739
2740
// Now wait for the process to launch and return control to us, and then
2741
// call DidLaunch:
2742
state = WaitForProcessStopPrivate(event_sp, seconds(10));
2743
2744
if (state == eStateInvalid || !event_sp) {
2745
// We were able to launch the process, but we failed to catch the
2746
// initial stop.
2747
error.SetErrorString("failed to catch stop after launch");
2748
SetExitStatus(0, error.AsCString());
2749
Destroy(false);
2750
return error;
2751
}
2752
2753
if (state == eStateExited) {
2754
// We exited while trying to launch somehow. Don't call DidLaunch
2755
// as that's not likely to work, and return an invalid pid.
2756
HandlePrivateEvent(event_sp);
2757
return Status();
2758
}
2759
2760
if (state == eStateStopped || state == eStateCrashed) {
2761
DidLaunch();
2762
2763
// Now that we know the process type, update its signal responses from the
2764
// ones stored in the Target:
2765
if (m_unix_signals_sp) {
2766
StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream();
2767
GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm);
2768
}
2769
2770
DynamicLoader *dyld = GetDynamicLoader();
2771
if (dyld)
2772
dyld->DidLaunch();
2773
2774
GetJITLoaders().DidLaunch();
2775
2776
SystemRuntime *system_runtime = GetSystemRuntime();
2777
if (system_runtime)
2778
system_runtime->DidLaunch();
2779
2780
if (!m_os_up)
2781
LoadOperatingSystemPlugin(false);
2782
2783
// We successfully launched the process and stopped, now it the
2784
// right time to set up signal filters before resuming.
2785
UpdateAutomaticSignalFiltering();
2786
return Status();
2787
}
2788
2789
return Status("Unexpected process state after the launch: %s, expected %s, "
2790
"%s, %s or %s",
2791
StateAsCString(state), StateAsCString(eStateInvalid),
2792
StateAsCString(eStateExited), StateAsCString(eStateStopped),
2793
StateAsCString(eStateCrashed));
2794
}
2795
2796
Status Process::LoadCore() {
2797
Status error = DoLoadCore();
2798
if (error.Success()) {
2799
ListenerSP listener_sp(
2800
Listener::MakeListener("lldb.process.load_core_listener"));
2801
HijackProcessEvents(listener_sp);
2802
2803
if (PrivateStateThreadIsValid())
2804
ResumePrivateStateThread();
2805
else
2806
StartPrivateStateThread();
2807
2808
DynamicLoader *dyld = GetDynamicLoader();
2809
if (dyld)
2810
dyld->DidAttach();
2811
2812
GetJITLoaders().DidAttach();
2813
2814
SystemRuntime *system_runtime = GetSystemRuntime();
2815
if (system_runtime)
2816
system_runtime->DidAttach();
2817
2818
if (!m_os_up)
2819
LoadOperatingSystemPlugin(false);
2820
2821
// We successfully loaded a core file, now pretend we stopped so we can
2822
// show all of the threads in the core file and explore the crashed state.
2823
SetPrivateState(eStateStopped);
2824
2825
// Wait for a stopped event since we just posted one above...
2826
lldb::EventSP event_sp;
2827
StateType state =
2828
WaitForProcessToStop(std::nullopt, &event_sp, true, listener_sp,
2829
nullptr, true, SelectMostRelevantFrame);
2830
2831
if (!StateIsStoppedState(state, false)) {
2832
Log *log = GetLog(LLDBLog::Process);
2833
LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s",
2834
StateAsCString(state));
2835
error.SetErrorString(
2836
"Did not get stopped event after loading the core file.");
2837
}
2838
RestoreProcessEvents();
2839
}
2840
return error;
2841
}
2842
2843
DynamicLoader *Process::GetDynamicLoader() {
2844
if (!m_dyld_up)
2845
m_dyld_up.reset(DynamicLoader::FindPlugin(this, ""));
2846
return m_dyld_up.get();
2847
}
2848
2849
void Process::SetDynamicLoader(DynamicLoaderUP dyld_up) {
2850
m_dyld_up = std::move(dyld_up);
2851
}
2852
2853
DataExtractor Process::GetAuxvData() { return DataExtractor(); }
2854
2855
llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) {
2856
return false;
2857
}
2858
2859
JITLoaderList &Process::GetJITLoaders() {
2860
if (!m_jit_loaders_up) {
2861
m_jit_loaders_up = std::make_unique<JITLoaderList>();
2862
JITLoader::LoadPlugins(this, *m_jit_loaders_up);
2863
}
2864
return *m_jit_loaders_up;
2865
}
2866
2867
SystemRuntime *Process::GetSystemRuntime() {
2868
if (!m_system_runtime_up)
2869
m_system_runtime_up.reset(SystemRuntime::FindPlugin(this));
2870
return m_system_runtime_up.get();
2871
}
2872
2873
Process::AttachCompletionHandler::AttachCompletionHandler(Process *process,
2874
uint32_t exec_count)
2875
: NextEventAction(process), m_exec_count(exec_count) {
2876
Log *log = GetLog(LLDBLog::Process);
2877
LLDB_LOGF(
2878
log,
2879
"Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
2880
__FUNCTION__, static_cast<void *>(process), exec_count);
2881
}
2882
2883
Process::NextEventAction::EventActionResult
2884
Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) {
2885
Log *log = GetLog(LLDBLog::Process);
2886
2887
StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
2888
LLDB_LOGF(log,
2889
"Process::AttachCompletionHandler::%s called with state %s (%d)",
2890
__FUNCTION__, StateAsCString(state), static_cast<int>(state));
2891
2892
switch (state) {
2893
case eStateAttaching:
2894
return eEventActionSuccess;
2895
2896
case eStateRunning:
2897
case eStateConnected:
2898
return eEventActionRetry;
2899
2900
case eStateStopped:
2901
case eStateCrashed:
2902
// During attach, prior to sending the eStateStopped event,
2903
// lldb_private::Process subclasses must set the new process ID.
2904
assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID);
2905
// We don't want these events to be reported, so go set the
2906
// ShouldReportStop here:
2907
m_process->GetThreadList().SetShouldReportStop(eVoteNo);
2908
2909
if (m_exec_count > 0) {
2910
--m_exec_count;
2911
2912
LLDB_LOGF(log,
2913
"Process::AttachCompletionHandler::%s state %s: reduced "
2914
"remaining exec count to %" PRIu32 ", requesting resume",
2915
__FUNCTION__, StateAsCString(state), m_exec_count);
2916
2917
RequestResume();
2918
return eEventActionRetry;
2919
} else {
2920
LLDB_LOGF(log,
2921
"Process::AttachCompletionHandler::%s state %s: no more "
2922
"execs expected to start, continuing with attach",
2923
__FUNCTION__, StateAsCString(state));
2924
2925
m_process->CompleteAttach();
2926
return eEventActionSuccess;
2927
}
2928
break;
2929
2930
default:
2931
case eStateExited:
2932
case eStateInvalid:
2933
break;
2934
}
2935
2936
m_exit_string.assign("No valid Process");
2937
return eEventActionExit;
2938
}
2939
2940
Process::NextEventAction::EventActionResult
2941
Process::AttachCompletionHandler::HandleBeingInterrupted() {
2942
return eEventActionSuccess;
2943
}
2944
2945
const char *Process::AttachCompletionHandler::GetExitString() {
2946
return m_exit_string.c_str();
2947
}
2948
2949
ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) {
2950
if (m_listener_sp)
2951
return m_listener_sp;
2952
else
2953
return debugger.GetListener();
2954
}
2955
2956
Status Process::WillLaunch(Module *module) {
2957
return DoWillLaunch(module);
2958
}
2959
2960
Status Process::WillAttachToProcessWithID(lldb::pid_t pid) {
2961
return DoWillAttachToProcessWithID(pid);
2962
}
2963
2964
Status Process::WillAttachToProcessWithName(const char *process_name,
2965
bool wait_for_launch) {
2966
return DoWillAttachToProcessWithName(process_name, wait_for_launch);
2967
}
2968
2969
Status Process::Attach(ProcessAttachInfo &attach_info) {
2970
m_abi_sp.reset();
2971
{
2972
std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
2973
m_process_input_reader.reset();
2974
}
2975
m_dyld_up.reset();
2976
m_jit_loaders_up.reset();
2977
m_system_runtime_up.reset();
2978
m_os_up.reset();
2979
2980
lldb::pid_t attach_pid = attach_info.GetProcessID();
2981
Status error;
2982
if (attach_pid == LLDB_INVALID_PROCESS_ID) {
2983
char process_name[PATH_MAX];
2984
2985
if (attach_info.GetExecutableFile().GetPath(process_name,
2986
sizeof(process_name))) {
2987
const bool wait_for_launch = attach_info.GetWaitForLaunch();
2988
2989
if (wait_for_launch) {
2990
error = WillAttachToProcessWithName(process_name, wait_for_launch);
2991
if (error.Success()) {
2992
if (m_public_run_lock.TrySetRunning()) {
2993
m_should_detach = true;
2994
const bool restarted = false;
2995
SetPublicState(eStateAttaching, restarted);
2996
// Now attach using these arguments.
2997
error = DoAttachToProcessWithName(process_name, attach_info);
2998
} else {
2999
// This shouldn't happen
3000
error.SetErrorString("failed to acquire process run lock");
3001
}
3002
3003
if (error.Fail()) {
3004
if (GetID() != LLDB_INVALID_PROCESS_ID) {
3005
SetID(LLDB_INVALID_PROCESS_ID);
3006
if (error.AsCString() == nullptr)
3007
error.SetErrorString("attach failed");
3008
3009
SetExitStatus(-1, error.AsCString());
3010
}
3011
} else {
3012
SetNextEventAction(new Process::AttachCompletionHandler(
3013
this, attach_info.GetResumeCount()));
3014
StartPrivateStateThread();
3015
}
3016
return error;
3017
}
3018
} else {
3019
ProcessInstanceInfoList process_infos;
3020
PlatformSP platform_sp(GetTarget().GetPlatform());
3021
3022
if (platform_sp) {
3023
ProcessInstanceInfoMatch match_info;
3024
match_info.GetProcessInfo() = attach_info;
3025
match_info.SetNameMatchType(NameMatch::Equals);
3026
platform_sp->FindProcesses(match_info, process_infos);
3027
const uint32_t num_matches = process_infos.size();
3028
if (num_matches == 1) {
3029
attach_pid = process_infos[0].GetProcessID();
3030
// Fall through and attach using the above process ID
3031
} else {
3032
match_info.GetProcessInfo().GetExecutableFile().GetPath(
3033
process_name, sizeof(process_name));
3034
if (num_matches > 1) {
3035
StreamString s;
3036
ProcessInstanceInfo::DumpTableHeader(s, true, false);
3037
for (size_t i = 0; i < num_matches; i++) {
3038
process_infos[i].DumpAsTableRow(
3039
s, platform_sp->GetUserIDResolver(), true, false);
3040
}
3041
error.SetErrorStringWithFormat(
3042
"more than one process named %s:\n%s", process_name,
3043
s.GetData());
3044
} else
3045
error.SetErrorStringWithFormat(
3046
"could not find a process named %s", process_name);
3047
}
3048
} else {
3049
error.SetErrorString(
3050
"invalid platform, can't find processes by name");
3051
return error;
3052
}
3053
}
3054
} else {
3055
error.SetErrorString("invalid process name");
3056
}
3057
}
3058
3059
if (attach_pid != LLDB_INVALID_PROCESS_ID) {
3060
error = WillAttachToProcessWithID(attach_pid);
3061
if (error.Success()) {
3062
3063
if (m_public_run_lock.TrySetRunning()) {
3064
// Now attach using these arguments.
3065
m_should_detach = true;
3066
const bool restarted = false;
3067
SetPublicState(eStateAttaching, restarted);
3068
error = DoAttachToProcessWithID(attach_pid, attach_info);
3069
} else {
3070
// This shouldn't happen
3071
error.SetErrorString("failed to acquire process run lock");
3072
}
3073
3074
if (error.Success()) {
3075
SetNextEventAction(new Process::AttachCompletionHandler(
3076
this, attach_info.GetResumeCount()));
3077
StartPrivateStateThread();
3078
} else {
3079
if (GetID() != LLDB_INVALID_PROCESS_ID)
3080
SetID(LLDB_INVALID_PROCESS_ID);
3081
3082
const char *error_string = error.AsCString();
3083
if (error_string == nullptr)
3084
error_string = "attach failed";
3085
3086
SetExitStatus(-1, error_string);
3087
}
3088
}
3089
}
3090
return error;
3091
}
3092
3093
void Process::CompleteAttach() {
3094
Log *log(GetLog(LLDBLog::Process | LLDBLog::Target));
3095
LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
3096
3097
// Let the process subclass figure out at much as it can about the process
3098
// before we go looking for a dynamic loader plug-in.
3099
ArchSpec process_arch;
3100
DidAttach(process_arch);
3101
3102
if (process_arch.IsValid()) {
3103
LLDB_LOG(log,
3104
"Process::{0} replacing process architecture with DidAttach() "
3105
"architecture: \"{1}\"",
3106
__FUNCTION__, process_arch.GetTriple().getTriple());
3107
GetTarget().SetArchitecture(process_arch);
3108
}
3109
3110
// We just attached. If we have a platform, ask it for the process
3111
// architecture, and if it isn't the same as the one we've already set,
3112
// switch architectures.
3113
PlatformSP platform_sp(GetTarget().GetPlatform());
3114
assert(platform_sp);
3115
ArchSpec process_host_arch = GetSystemArchitecture();
3116
if (platform_sp) {
3117
const ArchSpec &target_arch = GetTarget().GetArchitecture();
3118
if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture(
3119
target_arch, process_host_arch,
3120
ArchSpec::CompatibleMatch, nullptr)) {
3121
ArchSpec platform_arch;
3122
platform_sp = GetTarget().GetDebugger().GetPlatformList().GetOrCreate(
3123
target_arch, process_host_arch, &platform_arch);
3124
if (platform_sp) {
3125
GetTarget().SetPlatform(platform_sp);
3126
GetTarget().SetArchitecture(platform_arch);
3127
LLDB_LOG(log,
3128
"switching platform to {0} and architecture to {1} based on "
3129
"info from attach",
3130
platform_sp->GetName(), platform_arch.GetTriple().getTriple());
3131
}
3132
} else if (!process_arch.IsValid()) {
3133
ProcessInstanceInfo process_info;
3134
GetProcessInfo(process_info);
3135
const ArchSpec &process_arch = process_info.GetArchitecture();
3136
const ArchSpec &target_arch = GetTarget().GetArchitecture();
3137
if (process_arch.IsValid() &&
3138
target_arch.IsCompatibleMatch(process_arch) &&
3139
!target_arch.IsExactMatch(process_arch)) {
3140
GetTarget().SetArchitecture(process_arch);
3141
LLDB_LOGF(log,
3142
"Process::%s switching architecture to %s based on info "
3143
"the platform retrieved for pid %" PRIu64,
3144
__FUNCTION__, process_arch.GetTriple().getTriple().c_str(),
3145
GetID());
3146
}
3147
}
3148
}
3149
// Now that we know the process type, update its signal responses from the
3150
// ones stored in the Target:
3151
if (m_unix_signals_sp) {
3152
StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream();
3153
GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm);
3154
}
3155
3156
// We have completed the attach, now it is time to find the dynamic loader
3157
// plug-in
3158
DynamicLoader *dyld = GetDynamicLoader();
3159
if (dyld) {
3160
dyld->DidAttach();
3161
if (log) {
3162
ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3163
LLDB_LOG(log,
3164
"after DynamicLoader::DidAttach(), target "
3165
"executable is {0} (using {1} plugin)",
3166
exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
3167
dyld->GetPluginName());
3168
}
3169
}
3170
3171
GetJITLoaders().DidAttach();
3172
3173
SystemRuntime *system_runtime = GetSystemRuntime();
3174
if (system_runtime) {
3175
system_runtime->DidAttach();
3176
if (log) {
3177
ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3178
LLDB_LOG(log,
3179
"after SystemRuntime::DidAttach(), target "
3180
"executable is {0} (using {1} plugin)",
3181
exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
3182
system_runtime->GetPluginName());
3183
}
3184
}
3185
3186
if (!m_os_up) {
3187
LoadOperatingSystemPlugin(false);
3188
if (m_os_up) {
3189
// Somebody might have gotten threads before now, but we need to force the
3190
// update after we've loaded the OperatingSystem plugin or it won't get a
3191
// chance to process the threads.
3192
m_thread_list.Clear();
3193
UpdateThreadListIfNeeded();
3194
}
3195
}
3196
// Figure out which one is the executable, and set that in our target:
3197
ModuleSP new_executable_module_sp;
3198
for (ModuleSP module_sp : GetTarget().GetImages().Modules()) {
3199
if (module_sp && module_sp->IsExecutable()) {
3200
if (GetTarget().GetExecutableModulePointer() != module_sp.get())
3201
new_executable_module_sp = module_sp;
3202
break;
3203
}
3204
}
3205
if (new_executable_module_sp) {
3206
GetTarget().SetExecutableModule(new_executable_module_sp,
3207
eLoadDependentsNo);
3208
if (log) {
3209
ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3210
LLDB_LOGF(
3211
log,
3212
"Process::%s after looping through modules, target executable is %s",
3213
__FUNCTION__,
3214
exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
3215
: "<none>");
3216
}
3217
}
3218
}
3219
3220
Status Process::ConnectRemote(llvm::StringRef remote_url) {
3221
m_abi_sp.reset();
3222
{
3223
std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
3224
m_process_input_reader.reset();
3225
}
3226
3227
// Find the process and its architecture. Make sure it matches the
3228
// architecture of the current Target, and if not adjust it.
3229
3230
Status error(DoConnectRemote(remote_url));
3231
if (error.Success()) {
3232
if (GetID() != LLDB_INVALID_PROCESS_ID) {
3233
EventSP event_sp;
3234
StateType state = WaitForProcessStopPrivate(event_sp, std::nullopt);
3235
3236
if (state == eStateStopped || state == eStateCrashed) {
3237
// If we attached and actually have a process on the other end, then
3238
// this ended up being the equivalent of an attach.
3239
CompleteAttach();
3240
3241
// This delays passing the stopped event to listeners till
3242
// CompleteAttach gets a chance to complete...
3243
HandlePrivateEvent(event_sp);
3244
}
3245
}
3246
3247
if (PrivateStateThreadIsValid())
3248
ResumePrivateStateThread();
3249
else
3250
StartPrivateStateThread();
3251
}
3252
return error;
3253
}
3254
3255
Status Process::PrivateResume() {
3256
Log *log(GetLog(LLDBLog::Process | LLDBLog::Step));
3257
LLDB_LOGF(log,
3258
"Process::PrivateResume() m_stop_id = %u, public state: %s "
3259
"private state: %s",
3260
m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()),
3261
StateAsCString(m_private_state.GetValue()));
3262
3263
// If signals handing status changed we might want to update our signal
3264
// filters before resuming.
3265
UpdateAutomaticSignalFiltering();
3266
3267
Status error(WillResume());
3268
// Tell the process it is about to resume before the thread list
3269
if (error.Success()) {
3270
// Now let the thread list know we are about to resume so it can let all of
3271
// our threads know that they are about to be resumed. Threads will each be
3272
// called with Thread::WillResume(StateType) where StateType contains the
3273
// state that they are supposed to have when the process is resumed
3274
// (suspended/running/stepping). Threads should also check their resume
3275
// signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
3276
// start back up with a signal.
3277
if (m_thread_list.WillResume()) {
3278
// Last thing, do the PreResumeActions.
3279
if (!RunPreResumeActions()) {
3280
error.SetErrorString(
3281
"Process::PrivateResume PreResumeActions failed, not resuming.");
3282
} else {
3283
m_mod_id.BumpResumeID();
3284
error = DoResume();
3285
if (error.Success()) {
3286
DidResume();
3287
m_thread_list.DidResume();
3288
LLDB_LOGF(log, "Process thinks the process has resumed.");
3289
} else {
3290
LLDB_LOGF(log, "Process::PrivateResume() DoResume failed.");
3291
return error;
3292
}
3293
}
3294
} else {
3295
// Somebody wanted to run without running (e.g. we were faking a step
3296
// from one frame of a set of inlined frames that share the same PC to
3297
// another.) So generate a continue & a stopped event, and let the world
3298
// handle them.
3299
LLDB_LOGF(log,
3300
"Process::PrivateResume() asked to simulate a start & stop.");
3301
3302
SetPrivateState(eStateRunning);
3303
SetPrivateState(eStateStopped);
3304
}
3305
} else
3306
LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".",
3307
error.AsCString("<unknown error>"));
3308
return error;
3309
}
3310
3311
Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
3312
if (!StateIsRunningState(m_public_state.GetValue()))
3313
return Status("Process is not running.");
3314
3315
// Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3316
// case it was already set and some thread plan logic calls halt on its own.
3317
m_clear_thread_plans_on_stop |= clear_thread_plans;
3318
3319
ListenerSP halt_listener_sp(
3320
Listener::MakeListener("lldb.process.halt_listener"));
3321
HijackProcessEvents(halt_listener_sp);
3322
3323
EventSP event_sp;
3324
3325
SendAsyncInterrupt();
3326
3327
if (m_public_state.GetValue() == eStateAttaching) {
3328
// Don't hijack and eat the eStateExited as the code that was doing the
3329
// attach will be waiting for this event...
3330
RestoreProcessEvents();
3331
Destroy(false);
3332
SetExitStatus(SIGKILL, "Cancelled async attach.");
3333
return Status();
3334
}
3335
3336
// Wait for the process halt timeout seconds for the process to stop.
3337
// If we are going to use the run lock, that means we're stopping out to the
3338
// user, so we should also select the most relevant frame.
3339
SelectMostRelevant select_most_relevant =
3340
use_run_lock ? SelectMostRelevantFrame : DoNoSelectMostRelevantFrame;
3341
StateType state = WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true,
3342
halt_listener_sp, nullptr,
3343
use_run_lock, select_most_relevant);
3344
RestoreProcessEvents();
3345
3346
if (state == eStateInvalid || !event_sp) {
3347
// We timed out and didn't get a stop event...
3348
return Status("Halt timed out. State = %s", StateAsCString(GetState()));
3349
}
3350
3351
BroadcastEvent(event_sp);
3352
3353
return Status();
3354
}
3355
3356
lldb::addr_t Process::FindInMemory(lldb::addr_t low, lldb::addr_t high,
3357
const uint8_t *buf, size_t size) {
3358
const size_t region_size = high - low;
3359
3360
if (region_size < size)
3361
return LLDB_INVALID_ADDRESS;
3362
3363
std::vector<size_t> bad_char_heuristic(256, size);
3364
ProcessMemoryIterator iterator(*this, low);
3365
3366
for (size_t idx = 0; idx < size - 1; idx++) {
3367
decltype(bad_char_heuristic)::size_type bcu_idx = buf[idx];
3368
bad_char_heuristic[bcu_idx] = size - idx - 1;
3369
}
3370
for (size_t s = 0; s <= (region_size - size);) {
3371
int64_t j = size - 1;
3372
while (j >= 0 && buf[j] == iterator[s + j])
3373
j--;
3374
if (j < 0)
3375
return low + s;
3376
else
3377
s += bad_char_heuristic[iterator[s + size - 1]];
3378
}
3379
3380
return LLDB_INVALID_ADDRESS;
3381
}
3382
3383
Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) {
3384
Status error;
3385
3386
// Check both the public & private states here. If we're hung evaluating an
3387
// expression, for instance, then the public state will be stopped, but we
3388
// still need to interrupt.
3389
if (m_public_state.GetValue() == eStateRunning ||
3390
m_private_state.GetValue() == eStateRunning) {
3391
Log *log = GetLog(LLDBLog::Process);
3392
LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__);
3393
3394
ListenerSP listener_sp(
3395
Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3396
HijackProcessEvents(listener_sp);
3397
3398
SendAsyncInterrupt();
3399
3400
// Consume the interrupt event.
3401
StateType state = WaitForProcessToStop(GetInterruptTimeout(),
3402
&exit_event_sp, true, listener_sp);
3403
3404
RestoreProcessEvents();
3405
3406
// If the process exited while we were waiting for it to stop, put the
3407
// exited event into the shared pointer passed in and return. Our caller
3408
// doesn't need to do anything else, since they don't have a process
3409
// anymore...
3410
3411
if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
3412
LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.",
3413
__FUNCTION__);
3414
return error;
3415
} else
3416
exit_event_sp.reset(); // It is ok to consume any non-exit stop events
3417
3418
if (state != eStateStopped) {
3419
LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__,
3420
StateAsCString(state));
3421
// If we really couldn't stop the process then we should just error out
3422
// here, but if the lower levels just bobbled sending the event and we
3423
// really are stopped, then continue on.
3424
StateType private_state = m_private_state.GetValue();
3425
if (private_state != eStateStopped) {
3426
return Status(
3427
"Attempt to stop the target in order to detach timed out. "
3428
"State = %s",
3429
StateAsCString(GetState()));
3430
}
3431
}
3432
}
3433
return error;
3434
}
3435
3436
Status Process::Detach(bool keep_stopped) {
3437
EventSP exit_event_sp;
3438
Status error;
3439
m_destroy_in_process = true;
3440
3441
error = WillDetach();
3442
3443
if (error.Success()) {
3444
if (DetachRequiresHalt()) {
3445
error = StopForDestroyOrDetach(exit_event_sp);
3446
if (!error.Success()) {
3447
m_destroy_in_process = false;
3448
return error;
3449
} else if (exit_event_sp) {
3450
// We shouldn't need to do anything else here. There's no process left
3451
// to detach from...
3452
StopPrivateStateThread();
3453
m_destroy_in_process = false;
3454
return error;
3455
}
3456
}
3457
3458
m_thread_list.DiscardThreadPlans();
3459
DisableAllBreakpointSites();
3460
3461
error = DoDetach(keep_stopped);
3462
if (error.Success()) {
3463
DidDetach();
3464
StopPrivateStateThread();
3465
} else {
3466
return error;
3467
}
3468
}
3469
m_destroy_in_process = false;
3470
3471
// If we exited when we were waiting for a process to stop, then forward the
3472
// event here so we don't lose the event
3473
if (exit_event_sp) {
3474
// Directly broadcast our exited event because we shut down our private
3475
// state thread above
3476
BroadcastEvent(exit_event_sp);
3477
}
3478
3479
// If we have been interrupted (to kill us) in the middle of running, we may
3480
// not end up propagating the last events through the event system, in which
3481
// case we might strand the write lock. Unlock it here so when we do to tear
3482
// down the process we don't get an error destroying the lock.
3483
3484
m_public_run_lock.SetStopped();
3485
return error;
3486
}
3487
3488
Status Process::Destroy(bool force_kill) {
3489
// If we've already called Process::Finalize then there's nothing useful to
3490
// be done here. Finalize has actually called Destroy already.
3491
if (m_finalizing)
3492
return {};
3493
return DestroyImpl(force_kill);
3494
}
3495
3496
Status Process::DestroyImpl(bool force_kill) {
3497
// Tell ourselves we are in the process of destroying the process, so that we
3498
// don't do any unnecessary work that might hinder the destruction. Remember
3499
// to set this back to false when we are done. That way if the attempt
3500
// failed and the process stays around for some reason it won't be in a
3501
// confused state.
3502
3503
if (force_kill)
3504
m_should_detach = false;
3505
3506
if (GetShouldDetach()) {
3507
// FIXME: This will have to be a process setting:
3508
bool keep_stopped = false;
3509
Detach(keep_stopped);
3510
}
3511
3512
m_destroy_in_process = true;
3513
3514
Status error(WillDestroy());
3515
if (error.Success()) {
3516
EventSP exit_event_sp;
3517
if (DestroyRequiresHalt()) {
3518
error = StopForDestroyOrDetach(exit_event_sp);
3519
}
3520
3521
if (m_public_state.GetValue() == eStateStopped) {
3522
// Ditch all thread plans, and remove all our breakpoints: in case we
3523
// have to restart the target to kill it, we don't want it hitting a
3524
// breakpoint... Only do this if we've stopped, however, since if we
3525
// didn't manage to halt it above, then we're not going to have much luck
3526
// doing this now.
3527
m_thread_list.DiscardThreadPlans();
3528
DisableAllBreakpointSites();
3529
}
3530
3531
error = DoDestroy();
3532
if (error.Success()) {
3533
DidDestroy();
3534
StopPrivateStateThread();
3535
}
3536
m_stdio_communication.StopReadThread();
3537
m_stdio_communication.Disconnect();
3538
m_stdin_forward = false;
3539
3540
{
3541
std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
3542
if (m_process_input_reader) {
3543
m_process_input_reader->SetIsDone(true);
3544
m_process_input_reader->Cancel();
3545
m_process_input_reader.reset();
3546
}
3547
}
3548
3549
// If we exited when we were waiting for a process to stop, then forward
3550
// the event here so we don't lose the event
3551
if (exit_event_sp) {
3552
// Directly broadcast our exited event because we shut down our private
3553
// state thread above
3554
BroadcastEvent(exit_event_sp);
3555
}
3556
3557
// If we have been interrupted (to kill us) in the middle of running, we
3558
// may not end up propagating the last events through the event system, in
3559
// which case we might strand the write lock. Unlock it here so when we do
3560
// to tear down the process we don't get an error destroying the lock.
3561
m_public_run_lock.SetStopped();
3562
}
3563
3564
m_destroy_in_process = false;
3565
3566
return error;
3567
}
3568
3569
Status Process::Signal(int signal) {
3570
Status error(WillSignal());
3571
if (error.Success()) {
3572
error = DoSignal(signal);
3573
if (error.Success())
3574
DidSignal();
3575
}
3576
return error;
3577
}
3578
3579
void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) {
3580
assert(signals_sp && "null signals_sp");
3581
m_unix_signals_sp = std::move(signals_sp);
3582
}
3583
3584
const lldb::UnixSignalsSP &Process::GetUnixSignals() {
3585
assert(m_unix_signals_sp && "null m_unix_signals_sp");
3586
return m_unix_signals_sp;
3587
}
3588
3589
lldb::ByteOrder Process::GetByteOrder() const {
3590
return GetTarget().GetArchitecture().GetByteOrder();
3591
}
3592
3593
uint32_t Process::GetAddressByteSize() const {
3594
return GetTarget().GetArchitecture().GetAddressByteSize();
3595
}
3596
3597
bool Process::ShouldBroadcastEvent(Event *event_ptr) {
3598
const StateType state =
3599
Process::ProcessEventData::GetStateFromEvent(event_ptr);
3600
bool return_value = true;
3601
Log *log(GetLog(LLDBLog::Events | LLDBLog::Process));
3602
3603
switch (state) {
3604
case eStateDetached:
3605
case eStateExited:
3606
case eStateUnloaded:
3607
m_stdio_communication.SynchronizeWithReadThread();
3608
m_stdio_communication.StopReadThread();
3609
m_stdio_communication.Disconnect();
3610
m_stdin_forward = false;
3611
3612
[[fallthrough]];
3613
case eStateConnected:
3614
case eStateAttaching:
3615
case eStateLaunching:
3616
// These events indicate changes in the state of the debugging session,
3617
// always report them.
3618
return_value = true;
3619
break;
3620
case eStateInvalid:
3621
// We stopped for no apparent reason, don't report it.
3622
return_value = false;
3623
break;
3624
case eStateRunning:
3625
case eStateStepping:
3626
// If we've started the target running, we handle the cases where we are
3627
// already running and where there is a transition from stopped to running
3628
// differently. running -> running: Automatically suppress extra running
3629
// events stopped -> running: Report except when there is one or more no
3630
// votes
3631
// and no yes votes.
3632
SynchronouslyNotifyStateChanged(state);
3633
if (m_force_next_event_delivery)
3634
return_value = true;
3635
else {
3636
switch (m_last_broadcast_state) {
3637
case eStateRunning:
3638
case eStateStepping:
3639
// We always suppress multiple runnings with no PUBLIC stop in between.
3640
return_value = false;
3641
break;
3642
default:
3643
// TODO: make this work correctly. For now always report
3644
// run if we aren't running so we don't miss any running events. If I
3645
// run the lldb/test/thread/a.out file and break at main.cpp:58, run
3646
// and hit the breakpoints on multiple threads, then somehow during the
3647
// stepping over of all breakpoints no run gets reported.
3648
3649
// This is a transition from stop to run.
3650
switch (m_thread_list.ShouldReportRun(event_ptr)) {
3651
case eVoteYes:
3652
case eVoteNoOpinion:
3653
return_value = true;
3654
break;
3655
case eVoteNo:
3656
return_value = false;
3657
break;
3658
}
3659
break;
3660
}
3661
}
3662
break;
3663
case eStateStopped:
3664
case eStateCrashed:
3665
case eStateSuspended:
3666
// We've stopped. First see if we're going to restart the target. If we
3667
// are going to stop, then we always broadcast the event. If we aren't
3668
// going to stop, let the thread plans decide if we're going to report this
3669
// event. If no thread has an opinion, we don't report it.
3670
3671
m_stdio_communication.SynchronizeWithReadThread();
3672
RefreshStateAfterStop();
3673
if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) {
3674
LLDB_LOGF(log,
3675
"Process::ShouldBroadcastEvent (%p) stopped due to an "
3676
"interrupt, state: %s",
3677
static_cast<void *>(event_ptr), StateAsCString(state));
3678
// Even though we know we are going to stop, we should let the threads
3679
// have a look at the stop, so they can properly set their state.
3680
m_thread_list.ShouldStop(event_ptr);
3681
return_value = true;
3682
} else {
3683
bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
3684
bool should_resume = false;
3685
3686
// It makes no sense to ask "ShouldStop" if we've already been
3687
// restarted... Asking the thread list is also not likely to go well,
3688
// since we are running again. So in that case just report the event.
3689
3690
if (!was_restarted)
3691
should_resume = !m_thread_list.ShouldStop(event_ptr);
3692
3693
if (was_restarted || should_resume || m_resume_requested) {
3694
Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr);
3695
LLDB_LOGF(log,
3696
"Process::ShouldBroadcastEvent: should_resume: %i state: "
3697
"%s was_restarted: %i report_stop_vote: %d.",
3698
should_resume, StateAsCString(state), was_restarted,
3699
report_stop_vote);
3700
3701
switch (report_stop_vote) {
3702
case eVoteYes:
3703
return_value = true;
3704
break;
3705
case eVoteNoOpinion:
3706
case eVoteNo:
3707
return_value = false;
3708
break;
3709
}
3710
3711
if (!was_restarted) {
3712
LLDB_LOGF(log,
3713
"Process::ShouldBroadcastEvent (%p) Restarting process "
3714
"from state: %s",
3715
static_cast<void *>(event_ptr), StateAsCString(state));
3716
ProcessEventData::SetRestartedInEvent(event_ptr, true);
3717
PrivateResume();
3718
}
3719
} else {
3720
return_value = true;
3721
SynchronouslyNotifyStateChanged(state);
3722
}
3723
}
3724
break;
3725
}
3726
3727
// Forcing the next event delivery is a one shot deal. So reset it here.
3728
m_force_next_event_delivery = false;
3729
3730
// We do some coalescing of events (for instance two consecutive running
3731
// events get coalesced.) But we only coalesce against events we actually
3732
// broadcast. So we use m_last_broadcast_state to track that. NB - you
3733
// can't use "m_public_state.GetValue()" for that purpose, as was originally
3734
// done, because the PublicState reflects the last event pulled off the
3735
// queue, and there may be several events stacked up on the queue unserviced.
3736
// So the PublicState may not reflect the last broadcasted event yet.
3737
// m_last_broadcast_state gets updated here.
3738
3739
if (return_value)
3740
m_last_broadcast_state = state;
3741
3742
LLDB_LOGF(log,
3743
"Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3744
"broadcast state: %s - %s",
3745
static_cast<void *>(event_ptr), StateAsCString(state),
3746
StateAsCString(m_last_broadcast_state),
3747
return_value ? "YES" : "NO");
3748
return return_value;
3749
}
3750
3751
bool Process::StartPrivateStateThread(bool is_secondary_thread) {
3752
Log *log = GetLog(LLDBLog::Events);
3753
3754
bool already_running = PrivateStateThreadIsValid();
3755
LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__,
3756
already_running ? " already running"
3757
: " starting private state thread");
3758
3759
if (!is_secondary_thread && already_running)
3760
return true;
3761
3762
// Create a thread that watches our internal state and controls which events
3763
// make it to clients (into the DCProcess event queue).
3764
char thread_name[1024];
3765
uint32_t max_len = llvm::get_max_thread_name_length();
3766
if (max_len > 0 && max_len <= 30) {
3767
// On platforms with abbreviated thread name lengths, choose thread names
3768
// that fit within the limit.
3769
if (already_running)
3770
snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
3771
else
3772
snprintf(thread_name, sizeof(thread_name), "intern-state");
3773
} else {
3774
if (already_running)
3775
snprintf(thread_name, sizeof(thread_name),
3776
"<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
3777
GetID());
3778
else
3779
snprintf(thread_name, sizeof(thread_name),
3780
"<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
3781
}
3782
3783
llvm::Expected<HostThread> private_state_thread =
3784
ThreadLauncher::LaunchThread(
3785
thread_name,
3786
[this, is_secondary_thread] {
3787
return RunPrivateStateThread(is_secondary_thread);
3788
},
3789
8 * 1024 * 1024);
3790
if (!private_state_thread) {
3791
LLDB_LOG_ERROR(GetLog(LLDBLog::Host), private_state_thread.takeError(),
3792
"failed to launch host thread: {0}");
3793
return false;
3794
}
3795
3796
assert(private_state_thread->IsJoinable());
3797
m_private_state_thread = *private_state_thread;
3798
ResumePrivateStateThread();
3799
return true;
3800
}
3801
3802
void Process::PausePrivateStateThread() {
3803
ControlPrivateStateThread(eBroadcastInternalStateControlPause);
3804
}
3805
3806
void Process::ResumePrivateStateThread() {
3807
ControlPrivateStateThread(eBroadcastInternalStateControlResume);
3808
}
3809
3810
void Process::StopPrivateStateThread() {
3811
if (m_private_state_thread.IsJoinable())
3812
ControlPrivateStateThread(eBroadcastInternalStateControlStop);
3813
else {
3814
Log *log = GetLog(LLDBLog::Process);
3815
LLDB_LOGF(
3816
log,
3817
"Went to stop the private state thread, but it was already invalid.");
3818
}
3819
}
3820
3821
void Process::ControlPrivateStateThread(uint32_t signal) {
3822
Log *log = GetLog(LLDBLog::Process);
3823
3824
assert(signal == eBroadcastInternalStateControlStop ||
3825
signal == eBroadcastInternalStateControlPause ||
3826
signal == eBroadcastInternalStateControlResume);
3827
3828
LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal);
3829
3830
// Signal the private state thread
3831
if (m_private_state_thread.IsJoinable()) {
3832
// Broadcast the event.
3833
// It is important to do this outside of the if below, because it's
3834
// possible that the thread state is invalid but that the thread is waiting
3835
// on a control event instead of simply being on its way out (this should
3836
// not happen, but it apparently can).
3837
LLDB_LOGF(log, "Sending control event of type: %d.", signal);
3838
std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
3839
m_private_state_control_broadcaster.BroadcastEvent(signal,
3840
event_receipt_sp);
3841
3842
// Wait for the event receipt or for the private state thread to exit
3843
bool receipt_received = false;
3844
if (PrivateStateThreadIsValid()) {
3845
while (!receipt_received) {
3846
// Check for a receipt for n seconds and then check if the private
3847
// state thread is still around.
3848
receipt_received =
3849
event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
3850
if (!receipt_received) {
3851
// Check if the private state thread is still around. If it isn't
3852
// then we are done waiting
3853
if (!PrivateStateThreadIsValid())
3854
break; // Private state thread exited or is exiting, we are done
3855
}
3856
}
3857
}
3858
3859
if (signal == eBroadcastInternalStateControlStop) {
3860
thread_result_t result = {};
3861
m_private_state_thread.Join(&result);
3862
m_private_state_thread.Reset();
3863
}
3864
} else {
3865
LLDB_LOGF(
3866
log,
3867
"Private state thread already dead, no need to signal it to stop.");
3868
}
3869
}
3870
3871
void Process::SendAsyncInterrupt() {
3872
if (PrivateStateThreadIsValid())
3873
m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt,
3874
nullptr);
3875
else
3876
BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr);
3877
}
3878
3879
void Process::HandlePrivateEvent(EventSP &event_sp) {
3880
Log *log = GetLog(LLDBLog::Process);
3881
m_resume_requested = false;
3882
3883
const StateType new_state =
3884
Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3885
3886
// First check to see if anybody wants a shot at this event:
3887
if (m_next_event_action_up) {
3888
NextEventAction::EventActionResult action_result =
3889
m_next_event_action_up->PerformAction(event_sp);
3890
LLDB_LOGF(log, "Ran next event action, result was %d.", action_result);
3891
3892
switch (action_result) {
3893
case NextEventAction::eEventActionSuccess:
3894
SetNextEventAction(nullptr);
3895
break;
3896
3897
case NextEventAction::eEventActionRetry:
3898
break;
3899
3900
case NextEventAction::eEventActionExit:
3901
// Handle Exiting Here. If we already got an exited event, we should
3902
// just propagate it. Otherwise, swallow this event, and set our state
3903
// to exit so the next event will kill us.
3904
if (new_state != eStateExited) {
3905
// FIXME: should cons up an exited event, and discard this one.
3906
SetExitStatus(0, m_next_event_action_up->GetExitString());
3907
SetNextEventAction(nullptr);
3908
return;
3909
}
3910
SetNextEventAction(nullptr);
3911
break;
3912
}
3913
}
3914
3915
// See if we should broadcast this state to external clients?
3916
const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
3917
3918
if (should_broadcast) {
3919
const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
3920
if (log) {
3921
LLDB_LOGF(log,
3922
"Process::%s (pid = %" PRIu64
3923
") broadcasting new state %s (old state %s) to %s",
3924
__FUNCTION__, GetID(), StateAsCString(new_state),
3925
StateAsCString(GetState()),
3926
is_hijacked ? "hijacked" : "public");
3927
}
3928
Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
3929
if (StateIsRunningState(new_state)) {
3930
// Only push the input handler if we aren't fowarding events, as this
3931
// means the curses GUI is in use... Or don't push it if we are launching
3932
// since it will come up stopped.
3933
if (!GetTarget().GetDebugger().IsForwardingEvents() &&
3934
new_state != eStateLaunching && new_state != eStateAttaching) {
3935
PushProcessIOHandler();
3936
m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1,
3937
eBroadcastAlways);
3938
LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d",
3939
__FUNCTION__, m_iohandler_sync.GetValue());
3940
}
3941
} else if (StateIsStoppedState(new_state, false)) {
3942
if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
3943
// If the lldb_private::Debugger is handling the events, we don't want
3944
// to pop the process IOHandler here, we want to do it when we receive
3945
// the stopped event so we can carefully control when the process
3946
// IOHandler is popped because when we stop we want to display some
3947
// text stating how and why we stopped, then maybe some
3948
// process/thread/frame info, and then we want the "(lldb) " prompt to
3949
// show up. If we pop the process IOHandler here, then we will cause
3950
// the command interpreter to become the top IOHandler after the
3951
// process pops off and it will update its prompt right away... See the
3952
// Debugger.cpp file where it calls the function as
3953
// "process_sp->PopProcessIOHandler()" to see where I am talking about.
3954
// Otherwise we end up getting overlapping "(lldb) " prompts and
3955
// garbled output.
3956
//
3957
// If we aren't handling the events in the debugger (which is indicated
3958
// by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3959
// we are hijacked, then we always pop the process IO handler manually.
3960
// Hijacking happens when the internal process state thread is running
3961
// thread plans, or when commands want to run in synchronous mode and
3962
// they call "process->WaitForProcessToStop()". An example of something
3963
// that will hijack the events is a simple expression:
3964
//
3965
// (lldb) expr (int)puts("hello")
3966
//
3967
// This will cause the internal process state thread to resume and halt
3968
// the process (and _it_ will hijack the eBroadcastBitStateChanged
3969
// events) and we do need the IO handler to be pushed and popped
3970
// correctly.
3971
3972
if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
3973
PopProcessIOHandler();
3974
}
3975
}
3976
3977
BroadcastEvent(event_sp);
3978
} else {
3979
if (log) {
3980
LLDB_LOGF(
3981
log,
3982
"Process::%s (pid = %" PRIu64
3983
") suppressing state %s (old state %s): should_broadcast == false",
3984
__FUNCTION__, GetID(), StateAsCString(new_state),
3985
StateAsCString(GetState()));
3986
}
3987
}
3988
}
3989
3990
Status Process::HaltPrivate() {
3991
EventSP event_sp;
3992
Status error(WillHalt());
3993
if (error.Fail())
3994
return error;
3995
3996
// Ask the process subclass to actually halt our process
3997
bool caused_stop;
3998
error = DoHalt(caused_stop);
3999
4000
DidHalt();
4001
return error;
4002
}
4003
4004
thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) {
4005
bool control_only = true;
4006
4007
Log *log = GetLog(LLDBLog::Process);
4008
LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
4009
__FUNCTION__, static_cast<void *>(this), GetID());
4010
4011
bool exit_now = false;
4012
bool interrupt_requested = false;
4013
while (!exit_now) {
4014
EventSP event_sp;
4015
GetEventsPrivate(event_sp, std::nullopt, control_only);
4016
if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
4017
LLDB_LOGF(log,
4018
"Process::%s (arg = %p, pid = %" PRIu64
4019
") got a control event: %d",
4020
__FUNCTION__, static_cast<void *>(this), GetID(),
4021
event_sp->GetType());
4022
4023
switch (event_sp->GetType()) {
4024
case eBroadcastInternalStateControlStop:
4025
exit_now = true;
4026
break; // doing any internal state management below
4027
4028
case eBroadcastInternalStateControlPause:
4029
control_only = true;
4030
break;
4031
4032
case eBroadcastInternalStateControlResume:
4033
control_only = false;
4034
break;
4035
}
4036
4037
continue;
4038
} else if (event_sp->GetType() == eBroadcastBitInterrupt) {
4039
if (m_public_state.GetValue() == eStateAttaching) {
4040
LLDB_LOGF(log,
4041
"Process::%s (arg = %p, pid = %" PRIu64
4042
") woke up with an interrupt while attaching - "
4043
"forwarding interrupt.",
4044
__FUNCTION__, static_cast<void *>(this), GetID());
4045
// The server may be spinning waiting for a process to appear, in which
4046
// case we should tell it to stop doing that. Normally, we don't NEED
4047
// to do that because we will next close the communication to the stub
4048
// and that will get it to shut down. But there are remote debugging
4049
// cases where relying on that side-effect causes the shutdown to be
4050
// flakey, so we should send a positive signal to interrupt the wait.
4051
Status error = HaltPrivate();
4052
BroadcastEvent(eBroadcastBitInterrupt, nullptr);
4053
} else if (StateIsRunningState(m_last_broadcast_state)) {
4054
LLDB_LOGF(log,
4055
"Process::%s (arg = %p, pid = %" PRIu64
4056
") woke up with an interrupt - Halting.",
4057
__FUNCTION__, static_cast<void *>(this), GetID());
4058
Status error = HaltPrivate();
4059
if (error.Fail() && log)
4060
LLDB_LOGF(log,
4061
"Process::%s (arg = %p, pid = %" PRIu64
4062
") failed to halt the process: %s",
4063
__FUNCTION__, static_cast<void *>(this), GetID(),
4064
error.AsCString());
4065
// Halt should generate a stopped event. Make a note of the fact that
4066
// we were doing the interrupt, so we can set the interrupted flag
4067
// after we receive the event. We deliberately set this to true even if
4068
// HaltPrivate failed, so that we can interrupt on the next natural
4069
// stop.
4070
interrupt_requested = true;
4071
} else {
4072
// This can happen when someone (e.g. Process::Halt) sees that we are
4073
// running and sends an interrupt request, but the process actually
4074
// stops before we receive it. In that case, we can just ignore the
4075
// request. We use m_last_broadcast_state, because the Stopped event
4076
// may not have been popped of the event queue yet, which is when the
4077
// public state gets updated.
4078
LLDB_LOGF(log,
4079
"Process::%s ignoring interrupt as we have already stopped.",
4080
__FUNCTION__);
4081
}
4082
continue;
4083
}
4084
4085
const StateType internal_state =
4086
Process::ProcessEventData::GetStateFromEvent(event_sp.get());
4087
4088
if (internal_state != eStateInvalid) {
4089
if (m_clear_thread_plans_on_stop &&
4090
StateIsStoppedState(internal_state, true)) {
4091
m_clear_thread_plans_on_stop = false;
4092
m_thread_list.DiscardThreadPlans();
4093
}
4094
4095
if (interrupt_requested) {
4096
if (StateIsStoppedState(internal_state, true)) {
4097
// We requested the interrupt, so mark this as such in the stop event
4098
// so clients can tell an interrupted process from a natural stop
4099
ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
4100
interrupt_requested = false;
4101
} else if (log) {
4102
LLDB_LOGF(log,
4103
"Process::%s interrupt_requested, but a non-stopped "
4104
"state '%s' received.",
4105
__FUNCTION__, StateAsCString(internal_state));
4106
}
4107
}
4108
4109
HandlePrivateEvent(event_sp);
4110
}
4111
4112
if (internal_state == eStateInvalid || internal_state == eStateExited ||
4113
internal_state == eStateDetached) {
4114
LLDB_LOGF(log,
4115
"Process::%s (arg = %p, pid = %" PRIu64
4116
") about to exit with internal state %s...",
4117
__FUNCTION__, static_cast<void *>(this), GetID(),
4118
StateAsCString(internal_state));
4119
4120
break;
4121
}
4122
}
4123
4124
// Verify log is still enabled before attempting to write to it...
4125
LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
4126
__FUNCTION__, static_cast<void *>(this), GetID());
4127
4128
// If we are a secondary thread, then the primary thread we are working for
4129
// will have already acquired the public_run_lock, and isn't done with what
4130
// it was doing yet, so don't try to change it on the way out.
4131
if (!is_secondary_thread)
4132
m_public_run_lock.SetStopped();
4133
return {};
4134
}
4135
4136
// Process Event Data
4137
4138
Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {}
4139
4140
Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp,
4141
StateType state)
4142
: EventData(), m_process_wp(), m_state(state) {
4143
if (process_sp)
4144
m_process_wp = process_sp;
4145
}
4146
4147
Process::ProcessEventData::~ProcessEventData() = default;
4148
4149
llvm::StringRef Process::ProcessEventData::GetFlavorString() {
4150
return "Process::ProcessEventData";
4151
}
4152
4153
llvm::StringRef Process::ProcessEventData::GetFlavor() const {
4154
return ProcessEventData::GetFlavorString();
4155
}
4156
4157
bool Process::ProcessEventData::ShouldStop(Event *event_ptr,
4158
bool &found_valid_stopinfo) {
4159
found_valid_stopinfo = false;
4160
4161
ProcessSP process_sp(m_process_wp.lock());
4162
if (!process_sp)
4163
return false;
4164
4165
ThreadList &curr_thread_list = process_sp->GetThreadList();
4166
uint32_t num_threads = curr_thread_list.GetSize();
4167
4168
// The actions might change one of the thread's stop_info's opinions about
4169
// whether we should stop the process, so we need to query that as we go.
4170
4171
// One other complication here, is that we try to catch any case where the
4172
// target has run (except for expressions) and immediately exit, but if we
4173
// get that wrong (which is possible) then the thread list might have
4174
// changed, and that would cause our iteration here to crash. We could
4175
// make a copy of the thread list, but we'd really like to also know if it
4176
// has changed at all, so we store the original thread ID's of all threads and
4177
// check what we get back against this list & bag out if anything differs.
4178
std::vector<std::pair<ThreadSP, size_t>> not_suspended_threads;
4179
for (uint32_t idx = 0; idx < num_threads; ++idx) {
4180
lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
4181
4182
/*
4183
Filter out all suspended threads, they could not be the reason
4184
of stop and no need to perform any actions on them.
4185
*/
4186
if (thread_sp->GetResumeState() != eStateSuspended)
4187
not_suspended_threads.emplace_back(thread_sp, thread_sp->GetIndexID());
4188
}
4189
4190
// Use this to track whether we should continue from here. We will only
4191
// continue the target running if no thread says we should stop. Of course
4192
// if some thread's PerformAction actually sets the target running, then it
4193
// doesn't matter what the other threads say...
4194
4195
bool still_should_stop = false;
4196
4197
// Sometimes - for instance if we have a bug in the stub we are talking to,
4198
// we stop but no thread has a valid stop reason. In that case we should
4199
// just stop, because we have no way of telling what the right thing to do
4200
// is, and it's better to let the user decide than continue behind their
4201
// backs.
4202
4203
for (auto [thread_sp, thread_index] : not_suspended_threads) {
4204
if (curr_thread_list.GetSize() != num_threads) {
4205
Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
4206
LLDB_LOGF(
4207
log,
4208
"Number of threads changed from %u to %u while processing event.",
4209
num_threads, curr_thread_list.GetSize());
4210
break;
4211
}
4212
4213
if (thread_sp->GetIndexID() != thread_index) {
4214
Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
4215
LLDB_LOG(log,
4216
"The thread {0} changed from {1} to {2} while processing event.",
4217
thread_sp.get(), thread_index, thread_sp->GetIndexID());
4218
break;
4219
}
4220
4221
StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4222
if (stop_info_sp && stop_info_sp->IsValid()) {
4223
found_valid_stopinfo = true;
4224
bool this_thread_wants_to_stop;
4225
if (stop_info_sp->GetOverrideShouldStop()) {
4226
this_thread_wants_to_stop =
4227
stop_info_sp->GetOverriddenShouldStopValue();
4228
} else {
4229
stop_info_sp->PerformAction(event_ptr);
4230
// The stop action might restart the target. If it does, then we
4231
// want to mark that in the event so that whoever is receiving it
4232
// will know to wait for the running event and reflect that state
4233
// appropriately. We also need to stop processing actions, since they
4234
// aren't expecting the target to be running.
4235
4236
// FIXME: we might have run.
4237
if (stop_info_sp->HasTargetRunSinceMe()) {
4238
SetRestarted(true);
4239
break;
4240
}
4241
4242
this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
4243
}
4244
4245
if (!still_should_stop)
4246
still_should_stop = this_thread_wants_to_stop;
4247
}
4248
}
4249
4250
return still_should_stop;
4251
}
4252
4253
bool Process::ProcessEventData::ForwardEventToPendingListeners(
4254
Event *event_ptr) {
4255
// STDIO and the other async event notifications should always be forwarded.
4256
if (event_ptr->GetType() != Process::eBroadcastBitStateChanged)
4257
return true;
4258
4259
// For state changed events, if the update state is zero, we are handling
4260
// this on the private state thread. We should wait for the public event.
4261
return m_update_state == 1;
4262
}
4263
4264
void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) {
4265
// We only have work to do for state changed events:
4266
if (event_ptr->GetType() != Process::eBroadcastBitStateChanged)
4267
return;
4268
4269
ProcessSP process_sp(m_process_wp.lock());
4270
4271
if (!process_sp)
4272
return;
4273
4274
// This function gets called twice for each event, once when the event gets
4275
// pulled off of the private process event queue, and then any number of
4276
// times, first when it gets pulled off of the public event queue, then other
4277
// times when we're pretending that this is where we stopped at the end of
4278
// expression evaluation. m_update_state is used to distinguish these three
4279
// cases; it is 0 when we're just pulling it off for private handling, and >
4280
// 1 for expression evaluation, and we don't want to do the breakpoint
4281
// command handling then.
4282
if (m_update_state != 1)
4283
return;
4284
4285
process_sp->SetPublicState(
4286
m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr));
4287
4288
if (m_state == eStateStopped && !m_restarted) {
4289
// Let process subclasses know we are about to do a public stop and do
4290
// anything they might need to in order to speed up register and memory
4291
// accesses.
4292
process_sp->WillPublicStop();
4293
}
4294
4295
// If this is a halt event, even if the halt stopped with some reason other
4296
// than a plain interrupt (e.g. we had already stopped for a breakpoint when
4297
// the halt request came through) don't do the StopInfo actions, as they may
4298
// end up restarting the process.
4299
if (m_interrupted)
4300
return;
4301
4302
// If we're not stopped or have restarted, then skip the StopInfo actions:
4303
if (m_state != eStateStopped || m_restarted) {
4304
return;
4305
}
4306
4307
bool does_anybody_have_an_opinion = false;
4308
bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion);
4309
4310
if (GetRestarted()) {
4311
return;
4312
}
4313
4314
if (!still_should_stop && does_anybody_have_an_opinion) {
4315
// We've been asked to continue, so do that here.
4316
SetRestarted(true);
4317
// Use the private resume method here, since we aren't changing the run
4318
// lock state.
4319
process_sp->PrivateResume();
4320
} else {
4321
bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) &&
4322
!process_sp->StateChangedIsHijackedForSynchronousResume();
4323
4324
if (!hijacked) {
4325
// If we didn't restart, run the Stop Hooks here.
4326
// Don't do that if state changed events aren't hooked up to the
4327
// public (or SyncResume) broadcasters. StopHooks are just for
4328
// real public stops. They might also restart the target,
4329
// so watch for that.
4330
if (process_sp->GetTarget().RunStopHooks())
4331
SetRestarted(true);
4332
}
4333
}
4334
}
4335
4336
void Process::ProcessEventData::Dump(Stream *s) const {
4337
ProcessSP process_sp(m_process_wp.lock());
4338
4339
if (process_sp)
4340
s->Printf(" process = %p (pid = %" PRIu64 "), ",
4341
static_cast<void *>(process_sp.get()), process_sp->GetID());
4342
else
4343
s->PutCString(" process = NULL, ");
4344
4345
s->Printf("state = %s", StateAsCString(GetState()));
4346
}
4347
4348
const Process::ProcessEventData *
4349
Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) {
4350
if (event_ptr) {
4351
const EventData *event_data = event_ptr->GetData();
4352
if (event_data &&
4353
event_data->GetFlavor() == ProcessEventData::GetFlavorString())
4354
return static_cast<const ProcessEventData *>(event_ptr->GetData());
4355
}
4356
return nullptr;
4357
}
4358
4359
ProcessSP
4360
Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) {
4361
ProcessSP process_sp;
4362
const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4363
if (data)
4364
process_sp = data->GetProcessSP();
4365
return process_sp;
4366
}
4367
4368
StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) {
4369
const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4370
if (data == nullptr)
4371
return eStateInvalid;
4372
else
4373
return data->GetState();
4374
}
4375
4376
bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) {
4377
const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4378
if (data == nullptr)
4379
return false;
4380
else
4381
return data->GetRestarted();
4382
}
4383
4384
void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr,
4385
bool new_value) {
4386
ProcessEventData *data =
4387
const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4388
if (data != nullptr)
4389
data->SetRestarted(new_value);
4390
}
4391
4392
size_t
4393
Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) {
4394
ProcessEventData *data =
4395
const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4396
if (data != nullptr)
4397
return data->GetNumRestartedReasons();
4398
else
4399
return 0;
4400
}
4401
4402
const char *
4403
Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr,
4404
size_t idx) {
4405
ProcessEventData *data =
4406
const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4407
if (data != nullptr)
4408
return data->GetRestartedReasonAtIndex(idx);
4409
else
4410
return nullptr;
4411
}
4412
4413
void Process::ProcessEventData::AddRestartedReason(Event *event_ptr,
4414
const char *reason) {
4415
ProcessEventData *data =
4416
const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4417
if (data != nullptr)
4418
data->AddRestartedReason(reason);
4419
}
4420
4421
bool Process::ProcessEventData::GetInterruptedFromEvent(
4422
const Event *event_ptr) {
4423
const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4424
if (data == nullptr)
4425
return false;
4426
else
4427
return data->GetInterrupted();
4428
}
4429
4430
void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr,
4431
bool new_value) {
4432
ProcessEventData *data =
4433
const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4434
if (data != nullptr)
4435
data->SetInterrupted(new_value);
4436
}
4437
4438
bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) {
4439
ProcessEventData *data =
4440
const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4441
if (data) {
4442
data->SetUpdateStateOnRemoval();
4443
return true;
4444
}
4445
return false;
4446
}
4447
4448
lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); }
4449
4450
void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) {
4451
exe_ctx.SetTargetPtr(&GetTarget());
4452
exe_ctx.SetProcessPtr(this);
4453
exe_ctx.SetThreadPtr(nullptr);
4454
exe_ctx.SetFramePtr(nullptr);
4455
}
4456
4457
// uint32_t
4458
// Process::ListProcessesMatchingName (const char *name, StringList &matches,
4459
// std::vector<lldb::pid_t> &pids)
4460
//{
4461
// return 0;
4462
//}
4463
//
4464
// ArchSpec
4465
// Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4466
//{
4467
// return Host::GetArchSpecForExistingProcess (pid);
4468
//}
4469
//
4470
// ArchSpec
4471
// Process::GetArchSpecForExistingProcess (const char *process_name)
4472
//{
4473
// return Host::GetArchSpecForExistingProcess (process_name);
4474
//}
4475
4476
EventSP Process::CreateEventFromProcessState(uint32_t event_type) {
4477
auto event_data_sp =
4478
std::make_shared<ProcessEventData>(shared_from_this(), GetState());
4479
return std::make_shared<Event>(event_type, event_data_sp);
4480
}
4481
4482
void Process::AppendSTDOUT(const char *s, size_t len) {
4483
std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4484
m_stdout_data.append(s, len);
4485
auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDOUT);
4486
BroadcastEventIfUnique(event_sp);
4487
}
4488
4489
void Process::AppendSTDERR(const char *s, size_t len) {
4490
std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4491
m_stderr_data.append(s, len);
4492
auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDERR);
4493
BroadcastEventIfUnique(event_sp);
4494
}
4495
4496
void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
4497
std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4498
m_profile_data.push_back(one_profile_data);
4499
auto event_sp = CreateEventFromProcessState(eBroadcastBitProfileData);
4500
BroadcastEventIfUnique(event_sp);
4501
}
4502
4503
void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp,
4504
const StructuredDataPluginSP &plugin_sp) {
4505
auto data_sp = std::make_shared<EventDataStructuredData>(
4506
shared_from_this(), object_sp, plugin_sp);
4507
BroadcastEvent(eBroadcastBitStructuredData, data_sp);
4508
}
4509
4510
StructuredDataPluginSP
4511
Process::GetStructuredDataPlugin(llvm::StringRef type_name) const {
4512
auto find_it = m_structured_data_plugin_map.find(type_name);
4513
if (find_it != m_structured_data_plugin_map.end())
4514
return find_it->second;
4515
else
4516
return StructuredDataPluginSP();
4517
}
4518
4519
size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
4520
std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4521
if (m_profile_data.empty())
4522
return 0;
4523
4524
std::string &one_profile_data = m_profile_data.front();
4525
size_t bytes_available = one_profile_data.size();
4526
if (bytes_available > 0) {
4527
Log *log = GetLog(LLDBLog::Process);
4528
LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
4529
static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4530
if (bytes_available > buf_size) {
4531
memcpy(buf, one_profile_data.c_str(), buf_size);
4532
one_profile_data.erase(0, buf_size);
4533
bytes_available = buf_size;
4534
} else {
4535
memcpy(buf, one_profile_data.c_str(), bytes_available);
4536
m_profile_data.erase(m_profile_data.begin());
4537
}
4538
}
4539
return bytes_available;
4540
}
4541
4542
// Process STDIO
4543
4544
size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
4545
std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4546
size_t bytes_available = m_stdout_data.size();
4547
if (bytes_available > 0) {
4548
Log *log = GetLog(LLDBLog::Process);
4549
LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
4550
static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4551
if (bytes_available > buf_size) {
4552
memcpy(buf, m_stdout_data.c_str(), buf_size);
4553
m_stdout_data.erase(0, buf_size);
4554
bytes_available = buf_size;
4555
} else {
4556
memcpy(buf, m_stdout_data.c_str(), bytes_available);
4557
m_stdout_data.clear();
4558
}
4559
}
4560
return bytes_available;
4561
}
4562
4563
size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
4564
std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
4565
size_t bytes_available = m_stderr_data.size();
4566
if (bytes_available > 0) {
4567
Log *log = GetLog(LLDBLog::Process);
4568
LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
4569
static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4570
if (bytes_available > buf_size) {
4571
memcpy(buf, m_stderr_data.c_str(), buf_size);
4572
m_stderr_data.erase(0, buf_size);
4573
bytes_available = buf_size;
4574
} else {
4575
memcpy(buf, m_stderr_data.c_str(), bytes_available);
4576
m_stderr_data.clear();
4577
}
4578
}
4579
return bytes_available;
4580
}
4581
4582
void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
4583
size_t src_len) {
4584
Process *process = (Process *)baton;
4585
process->AppendSTDOUT(static_cast<const char *>(src), src_len);
4586
}
4587
4588
class IOHandlerProcessSTDIO : public IOHandler {
4589
public:
4590
IOHandlerProcessSTDIO(Process *process, int write_fd)
4591
: IOHandler(process->GetTarget().GetDebugger(),
4592
IOHandler::Type::ProcessIO),
4593
m_process(process),
4594
m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false),
4595
m_write_file(write_fd, File::eOpenOptionWriteOnly, false) {
4596
m_pipe.CreateNew(false);
4597
}
4598
4599
~IOHandlerProcessSTDIO() override = default;
4600
4601
void SetIsRunning(bool running) {
4602
std::lock_guard<std::mutex> guard(m_mutex);
4603
SetIsDone(!running);
4604
m_is_running = running;
4605
}
4606
4607
// Each IOHandler gets to run until it is done. It should read data from the
4608
// "in" and place output into "out" and "err and return when done.
4609
void Run() override {
4610
if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
4611
!m_pipe.CanRead() || !m_pipe.CanWrite()) {
4612
SetIsDone(true);
4613
return;
4614
}
4615
4616
SetIsDone(false);
4617
const int read_fd = m_read_file.GetDescriptor();
4618
Terminal terminal(read_fd);
4619
TerminalState terminal_state(terminal, false);
4620
// FIXME: error handling?
4621
llvm::consumeError(terminal.SetCanonical(false));
4622
llvm::consumeError(terminal.SetEcho(false));
4623
// FD_ZERO, FD_SET are not supported on windows
4624
#ifndef _WIN32
4625
const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
4626
SetIsRunning(true);
4627
while (true) {
4628
{
4629
std::lock_guard<std::mutex> guard(m_mutex);
4630
if (GetIsDone())
4631
break;
4632
}
4633
4634
SelectHelper select_helper;
4635
select_helper.FDSetRead(read_fd);
4636
select_helper.FDSetRead(pipe_read_fd);
4637
Status error = select_helper.Select();
4638
4639
if (error.Fail())
4640
break;
4641
4642
char ch = 0;
4643
size_t n;
4644
if (select_helper.FDIsSetRead(read_fd)) {
4645
n = 1;
4646
if (m_read_file.Read(&ch, n).Success() && n == 1) {
4647
if (m_write_file.Write(&ch, n).Fail() || n != 1)
4648
break;
4649
} else
4650
break;
4651
}
4652
4653
if (select_helper.FDIsSetRead(pipe_read_fd)) {
4654
size_t bytes_read;
4655
// Consume the interrupt byte
4656
Status error = m_pipe.Read(&ch, 1, bytes_read);
4657
if (error.Success()) {
4658
if (ch == 'q')
4659
break;
4660
if (ch == 'i')
4661
if (StateIsRunningState(m_process->GetState()))
4662
m_process->SendAsyncInterrupt();
4663
}
4664
}
4665
}
4666
SetIsRunning(false);
4667
#endif
4668
}
4669
4670
void Cancel() override {
4671
std::lock_guard<std::mutex> guard(m_mutex);
4672
SetIsDone(true);
4673
// Only write to our pipe to cancel if we are in
4674
// IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4675
// is being run from the command interpreter:
4676
//
4677
// (lldb) step_process_thousands_of_times
4678
//
4679
// In this case the command interpreter will be in the middle of handling
4680
// the command and if the process pushes and pops the IOHandler thousands
4681
// of times, we can end up writing to m_pipe without ever consuming the
4682
// bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4683
// deadlocking when the pipe gets fed up and blocks until data is consumed.
4684
if (m_is_running) {
4685
char ch = 'q'; // Send 'q' for quit
4686
size_t bytes_written = 0;
4687
m_pipe.Write(&ch, 1, bytes_written);
4688
}
4689
}
4690
4691
bool Interrupt() override {
4692
// Do only things that are safe to do in an interrupt context (like in a
4693
// SIGINT handler), like write 1 byte to a file descriptor. This will
4694
// interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4695
// that was written to the pipe and then call
4696
// m_process->SendAsyncInterrupt() from a much safer location in code.
4697
if (m_active) {
4698
char ch = 'i'; // Send 'i' for interrupt
4699
size_t bytes_written = 0;
4700
Status result = m_pipe.Write(&ch, 1, bytes_written);
4701
return result.Success();
4702
} else {
4703
// This IOHandler might be pushed on the stack, but not being run
4704
// currently so do the right thing if we aren't actively watching for
4705
// STDIN by sending the interrupt to the process. Otherwise the write to
4706
// the pipe above would do nothing. This can happen when the command
4707
// interpreter is running and gets a "expression ...". It will be on the
4708
// IOHandler thread and sending the input is complete to the delegate
4709
// which will cause the expression to run, which will push the process IO
4710
// handler, but not run it.
4711
4712
if (StateIsRunningState(m_process->GetState())) {
4713
m_process->SendAsyncInterrupt();
4714
return true;
4715
}
4716
}
4717
return false;
4718
}
4719
4720
void GotEOF() override {}
4721
4722
protected:
4723
Process *m_process;
4724
NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB
4725
NativeFile m_write_file; // Write to this file (usually the primary pty for
4726
// getting io to debuggee)
4727
Pipe m_pipe;
4728
std::mutex m_mutex;
4729
bool m_is_running = false;
4730
};
4731
4732
void Process::SetSTDIOFileDescriptor(int fd) {
4733
// First set up the Read Thread for reading/handling process I/O
4734
m_stdio_communication.SetConnection(
4735
std::make_unique<ConnectionFileDescriptor>(fd, true));
4736
if (m_stdio_communication.IsConnected()) {
4737
m_stdio_communication.SetReadThreadBytesReceivedCallback(
4738
STDIOReadThreadBytesReceived, this);
4739
m_stdio_communication.StartReadThread();
4740
4741
// Now read thread is set up, set up input reader.
4742
{
4743
std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4744
if (!m_process_input_reader)
4745
m_process_input_reader =
4746
std::make_shared<IOHandlerProcessSTDIO>(this, fd);
4747
}
4748
}
4749
}
4750
4751
bool Process::ProcessIOHandlerIsActive() {
4752
std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4753
IOHandlerSP io_handler_sp(m_process_input_reader);
4754
if (io_handler_sp)
4755
return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
4756
return false;
4757
}
4758
4759
bool Process::PushProcessIOHandler() {
4760
std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4761
IOHandlerSP io_handler_sp(m_process_input_reader);
4762
if (io_handler_sp) {
4763
Log *log = GetLog(LLDBLog::Process);
4764
LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__);
4765
4766
io_handler_sp->SetIsDone(false);
4767
// If we evaluate an utility function, then we don't cancel the current
4768
// IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4769
// existing IOHandler that potentially provides the user interface (e.g.
4770
// the IOHandler for Editline).
4771
bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
4772
GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp,
4773
cancel_top_handler);
4774
return true;
4775
}
4776
return false;
4777
}
4778
4779
bool Process::PopProcessIOHandler() {
4780
std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4781
IOHandlerSP io_handler_sp(m_process_input_reader);
4782
if (io_handler_sp)
4783
return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp);
4784
return false;
4785
}
4786
4787
// The process needs to know about installed plug-ins
4788
void Process::SettingsInitialize() { Thread::SettingsInitialize(); }
4789
4790
void Process::SettingsTerminate() { Thread::SettingsTerminate(); }
4791
4792
namespace {
4793
// RestorePlanState is used to record the "is private", "is controlling" and
4794
// "okay
4795
// to discard" fields of the plan we are running, and reset it on Clean or on
4796
// destruction. It will only reset the state once, so you can call Clean and
4797
// then monkey with the state and it won't get reset on you again.
4798
4799
class RestorePlanState {
4800
public:
4801
RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
4802
: m_thread_plan_sp(thread_plan_sp) {
4803
if (m_thread_plan_sp) {
4804
m_private = m_thread_plan_sp->GetPrivate();
4805
m_is_controlling = m_thread_plan_sp->IsControllingPlan();
4806
m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
4807
}
4808
}
4809
4810
~RestorePlanState() { Clean(); }
4811
4812
void Clean() {
4813
if (!m_already_reset && m_thread_plan_sp) {
4814
m_already_reset = true;
4815
m_thread_plan_sp->SetPrivate(m_private);
4816
m_thread_plan_sp->SetIsControllingPlan(m_is_controlling);
4817
m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
4818
}
4819
}
4820
4821
private:
4822
lldb::ThreadPlanSP m_thread_plan_sp;
4823
bool m_already_reset = false;
4824
bool m_private = false;
4825
bool m_is_controlling = false;
4826
bool m_okay_to_discard = false;
4827
};
4828
} // anonymous namespace
4829
4830
static microseconds
4831
GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) {
4832
const milliseconds default_one_thread_timeout(250);
4833
4834
// If the overall wait is forever, then we don't need to worry about it.
4835
if (!options.GetTimeout()) {
4836
return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
4837
: default_one_thread_timeout;
4838
}
4839
4840
// If the one thread timeout is set, use it.
4841
if (options.GetOneThreadTimeout())
4842
return *options.GetOneThreadTimeout();
4843
4844
// Otherwise use half the total timeout, bounded by the
4845
// default_one_thread_timeout.
4846
return std::min<microseconds>(default_one_thread_timeout,
4847
*options.GetTimeout() / 2);
4848
}
4849
4850
static Timeout<std::micro>
4851
GetExpressionTimeout(const EvaluateExpressionOptions &options,
4852
bool before_first_timeout) {
4853
// If we are going to run all threads the whole time, or if we are only going
4854
// to run one thread, we can just return the overall timeout.
4855
if (!options.GetStopOthers() || !options.GetTryAllThreads())
4856
return options.GetTimeout();
4857
4858
if (before_first_timeout)
4859
return GetOneThreadExpressionTimeout(options);
4860
4861
if (!options.GetTimeout())
4862
return std::nullopt;
4863
else
4864
return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
4865
}
4866
4867
static std::optional<ExpressionResults>
4868
HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp,
4869
RestorePlanState &restorer, const EventSP &event_sp,
4870
EventSP &event_to_broadcast_sp,
4871
const EvaluateExpressionOptions &options,
4872
bool handle_interrupts) {
4873
Log *log = GetLog(LLDBLog::Step | LLDBLog::Process);
4874
4875
ThreadSP thread_sp = thread_plan_sp->GetTarget()
4876
.GetProcessSP()
4877
->GetThreadList()
4878
.FindThreadByID(thread_id);
4879
if (!thread_sp) {
4880
LLDB_LOG(log,
4881
"The thread on which we were running the "
4882
"expression: tid = {0}, exited while "
4883
"the expression was running.",
4884
thread_id);
4885
return eExpressionThreadVanished;
4886
}
4887
4888
ThreadPlanSP plan = thread_sp->GetCompletedPlan();
4889
if (plan == thread_plan_sp && plan->PlanSucceeded()) {
4890
LLDB_LOG(log, "execution completed successfully");
4891
4892
// Restore the plan state so it will get reported as intended when we are
4893
// done.
4894
restorer.Clean();
4895
return eExpressionCompleted;
4896
}
4897
4898
StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4899
if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
4900
stop_info_sp->ShouldNotify(event_sp.get())) {
4901
LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
4902
if (!options.DoesIgnoreBreakpoints()) {
4903
// Restore the plan state and then force Private to false. We are going
4904
// to stop because of this plan so we need it to become a public plan or
4905
// it won't report correctly when we continue to its termination later
4906
// on.
4907
restorer.Clean();
4908
thread_plan_sp->SetPrivate(false);
4909
event_to_broadcast_sp = event_sp;
4910
}
4911
return eExpressionHitBreakpoint;
4912
}
4913
4914
if (!handle_interrupts &&
4915
Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get()))
4916
return std::nullopt;
4917
4918
LLDB_LOG(log, "thread plan did not successfully complete");
4919
if (!options.DoesUnwindOnError())
4920
event_to_broadcast_sp = event_sp;
4921
return eExpressionInterrupted;
4922
}
4923
4924
ExpressionResults
4925
Process::RunThreadPlan(ExecutionContext &exe_ctx,
4926
lldb::ThreadPlanSP &thread_plan_sp,
4927
const EvaluateExpressionOptions &options,
4928
DiagnosticManager &diagnostic_manager) {
4929
ExpressionResults return_value = eExpressionSetupError;
4930
4931
std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
4932
4933
if (!thread_plan_sp) {
4934
diagnostic_manager.PutString(
4935
lldb::eSeverityError, "RunThreadPlan called with empty thread plan.");
4936
return eExpressionSetupError;
4937
}
4938
4939
if (!thread_plan_sp->ValidatePlan(nullptr)) {
4940
diagnostic_manager.PutString(
4941
lldb::eSeverityError,
4942
"RunThreadPlan called with an invalid thread plan.");
4943
return eExpressionSetupError;
4944
}
4945
4946
if (exe_ctx.GetProcessPtr() != this) {
4947
diagnostic_manager.PutString(lldb::eSeverityError,
4948
"RunThreadPlan called on wrong process.");
4949
return eExpressionSetupError;
4950
}
4951
4952
Thread *thread = exe_ctx.GetThreadPtr();
4953
if (thread == nullptr) {
4954
diagnostic_manager.PutString(lldb::eSeverityError,
4955
"RunThreadPlan called with invalid thread.");
4956
return eExpressionSetupError;
4957
}
4958
4959
// Record the thread's id so we can tell when a thread we were using
4960
// to run the expression exits during the expression evaluation.
4961
lldb::tid_t expr_thread_id = thread->GetID();
4962
4963
// We need to change some of the thread plan attributes for the thread plan
4964
// runner. This will restore them when we are done:
4965
4966
RestorePlanState thread_plan_restorer(thread_plan_sp);
4967
4968
// We rely on the thread plan we are running returning "PlanCompleted" if
4969
// when it successfully completes. For that to be true the plan can't be
4970
// private - since private plans suppress themselves in the GetCompletedPlan
4971
// call.
4972
4973
thread_plan_sp->SetPrivate(false);
4974
4975
// The plans run with RunThreadPlan also need to be terminal controlling plans
4976
// or when they are done we will end up asking the plan above us whether we
4977
// should stop, which may give the wrong answer.
4978
4979
thread_plan_sp->SetIsControllingPlan(true);
4980
thread_plan_sp->SetOkayToDiscard(false);
4981
4982
// If we are running some utility expression for LLDB, we now have to mark
4983
// this in the ProcesModID of this process. This RAII takes care of marking
4984
// and reverting the mark it once we are done running the expression.
4985
UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr);
4986
4987
if (m_private_state.GetValue() != eStateStopped) {
4988
diagnostic_manager.PutString(
4989
lldb::eSeverityError,
4990
"RunThreadPlan called while the private state was not stopped.");
4991
return eExpressionSetupError;
4992
}
4993
4994
// Save the thread & frame from the exe_ctx for restoration after we run
4995
const uint32_t thread_idx_id = thread->GetIndexID();
4996
StackFrameSP selected_frame_sp =
4997
thread->GetSelectedFrame(DoNoSelectMostRelevantFrame);
4998
if (!selected_frame_sp) {
4999
thread->SetSelectedFrame(nullptr);
5000
selected_frame_sp = thread->GetSelectedFrame(DoNoSelectMostRelevantFrame);
5001
if (!selected_frame_sp) {
5002
diagnostic_manager.Printf(
5003
lldb::eSeverityError,
5004
"RunThreadPlan called without a selected frame on thread %d",
5005
thread_idx_id);
5006
return eExpressionSetupError;
5007
}
5008
}
5009
5010
// Make sure the timeout values make sense. The one thread timeout needs to
5011
// be smaller than the overall timeout.
5012
if (options.GetOneThreadTimeout() && options.GetTimeout() &&
5013
*options.GetTimeout() < *options.GetOneThreadTimeout()) {
5014
diagnostic_manager.PutString(lldb::eSeverityError,
5015
"RunThreadPlan called with one thread "
5016
"timeout greater than total timeout");
5017
return eExpressionSetupError;
5018
}
5019
5020
StackID ctx_frame_id = selected_frame_sp->GetStackID();
5021
5022
// N.B. Running the target may unset the currently selected thread and frame.
5023
// We don't want to do that either, so we should arrange to reset them as
5024
// well.
5025
5026
lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
5027
5028
uint32_t selected_tid;
5029
StackID selected_stack_id;
5030
if (selected_thread_sp) {
5031
selected_tid = selected_thread_sp->GetIndexID();
5032
selected_stack_id =
5033
selected_thread_sp->GetSelectedFrame(DoNoSelectMostRelevantFrame)
5034
->GetStackID();
5035
} else {
5036
selected_tid = LLDB_INVALID_THREAD_ID;
5037
}
5038
5039
HostThread backup_private_state_thread;
5040
lldb::StateType old_state = eStateInvalid;
5041
lldb::ThreadPlanSP stopper_base_plan_sp;
5042
5043
Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
5044
if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) {
5045
// Yikes, we are running on the private state thread! So we can't wait for
5046
// public events on this thread, since we are the thread that is generating
5047
// public events. The simplest thing to do is to spin up a temporary thread
5048
// to handle private state thread events while we are fielding public
5049
// events here.
5050
LLDB_LOGF(log, "Running thread plan on private state thread, spinning up "
5051
"another state thread to handle the events.");
5052
5053
backup_private_state_thread = m_private_state_thread;
5054
5055
// One other bit of business: we want to run just this thread plan and
5056
// anything it pushes, and then stop, returning control here. But in the
5057
// normal course of things, the plan above us on the stack would be given a
5058
// shot at the stop event before deciding to stop, and we don't want that.
5059
// So we insert a "stopper" base plan on the stack before the plan we want
5060
// to run. Since base plans always stop and return control to the user,
5061
// that will do just what we want.
5062
stopper_base_plan_sp.reset(new ThreadPlanBase(*thread));
5063
thread->QueueThreadPlan(stopper_base_plan_sp, false);
5064
// Have to make sure our public state is stopped, since otherwise the
5065
// reporting logic below doesn't work correctly.
5066
old_state = m_public_state.GetValue();
5067
m_public_state.SetValueNoLock(eStateStopped);
5068
5069
// Now spin up the private state thread:
5070
StartPrivateStateThread(true);
5071
}
5072
5073
thread->QueueThreadPlan(
5074
thread_plan_sp, false); // This used to pass "true" does that make sense?
5075
5076
if (options.GetDebug()) {
5077
// In this case, we aren't actually going to run, we just want to stop
5078
// right away. Flush this thread so we will refetch the stacks and show the
5079
// correct backtrace.
5080
// FIXME: To make this prettier we should invent some stop reason for this,
5081
// but that
5082
// is only cosmetic, and this functionality is only of use to lldb
5083
// developers who can live with not pretty...
5084
thread->Flush();
5085
return eExpressionStoppedForDebug;
5086
}
5087
5088
ListenerSP listener_sp(
5089
Listener::MakeListener("lldb.process.listener.run-thread-plan"));
5090
5091
lldb::EventSP event_to_broadcast_sp;
5092
5093
{
5094
// This process event hijacker Hijacks the Public events and its destructor
5095
// makes sure that the process events get restored on exit to the function.
5096
//
5097
// If the event needs to propagate beyond the hijacker (e.g., the process
5098
// exits during execution), then the event is put into
5099
// event_to_broadcast_sp for rebroadcasting.
5100
5101
ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp);
5102
5103
if (log) {
5104
StreamString s;
5105
thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
5106
LLDB_LOGF(log,
5107
"Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
5108
" to run thread plan \"%s\".",
5109
thread_idx_id, expr_thread_id, s.GetData());
5110
}
5111
5112
bool got_event;
5113
lldb::EventSP event_sp;
5114
lldb::StateType stop_state = lldb::eStateInvalid;
5115
5116
bool before_first_timeout = true; // This is set to false the first time
5117
// that we have to halt the target.
5118
bool do_resume = true;
5119
bool handle_running_event = true;
5120
5121
// This is just for accounting:
5122
uint32_t num_resumes = 0;
5123
5124
// If we are going to run all threads the whole time, or if we are only
5125
// going to run one thread, then we don't need the first timeout. So we
5126
// pretend we are after the first timeout already.
5127
if (!options.GetStopOthers() || !options.GetTryAllThreads())
5128
before_first_timeout = false;
5129
5130
LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n",
5131
options.GetStopOthers(), options.GetTryAllThreads(),
5132
before_first_timeout);
5133
5134
// This isn't going to work if there are unfetched events on the queue. Are
5135
// there cases where we might want to run the remaining events here, and
5136
// then try to call the function? That's probably being too tricky for our
5137
// own good.
5138
5139
Event *other_events = listener_sp->PeekAtNextEvent();
5140
if (other_events != nullptr) {
5141
diagnostic_manager.PutString(
5142
lldb::eSeverityError,
5143
"RunThreadPlan called with pending events on the queue.");
5144
return eExpressionSetupError;
5145
}
5146
5147
// We also need to make sure that the next event is delivered. We might be
5148
// calling a function as part of a thread plan, in which case the last
5149
// delivered event could be the running event, and we don't want event
5150
// coalescing to cause us to lose OUR running event...
5151
ForceNextEventDelivery();
5152
5153
// This while loop must exit out the bottom, there's cleanup that we need to do
5154
// when we are done. So don't call return anywhere within it.
5155
5156
#ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
5157
// It's pretty much impossible to write test cases for things like: One
5158
// thread timeout expires, I go to halt, but the process already stopped on
5159
// the function call stop breakpoint. Turning on this define will make us
5160
// not fetch the first event till after the halt. So if you run a quick
5161
// function, it will have completed, and the completion event will be
5162
// waiting, when you interrupt for halt. The expression evaluation should
5163
// still succeed.
5164
bool miss_first_event = true;
5165
#endif
5166
while (true) {
5167
// We usually want to resume the process if we get to the top of the
5168
// loop. The only exception is if we get two running events with no
5169
// intervening stop, which can happen, we will just wait for then next
5170
// stop event.
5171
LLDB_LOGF(log,
5172
"Top of while loop: do_resume: %i handle_running_event: %i "
5173
"before_first_timeout: %i.",
5174
do_resume, handle_running_event, before_first_timeout);
5175
5176
if (do_resume || handle_running_event) {
5177
// Do the initial resume and wait for the running event before going
5178
// further.
5179
5180
if (do_resume) {
5181
num_resumes++;
5182
Status resume_error = PrivateResume();
5183
if (!resume_error.Success()) {
5184
diagnostic_manager.Printf(
5185
lldb::eSeverityError,
5186
"couldn't resume inferior the %d time: \"%s\".", num_resumes,
5187
resume_error.AsCString());
5188
return_value = eExpressionSetupError;
5189
break;
5190
}
5191
}
5192
5193
got_event =
5194
listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5195
if (!got_event) {
5196
LLDB_LOGF(log,
5197
"Process::RunThreadPlan(): didn't get any event after "
5198
"resume %" PRIu32 ", exiting.",
5199
num_resumes);
5200
5201
diagnostic_manager.Printf(lldb::eSeverityError,
5202
"didn't get any event after resume %" PRIu32
5203
", exiting.",
5204
num_resumes);
5205
return_value = eExpressionSetupError;
5206
break;
5207
}
5208
5209
stop_state =
5210
Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5211
5212
if (stop_state != eStateRunning) {
5213
bool restarted = false;
5214
5215
if (stop_state == eStateStopped) {
5216
restarted = Process::ProcessEventData::GetRestartedFromEvent(
5217
event_sp.get());
5218
LLDB_LOGF(
5219
log,
5220
"Process::RunThreadPlan(): didn't get running event after "
5221
"resume %d, got %s instead (restarted: %i, do_resume: %i, "
5222
"handle_running_event: %i).",
5223
num_resumes, StateAsCString(stop_state), restarted, do_resume,
5224
handle_running_event);
5225
}
5226
5227
if (restarted) {
5228
// This is probably an overabundance of caution, I don't think I
5229
// should ever get a stopped & restarted event here. But if I do,
5230
// the best thing is to Halt and then get out of here.
5231
const bool clear_thread_plans = false;
5232
const bool use_run_lock = false;
5233
Halt(clear_thread_plans, use_run_lock);
5234
}
5235
5236
diagnostic_manager.Printf(
5237
lldb::eSeverityError,
5238
"didn't get running event after initial resume, got %s instead.",
5239
StateAsCString(stop_state));
5240
return_value = eExpressionSetupError;
5241
break;
5242
}
5243
5244
if (log)
5245
log->PutCString("Process::RunThreadPlan(): resuming succeeded.");
5246
// We need to call the function synchronously, so spin waiting for it
5247
// to return. If we get interrupted while executing, we're going to
5248
// lose our context, and won't be able to gather the result at this
5249
// point. We set the timeout AFTER the resume, since the resume takes
5250
// some time and we don't want to charge that to the timeout.
5251
} else {
5252
if (log)
5253
log->PutCString("Process::RunThreadPlan(): waiting for next event.");
5254
}
5255
5256
do_resume = true;
5257
handle_running_event = true;
5258
5259
// Now wait for the process to stop again:
5260
event_sp.reset();
5261
5262
Timeout<std::micro> timeout =
5263
GetExpressionTimeout(options, before_first_timeout);
5264
if (log) {
5265
if (timeout) {
5266
auto now = system_clock::now();
5267
LLDB_LOGF(log,
5268
"Process::RunThreadPlan(): about to wait - now is %s - "
5269
"endpoint is %s",
5270
llvm::to_string(now).c_str(),
5271
llvm::to_string(now + *timeout).c_str());
5272
} else {
5273
LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever.");
5274
}
5275
}
5276
5277
#ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
5278
// See comment above...
5279
if (miss_first_event) {
5280
std::this_thread::sleep_for(std::chrono::milliseconds(1));
5281
miss_first_event = false;
5282
got_event = false;
5283
} else
5284
#endif
5285
got_event = listener_sp->GetEvent(event_sp, timeout);
5286
5287
if (got_event) {
5288
if (event_sp) {
5289
bool keep_going = false;
5290
if (event_sp->GetType() == eBroadcastBitInterrupt) {
5291
const bool clear_thread_plans = false;
5292
const bool use_run_lock = false;
5293
Halt(clear_thread_plans, use_run_lock);
5294
return_value = eExpressionInterrupted;
5295
diagnostic_manager.PutString(lldb::eSeverityInfo,
5296
"execution halted by user interrupt.");
5297
LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by "
5298
"eBroadcastBitInterrupted, exiting.");
5299
break;
5300
} else {
5301
stop_state =
5302
Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5303
LLDB_LOGF(log,
5304
"Process::RunThreadPlan(): in while loop, got event: %s.",
5305
StateAsCString(stop_state));
5306
5307
switch (stop_state) {
5308
case lldb::eStateStopped: {
5309
if (Process::ProcessEventData::GetRestartedFromEvent(
5310
event_sp.get())) {
5311
// If we were restarted, we just need to go back up to fetch
5312
// another event.
5313
LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and "
5314
"restart, so we'll continue waiting.");
5315
keep_going = true;
5316
do_resume = false;
5317
handle_running_event = true;
5318
} else {
5319
const bool handle_interrupts = true;
5320
return_value = *HandleStoppedEvent(
5321
expr_thread_id, thread_plan_sp, thread_plan_restorer,
5322
event_sp, event_to_broadcast_sp, options,
5323
handle_interrupts);
5324
if (return_value == eExpressionThreadVanished)
5325
keep_going = false;
5326
}
5327
} break;
5328
5329
case lldb::eStateRunning:
5330
// This shouldn't really happen, but sometimes we do get two
5331
// running events without an intervening stop, and in that case
5332
// we should just go back to waiting for the stop.
5333
do_resume = false;
5334
keep_going = true;
5335
handle_running_event = false;
5336
break;
5337
5338
default:
5339
LLDB_LOGF(log,
5340
"Process::RunThreadPlan(): execution stopped with "
5341
"unexpected state: %s.",
5342
StateAsCString(stop_state));
5343
5344
if (stop_state == eStateExited)
5345
event_to_broadcast_sp = event_sp;
5346
5347
diagnostic_manager.PutString(
5348
lldb::eSeverityError,
5349
"execution stopped with unexpected state.");
5350
return_value = eExpressionInterrupted;
5351
break;
5352
}
5353
}
5354
5355
if (keep_going)
5356
continue;
5357
else
5358
break;
5359
} else {
5360
if (log)
5361
log->PutCString("Process::RunThreadPlan(): got_event was true, but "
5362
"the event pointer was null. How odd...");
5363
return_value = eExpressionInterrupted;
5364
break;
5365
}
5366
} else {
5367
// If we didn't get an event that means we've timed out... We will
5368
// interrupt the process here. Depending on what we were asked to do
5369
// we will either exit, or try with all threads running for the same
5370
// timeout.
5371
5372
if (log) {
5373
if (options.GetTryAllThreads()) {
5374
if (before_first_timeout) {
5375
LLDB_LOG(log,
5376
"Running function with one thread timeout timed out.");
5377
} else
5378
LLDB_LOG(log, "Restarting function with all threads enabled and "
5379
"timeout: {0} timed out, abandoning execution.",
5380
timeout);
5381
} else
5382
LLDB_LOG(log, "Running function with timeout: {0} timed out, "
5383
"abandoning execution.",
5384
timeout);
5385
}
5386
5387
// It is possible that between the time we issued the Halt, and we get
5388
// around to calling Halt the target could have stopped. That's fine,
5389
// Halt will figure that out and send the appropriate Stopped event.
5390
// BUT it is also possible that we stopped & restarted (e.g. hit a
5391
// signal with "stop" set to false.) In
5392
// that case, we'll get the stopped & restarted event, and we should go
5393
// back to waiting for the Halt's stopped event. That's what this
5394
// while loop does.
5395
5396
bool back_to_top = true;
5397
uint32_t try_halt_again = 0;
5398
bool do_halt = true;
5399
const uint32_t num_retries = 5;
5400
while (try_halt_again < num_retries) {
5401
Status halt_error;
5402
if (do_halt) {
5403
LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt.");
5404
const bool clear_thread_plans = false;
5405
const bool use_run_lock = false;
5406
Halt(clear_thread_plans, use_run_lock);
5407
}
5408
if (halt_error.Success()) {
5409
if (log)
5410
log->PutCString("Process::RunThreadPlan(): Halt succeeded.");
5411
5412
got_event =
5413
listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5414
5415
if (got_event) {
5416
stop_state =
5417
Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5418
if (log) {
5419
LLDB_LOGF(log,
5420
"Process::RunThreadPlan(): Stopped with event: %s",
5421
StateAsCString(stop_state));
5422
if (stop_state == lldb::eStateStopped &&
5423
Process::ProcessEventData::GetInterruptedFromEvent(
5424
event_sp.get()))
5425
log->PutCString(" Event was the Halt interruption event.");
5426
}
5427
5428
if (stop_state == lldb::eStateStopped) {
5429
if (Process::ProcessEventData::GetRestartedFromEvent(
5430
event_sp.get())) {
5431
if (log)
5432
log->PutCString("Process::RunThreadPlan(): Went to halt "
5433
"but got a restarted event, there must be "
5434
"an un-restarted stopped event so try "
5435
"again... "
5436
"Exiting wait loop.");
5437
try_halt_again++;
5438
do_halt = false;
5439
continue;
5440
}
5441
5442
// Between the time we initiated the Halt and the time we
5443
// delivered it, the process could have already finished its
5444
// job. Check that here:
5445
const bool handle_interrupts = false;
5446
if (auto result = HandleStoppedEvent(
5447
expr_thread_id, thread_plan_sp, thread_plan_restorer,
5448
event_sp, event_to_broadcast_sp, options,
5449
handle_interrupts)) {
5450
return_value = *result;
5451
back_to_top = false;
5452
break;
5453
}
5454
5455
if (!options.GetTryAllThreads()) {
5456
if (log)
5457
log->PutCString("Process::RunThreadPlan(): try_all_threads "
5458
"was false, we stopped so now we're "
5459
"quitting.");
5460
return_value = eExpressionInterrupted;
5461
back_to_top = false;
5462
break;
5463
}
5464
5465
if (before_first_timeout) {
5466
// Set all the other threads to run, and return to the top of
5467
// the loop, which will continue;
5468
before_first_timeout = false;
5469
thread_plan_sp->SetStopOthers(false);
5470
if (log)
5471
log->PutCString(
5472
"Process::RunThreadPlan(): about to resume.");
5473
5474
back_to_top = true;
5475
break;
5476
} else {
5477
// Running all threads failed, so return Interrupted.
5478
if (log)
5479
log->PutCString("Process::RunThreadPlan(): running all "
5480
"threads timed out.");
5481
return_value = eExpressionInterrupted;
5482
back_to_top = false;
5483
break;
5484
}
5485
}
5486
} else {
5487
if (log)
5488
log->PutCString("Process::RunThreadPlan(): halt said it "
5489
"succeeded, but I got no event. "
5490
"I'm getting out of here passing Interrupted.");
5491
return_value = eExpressionInterrupted;
5492
back_to_top = false;
5493
break;
5494
}
5495
} else {
5496
try_halt_again++;
5497
continue;
5498
}
5499
}
5500
5501
if (!back_to_top || try_halt_again > num_retries)
5502
break;
5503
else
5504
continue;
5505
}
5506
} // END WAIT LOOP
5507
5508
// If we had to start up a temporary private state thread to run this
5509
// thread plan, shut it down now.
5510
if (backup_private_state_thread.IsJoinable()) {
5511
StopPrivateStateThread();
5512
Status error;
5513
m_private_state_thread = backup_private_state_thread;
5514
if (stopper_base_plan_sp) {
5515
thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
5516
}
5517
if (old_state != eStateInvalid)
5518
m_public_state.SetValueNoLock(old_state);
5519
}
5520
5521
// If our thread went away on us, we need to get out of here without
5522
// doing any more work. We don't have to clean up the thread plan, that
5523
// will have happened when the Thread was destroyed.
5524
if (return_value == eExpressionThreadVanished) {
5525
return return_value;
5526
}
5527
5528
if (return_value != eExpressionCompleted && log) {
5529
// Print a backtrace into the log so we can figure out where we are:
5530
StreamString s;
5531
s.PutCString("Thread state after unsuccessful completion: \n");
5532
thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX);
5533
log->PutString(s.GetString());
5534
}
5535
// Restore the thread state if we are going to discard the plan execution.
5536
// There are three cases where this could happen: 1) The execution
5537
// successfully completed 2) We hit a breakpoint, and ignore_breakpoints
5538
// was true 3) We got some other error, and discard_on_error was true
5539
bool should_unwind = (return_value == eExpressionInterrupted &&
5540
options.DoesUnwindOnError()) ||
5541
(return_value == eExpressionHitBreakpoint &&
5542
options.DoesIgnoreBreakpoints());
5543
5544
if (return_value == eExpressionCompleted || should_unwind) {
5545
thread_plan_sp->RestoreThreadState();
5546
}
5547
5548
// Now do some processing on the results of the run:
5549
if (return_value == eExpressionInterrupted ||
5550
return_value == eExpressionHitBreakpoint) {
5551
if (log) {
5552
StreamString s;
5553
if (event_sp)
5554
event_sp->Dump(&s);
5555
else {
5556
log->PutCString("Process::RunThreadPlan(): Stop event that "
5557
"interrupted us is NULL.");
5558
}
5559
5560
StreamString ts;
5561
5562
const char *event_explanation = nullptr;
5563
5564
do {
5565
if (!event_sp) {
5566
event_explanation = "<no event>";
5567
break;
5568
} else if (event_sp->GetType() == eBroadcastBitInterrupt) {
5569
event_explanation = "<user interrupt>";
5570
break;
5571
} else {
5572
const Process::ProcessEventData *event_data =
5573
Process::ProcessEventData::GetEventDataFromEvent(
5574
event_sp.get());
5575
5576
if (!event_data) {
5577
event_explanation = "<no event data>";
5578
break;
5579
}
5580
5581
Process *process = event_data->GetProcessSP().get();
5582
5583
if (!process) {
5584
event_explanation = "<no process>";
5585
break;
5586
}
5587
5588
ThreadList &thread_list = process->GetThreadList();
5589
5590
uint32_t num_threads = thread_list.GetSize();
5591
uint32_t thread_index;
5592
5593
ts.Printf("<%u threads> ", num_threads);
5594
5595
for (thread_index = 0; thread_index < num_threads; ++thread_index) {
5596
Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
5597
5598
if (!thread) {
5599
ts.Printf("<?> ");
5600
continue;
5601
}
5602
5603
ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
5604
RegisterContext *register_context =
5605
thread->GetRegisterContext().get();
5606
5607
if (register_context)
5608
ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
5609
else
5610
ts.Printf("[ip unknown] ");
5611
5612
// Show the private stop info here, the public stop info will be
5613
// from the last natural stop.
5614
lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo();
5615
if (stop_info_sp) {
5616
const char *stop_desc = stop_info_sp->GetDescription();
5617
if (stop_desc)
5618
ts.PutCString(stop_desc);
5619
}
5620
ts.Printf(">");
5621
}
5622
5623
event_explanation = ts.GetData();
5624
}
5625
} while (false);
5626
5627
if (event_explanation)
5628
LLDB_LOGF(log,
5629
"Process::RunThreadPlan(): execution interrupted: %s %s",
5630
s.GetData(), event_explanation);
5631
else
5632
LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s",
5633
s.GetData());
5634
}
5635
5636
if (should_unwind) {
5637
LLDB_LOGF(log,
5638
"Process::RunThreadPlan: ExecutionInterrupted - "
5639
"discarding thread plans up to %p.",
5640
static_cast<void *>(thread_plan_sp.get()));
5641
thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5642
} else {
5643
LLDB_LOGF(log,
5644
"Process::RunThreadPlan: ExecutionInterrupted - for "
5645
"plan: %p not discarding.",
5646
static_cast<void *>(thread_plan_sp.get()));
5647
}
5648
} else if (return_value == eExpressionSetupError) {
5649
if (log)
5650
log->PutCString("Process::RunThreadPlan(): execution set up error.");
5651
5652
if (options.DoesUnwindOnError()) {
5653
thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5654
}
5655
} else {
5656
if (thread->IsThreadPlanDone(thread_plan_sp.get())) {
5657
if (log)
5658
log->PutCString("Process::RunThreadPlan(): thread plan is done");
5659
return_value = eExpressionCompleted;
5660
} else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) {
5661
if (log)
5662
log->PutCString(
5663
"Process::RunThreadPlan(): thread plan was discarded");
5664
return_value = eExpressionDiscarded;
5665
} else {
5666
if (log)
5667
log->PutCString(
5668
"Process::RunThreadPlan(): thread plan stopped in mid course");
5669
if (options.DoesUnwindOnError() && thread_plan_sp) {
5670
if (log)
5671
log->PutCString("Process::RunThreadPlan(): discarding thread plan "
5672
"'cause unwind_on_error is set.");
5673
thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5674
}
5675
}
5676
}
5677
5678
// Thread we ran the function in may have gone away because we ran the
5679
// target Check that it's still there, and if it is put it back in the
5680
// context. Also restore the frame in the context if it is still present.
5681
thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
5682
if (thread) {
5683
exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id));
5684
}
5685
5686
// Also restore the current process'es selected frame & thread, since this
5687
// function calling may be done behind the user's back.
5688
5689
if (selected_tid != LLDB_INVALID_THREAD_ID) {
5690
if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) &&
5691
selected_stack_id.IsValid()) {
5692
// We were able to restore the selected thread, now restore the frame:
5693
std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5694
StackFrameSP old_frame_sp =
5695
GetThreadList().GetSelectedThread()->GetFrameWithStackID(
5696
selected_stack_id);
5697
if (old_frame_sp)
5698
GetThreadList().GetSelectedThread()->SetSelectedFrame(
5699
old_frame_sp.get());
5700
}
5701
}
5702
}
5703
5704
// If the process exited during the run of the thread plan, notify everyone.
5705
5706
if (event_to_broadcast_sp) {
5707
if (log)
5708
log->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
5709
BroadcastEvent(event_to_broadcast_sp);
5710
}
5711
5712
return return_value;
5713
}
5714
5715
const char *Process::ExecutionResultAsCString(ExpressionResults result) {
5716
const char *result_name = "<unknown>";
5717
5718
switch (result) {
5719
case eExpressionCompleted:
5720
result_name = "eExpressionCompleted";
5721
break;
5722
case eExpressionDiscarded:
5723
result_name = "eExpressionDiscarded";
5724
break;
5725
case eExpressionInterrupted:
5726
result_name = "eExpressionInterrupted";
5727
break;
5728
case eExpressionHitBreakpoint:
5729
result_name = "eExpressionHitBreakpoint";
5730
break;
5731
case eExpressionSetupError:
5732
result_name = "eExpressionSetupError";
5733
break;
5734
case eExpressionParseError:
5735
result_name = "eExpressionParseError";
5736
break;
5737
case eExpressionResultUnavailable:
5738
result_name = "eExpressionResultUnavailable";
5739
break;
5740
case eExpressionTimedOut:
5741
result_name = "eExpressionTimedOut";
5742
break;
5743
case eExpressionStoppedForDebug:
5744
result_name = "eExpressionStoppedForDebug";
5745
break;
5746
case eExpressionThreadVanished:
5747
result_name = "eExpressionThreadVanished";
5748
}
5749
return result_name;
5750
}
5751
5752
void Process::GetStatus(Stream &strm) {
5753
const StateType state = GetState();
5754
if (StateIsStoppedState(state, false)) {
5755
if (state == eStateExited) {
5756
int exit_status = GetExitStatus();
5757
const char *exit_description = GetExitDescription();
5758
strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n",
5759
GetID(), exit_status, exit_status,
5760
exit_description ? exit_description : "");
5761
} else {
5762
if (state == eStateConnected)
5763
strm.Printf("Connected to remote target.\n");
5764
else
5765
strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state));
5766
}
5767
} else {
5768
strm.Printf("Process %" PRIu64 " is running.\n", GetID());
5769
}
5770
}
5771
5772
size_t Process::GetThreadStatus(Stream &strm,
5773
bool only_threads_with_stop_reason,
5774
uint32_t start_frame, uint32_t num_frames,
5775
uint32_t num_frames_with_source,
5776
bool stop_format) {
5777
size_t num_thread_infos_dumped = 0;
5778
5779
// You can't hold the thread list lock while calling Thread::GetStatus. That
5780
// very well might run code (e.g. if we need it to get return values or
5781
// arguments.) For that to work the process has to be able to acquire it.
5782
// So instead copy the thread ID's, and look them up one by one:
5783
5784
uint32_t num_threads;
5785
std::vector<lldb::tid_t> thread_id_array;
5786
// Scope for thread list locker;
5787
{
5788
std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5789
ThreadList &curr_thread_list = GetThreadList();
5790
num_threads = curr_thread_list.GetSize();
5791
uint32_t idx;
5792
thread_id_array.resize(num_threads);
5793
for (idx = 0; idx < num_threads; ++idx)
5794
thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID();
5795
}
5796
5797
for (uint32_t i = 0; i < num_threads; i++) {
5798
ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i]));
5799
if (thread_sp) {
5800
if (only_threads_with_stop_reason) {
5801
StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
5802
if (!stop_info_sp || !stop_info_sp->IsValid())
5803
continue;
5804
}
5805
thread_sp->GetStatus(strm, start_frame, num_frames,
5806
num_frames_with_source,
5807
stop_format);
5808
++num_thread_infos_dumped;
5809
} else {
5810
Log *log = GetLog(LLDBLog::Process);
5811
LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64
5812
" vanished while running Thread::GetStatus.");
5813
}
5814
}
5815
return num_thread_infos_dumped;
5816
}
5817
5818
void Process::AddInvalidMemoryRegion(const LoadRange &region) {
5819
m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize());
5820
}
5821
5822
bool Process::RemoveInvalidMemoryRange(const LoadRange &region) {
5823
return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(),
5824
region.GetByteSize());
5825
}
5826
5827
void Process::AddPreResumeAction(PreResumeActionCallback callback,
5828
void *baton) {
5829
m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton));
5830
}
5831
5832
bool Process::RunPreResumeActions() {
5833
bool result = true;
5834
while (!m_pre_resume_actions.empty()) {
5835
struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back();
5836
m_pre_resume_actions.pop_back();
5837
bool this_result = action.callback(action.baton);
5838
if (result)
5839
result = this_result;
5840
}
5841
return result;
5842
}
5843
5844
void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); }
5845
5846
void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton)
5847
{
5848
PreResumeCallbackAndBaton element(callback, baton);
5849
auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element);
5850
if (found_iter != m_pre_resume_actions.end())
5851
{
5852
m_pre_resume_actions.erase(found_iter);
5853
}
5854
}
5855
5856
ProcessRunLock &Process::GetRunLock() {
5857
if (m_private_state_thread.EqualsThread(Host::GetCurrentThread()))
5858
return m_private_run_lock;
5859
else
5860
return m_public_run_lock;
5861
}
5862
5863
bool Process::CurrentThreadIsPrivateStateThread()
5864
{
5865
return m_private_state_thread.EqualsThread(Host::GetCurrentThread());
5866
}
5867
5868
5869
void Process::Flush() {
5870
m_thread_list.Flush();
5871
m_extended_thread_list.Flush();
5872
m_extended_thread_stop_id = 0;
5873
m_queue_list.Clear();
5874
m_queue_list_stop_id = 0;
5875
}
5876
5877
lldb::addr_t Process::GetCodeAddressMask() {
5878
if (uint32_t num_bits_setting = GetVirtualAddressableBits())
5879
return AddressableBits::AddressableBitToMask(num_bits_setting);
5880
5881
return m_code_address_mask;
5882
}
5883
5884
lldb::addr_t Process::GetDataAddressMask() {
5885
if (uint32_t num_bits_setting = GetVirtualAddressableBits())
5886
return AddressableBits::AddressableBitToMask(num_bits_setting);
5887
5888
return m_data_address_mask;
5889
}
5890
5891
lldb::addr_t Process::GetHighmemCodeAddressMask() {
5892
if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits())
5893
return AddressableBits::AddressableBitToMask(num_bits_setting);
5894
5895
if (m_highmem_code_address_mask != LLDB_INVALID_ADDRESS_MASK)
5896
return m_highmem_code_address_mask;
5897
return GetCodeAddressMask();
5898
}
5899
5900
lldb::addr_t Process::GetHighmemDataAddressMask() {
5901
if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits())
5902
return AddressableBits::AddressableBitToMask(num_bits_setting);
5903
5904
if (m_highmem_data_address_mask != LLDB_INVALID_ADDRESS_MASK)
5905
return m_highmem_data_address_mask;
5906
return GetDataAddressMask();
5907
}
5908
5909
void Process::SetCodeAddressMask(lldb::addr_t code_address_mask) {
5910
LLDB_LOG(GetLog(LLDBLog::Process),
5911
"Setting Process code address mask to {0:x}", code_address_mask);
5912
m_code_address_mask = code_address_mask;
5913
}
5914
5915
void Process::SetDataAddressMask(lldb::addr_t data_address_mask) {
5916
LLDB_LOG(GetLog(LLDBLog::Process),
5917
"Setting Process data address mask to {0:x}", data_address_mask);
5918
m_data_address_mask = data_address_mask;
5919
}
5920
5921
void Process::SetHighmemCodeAddressMask(lldb::addr_t code_address_mask) {
5922
LLDB_LOG(GetLog(LLDBLog::Process),
5923
"Setting Process highmem code address mask to {0:x}",
5924
code_address_mask);
5925
m_highmem_code_address_mask = code_address_mask;
5926
}
5927
5928
void Process::SetHighmemDataAddressMask(lldb::addr_t data_address_mask) {
5929
LLDB_LOG(GetLog(LLDBLog::Process),
5930
"Setting Process highmem data address mask to {0:x}",
5931
data_address_mask);
5932
m_highmem_data_address_mask = data_address_mask;
5933
}
5934
5935
addr_t Process::FixCodeAddress(addr_t addr) {
5936
if (ABISP abi_sp = GetABI())
5937
addr = abi_sp->FixCodeAddress(addr);
5938
return addr;
5939
}
5940
5941
addr_t Process::FixDataAddress(addr_t addr) {
5942
if (ABISP abi_sp = GetABI())
5943
addr = abi_sp->FixDataAddress(addr);
5944
return addr;
5945
}
5946
5947
addr_t Process::FixAnyAddress(addr_t addr) {
5948
if (ABISP abi_sp = GetABI())
5949
addr = abi_sp->FixAnyAddress(addr);
5950
return addr;
5951
}
5952
5953
void Process::DidExec() {
5954
Log *log = GetLog(LLDBLog::Process);
5955
LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
5956
5957
Target &target = GetTarget();
5958
target.CleanupProcess();
5959
target.ClearModules(false);
5960
m_dynamic_checkers_up.reset();
5961
m_abi_sp.reset();
5962
m_system_runtime_up.reset();
5963
m_os_up.reset();
5964
m_dyld_up.reset();
5965
m_jit_loaders_up.reset();
5966
m_image_tokens.clear();
5967
// After an exec, the inferior is a new process and these memory regions are
5968
// no longer allocated.
5969
m_allocated_memory_cache.Clear(/*deallocte_memory=*/false);
5970
{
5971
std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
5972
m_language_runtimes.clear();
5973
}
5974
m_instrumentation_runtimes.clear();
5975
m_thread_list.DiscardThreadPlans();
5976
m_memory_cache.Clear(true);
5977
DoDidExec();
5978
CompleteAttach();
5979
// Flush the process (threads and all stack frames) after running
5980
// CompleteAttach() in case the dynamic loader loaded things in new
5981
// locations.
5982
Flush();
5983
5984
// After we figure out what was loaded/unloaded in CompleteAttach, we need to
5985
// let the target know so it can do any cleanup it needs to.
5986
target.DidExec();
5987
}
5988
5989
addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) {
5990
if (address == nullptr) {
5991
error.SetErrorString("Invalid address argument");
5992
return LLDB_INVALID_ADDRESS;
5993
}
5994
5995
addr_t function_addr = LLDB_INVALID_ADDRESS;
5996
5997
addr_t addr = address->GetLoadAddress(&GetTarget());
5998
std::map<addr_t, addr_t>::const_iterator iter =
5999
m_resolved_indirect_addresses.find(addr);
6000
if (iter != m_resolved_indirect_addresses.end()) {
6001
function_addr = (*iter).second;
6002
} else {
6003
if (!CallVoidArgVoidPtrReturn(address, function_addr)) {
6004
Symbol *symbol = address->CalculateSymbolContextSymbol();
6005
error.SetErrorStringWithFormat(
6006
"Unable to call resolver for indirect function %s",
6007
symbol ? symbol->GetName().AsCString() : "<UNKNOWN>");
6008
function_addr = LLDB_INVALID_ADDRESS;
6009
} else {
6010
if (ABISP abi_sp = GetABI())
6011
function_addr = abi_sp->FixCodeAddress(function_addr);
6012
m_resolved_indirect_addresses.insert(
6013
std::pair<addr_t, addr_t>(addr, function_addr));
6014
}
6015
}
6016
return function_addr;
6017
}
6018
6019
void Process::ModulesDidLoad(ModuleList &module_list) {
6020
// Inform the system runtime of the modified modules.
6021
SystemRuntime *sys_runtime = GetSystemRuntime();
6022
if (sys_runtime)
6023
sys_runtime->ModulesDidLoad(module_list);
6024
6025
GetJITLoaders().ModulesDidLoad(module_list);
6026
6027
// Give the instrumentation runtimes a chance to be created before informing
6028
// them of the modified modules.
6029
InstrumentationRuntime::ModulesDidLoad(module_list, this,
6030
m_instrumentation_runtimes);
6031
for (auto &runtime : m_instrumentation_runtimes)
6032
runtime.second->ModulesDidLoad(module_list);
6033
6034
// Give the language runtimes a chance to be created before informing them of
6035
// the modified modules.
6036
for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
6037
if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
6038
runtime->ModulesDidLoad(module_list);
6039
}
6040
6041
// If we don't have an operating system plug-in, try to load one since
6042
// loading shared libraries might cause a new one to try and load
6043
if (!m_os_up)
6044
LoadOperatingSystemPlugin(false);
6045
6046
// Inform the structured-data plugins of the modified modules.
6047
for (auto &pair : m_structured_data_plugin_map) {
6048
if (pair.second)
6049
pair.second->ModulesDidLoad(*this, module_list);
6050
}
6051
}
6052
6053
void Process::PrintWarningOptimization(const SymbolContext &sc) {
6054
if (!GetWarningsOptimization())
6055
return;
6056
if (!sc.module_sp || !sc.function || !sc.function->GetIsOptimized())
6057
return;
6058
sc.module_sp->ReportWarningOptimization(GetTarget().GetDebugger().GetID());
6059
}
6060
6061
void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) {
6062
if (!GetWarningsUnsupportedLanguage())
6063
return;
6064
if (!sc.module_sp)
6065
return;
6066
LanguageType language = sc.GetLanguage();
6067
if (language == eLanguageTypeUnknown ||
6068
language == lldb::eLanguageTypeAssembly ||
6069
language == lldb::eLanguageTypeMipsAssembler)
6070
return;
6071
LanguageSet plugins =
6072
PluginManager::GetAllTypeSystemSupportedLanguagesForTypes();
6073
if (plugins[language])
6074
return;
6075
sc.module_sp->ReportWarningUnsupportedLanguage(
6076
language, GetTarget().GetDebugger().GetID());
6077
}
6078
6079
bool Process::GetProcessInfo(ProcessInstanceInfo &info) {
6080
info.Clear();
6081
6082
PlatformSP platform_sp = GetTarget().GetPlatform();
6083
if (!platform_sp)
6084
return false;
6085
6086
return platform_sp->GetProcessInfo(GetID(), info);
6087
}
6088
6089
ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) {
6090
ThreadCollectionSP threads;
6091
6092
const MemoryHistorySP &memory_history =
6093
MemoryHistory::FindPlugin(shared_from_this());
6094
6095
if (!memory_history) {
6096
return threads;
6097
}
6098
6099
threads = std::make_shared<ThreadCollection>(
6100
memory_history->GetHistoryThreads(addr));
6101
6102
return threads;
6103
}
6104
6105
InstrumentationRuntimeSP
6106
Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) {
6107
InstrumentationRuntimeCollection::iterator pos;
6108
pos = m_instrumentation_runtimes.find(type);
6109
if (pos == m_instrumentation_runtimes.end()) {
6110
return InstrumentationRuntimeSP();
6111
} else
6112
return (*pos).second;
6113
}
6114
6115
bool Process::GetModuleSpec(const FileSpec &module_file_spec,
6116
const ArchSpec &arch, ModuleSpec &module_spec) {
6117
module_spec.Clear();
6118
return false;
6119
}
6120
6121
size_t Process::AddImageToken(lldb::addr_t image_ptr) {
6122
m_image_tokens.push_back(image_ptr);
6123
return m_image_tokens.size() - 1;
6124
}
6125
6126
lldb::addr_t Process::GetImagePtrFromToken(size_t token) const {
6127
if (token < m_image_tokens.size())
6128
return m_image_tokens[token];
6129
return LLDB_INVALID_IMAGE_TOKEN;
6130
}
6131
6132
void Process::ResetImageToken(size_t token) {
6133
if (token < m_image_tokens.size())
6134
m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN;
6135
}
6136
6137
Address
6138
Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
6139
AddressRange range_bounds) {
6140
Target &target = GetTarget();
6141
DisassemblerSP disassembler_sp;
6142
InstructionList *insn_list = nullptr;
6143
6144
Address retval = default_stop_addr;
6145
6146
if (!target.GetUseFastStepping())
6147
return retval;
6148
if (!default_stop_addr.IsValid())
6149
return retval;
6150
6151
const char *plugin_name = nullptr;
6152
const char *flavor = nullptr;
6153
disassembler_sp = Disassembler::DisassembleRange(
6154
target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds);
6155
if (disassembler_sp)
6156
insn_list = &disassembler_sp->GetInstructionList();
6157
6158
if (insn_list == nullptr) {
6159
return retval;
6160
}
6161
6162
size_t insn_offset =
6163
insn_list->GetIndexOfInstructionAtAddress(default_stop_addr);
6164
if (insn_offset == UINT32_MAX) {
6165
return retval;
6166
}
6167
6168
uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction(
6169
insn_offset, false /* ignore_calls*/, nullptr);
6170
if (branch_index == UINT32_MAX) {
6171
return retval;
6172
}
6173
6174
if (branch_index > insn_offset) {
6175
Address next_branch_insn_address =
6176
insn_list->GetInstructionAtIndex(branch_index)->GetAddress();
6177
if (next_branch_insn_address.IsValid() &&
6178
range_bounds.ContainsFileAddress(next_branch_insn_address)) {
6179
retval = next_branch_insn_address;
6180
}
6181
}
6182
6183
return retval;
6184
}
6185
6186
Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr,
6187
MemoryRegionInfo &range_info) {
6188
if (const lldb::ABISP &abi = GetABI())
6189
load_addr = abi->FixAnyAddress(load_addr);
6190
return DoGetMemoryRegionInfo(load_addr, range_info);
6191
}
6192
6193
Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos &region_list) {
6194
Status error;
6195
6196
lldb::addr_t range_end = 0;
6197
const lldb::ABISP &abi = GetABI();
6198
6199
region_list.clear();
6200
do {
6201
lldb_private::MemoryRegionInfo region_info;
6202
error = GetMemoryRegionInfo(range_end, region_info);
6203
// GetMemoryRegionInfo should only return an error if it is unimplemented.
6204
if (error.Fail()) {
6205
region_list.clear();
6206
break;
6207
}
6208
6209
// We only check the end address, not start and end, because we assume that
6210
// the start will not have non-address bits until the first unmappable
6211
// region. We will have exited the loop by that point because the previous
6212
// region, the last mappable region, will have non-address bits in its end
6213
// address.
6214
range_end = region_info.GetRange().GetRangeEnd();
6215
if (region_info.GetMapped() == MemoryRegionInfo::eYes) {
6216
region_list.push_back(std::move(region_info));
6217
}
6218
} while (
6219
// For a process with no non-address bits, all address bits
6220
// set means the end of memory.
6221
range_end != LLDB_INVALID_ADDRESS &&
6222
// If we have non-address bits and some are set then the end
6223
// is at or beyond the end of mappable memory.
6224
!(abi && (abi->FixAnyAddress(range_end) != range_end)));
6225
6226
return error;
6227
}
6228
6229
Status
6230
Process::ConfigureStructuredData(llvm::StringRef type_name,
6231
const StructuredData::ObjectSP &config_sp) {
6232
// If you get this, the Process-derived class needs to implement a method to
6233
// enable an already-reported asynchronous structured data feature. See
6234
// ProcessGDBRemote for an example implementation over gdb-remote.
6235
return Status("unimplemented");
6236
}
6237
6238
void Process::MapSupportedStructuredDataPlugins(
6239
const StructuredData::Array &supported_type_names) {
6240
Log *log = GetLog(LLDBLog::Process);
6241
6242
// Bail out early if there are no type names to map.
6243
if (supported_type_names.GetSize() == 0) {
6244
LLDB_LOG(log, "no structured data types supported");
6245
return;
6246
}
6247
6248
// These StringRefs are backed by the input parameter.
6249
std::set<llvm::StringRef> type_names;
6250
6251
LLDB_LOG(log,
6252
"the process supports the following async structured data types:");
6253
6254
supported_type_names.ForEach(
6255
[&type_names, &log](StructuredData::Object *object) {
6256
// There shouldn't be null objects in the array.
6257
if (!object)
6258
return false;
6259
6260
// All type names should be strings.
6261
const llvm::StringRef type_name = object->GetStringValue();
6262
if (type_name.empty())
6263
return false;
6264
6265
type_names.insert(type_name);
6266
LLDB_LOG(log, "- {0}", type_name);
6267
return true;
6268
});
6269
6270
// For each StructuredDataPlugin, if the plugin handles any of the types in
6271
// the supported_type_names, map that type name to that plugin. Stop when
6272
// we've consumed all the type names.
6273
// FIXME: should we return an error if there are type names nobody
6274
// supports?
6275
for (uint32_t plugin_index = 0; !type_names.empty(); plugin_index++) {
6276
auto create_instance =
6277
PluginManager::GetStructuredDataPluginCreateCallbackAtIndex(
6278
plugin_index);
6279
if (!create_instance)
6280
break;
6281
6282
// Create the plugin.
6283
StructuredDataPluginSP plugin_sp = (*create_instance)(*this);
6284
if (!plugin_sp) {
6285
// This plugin doesn't think it can work with the process. Move on to the
6286
// next.
6287
continue;
6288
}
6289
6290
// For any of the remaining type names, map any that this plugin supports.
6291
std::vector<llvm::StringRef> names_to_remove;
6292
for (llvm::StringRef type_name : type_names) {
6293
if (plugin_sp->SupportsStructuredDataType(type_name)) {
6294
m_structured_data_plugin_map.insert(
6295
std::make_pair(type_name, plugin_sp));
6296
names_to_remove.push_back(type_name);
6297
LLDB_LOG(log, "using plugin {0} for type name {1}",
6298
plugin_sp->GetPluginName(), type_name);
6299
}
6300
}
6301
6302
// Remove the type names that were consumed by this plugin.
6303
for (llvm::StringRef type_name : names_to_remove)
6304
type_names.erase(type_name);
6305
}
6306
}
6307
6308
bool Process::RouteAsyncStructuredData(
6309
const StructuredData::ObjectSP object_sp) {
6310
// Nothing to do if there's no data.
6311
if (!object_sp)
6312
return false;
6313
6314
// The contract is this must be a dictionary, so we can look up the routing
6315
// key via the top-level 'type' string value within the dictionary.
6316
StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary();
6317
if (!dictionary)
6318
return false;
6319
6320
// Grab the async structured type name (i.e. the feature/plugin name).
6321
llvm::StringRef type_name;
6322
if (!dictionary->GetValueForKeyAsString("type", type_name))
6323
return false;
6324
6325
// Check if there's a plugin registered for this type name.
6326
auto find_it = m_structured_data_plugin_map.find(type_name);
6327
if (find_it == m_structured_data_plugin_map.end()) {
6328
// We don't have a mapping for this structured data type.
6329
return false;
6330
}
6331
6332
// Route the structured data to the plugin.
6333
find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp);
6334
return true;
6335
}
6336
6337
Status Process::UpdateAutomaticSignalFiltering() {
6338
// Default implementation does nothign.
6339
// No automatic signal filtering to speak of.
6340
return Status();
6341
}
6342
6343
UtilityFunction *Process::GetLoadImageUtilityFunction(
6344
Platform *platform,
6345
llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) {
6346
if (platform != GetTarget().GetPlatform().get())
6347
return nullptr;
6348
llvm::call_once(m_dlopen_utility_func_flag_once,
6349
[&] { m_dlopen_utility_func_up = factory(); });
6350
return m_dlopen_utility_func_up.get();
6351
}
6352
6353
llvm::Expected<TraceSupportedResponse> Process::TraceSupported() {
6354
if (!IsLiveDebugSession())
6355
return llvm::createStringError(llvm::inconvertibleErrorCode(),
6356
"Can't trace a non-live process.");
6357
return llvm::make_error<UnimplementedError>();
6358
}
6359
6360
bool Process::CallVoidArgVoidPtrReturn(const Address *address,
6361
addr_t &returned_func,
6362
bool trap_exceptions) {
6363
Thread *thread = GetThreadList().GetExpressionExecutionThread().get();
6364
if (thread == nullptr || address == nullptr)
6365
return false;
6366
6367
EvaluateExpressionOptions options;
6368
options.SetStopOthers(true);
6369
options.SetUnwindOnError(true);
6370
options.SetIgnoreBreakpoints(true);
6371
options.SetTryAllThreads(true);
6372
options.SetDebug(false);
6373
options.SetTimeout(GetUtilityExpressionTimeout());
6374
options.SetTrapExceptions(trap_exceptions);
6375
6376
auto type_system_or_err =
6377
GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC);
6378
if (!type_system_or_err) {
6379
llvm::consumeError(type_system_or_err.takeError());
6380
return false;
6381
}
6382
auto ts = *type_system_or_err;
6383
if (!ts)
6384
return false;
6385
CompilerType void_ptr_type =
6386
ts->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType();
6387
lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction(
6388
*thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options));
6389
if (call_plan_sp) {
6390
DiagnosticManager diagnostics;
6391
6392
StackFrame *frame = thread->GetStackFrameAtIndex(0).get();
6393
if (frame) {
6394
ExecutionContext exe_ctx;
6395
frame->CalculateExecutionContext(exe_ctx);
6396
ExpressionResults result =
6397
RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics);
6398
if (result == eExpressionCompleted) {
6399
returned_func =
6400
call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned(
6401
LLDB_INVALID_ADDRESS);
6402
6403
if (GetAddressByteSize() == 4) {
6404
if (returned_func == UINT32_MAX)
6405
return false;
6406
} else if (GetAddressByteSize() == 8) {
6407
if (returned_func == UINT64_MAX)
6408
return false;
6409
}
6410
return true;
6411
}
6412
}
6413
}
6414
6415
return false;
6416
}
6417
6418
llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() {
6419
Architecture *arch = GetTarget().GetArchitecturePlugin();
6420
const MemoryTagManager *tag_manager =
6421
arch ? arch->GetMemoryTagManager() : nullptr;
6422
if (!arch || !tag_manager) {
6423
return llvm::createStringError(
6424
llvm::inconvertibleErrorCode(),
6425
"This architecture does not support memory tagging");
6426
}
6427
6428
if (!SupportsMemoryTagging()) {
6429
return llvm::createStringError(llvm::inconvertibleErrorCode(),
6430
"Process does not support memory tagging");
6431
}
6432
6433
return tag_manager;
6434
}
6435
6436
llvm::Expected<std::vector<lldb::addr_t>>
6437
Process::ReadMemoryTags(lldb::addr_t addr, size_t len) {
6438
llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6439
GetMemoryTagManager();
6440
if (!tag_manager_or_err)
6441
return tag_manager_or_err.takeError();
6442
6443
const MemoryTagManager *tag_manager = *tag_manager_or_err;
6444
llvm::Expected<std::vector<uint8_t>> tag_data =
6445
DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType());
6446
if (!tag_data)
6447
return tag_data.takeError();
6448
6449
return tag_manager->UnpackTagsData(*tag_data,
6450
len / tag_manager->GetGranuleSize());
6451
}
6452
6453
Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len,
6454
const std::vector<lldb::addr_t> &tags) {
6455
llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6456
GetMemoryTagManager();
6457
if (!tag_manager_or_err)
6458
return Status(tag_manager_or_err.takeError());
6459
6460
const MemoryTagManager *tag_manager = *tag_manager_or_err;
6461
llvm::Expected<std::vector<uint8_t>> packed_tags =
6462
tag_manager->PackTags(tags);
6463
if (!packed_tags) {
6464
return Status(packed_tags.takeError());
6465
}
6466
6467
return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(),
6468
*packed_tags);
6469
}
6470
6471
// Create a CoreFileMemoryRange from a MemoryRegionInfo
6472
static Process::CoreFileMemoryRange
6473
CreateCoreFileMemoryRange(const MemoryRegionInfo &region) {
6474
const addr_t addr = region.GetRange().GetRangeBase();
6475
llvm::AddressRange range(addr, addr + region.GetRange().GetByteSize());
6476
return {range, region.GetLLDBPermissions()};
6477
}
6478
6479
// Add dirty pages to the core file ranges and return true if dirty pages
6480
// were added. Return false if the dirty page information is not valid or in
6481
// the region.
6482
static bool AddDirtyPages(const MemoryRegionInfo &region,
6483
Process::CoreFileMemoryRanges &ranges) {
6484
const auto &dirty_page_list = region.GetDirtyPageList();
6485
if (!dirty_page_list)
6486
return false;
6487
const uint32_t lldb_permissions = region.GetLLDBPermissions();
6488
const addr_t page_size = region.GetPageSize();
6489
if (page_size == 0)
6490
return false;
6491
llvm::AddressRange range(0, 0);
6492
for (addr_t page_addr : *dirty_page_list) {
6493
if (range.empty()) {
6494
// No range yet, initialize the range with the current dirty page.
6495
range = llvm::AddressRange(page_addr, page_addr + page_size);
6496
} else {
6497
if (range.end() == page_addr) {
6498
// Combine consective ranges.
6499
range = llvm::AddressRange(range.start(), page_addr + page_size);
6500
} else {
6501
// Add previous contiguous range and init the new range with the
6502
// current dirty page.
6503
ranges.push_back({range, lldb_permissions});
6504
range = llvm::AddressRange(page_addr, page_addr + page_size);
6505
}
6506
}
6507
}
6508
// The last range
6509
if (!range.empty())
6510
ranges.push_back({range, lldb_permissions});
6511
return true;
6512
}
6513
6514
// Given a region, add the region to \a ranges.
6515
//
6516
// Only add the region if it isn't empty and if it has some permissions.
6517
// If \a try_dirty_pages is true, then try to add only the dirty pages for a
6518
// given region. If the region has dirty page information, only dirty pages
6519
// will be added to \a ranges, else the entire range will be added to \a
6520
// ranges.
6521
static void AddRegion(const MemoryRegionInfo &region, bool try_dirty_pages,
6522
Process::CoreFileMemoryRanges &ranges) {
6523
// Don't add empty ranges.
6524
if (region.GetRange().GetByteSize() == 0)
6525
return;
6526
// Don't add ranges with no read permissions.
6527
if ((region.GetLLDBPermissions() & lldb::ePermissionsReadable) == 0)
6528
return;
6529
if (try_dirty_pages && AddDirtyPages(region, ranges))
6530
return;
6531
ranges.push_back(CreateCoreFileMemoryRange(region));
6532
}
6533
6534
static void SaveOffRegionsWithStackPointers(
6535
Process &process, const MemoryRegionInfos &regions,
6536
Process::CoreFileMemoryRanges &ranges, std::set<addr_t> &stack_ends) {
6537
const bool try_dirty_pages = true;
6538
6539
// Before we take any dump, we want to save off the used portions of the
6540
// stacks and mark those memory regions as saved. This prevents us from saving
6541
// the unused portion of the stack below the stack pointer. Saving space on
6542
// the dump.
6543
for (lldb::ThreadSP thread_sp : process.GetThreadList().Threads()) {
6544
if (!thread_sp)
6545
continue;
6546
StackFrameSP frame_sp = thread_sp->GetStackFrameAtIndex(0);
6547
if (!frame_sp)
6548
continue;
6549
RegisterContextSP reg_ctx_sp = frame_sp->GetRegisterContext();
6550
if (!reg_ctx_sp)
6551
continue;
6552
const addr_t sp = reg_ctx_sp->GetSP();
6553
const size_t red_zone = process.GetABI()->GetRedZoneSize();
6554
lldb_private::MemoryRegionInfo sp_region;
6555
if (process.GetMemoryRegionInfo(sp, sp_region).Success()) {
6556
const size_t stack_head = (sp - red_zone);
6557
const size_t stack_size = sp_region.GetRange().GetRangeEnd() - stack_head;
6558
sp_region.GetRange().SetRangeBase(stack_head);
6559
sp_region.GetRange().SetByteSize(stack_size);
6560
stack_ends.insert(sp_region.GetRange().GetRangeEnd());
6561
AddRegion(sp_region, try_dirty_pages, ranges);
6562
}
6563
}
6564
}
6565
6566
// Save all memory regions that are not empty or have at least some permissions
6567
// for a full core file style.
6568
static void GetCoreFileSaveRangesFull(Process &process,
6569
const MemoryRegionInfos &regions,
6570
Process::CoreFileMemoryRanges &ranges,
6571
std::set<addr_t> &stack_ends) {
6572
6573
// Don't add only dirty pages, add full regions.
6574
const bool try_dirty_pages = false;
6575
for (const auto &region : regions)
6576
if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0)
6577
AddRegion(region, try_dirty_pages, ranges);
6578
}
6579
6580
// Save only the dirty pages to the core file. Make sure the process has at
6581
// least some dirty pages, as some OS versions don't support reporting what
6582
// pages are dirty within an memory region. If no memory regions have dirty
6583
// page information fall back to saving out all ranges with write permissions.
6584
static void GetCoreFileSaveRangesDirtyOnly(
6585
Process &process, const MemoryRegionInfos &regions,
6586
Process::CoreFileMemoryRanges &ranges, std::set<addr_t> &stack_ends) {
6587
6588
// Iterate over the regions and find all dirty pages.
6589
bool have_dirty_page_info = false;
6590
for (const auto &region : regions) {
6591
if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 &&
6592
AddDirtyPages(region, ranges))
6593
have_dirty_page_info = true;
6594
}
6595
6596
if (!have_dirty_page_info) {
6597
// We didn't find support for reporting dirty pages from the process
6598
// plug-in so fall back to any region with write access permissions.
6599
const bool try_dirty_pages = false;
6600
for (const auto &region : regions)
6601
if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 &&
6602
region.GetWritable() == MemoryRegionInfo::eYes)
6603
AddRegion(region, try_dirty_pages, ranges);
6604
}
6605
}
6606
6607
// Save all thread stacks to the core file. Some OS versions support reporting
6608
// when a memory region is stack related. We check on this information, but we
6609
// also use the stack pointers of each thread and add those in case the OS
6610
// doesn't support reporting stack memory. This function also attempts to only
6611
// emit dirty pages from the stack if the memory regions support reporting
6612
// dirty regions as this will make the core file smaller. If the process
6613
// doesn't support dirty regions, then it will fall back to adding the full
6614
// stack region.
6615
static void GetCoreFileSaveRangesStackOnly(
6616
Process &process, const MemoryRegionInfos &regions,
6617
Process::CoreFileMemoryRanges &ranges, std::set<addr_t> &stack_ends) {
6618
const bool try_dirty_pages = true;
6619
// Some platforms support annotating the region information that tell us that
6620
// it comes from a thread stack. So look for those regions first.
6621
6622
for (const auto &region : regions) {
6623
// Save all the stack memory ranges not associated with a stack pointer.
6624
if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 &&
6625
region.IsStackMemory() == MemoryRegionInfo::eYes)
6626
AddRegion(region, try_dirty_pages, ranges);
6627
}
6628
}
6629
6630
Status Process::CalculateCoreFileSaveRanges(lldb::SaveCoreStyle core_style,
6631
CoreFileMemoryRanges &ranges) {
6632
lldb_private::MemoryRegionInfos regions;
6633
Status err = GetMemoryRegions(regions);
6634
if (err.Fail())
6635
return err;
6636
if (regions.empty())
6637
return Status("failed to get any valid memory regions from the process");
6638
if (core_style == eSaveCoreUnspecified)
6639
return Status("callers must set the core_style to something other than "
6640
"eSaveCoreUnspecified");
6641
6642
std::set<addr_t> stack_ends;
6643
SaveOffRegionsWithStackPointers(*this, regions, ranges, stack_ends);
6644
6645
switch (core_style) {
6646
case eSaveCoreUnspecified:
6647
break;
6648
6649
case eSaveCoreFull:
6650
GetCoreFileSaveRangesFull(*this, regions, ranges, stack_ends);
6651
break;
6652
6653
case eSaveCoreDirtyOnly:
6654
GetCoreFileSaveRangesDirtyOnly(*this, regions, ranges, stack_ends);
6655
break;
6656
6657
case eSaveCoreStackOnly:
6658
GetCoreFileSaveRangesStackOnly(*this, regions, ranges, stack_ends);
6659
break;
6660
}
6661
6662
if (err.Fail())
6663
return err;
6664
6665
if (ranges.empty())
6666
return Status("no valid address ranges found for core style");
6667
6668
return Status(); // Success!
6669
}
6670
6671
void Process::SetAddressableBitMasks(AddressableBits bit_masks) {
6672
uint32_t low_memory_addr_bits = bit_masks.GetLowmemAddressableBits();
6673
uint32_t high_memory_addr_bits = bit_masks.GetHighmemAddressableBits();
6674
6675
if (low_memory_addr_bits == 0 && high_memory_addr_bits == 0)
6676
return;
6677
6678
if (low_memory_addr_bits != 0) {
6679
addr_t low_addr_mask =
6680
AddressableBits::AddressableBitToMask(low_memory_addr_bits);
6681
SetCodeAddressMask(low_addr_mask);
6682
SetDataAddressMask(low_addr_mask);
6683
}
6684
6685
if (high_memory_addr_bits != 0) {
6686
addr_t high_addr_mask =
6687
AddressableBits::AddressableBitToMask(high_memory_addr_bits);
6688
SetHighmemCodeAddressMask(high_addr_mask);
6689
SetHighmemDataAddressMask(high_addr_mask);
6690
}
6691
}
6692
6693