Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/lldb/source/Utility/DataExtractor.cpp
39587 views
1
//===-- DataExtractor.cpp -------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "lldb/Utility/DataExtractor.h"
10
11
#include "lldb/lldb-defines.h"
12
#include "lldb/lldb-enumerations.h"
13
#include "lldb/lldb-forward.h"
14
#include "lldb/lldb-types.h"
15
16
#include "lldb/Utility/DataBuffer.h"
17
#include "lldb/Utility/DataBufferHeap.h"
18
#include "lldb/Utility/LLDBAssert.h"
19
#include "lldb/Utility/Log.h"
20
#include "lldb/Utility/Stream.h"
21
#include "lldb/Utility/StreamString.h"
22
#include "lldb/Utility/UUID.h"
23
24
#include "llvm/ADT/ArrayRef.h"
25
#include "llvm/ADT/SmallVector.h"
26
#include "llvm/ADT/StringExtras.h"
27
#include "llvm/Support/LEB128.h"
28
#include "llvm/Support/MD5.h"
29
#include "llvm/Support/MathExtras.h"
30
31
#include <algorithm>
32
#include <array>
33
#include <cassert>
34
#include <cstdint>
35
#include <string>
36
37
#include <cctype>
38
#include <cinttypes>
39
#include <cstring>
40
41
using namespace lldb;
42
using namespace lldb_private;
43
44
static inline uint16_t ReadInt16(const unsigned char *ptr, offset_t offset) {
45
uint16_t value;
46
memcpy(&value, ptr + offset, 2);
47
return value;
48
}
49
50
static inline uint32_t ReadInt32(const unsigned char *ptr,
51
offset_t offset = 0) {
52
uint32_t value;
53
memcpy(&value, ptr + offset, 4);
54
return value;
55
}
56
57
static inline uint64_t ReadInt64(const unsigned char *ptr,
58
offset_t offset = 0) {
59
uint64_t value;
60
memcpy(&value, ptr + offset, 8);
61
return value;
62
}
63
64
static inline uint16_t ReadInt16(const void *ptr) {
65
uint16_t value;
66
memcpy(&value, ptr, 2);
67
return value;
68
}
69
70
static inline uint16_t ReadSwapInt16(const unsigned char *ptr,
71
offset_t offset) {
72
uint16_t value;
73
memcpy(&value, ptr + offset, 2);
74
return llvm::byteswap<uint16_t>(value);
75
}
76
77
static inline uint32_t ReadSwapInt32(const unsigned char *ptr,
78
offset_t offset) {
79
uint32_t value;
80
memcpy(&value, ptr + offset, 4);
81
return llvm::byteswap<uint32_t>(value);
82
}
83
84
static inline uint64_t ReadSwapInt64(const unsigned char *ptr,
85
offset_t offset) {
86
uint64_t value;
87
memcpy(&value, ptr + offset, 8);
88
return llvm::byteswap<uint64_t>(value);
89
}
90
91
static inline uint16_t ReadSwapInt16(const void *ptr) {
92
uint16_t value;
93
memcpy(&value, ptr, 2);
94
return llvm::byteswap<uint16_t>(value);
95
}
96
97
static inline uint32_t ReadSwapInt32(const void *ptr) {
98
uint32_t value;
99
memcpy(&value, ptr, 4);
100
return llvm::byteswap<uint32_t>(value);
101
}
102
103
static inline uint64_t ReadSwapInt64(const void *ptr) {
104
uint64_t value;
105
memcpy(&value, ptr, 8);
106
return llvm::byteswap<uint64_t>(value);
107
}
108
109
static inline uint64_t ReadMaxInt64(const uint8_t *data, size_t byte_size,
110
ByteOrder byte_order) {
111
uint64_t res = 0;
112
if (byte_order == eByteOrderBig)
113
for (size_t i = 0; i < byte_size; ++i)
114
res = (res << 8) | data[i];
115
else {
116
assert(byte_order == eByteOrderLittle);
117
for (size_t i = 0; i < byte_size; ++i)
118
res = (res << 8) | data[byte_size - 1 - i];
119
}
120
return res;
121
}
122
123
DataExtractor::DataExtractor()
124
: m_byte_order(endian::InlHostByteOrder()), m_addr_size(sizeof(void *)),
125
m_data_sp() {}
126
127
// This constructor allows us to use data that is owned by someone else. The
128
// data must stay around as long as this object is valid.
129
DataExtractor::DataExtractor(const void *data, offset_t length,
130
ByteOrder endian, uint32_t addr_size,
131
uint32_t target_byte_size /*=1*/)
132
: m_start(const_cast<uint8_t *>(static_cast<const uint8_t *>(data))),
133
m_end(const_cast<uint8_t *>(static_cast<const uint8_t *>(data)) + length),
134
m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
135
m_target_byte_size(target_byte_size) {
136
assert(addr_size >= 1 && addr_size <= 8);
137
}
138
139
// Make a shared pointer reference to the shared data in "data_sp" and set the
140
// endian swapping setting to "swap", and the address size to "addr_size". The
141
// shared data reference will ensure the data lives as long as any
142
// DataExtractor objects exist that have a reference to this data.
143
DataExtractor::DataExtractor(const DataBufferSP &data_sp, ByteOrder endian,
144
uint32_t addr_size,
145
uint32_t target_byte_size /*=1*/)
146
: m_byte_order(endian), m_addr_size(addr_size), m_data_sp(),
147
m_target_byte_size(target_byte_size) {
148
assert(addr_size >= 1 && addr_size <= 8);
149
SetData(data_sp);
150
}
151
152
// Initialize this object with a subset of the data bytes in "data". If "data"
153
// contains shared data, then a reference to this shared data will added and
154
// the shared data will stay around as long as any object contains a reference
155
// to that data. The endian swap and address size settings are copied from
156
// "data".
157
DataExtractor::DataExtractor(const DataExtractor &data, offset_t offset,
158
offset_t length, uint32_t target_byte_size /*=1*/)
159
: m_byte_order(data.m_byte_order), m_addr_size(data.m_addr_size),
160
m_data_sp(), m_target_byte_size(target_byte_size) {
161
assert(m_addr_size >= 1 && m_addr_size <= 8);
162
if (data.ValidOffset(offset)) {
163
offset_t bytes_available = data.GetByteSize() - offset;
164
if (length > bytes_available)
165
length = bytes_available;
166
SetData(data, offset, length);
167
}
168
}
169
170
DataExtractor::DataExtractor(const DataExtractor &rhs)
171
: m_start(rhs.m_start), m_end(rhs.m_end), m_byte_order(rhs.m_byte_order),
172
m_addr_size(rhs.m_addr_size), m_data_sp(rhs.m_data_sp),
173
m_target_byte_size(rhs.m_target_byte_size) {
174
assert(m_addr_size >= 1 && m_addr_size <= 8);
175
}
176
177
// Assignment operator
178
const DataExtractor &DataExtractor::operator=(const DataExtractor &rhs) {
179
if (this != &rhs) {
180
m_start = rhs.m_start;
181
m_end = rhs.m_end;
182
m_byte_order = rhs.m_byte_order;
183
m_addr_size = rhs.m_addr_size;
184
m_data_sp = rhs.m_data_sp;
185
}
186
return *this;
187
}
188
189
DataExtractor::~DataExtractor() = default;
190
191
// Clears the object contents back to a default invalid state, and release any
192
// references to shared data that this object may contain.
193
void DataExtractor::Clear() {
194
m_start = nullptr;
195
m_end = nullptr;
196
m_byte_order = endian::InlHostByteOrder();
197
m_addr_size = sizeof(void *);
198
m_data_sp.reset();
199
}
200
201
// If this object contains shared data, this function returns the offset into
202
// that shared data. Else zero is returned.
203
size_t DataExtractor::GetSharedDataOffset() const {
204
if (m_start != nullptr) {
205
const DataBuffer *data = m_data_sp.get();
206
if (data != nullptr) {
207
const uint8_t *data_bytes = data->GetBytes();
208
if (data_bytes != nullptr) {
209
assert(m_start >= data_bytes);
210
return m_start - data_bytes;
211
}
212
}
213
}
214
return 0;
215
}
216
217
// Set the data with which this object will extract from to data starting at
218
// BYTES and set the length of the data to LENGTH bytes long. The data is
219
// externally owned must be around at least as long as this object points to
220
// the data. No copy of the data is made, this object just refers to this data
221
// and can extract from it. If this object refers to any shared data upon
222
// entry, the reference to that data will be released. Is SWAP is set to true,
223
// any data extracted will be endian swapped.
224
lldb::offset_t DataExtractor::SetData(const void *bytes, offset_t length,
225
ByteOrder endian) {
226
m_byte_order = endian;
227
m_data_sp.reset();
228
if (bytes == nullptr || length == 0) {
229
m_start = nullptr;
230
m_end = nullptr;
231
} else {
232
m_start = const_cast<uint8_t *>(static_cast<const uint8_t *>(bytes));
233
m_end = m_start + length;
234
}
235
return GetByteSize();
236
}
237
238
// Assign the data for this object to be a subrange in "data" starting
239
// "data_offset" bytes into "data" and ending "data_length" bytes later. If
240
// "data_offset" is not a valid offset into "data", then this object will
241
// contain no bytes. If "data_offset" is within "data" yet "data_length" is too
242
// large, the length will be capped at the number of bytes remaining in "data".
243
// If "data" contains a shared pointer to other data, then a ref counted
244
// pointer to that data will be made in this object. If "data" doesn't contain
245
// a shared pointer to data, then the bytes referred to in "data" will need to
246
// exist at least as long as this object refers to those bytes. The address
247
// size and endian swap settings are copied from the current values in "data".
248
lldb::offset_t DataExtractor::SetData(const DataExtractor &data,
249
offset_t data_offset,
250
offset_t data_length) {
251
m_addr_size = data.m_addr_size;
252
assert(m_addr_size >= 1 && m_addr_size <= 8);
253
// If "data" contains shared pointer to data, then we can use that
254
if (data.m_data_sp) {
255
m_byte_order = data.m_byte_order;
256
return SetData(data.m_data_sp, data.GetSharedDataOffset() + data_offset,
257
data_length);
258
}
259
260
// We have a DataExtractor object that just has a pointer to bytes
261
if (data.ValidOffset(data_offset)) {
262
if (data_length > data.GetByteSize() - data_offset)
263
data_length = data.GetByteSize() - data_offset;
264
return SetData(data.GetDataStart() + data_offset, data_length,
265
data.GetByteOrder());
266
}
267
return 0;
268
}
269
270
// Assign the data for this object to be a subrange of the shared data in
271
// "data_sp" starting "data_offset" bytes into "data_sp" and ending
272
// "data_length" bytes later. If "data_offset" is not a valid offset into
273
// "data_sp", then this object will contain no bytes. If "data_offset" is
274
// within "data_sp" yet "data_length" is too large, the length will be capped
275
// at the number of bytes remaining in "data_sp". A ref counted pointer to the
276
// data in "data_sp" will be made in this object IF the number of bytes this
277
// object refers to in greater than zero (if at least one byte was available
278
// starting at "data_offset") to ensure the data stays around as long as it is
279
// needed. The address size and endian swap settings will remain unchanged from
280
// their current settings.
281
lldb::offset_t DataExtractor::SetData(const DataBufferSP &data_sp,
282
offset_t data_offset,
283
offset_t data_length) {
284
m_start = m_end = nullptr;
285
286
if (data_length > 0) {
287
m_data_sp = data_sp;
288
if (data_sp) {
289
const size_t data_size = data_sp->GetByteSize();
290
if (data_offset < data_size) {
291
m_start = data_sp->GetBytes() + data_offset;
292
const size_t bytes_left = data_size - data_offset;
293
// Cap the length of we asked for too many
294
if (data_length <= bytes_left)
295
m_end = m_start + data_length; // We got all the bytes we wanted
296
else
297
m_end = m_start + bytes_left; // Not all the bytes requested were
298
// available in the shared data
299
}
300
}
301
}
302
303
size_t new_size = GetByteSize();
304
305
// Don't hold a shared pointer to the data buffer if we don't share any valid
306
// bytes in the shared buffer.
307
if (new_size == 0)
308
m_data_sp.reset();
309
310
return new_size;
311
}
312
313
// Extract a single unsigned char from the binary data and update the offset
314
// pointed to by "offset_ptr".
315
//
316
// RETURNS the byte that was extracted, or zero on failure.
317
uint8_t DataExtractor::GetU8(offset_t *offset_ptr) const {
318
const uint8_t *data = static_cast<const uint8_t *>(GetData(offset_ptr, 1));
319
if (data)
320
return *data;
321
return 0;
322
}
323
324
// Extract "count" unsigned chars from the binary data and update the offset
325
// pointed to by "offset_ptr". The extracted data is copied into "dst".
326
//
327
// RETURNS the non-nullptr buffer pointer upon successful extraction of
328
// all the requested bytes, or nullptr when the data is not available in the
329
// buffer due to being out of bounds, or insufficient data.
330
void *DataExtractor::GetU8(offset_t *offset_ptr, void *dst,
331
uint32_t count) const {
332
const uint8_t *data =
333
static_cast<const uint8_t *>(GetData(offset_ptr, count));
334
if (data) {
335
// Copy the data into the buffer
336
memcpy(dst, data, count);
337
// Return a non-nullptr pointer to the converted data as an indicator of
338
// success
339
return dst;
340
}
341
return nullptr;
342
}
343
344
// Extract a single uint16_t from the data and update the offset pointed to by
345
// "offset_ptr".
346
//
347
// RETURNS the uint16_t that was extracted, or zero on failure.
348
uint16_t DataExtractor::GetU16(offset_t *offset_ptr) const {
349
uint16_t val = 0;
350
const uint8_t *data =
351
static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
352
if (data) {
353
if (m_byte_order != endian::InlHostByteOrder())
354
val = ReadSwapInt16(data);
355
else
356
val = ReadInt16(data);
357
}
358
return val;
359
}
360
361
uint16_t DataExtractor::GetU16_unchecked(offset_t *offset_ptr) const {
362
uint16_t val;
363
if (m_byte_order == endian::InlHostByteOrder())
364
val = ReadInt16(m_start, *offset_ptr);
365
else
366
val = ReadSwapInt16(m_start, *offset_ptr);
367
*offset_ptr += sizeof(val);
368
return val;
369
}
370
371
uint32_t DataExtractor::GetU32_unchecked(offset_t *offset_ptr) const {
372
uint32_t val;
373
if (m_byte_order == endian::InlHostByteOrder())
374
val = ReadInt32(m_start, *offset_ptr);
375
else
376
val = ReadSwapInt32(m_start, *offset_ptr);
377
*offset_ptr += sizeof(val);
378
return val;
379
}
380
381
uint64_t DataExtractor::GetU64_unchecked(offset_t *offset_ptr) const {
382
uint64_t val;
383
if (m_byte_order == endian::InlHostByteOrder())
384
val = ReadInt64(m_start, *offset_ptr);
385
else
386
val = ReadSwapInt64(m_start, *offset_ptr);
387
*offset_ptr += sizeof(val);
388
return val;
389
}
390
391
// Extract "count" uint16_t values from the binary data and update the offset
392
// pointed to by "offset_ptr". The extracted data is copied into "dst".
393
//
394
// RETURNS the non-nullptr buffer pointer upon successful extraction of
395
// all the requested bytes, or nullptr when the data is not available in the
396
// buffer due to being out of bounds, or insufficient data.
397
void *DataExtractor::GetU16(offset_t *offset_ptr, void *void_dst,
398
uint32_t count) const {
399
const size_t src_size = sizeof(uint16_t) * count;
400
const uint16_t *src =
401
static_cast<const uint16_t *>(GetData(offset_ptr, src_size));
402
if (src) {
403
if (m_byte_order != endian::InlHostByteOrder()) {
404
uint16_t *dst_pos = static_cast<uint16_t *>(void_dst);
405
uint16_t *dst_end = dst_pos + count;
406
const uint16_t *src_pos = src;
407
while (dst_pos < dst_end) {
408
*dst_pos = ReadSwapInt16(src_pos);
409
++dst_pos;
410
++src_pos;
411
}
412
} else {
413
memcpy(void_dst, src, src_size);
414
}
415
// Return a non-nullptr pointer to the converted data as an indicator of
416
// success
417
return void_dst;
418
}
419
return nullptr;
420
}
421
422
// Extract a single uint32_t from the data and update the offset pointed to by
423
// "offset_ptr".
424
//
425
// RETURNS the uint32_t that was extracted, or zero on failure.
426
uint32_t DataExtractor::GetU32(offset_t *offset_ptr) const {
427
uint32_t val = 0;
428
const uint8_t *data =
429
static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
430
if (data) {
431
if (m_byte_order != endian::InlHostByteOrder()) {
432
val = ReadSwapInt32(data);
433
} else {
434
memcpy(&val, data, 4);
435
}
436
}
437
return val;
438
}
439
440
// Extract "count" uint32_t values from the binary data and update the offset
441
// pointed to by "offset_ptr". The extracted data is copied into "dst".
442
//
443
// RETURNS the non-nullptr buffer pointer upon successful extraction of
444
// all the requested bytes, or nullptr when the data is not available in the
445
// buffer due to being out of bounds, or insufficient data.
446
void *DataExtractor::GetU32(offset_t *offset_ptr, void *void_dst,
447
uint32_t count) const {
448
const size_t src_size = sizeof(uint32_t) * count;
449
const uint32_t *src =
450
static_cast<const uint32_t *>(GetData(offset_ptr, src_size));
451
if (src) {
452
if (m_byte_order != endian::InlHostByteOrder()) {
453
uint32_t *dst_pos = static_cast<uint32_t *>(void_dst);
454
uint32_t *dst_end = dst_pos + count;
455
const uint32_t *src_pos = src;
456
while (dst_pos < dst_end) {
457
*dst_pos = ReadSwapInt32(src_pos);
458
++dst_pos;
459
++src_pos;
460
}
461
} else {
462
memcpy(void_dst, src, src_size);
463
}
464
// Return a non-nullptr pointer to the converted data as an indicator of
465
// success
466
return void_dst;
467
}
468
return nullptr;
469
}
470
471
// Extract a single uint64_t from the data and update the offset pointed to by
472
// "offset_ptr".
473
//
474
// RETURNS the uint64_t that was extracted, or zero on failure.
475
uint64_t DataExtractor::GetU64(offset_t *offset_ptr) const {
476
uint64_t val = 0;
477
const uint8_t *data =
478
static_cast<const uint8_t *>(GetData(offset_ptr, sizeof(val)));
479
if (data) {
480
if (m_byte_order != endian::InlHostByteOrder()) {
481
val = ReadSwapInt64(data);
482
} else {
483
memcpy(&val, data, 8);
484
}
485
}
486
return val;
487
}
488
489
// GetU64
490
//
491
// Get multiple consecutive 64 bit values. Return true if the entire read
492
// succeeds and increment the offset pointed to by offset_ptr, else return
493
// false and leave the offset pointed to by offset_ptr unchanged.
494
void *DataExtractor::GetU64(offset_t *offset_ptr, void *void_dst,
495
uint32_t count) const {
496
const size_t src_size = sizeof(uint64_t) * count;
497
const uint64_t *src =
498
static_cast<const uint64_t *>(GetData(offset_ptr, src_size));
499
if (src) {
500
if (m_byte_order != endian::InlHostByteOrder()) {
501
uint64_t *dst_pos = static_cast<uint64_t *>(void_dst);
502
uint64_t *dst_end = dst_pos + count;
503
const uint64_t *src_pos = src;
504
while (dst_pos < dst_end) {
505
*dst_pos = ReadSwapInt64(src_pos);
506
++dst_pos;
507
++src_pos;
508
}
509
} else {
510
memcpy(void_dst, src, src_size);
511
}
512
// Return a non-nullptr pointer to the converted data as an indicator of
513
// success
514
return void_dst;
515
}
516
return nullptr;
517
}
518
519
uint32_t DataExtractor::GetMaxU32(offset_t *offset_ptr,
520
size_t byte_size) const {
521
lldbassert(byte_size > 0 && byte_size <= 4 && "GetMaxU32 invalid byte_size!");
522
return GetMaxU64(offset_ptr, byte_size);
523
}
524
525
uint64_t DataExtractor::GetMaxU64(offset_t *offset_ptr,
526
size_t byte_size) const {
527
lldbassert(byte_size > 0 && byte_size <= 8 && "GetMaxU64 invalid byte_size!");
528
switch (byte_size) {
529
case 1:
530
return GetU8(offset_ptr);
531
case 2:
532
return GetU16(offset_ptr);
533
case 4:
534
return GetU32(offset_ptr);
535
case 8:
536
return GetU64(offset_ptr);
537
default: {
538
// General case.
539
const uint8_t *data =
540
static_cast<const uint8_t *>(GetData(offset_ptr, byte_size));
541
if (data == nullptr)
542
return 0;
543
return ReadMaxInt64(data, byte_size, m_byte_order);
544
}
545
}
546
return 0;
547
}
548
549
uint64_t DataExtractor::GetMaxU64_unchecked(offset_t *offset_ptr,
550
size_t byte_size) const {
551
switch (byte_size) {
552
case 1:
553
return GetU8_unchecked(offset_ptr);
554
case 2:
555
return GetU16_unchecked(offset_ptr);
556
case 4:
557
return GetU32_unchecked(offset_ptr);
558
case 8:
559
return GetU64_unchecked(offset_ptr);
560
default: {
561
uint64_t res = ReadMaxInt64(&m_start[*offset_ptr], byte_size, m_byte_order);
562
*offset_ptr += byte_size;
563
return res;
564
}
565
}
566
return 0;
567
}
568
569
int64_t DataExtractor::GetMaxS64(offset_t *offset_ptr, size_t byte_size) const {
570
uint64_t u64 = GetMaxU64(offset_ptr, byte_size);
571
return llvm::SignExtend64(u64, 8 * byte_size);
572
}
573
574
uint64_t DataExtractor::GetMaxU64Bitfield(offset_t *offset_ptr, size_t size,
575
uint32_t bitfield_bit_size,
576
uint32_t bitfield_bit_offset) const {
577
assert(bitfield_bit_size <= 64);
578
uint64_t uval64 = GetMaxU64(offset_ptr, size);
579
580
if (bitfield_bit_size == 0)
581
return uval64;
582
583
int32_t lsbcount = bitfield_bit_offset;
584
if (m_byte_order == eByteOrderBig)
585
lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
586
587
if (lsbcount > 0)
588
uval64 >>= lsbcount;
589
590
uint64_t bitfield_mask =
591
(bitfield_bit_size == 64
592
? std::numeric_limits<uint64_t>::max()
593
: ((static_cast<uint64_t>(1) << bitfield_bit_size) - 1));
594
if (!bitfield_mask && bitfield_bit_offset == 0 && bitfield_bit_size == 64)
595
return uval64;
596
597
uval64 &= bitfield_mask;
598
599
return uval64;
600
}
601
602
int64_t DataExtractor::GetMaxS64Bitfield(offset_t *offset_ptr, size_t size,
603
uint32_t bitfield_bit_size,
604
uint32_t bitfield_bit_offset) const {
605
assert(size >= 1 && "GetMaxS64Bitfield size must be >= 1");
606
assert(size <= 8 && "GetMaxS64Bitfield size must be <= 8");
607
int64_t sval64 = GetMaxS64(offset_ptr, size);
608
if (bitfield_bit_size == 0)
609
return sval64;
610
int32_t lsbcount = bitfield_bit_offset;
611
if (m_byte_order == eByteOrderBig)
612
lsbcount = size * 8 - bitfield_bit_offset - bitfield_bit_size;
613
if (lsbcount > 0)
614
sval64 >>= lsbcount;
615
uint64_t bitfield_mask = llvm::maskTrailingOnes<uint64_t>(bitfield_bit_size);
616
sval64 &= bitfield_mask;
617
// sign extend if needed
618
if (sval64 & ((static_cast<uint64_t>(1)) << (bitfield_bit_size - 1)))
619
sval64 |= ~bitfield_mask;
620
return sval64;
621
}
622
623
float DataExtractor::GetFloat(offset_t *offset_ptr) const {
624
return Get<float>(offset_ptr, 0.0f);
625
}
626
627
double DataExtractor::GetDouble(offset_t *offset_ptr) const {
628
return Get<double>(offset_ptr, 0.0);
629
}
630
631
long double DataExtractor::GetLongDouble(offset_t *offset_ptr) const {
632
long double val = 0.0;
633
#if defined(__i386__) || defined(__amd64__) || defined(__x86_64__) || \
634
defined(_M_IX86) || defined(_M_IA64) || defined(_M_X64)
635
*offset_ptr += CopyByteOrderedData(*offset_ptr, 10, &val, sizeof(val),
636
endian::InlHostByteOrder());
637
#else
638
*offset_ptr += CopyByteOrderedData(*offset_ptr, sizeof(val), &val,
639
sizeof(val), endian::InlHostByteOrder());
640
#endif
641
return val;
642
}
643
644
// Extract a single address from the data and update the offset pointed to by
645
// "offset_ptr". The size of the extracted address comes from the
646
// "this->m_addr_size" member variable and should be set correctly prior to
647
// extracting any address values.
648
//
649
// RETURNS the address that was extracted, or zero on failure.
650
uint64_t DataExtractor::GetAddress(offset_t *offset_ptr) const {
651
assert(m_addr_size >= 1 && m_addr_size <= 8);
652
return GetMaxU64(offset_ptr, m_addr_size);
653
}
654
655
uint64_t DataExtractor::GetAddress_unchecked(offset_t *offset_ptr) const {
656
assert(m_addr_size >= 1 && m_addr_size <= 8);
657
return GetMaxU64_unchecked(offset_ptr, m_addr_size);
658
}
659
660
size_t DataExtractor::ExtractBytes(offset_t offset, offset_t length,
661
ByteOrder dst_byte_order, void *dst) const {
662
const uint8_t *src = PeekData(offset, length);
663
if (src) {
664
if (dst_byte_order != GetByteOrder()) {
665
// Validate that only a word- or register-sized dst is byte swapped
666
assert(length == 1 || length == 2 || length == 4 || length == 8 ||
667
length == 10 || length == 16 || length == 32);
668
669
for (uint32_t i = 0; i < length; ++i)
670
(static_cast<uint8_t *>(dst))[i] = src[length - i - 1];
671
} else
672
::memcpy(dst, src, length);
673
return length;
674
}
675
return 0;
676
}
677
678
// Extract data as it exists in target memory
679
lldb::offset_t DataExtractor::CopyData(offset_t offset, offset_t length,
680
void *dst) const {
681
const uint8_t *src = PeekData(offset, length);
682
if (src) {
683
::memcpy(dst, src, length);
684
return length;
685
}
686
return 0;
687
}
688
689
// Extract data and swap if needed when doing the copy
690
lldb::offset_t
691
DataExtractor::CopyByteOrderedData(offset_t src_offset, offset_t src_len,
692
void *dst_void_ptr, offset_t dst_len,
693
ByteOrder dst_byte_order) const {
694
// Validate the source info
695
if (!ValidOffsetForDataOfSize(src_offset, src_len))
696
assert(ValidOffsetForDataOfSize(src_offset, src_len));
697
assert(src_len > 0);
698
assert(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle);
699
700
// Validate the destination info
701
assert(dst_void_ptr != nullptr);
702
assert(dst_len > 0);
703
assert(dst_byte_order == eByteOrderBig || dst_byte_order == eByteOrderLittle);
704
705
// Validate that only a word- or register-sized dst is byte swapped
706
assert(dst_byte_order == m_byte_order || dst_len == 1 || dst_len == 2 ||
707
dst_len == 4 || dst_len == 8 || dst_len == 10 || dst_len == 16 ||
708
dst_len == 32);
709
710
// Must have valid byte orders set in this object and for destination
711
if (!(dst_byte_order == eByteOrderBig ||
712
dst_byte_order == eByteOrderLittle) ||
713
!(m_byte_order == eByteOrderBig || m_byte_order == eByteOrderLittle))
714
return 0;
715
716
uint8_t *dst = static_cast<uint8_t *>(dst_void_ptr);
717
const uint8_t *src = PeekData(src_offset, src_len);
718
if (src) {
719
if (dst_len >= src_len) {
720
// We are copying the entire value from src into dst. Calculate how many,
721
// if any, zeroes we need for the most significant bytes if "dst_len" is
722
// greater than "src_len"...
723
const size_t num_zeroes = dst_len - src_len;
724
if (dst_byte_order == eByteOrderBig) {
725
// Big endian, so we lead with zeroes...
726
if (num_zeroes > 0)
727
::memset(dst, 0, num_zeroes);
728
// Then either copy or swap the rest
729
if (m_byte_order == eByteOrderBig) {
730
::memcpy(dst + num_zeroes, src, src_len);
731
} else {
732
for (uint32_t i = 0; i < src_len; ++i)
733
dst[i + num_zeroes] = src[src_len - 1 - i];
734
}
735
} else {
736
// Little endian destination, so we lead the value bytes
737
if (m_byte_order == eByteOrderBig) {
738
for (uint32_t i = 0; i < src_len; ++i)
739
dst[i] = src[src_len - 1 - i];
740
} else {
741
::memcpy(dst, src, src_len);
742
}
743
// And zero the rest...
744
if (num_zeroes > 0)
745
::memset(dst + src_len, 0, num_zeroes);
746
}
747
return src_len;
748
} else {
749
// We are only copying some of the value from src into dst..
750
751
if (dst_byte_order == eByteOrderBig) {
752
// Big endian dst
753
if (m_byte_order == eByteOrderBig) {
754
// Big endian dst, with big endian src
755
::memcpy(dst, src + (src_len - dst_len), dst_len);
756
} else {
757
// Big endian dst, with little endian src
758
for (uint32_t i = 0; i < dst_len; ++i)
759
dst[i] = src[dst_len - 1 - i];
760
}
761
} else {
762
// Little endian dst
763
if (m_byte_order == eByteOrderBig) {
764
// Little endian dst, with big endian src
765
for (uint32_t i = 0; i < dst_len; ++i)
766
dst[i] = src[src_len - 1 - i];
767
} else {
768
// Little endian dst, with big endian src
769
::memcpy(dst, src, dst_len);
770
}
771
}
772
return dst_len;
773
}
774
}
775
return 0;
776
}
777
778
// Extracts a variable length NULL terminated C string from the data at the
779
// offset pointed to by "offset_ptr". The "offset_ptr" will be updated with
780
// the offset of the byte that follows the NULL terminator byte.
781
//
782
// If the offset pointed to by "offset_ptr" is out of bounds, or if "length" is
783
// non-zero and there aren't enough available bytes, nullptr will be returned
784
// and "offset_ptr" will not be updated.
785
const char *DataExtractor::GetCStr(offset_t *offset_ptr) const {
786
const char *start = reinterpret_cast<const char *>(PeekData(*offset_ptr, 1));
787
// Already at the end of the data.
788
if (!start)
789
return nullptr;
790
791
const char *end = reinterpret_cast<const char *>(m_end);
792
793
// Check all bytes for a null terminator that terminates a C string.
794
const char *terminator_or_end = std::find(start, end, '\0');
795
796
// We didn't find a null terminator, so return nullptr to indicate that there
797
// is no valid C string at that offset.
798
if (terminator_or_end == end)
799
return nullptr;
800
801
// Update offset_ptr for the caller to point to the data behind the
802
// terminator (which is 1 byte long).
803
*offset_ptr += (terminator_or_end - start + 1UL);
804
return start;
805
}
806
807
// Extracts a NULL terminated C string from the fixed length field of length
808
// "len" at the offset pointed to by "offset_ptr". The "offset_ptr" will be
809
// updated with the offset of the byte that follows the fixed length field.
810
//
811
// If the offset pointed to by "offset_ptr" is out of bounds, or if the offset
812
// plus the length of the field is out of bounds, or if the field does not
813
// contain a NULL terminator byte, nullptr will be returned and "offset_ptr"
814
// will not be updated.
815
const char *DataExtractor::GetCStr(offset_t *offset_ptr, offset_t len) const {
816
const char *cstr = reinterpret_cast<const char *>(PeekData(*offset_ptr, len));
817
if (cstr != nullptr) {
818
if (memchr(cstr, '\0', len) == nullptr) {
819
return nullptr;
820
}
821
*offset_ptr += len;
822
return cstr;
823
}
824
return nullptr;
825
}
826
827
// Peeks at a string in the contained data. No verification is done to make
828
// sure the entire string lies within the bounds of this object's data, only
829
// "offset" is verified to be a valid offset.
830
//
831
// Returns a valid C string pointer if "offset" is a valid offset in this
832
// object's data, else nullptr is returned.
833
const char *DataExtractor::PeekCStr(offset_t offset) const {
834
return reinterpret_cast<const char *>(PeekData(offset, 1));
835
}
836
837
// Extracts an unsigned LEB128 number from this object's data starting at the
838
// offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
839
// will be updated with the offset of the byte following the last extracted
840
// byte.
841
//
842
// Returned the extracted integer value.
843
uint64_t DataExtractor::GetULEB128(offset_t *offset_ptr) const {
844
const uint8_t *src = PeekData(*offset_ptr, 1);
845
if (src == nullptr)
846
return 0;
847
848
unsigned byte_count = 0;
849
uint64_t result = llvm::decodeULEB128(src, &byte_count, m_end);
850
*offset_ptr += byte_count;
851
return result;
852
}
853
854
// Extracts an signed LEB128 number from this object's data starting at the
855
// offset pointed to by "offset_ptr". The offset pointed to by "offset_ptr"
856
// will be updated with the offset of the byte following the last extracted
857
// byte.
858
//
859
// Returned the extracted integer value.
860
int64_t DataExtractor::GetSLEB128(offset_t *offset_ptr) const {
861
const uint8_t *src = PeekData(*offset_ptr, 1);
862
if (src == nullptr)
863
return 0;
864
865
unsigned byte_count = 0;
866
int64_t result = llvm::decodeSLEB128(src, &byte_count, m_end);
867
*offset_ptr += byte_count;
868
return result;
869
}
870
871
// Skips a ULEB128 number (signed or unsigned) from this object's data starting
872
// at the offset pointed to by "offset_ptr". The offset pointed to by
873
// "offset_ptr" will be updated with the offset of the byte following the last
874
// extracted byte.
875
//
876
// Returns the number of bytes consumed during the extraction.
877
uint32_t DataExtractor::Skip_LEB128(offset_t *offset_ptr) const {
878
uint32_t bytes_consumed = 0;
879
const uint8_t *src = PeekData(*offset_ptr, 1);
880
if (src == nullptr)
881
return 0;
882
883
const uint8_t *end = m_end;
884
885
if (src < end) {
886
const uint8_t *src_pos = src;
887
while ((src_pos < end) && (*src_pos++ & 0x80))
888
++bytes_consumed;
889
*offset_ptr += src_pos - src;
890
}
891
return bytes_consumed;
892
}
893
894
// Dumps bytes from this object's data to the stream "s" starting
895
// "start_offset" bytes into this data, and ending with the byte before
896
// "end_offset". "base_addr" will be added to the offset into the dumped data
897
// when showing the offset into the data in the output information.
898
// "num_per_line" objects of type "type" will be dumped with the option to
899
// override the format for each object with "type_format". "type_format" is a
900
// printf style formatting string. If "type_format" is nullptr, then an
901
// appropriate format string will be used for the supplied "type". If the
902
// stream "s" is nullptr, then the output will be send to Log().
903
lldb::offset_t DataExtractor::PutToLog(Log *log, offset_t start_offset,
904
offset_t length, uint64_t base_addr,
905
uint32_t num_per_line,
906
DataExtractor::Type type) const {
907
if (log == nullptr)
908
return start_offset;
909
910
offset_t offset;
911
offset_t end_offset;
912
uint32_t count;
913
StreamString sstr;
914
for (offset = start_offset, end_offset = offset + length, count = 0;
915
ValidOffset(offset) && offset < end_offset; ++count) {
916
if ((count % num_per_line) == 0) {
917
// Print out any previous string
918
if (sstr.GetSize() > 0) {
919
log->PutString(sstr.GetString());
920
sstr.Clear();
921
}
922
// Reset string offset and fill the current line string with address:
923
if (base_addr != LLDB_INVALID_ADDRESS)
924
sstr.Printf("0x%8.8" PRIx64 ":",
925
static_cast<uint64_t>(base_addr + (offset - start_offset)));
926
}
927
928
switch (type) {
929
case TypeUInt8:
930
sstr.Printf(" %2.2x", GetU8(&offset));
931
break;
932
case TypeChar: {
933
char ch = GetU8(&offset);
934
sstr.Printf(" %c", llvm::isPrint(ch) ? ch : ' ');
935
} break;
936
case TypeUInt16:
937
sstr.Printf(" %4.4x", GetU16(&offset));
938
break;
939
case TypeUInt32:
940
sstr.Printf(" %8.8x", GetU32(&offset));
941
break;
942
case TypeUInt64:
943
sstr.Printf(" %16.16" PRIx64, GetU64(&offset));
944
break;
945
case TypePointer:
946
sstr.Printf(" 0x%" PRIx64, GetAddress(&offset));
947
break;
948
case TypeULEB128:
949
sstr.Printf(" 0x%" PRIx64, GetULEB128(&offset));
950
break;
951
case TypeSLEB128:
952
sstr.Printf(" %" PRId64, GetSLEB128(&offset));
953
break;
954
}
955
}
956
957
if (!sstr.Empty())
958
log->PutString(sstr.GetString());
959
960
return offset; // Return the offset at which we ended up
961
}
962
963
size_t DataExtractor::Copy(DataExtractor &dest_data) const {
964
if (m_data_sp) {
965
// we can pass along the SP to the data
966
dest_data.SetData(m_data_sp);
967
} else {
968
const uint8_t *base_ptr = m_start;
969
size_t data_size = GetByteSize();
970
dest_data.SetData(DataBufferSP(new DataBufferHeap(base_ptr, data_size)));
971
}
972
return GetByteSize();
973
}
974
975
bool DataExtractor::Append(DataExtractor &rhs) {
976
if (rhs.GetByteOrder() != GetByteOrder())
977
return false;
978
979
if (rhs.GetByteSize() == 0)
980
return true;
981
982
if (GetByteSize() == 0)
983
return (rhs.Copy(*this) > 0);
984
985
size_t bytes = GetByteSize() + rhs.GetByteSize();
986
987
DataBufferHeap *buffer_heap_ptr = nullptr;
988
DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
989
990
if (!buffer_sp || buffer_heap_ptr == nullptr)
991
return false;
992
993
uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
994
995
memcpy(bytes_ptr, GetDataStart(), GetByteSize());
996
memcpy(bytes_ptr + GetByteSize(), rhs.GetDataStart(), rhs.GetByteSize());
997
998
SetData(buffer_sp);
999
1000
return true;
1001
}
1002
1003
bool DataExtractor::Append(void *buf, offset_t length) {
1004
if (buf == nullptr)
1005
return false;
1006
1007
if (length == 0)
1008
return true;
1009
1010
size_t bytes = GetByteSize() + length;
1011
1012
DataBufferHeap *buffer_heap_ptr = nullptr;
1013
DataBufferSP buffer_sp(buffer_heap_ptr = new DataBufferHeap(bytes, 0));
1014
1015
if (!buffer_sp || buffer_heap_ptr == nullptr)
1016
return false;
1017
1018
uint8_t *bytes_ptr = buffer_heap_ptr->GetBytes();
1019
1020
if (GetByteSize() > 0)
1021
memcpy(bytes_ptr, GetDataStart(), GetByteSize());
1022
1023
memcpy(bytes_ptr + GetByteSize(), buf, length);
1024
1025
SetData(buffer_sp);
1026
1027
return true;
1028
}
1029
1030
void DataExtractor::Checksum(llvm::SmallVectorImpl<uint8_t> &dest,
1031
uint64_t max_data) {
1032
if (max_data == 0)
1033
max_data = GetByteSize();
1034
else
1035
max_data = std::min(max_data, GetByteSize());
1036
1037
llvm::MD5 md5;
1038
1039
const llvm::ArrayRef<uint8_t> data(GetDataStart(), max_data);
1040
md5.update(data);
1041
1042
llvm::MD5::MD5Result result;
1043
md5.final(result);
1044
1045
dest.clear();
1046
dest.append(result.begin(), result.end());
1047
}
1048
1049