Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Analysis/BasicAliasAnalysis.cpp
35233 views
1
//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the primary stateless implementation of the
10
// Alias Analysis interface that implements identities (two different
11
// globals cannot alias, etc), but does no stateful analysis.
12
//
13
//===----------------------------------------------------------------------===//
14
15
#include "llvm/Analysis/BasicAliasAnalysis.h"
16
#include "llvm/ADT/APInt.h"
17
#include "llvm/ADT/ScopeExit.h"
18
#include "llvm/ADT/SmallPtrSet.h"
19
#include "llvm/ADT/SmallVector.h"
20
#include "llvm/ADT/Statistic.h"
21
#include "llvm/Analysis/AliasAnalysis.h"
22
#include "llvm/Analysis/AssumptionCache.h"
23
#include "llvm/Analysis/CFG.h"
24
#include "llvm/Analysis/CaptureTracking.h"
25
#include "llvm/Analysis/MemoryBuiltins.h"
26
#include "llvm/Analysis/MemoryLocation.h"
27
#include "llvm/Analysis/TargetLibraryInfo.h"
28
#include "llvm/Analysis/ValueTracking.h"
29
#include "llvm/IR/Argument.h"
30
#include "llvm/IR/Attributes.h"
31
#include "llvm/IR/Constant.h"
32
#include "llvm/IR/ConstantRange.h"
33
#include "llvm/IR/Constants.h"
34
#include "llvm/IR/DataLayout.h"
35
#include "llvm/IR/DerivedTypes.h"
36
#include "llvm/IR/Dominators.h"
37
#include "llvm/IR/Function.h"
38
#include "llvm/IR/GetElementPtrTypeIterator.h"
39
#include "llvm/IR/GlobalAlias.h"
40
#include "llvm/IR/GlobalVariable.h"
41
#include "llvm/IR/InstrTypes.h"
42
#include "llvm/IR/Instruction.h"
43
#include "llvm/IR/Instructions.h"
44
#include "llvm/IR/IntrinsicInst.h"
45
#include "llvm/IR/Intrinsics.h"
46
#include "llvm/IR/Operator.h"
47
#include "llvm/IR/PatternMatch.h"
48
#include "llvm/IR/Type.h"
49
#include "llvm/IR/User.h"
50
#include "llvm/IR/Value.h"
51
#include "llvm/InitializePasses.h"
52
#include "llvm/Pass.h"
53
#include "llvm/Support/Casting.h"
54
#include "llvm/Support/CommandLine.h"
55
#include "llvm/Support/Compiler.h"
56
#include "llvm/Support/KnownBits.h"
57
#include "llvm/Support/SaveAndRestore.h"
58
#include <cassert>
59
#include <cstdint>
60
#include <cstdlib>
61
#include <optional>
62
#include <utility>
63
64
#define DEBUG_TYPE "basicaa"
65
66
using namespace llvm;
67
68
/// Enable analysis of recursive PHI nodes.
69
static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
70
cl::init(true));
71
72
static cl::opt<bool> EnableSeparateStorageAnalysis("basic-aa-separate-storage",
73
cl::Hidden, cl::init(true));
74
75
/// SearchLimitReached / SearchTimes shows how often the limit of
76
/// to decompose GEPs is reached. It will affect the precision
77
/// of basic alias analysis.
78
STATISTIC(SearchLimitReached, "Number of times the limit to "
79
"decompose GEPs is reached");
80
STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
81
82
// The max limit of the search depth in DecomposeGEPExpression() and
83
// getUnderlyingObject().
84
static const unsigned MaxLookupSearchDepth = 6;
85
86
bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
87
FunctionAnalysisManager::Invalidator &Inv) {
88
// We don't care if this analysis itself is preserved, it has no state. But
89
// we need to check that the analyses it depends on have been. Note that we
90
// may be created without handles to some analyses and in that case don't
91
// depend on them.
92
if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
93
(DT_ && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)))
94
return true;
95
96
// Otherwise this analysis result remains valid.
97
return false;
98
}
99
100
//===----------------------------------------------------------------------===//
101
// Useful predicates
102
//===----------------------------------------------------------------------===//
103
104
/// Returns the size of the object specified by V or UnknownSize if unknown.
105
static std::optional<TypeSize> getObjectSize(const Value *V,
106
const DataLayout &DL,
107
const TargetLibraryInfo &TLI,
108
bool NullIsValidLoc,
109
bool RoundToAlign = false) {
110
uint64_t Size;
111
ObjectSizeOpts Opts;
112
Opts.RoundToAlign = RoundToAlign;
113
Opts.NullIsUnknownSize = NullIsValidLoc;
114
if (getObjectSize(V, Size, DL, &TLI, Opts))
115
return TypeSize::getFixed(Size);
116
return std::nullopt;
117
}
118
119
/// Returns true if we can prove that the object specified by V is smaller than
120
/// Size.
121
static bool isObjectSmallerThan(const Value *V, TypeSize Size,
122
const DataLayout &DL,
123
const TargetLibraryInfo &TLI,
124
bool NullIsValidLoc) {
125
// Note that the meanings of the "object" are slightly different in the
126
// following contexts:
127
// c1: llvm::getObjectSize()
128
// c2: llvm.objectsize() intrinsic
129
// c3: isObjectSmallerThan()
130
// c1 and c2 share the same meaning; however, the meaning of "object" in c3
131
// refers to the "entire object".
132
//
133
// Consider this example:
134
// char *p = (char*)malloc(100)
135
// char *q = p+80;
136
//
137
// In the context of c1 and c2, the "object" pointed by q refers to the
138
// stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
139
//
140
// However, in the context of c3, the "object" refers to the chunk of memory
141
// being allocated. So, the "object" has 100 bytes, and q points to the middle
142
// the "object". In case q is passed to isObjectSmallerThan() as the 1st
143
// parameter, before the llvm::getObjectSize() is called to get the size of
144
// entire object, we should:
145
// - either rewind the pointer q to the base-address of the object in
146
// question (in this case rewind to p), or
147
// - just give up. It is up to caller to make sure the pointer is pointing
148
// to the base address the object.
149
//
150
// We go for 2nd option for simplicity.
151
if (!isIdentifiedObject(V))
152
return false;
153
154
// This function needs to use the aligned object size because we allow
155
// reads a bit past the end given sufficient alignment.
156
std::optional<TypeSize> ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
157
/*RoundToAlign*/ true);
158
159
return ObjectSize && TypeSize::isKnownLT(*ObjectSize, Size);
160
}
161
162
/// Return the minimal extent from \p V to the end of the underlying object,
163
/// assuming the result is used in an aliasing query. E.g., we do use the query
164
/// location size and the fact that null pointers cannot alias here.
165
static TypeSize getMinimalExtentFrom(const Value &V,
166
const LocationSize &LocSize,
167
const DataLayout &DL,
168
bool NullIsValidLoc) {
169
// If we have dereferenceability information we know a lower bound for the
170
// extent as accesses for a lower offset would be valid. We need to exclude
171
// the "or null" part if null is a valid pointer. We can ignore frees, as an
172
// access after free would be undefined behavior.
173
bool CanBeNull, CanBeFreed;
174
uint64_t DerefBytes =
175
V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
176
DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
177
// If queried with a precise location size, we assume that location size to be
178
// accessed, thus valid.
179
if (LocSize.isPrecise())
180
DerefBytes = std::max(DerefBytes, LocSize.getValue().getKnownMinValue());
181
return TypeSize::getFixed(DerefBytes);
182
}
183
184
/// Returns true if we can prove that the object specified by V has size Size.
185
static bool isObjectSize(const Value *V, TypeSize Size, const DataLayout &DL,
186
const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
187
std::optional<TypeSize> ObjectSize =
188
getObjectSize(V, DL, TLI, NullIsValidLoc);
189
return ObjectSize && *ObjectSize == Size;
190
}
191
192
/// Return true if both V1 and V2 are VScale
193
static bool areBothVScale(const Value *V1, const Value *V2) {
194
return PatternMatch::match(V1, PatternMatch::m_VScale()) &&
195
PatternMatch::match(V2, PatternMatch::m_VScale());
196
}
197
198
//===----------------------------------------------------------------------===//
199
// CaptureInfo implementations
200
//===----------------------------------------------------------------------===//
201
202
CaptureInfo::~CaptureInfo() = default;
203
204
bool SimpleCaptureInfo::isNotCapturedBefore(const Value *Object,
205
const Instruction *I, bool OrAt) {
206
return isNonEscapingLocalObject(Object, &IsCapturedCache);
207
}
208
209
static bool isNotInCycle(const Instruction *I, const DominatorTree *DT,
210
const LoopInfo *LI) {
211
BasicBlock *BB = const_cast<BasicBlock *>(I->getParent());
212
SmallVector<BasicBlock *> Succs(successors(BB));
213
return Succs.empty() ||
214
!isPotentiallyReachableFromMany(Succs, BB, nullptr, DT, LI);
215
}
216
217
bool EarliestEscapeInfo::isNotCapturedBefore(const Value *Object,
218
const Instruction *I, bool OrAt) {
219
if (!isIdentifiedFunctionLocal(Object))
220
return false;
221
222
auto Iter = EarliestEscapes.insert({Object, nullptr});
223
if (Iter.second) {
224
Instruction *EarliestCapture = FindEarliestCapture(
225
Object, *const_cast<Function *>(DT.getRoot()->getParent()),
226
/*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT);
227
if (EarliestCapture) {
228
auto Ins = Inst2Obj.insert({EarliestCapture, {}});
229
Ins.first->second.push_back(Object);
230
}
231
Iter.first->second = EarliestCapture;
232
}
233
234
// No capturing instruction.
235
if (!Iter.first->second)
236
return true;
237
238
// No context instruction means any use is capturing.
239
if (!I)
240
return false;
241
242
if (I == Iter.first->second) {
243
if (OrAt)
244
return false;
245
return isNotInCycle(I, &DT, LI);
246
}
247
248
return !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, LI);
249
}
250
251
void EarliestEscapeInfo::removeInstruction(Instruction *I) {
252
auto Iter = Inst2Obj.find(I);
253
if (Iter != Inst2Obj.end()) {
254
for (const Value *Obj : Iter->second)
255
EarliestEscapes.erase(Obj);
256
Inst2Obj.erase(I);
257
}
258
}
259
260
//===----------------------------------------------------------------------===//
261
// GetElementPtr Instruction Decomposition and Analysis
262
//===----------------------------------------------------------------------===//
263
264
namespace {
265
/// Represents zext(sext(trunc(V))).
266
struct CastedValue {
267
const Value *V;
268
unsigned ZExtBits = 0;
269
unsigned SExtBits = 0;
270
unsigned TruncBits = 0;
271
/// Whether trunc(V) is non-negative.
272
bool IsNonNegative = false;
273
274
explicit CastedValue(const Value *V) : V(V) {}
275
explicit CastedValue(const Value *V, unsigned ZExtBits, unsigned SExtBits,
276
unsigned TruncBits, bool IsNonNegative)
277
: V(V), ZExtBits(ZExtBits), SExtBits(SExtBits), TruncBits(TruncBits),
278
IsNonNegative(IsNonNegative) {}
279
280
unsigned getBitWidth() const {
281
return V->getType()->getPrimitiveSizeInBits() - TruncBits + ZExtBits +
282
SExtBits;
283
}
284
285
CastedValue withValue(const Value *NewV, bool PreserveNonNeg) const {
286
return CastedValue(NewV, ZExtBits, SExtBits, TruncBits,
287
IsNonNegative && PreserveNonNeg);
288
}
289
290
/// Replace V with zext(NewV)
291
CastedValue withZExtOfValue(const Value *NewV, bool ZExtNonNegative) const {
292
unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
293
NewV->getType()->getPrimitiveSizeInBits();
294
if (ExtendBy <= TruncBits)
295
// zext<nneg>(trunc(zext(NewV))) == zext<nneg>(trunc(NewV))
296
// The nneg can be preserved on the outer zext here.
297
return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy,
298
IsNonNegative);
299
300
// zext(sext(zext(NewV))) == zext(zext(zext(NewV)))
301
ExtendBy -= TruncBits;
302
// zext<nneg>(zext(NewV)) == zext(NewV)
303
// zext(zext<nneg>(NewV)) == zext<nneg>(NewV)
304
// The nneg can be preserved from the inner zext here but must be dropped
305
// from the outer.
306
return CastedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0, 0,
307
ZExtNonNegative);
308
}
309
310
/// Replace V with sext(NewV)
311
CastedValue withSExtOfValue(const Value *NewV) const {
312
unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
313
NewV->getType()->getPrimitiveSizeInBits();
314
if (ExtendBy <= TruncBits)
315
// zext<nneg>(trunc(sext(NewV))) == zext<nneg>(trunc(NewV))
316
// The nneg can be preserved on the outer zext here
317
return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy,
318
IsNonNegative);
319
320
// zext(sext(sext(NewV)))
321
ExtendBy -= TruncBits;
322
// zext<nneg>(sext(sext(NewV))) = zext<nneg>(sext(NewV))
323
// The nneg can be preserved on the outer zext here
324
return CastedValue(NewV, ZExtBits, SExtBits + ExtendBy, 0, IsNonNegative);
325
}
326
327
APInt evaluateWith(APInt N) const {
328
assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
329
"Incompatible bit width");
330
if (TruncBits) N = N.trunc(N.getBitWidth() - TruncBits);
331
if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits);
332
if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits);
333
return N;
334
}
335
336
ConstantRange evaluateWith(ConstantRange N) const {
337
assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
338
"Incompatible bit width");
339
if (TruncBits) N = N.truncate(N.getBitWidth() - TruncBits);
340
if (SExtBits) N = N.signExtend(N.getBitWidth() + SExtBits);
341
if (ZExtBits) N = N.zeroExtend(N.getBitWidth() + ZExtBits);
342
return N;
343
}
344
345
bool canDistributeOver(bool NUW, bool NSW) const {
346
// zext(x op<nuw> y) == zext(x) op<nuw> zext(y)
347
// sext(x op<nsw> y) == sext(x) op<nsw> sext(y)
348
// trunc(x op y) == trunc(x) op trunc(y)
349
return (!ZExtBits || NUW) && (!SExtBits || NSW);
350
}
351
352
bool hasSameCastsAs(const CastedValue &Other) const {
353
if (ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits &&
354
TruncBits == Other.TruncBits)
355
return true;
356
// If either CastedValue has a nneg zext then the sext/zext bits are
357
// interchangable for that value.
358
if (IsNonNegative || Other.IsNonNegative)
359
return (ZExtBits + SExtBits == Other.ZExtBits + Other.SExtBits &&
360
TruncBits == Other.TruncBits);
361
return false;
362
}
363
};
364
365
/// Represents zext(sext(trunc(V))) * Scale + Offset.
366
struct LinearExpression {
367
CastedValue Val;
368
APInt Scale;
369
APInt Offset;
370
371
/// True if all operations in this expression are NSW.
372
bool IsNSW;
373
374
LinearExpression(const CastedValue &Val, const APInt &Scale,
375
const APInt &Offset, bool IsNSW)
376
: Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {}
377
378
LinearExpression(const CastedValue &Val) : Val(Val), IsNSW(true) {
379
unsigned BitWidth = Val.getBitWidth();
380
Scale = APInt(BitWidth, 1);
381
Offset = APInt(BitWidth, 0);
382
}
383
384
LinearExpression mul(const APInt &Other, bool MulIsNSW) const {
385
// The check for zero offset is necessary, because generally
386
// (X +nsw Y) *nsw Z does not imply (X *nsw Z) +nsw (Y *nsw Z).
387
bool NSW = IsNSW && (Other.isOne() || (MulIsNSW && Offset.isZero()));
388
return LinearExpression(Val, Scale * Other, Offset * Other, NSW);
389
}
390
};
391
}
392
393
/// Analyzes the specified value as a linear expression: "A*V + B", where A and
394
/// B are constant integers.
395
static LinearExpression GetLinearExpression(
396
const CastedValue &Val, const DataLayout &DL, unsigned Depth,
397
AssumptionCache *AC, DominatorTree *DT) {
398
// Limit our recursion depth.
399
if (Depth == 6)
400
return Val;
401
402
if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V))
403
return LinearExpression(Val, APInt(Val.getBitWidth(), 0),
404
Val.evaluateWith(Const->getValue()), true);
405
406
if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) {
407
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
408
APInt RHS = Val.evaluateWith(RHSC->getValue());
409
// The only non-OBO case we deal with is or, and only limited to the
410
// case where it is both nuw and nsw.
411
bool NUW = true, NSW = true;
412
if (isa<OverflowingBinaryOperator>(BOp)) {
413
NUW &= BOp->hasNoUnsignedWrap();
414
NSW &= BOp->hasNoSignedWrap();
415
}
416
if (!Val.canDistributeOver(NUW, NSW))
417
return Val;
418
419
// While we can distribute over trunc, we cannot preserve nowrap flags
420
// in that case.
421
if (Val.TruncBits)
422
NUW = NSW = false;
423
424
LinearExpression E(Val);
425
switch (BOp->getOpcode()) {
426
default:
427
// We don't understand this instruction, so we can't decompose it any
428
// further.
429
return Val;
430
case Instruction::Or:
431
// X|C == X+C if it is disjoint. Otherwise we can't analyze it.
432
if (!cast<PossiblyDisjointInst>(BOp)->isDisjoint())
433
return Val;
434
435
[[fallthrough]];
436
case Instruction::Add: {
437
E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL,
438
Depth + 1, AC, DT);
439
E.Offset += RHS;
440
E.IsNSW &= NSW;
441
break;
442
}
443
case Instruction::Sub: {
444
E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL,
445
Depth + 1, AC, DT);
446
E.Offset -= RHS;
447
E.IsNSW &= NSW;
448
break;
449
}
450
case Instruction::Mul:
451
E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL,
452
Depth + 1, AC, DT)
453
.mul(RHS, NSW);
454
break;
455
case Instruction::Shl:
456
// We're trying to linearize an expression of the kind:
457
// shl i8 -128, 36
458
// where the shift count exceeds the bitwidth of the type.
459
// We can't decompose this further (the expression would return
460
// a poison value).
461
if (RHS.getLimitedValue() > Val.getBitWidth())
462
return Val;
463
464
E = GetLinearExpression(Val.withValue(BOp->getOperand(0), NSW), DL,
465
Depth + 1, AC, DT);
466
E.Offset <<= RHS.getLimitedValue();
467
E.Scale <<= RHS.getLimitedValue();
468
E.IsNSW &= NSW;
469
break;
470
}
471
return E;
472
}
473
}
474
475
if (const auto *ZExt = dyn_cast<ZExtInst>(Val.V))
476
return GetLinearExpression(
477
Val.withZExtOfValue(ZExt->getOperand(0), ZExt->hasNonNeg()), DL,
478
Depth + 1, AC, DT);
479
480
if (isa<SExtInst>(Val.V))
481
return GetLinearExpression(
482
Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
483
DL, Depth + 1, AC, DT);
484
485
return Val;
486
}
487
488
/// To ensure a pointer offset fits in an integer of size IndexSize
489
/// (in bits) when that size is smaller than the maximum index size. This is
490
/// an issue, for example, in particular for 32b pointers with negative indices
491
/// that rely on two's complement wrap-arounds for precise alias information
492
/// where the maximum index size is 64b.
493
static void adjustToIndexSize(APInt &Offset, unsigned IndexSize) {
494
assert(IndexSize <= Offset.getBitWidth() && "Invalid IndexSize!");
495
unsigned ShiftBits = Offset.getBitWidth() - IndexSize;
496
if (ShiftBits != 0) {
497
Offset <<= ShiftBits;
498
Offset.ashrInPlace(ShiftBits);
499
}
500
}
501
502
namespace {
503
// A linear transformation of a Value; this class represents
504
// ZExt(SExt(Trunc(V, TruncBits), SExtBits), ZExtBits) * Scale.
505
struct VariableGEPIndex {
506
CastedValue Val;
507
APInt Scale;
508
509
// Context instruction to use when querying information about this index.
510
const Instruction *CxtI;
511
512
/// True if all operations in this expression are NSW.
513
bool IsNSW;
514
515
/// True if the index should be subtracted rather than added. We don't simply
516
/// negate the Scale, to avoid losing the NSW flag: X - INT_MIN*1 may be
517
/// non-wrapping, while X + INT_MIN*(-1) wraps.
518
bool IsNegated;
519
520
bool hasNegatedScaleOf(const VariableGEPIndex &Other) const {
521
if (IsNegated == Other.IsNegated)
522
return Scale == -Other.Scale;
523
return Scale == Other.Scale;
524
}
525
526
void dump() const {
527
print(dbgs());
528
dbgs() << "\n";
529
}
530
void print(raw_ostream &OS) const {
531
OS << "(V=" << Val.V->getName()
532
<< ", zextbits=" << Val.ZExtBits
533
<< ", sextbits=" << Val.SExtBits
534
<< ", truncbits=" << Val.TruncBits
535
<< ", scale=" << Scale
536
<< ", nsw=" << IsNSW
537
<< ", negated=" << IsNegated << ")";
538
}
539
};
540
}
541
542
// Represents the internal structure of a GEP, decomposed into a base pointer,
543
// constant offsets, and variable scaled indices.
544
struct BasicAAResult::DecomposedGEP {
545
// Base pointer of the GEP
546
const Value *Base;
547
// Total constant offset from base.
548
APInt Offset;
549
// Scaled variable (non-constant) indices.
550
SmallVector<VariableGEPIndex, 4> VarIndices;
551
// Are all operations inbounds GEPs or non-indexing operations?
552
// (std::nullopt iff expression doesn't involve any geps)
553
std::optional<bool> InBounds;
554
555
void dump() const {
556
print(dbgs());
557
dbgs() << "\n";
558
}
559
void print(raw_ostream &OS) const {
560
OS << "(DecomposedGEP Base=" << Base->getName()
561
<< ", Offset=" << Offset
562
<< ", VarIndices=[";
563
for (size_t i = 0; i < VarIndices.size(); i++) {
564
if (i != 0)
565
OS << ", ";
566
VarIndices[i].print(OS);
567
}
568
OS << "])";
569
}
570
};
571
572
573
/// If V is a symbolic pointer expression, decompose it into a base pointer
574
/// with a constant offset and a number of scaled symbolic offsets.
575
///
576
/// The scaled symbolic offsets (represented by pairs of a Value* and a scale
577
/// in the VarIndices vector) are Value*'s that are known to be scaled by the
578
/// specified amount, but which may have other unrepresented high bits. As
579
/// such, the gep cannot necessarily be reconstructed from its decomposed form.
580
BasicAAResult::DecomposedGEP
581
BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
582
AssumptionCache *AC, DominatorTree *DT) {
583
// Limit recursion depth to limit compile time in crazy cases.
584
unsigned MaxLookup = MaxLookupSearchDepth;
585
SearchTimes++;
586
const Instruction *CxtI = dyn_cast<Instruction>(V);
587
588
unsigned MaxIndexSize = DL.getMaxIndexSizeInBits();
589
DecomposedGEP Decomposed;
590
Decomposed.Offset = APInt(MaxIndexSize, 0);
591
do {
592
// See if this is a bitcast or GEP.
593
const Operator *Op = dyn_cast<Operator>(V);
594
if (!Op) {
595
// The only non-operator case we can handle are GlobalAliases.
596
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
597
if (!GA->isInterposable()) {
598
V = GA->getAliasee();
599
continue;
600
}
601
}
602
Decomposed.Base = V;
603
return Decomposed;
604
}
605
606
if (Op->getOpcode() == Instruction::BitCast ||
607
Op->getOpcode() == Instruction::AddrSpaceCast) {
608
V = Op->getOperand(0);
609
continue;
610
}
611
612
const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
613
if (!GEPOp) {
614
if (const auto *PHI = dyn_cast<PHINode>(V)) {
615
// Look through single-arg phi nodes created by LCSSA.
616
if (PHI->getNumIncomingValues() == 1) {
617
V = PHI->getIncomingValue(0);
618
continue;
619
}
620
} else if (const auto *Call = dyn_cast<CallBase>(V)) {
621
// CaptureTracking can know about special capturing properties of some
622
// intrinsics like launder.invariant.group, that can't be expressed with
623
// the attributes, but have properties like returning aliasing pointer.
624
// Because some analysis may assume that nocaptured pointer is not
625
// returned from some special intrinsic (because function would have to
626
// be marked with returns attribute), it is crucial to use this function
627
// because it should be in sync with CaptureTracking. Not using it may
628
// cause weird miscompilations where 2 aliasing pointers are assumed to
629
// noalias.
630
if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
631
V = RP;
632
continue;
633
}
634
}
635
636
Decomposed.Base = V;
637
return Decomposed;
638
}
639
640
// Track whether we've seen at least one in bounds gep, and if so, whether
641
// all geps parsed were in bounds.
642
if (Decomposed.InBounds == std::nullopt)
643
Decomposed.InBounds = GEPOp->isInBounds();
644
else if (!GEPOp->isInBounds())
645
Decomposed.InBounds = false;
646
647
assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized");
648
649
unsigned AS = GEPOp->getPointerAddressSpace();
650
// Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
651
gep_type_iterator GTI = gep_type_begin(GEPOp);
652
unsigned IndexSize = DL.getIndexSizeInBits(AS);
653
// Assume all GEP operands are constants until proven otherwise.
654
bool GepHasConstantOffset = true;
655
for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
656
I != E; ++I, ++GTI) {
657
const Value *Index = *I;
658
// Compute the (potentially symbolic) offset in bytes for this index.
659
if (StructType *STy = GTI.getStructTypeOrNull()) {
660
// For a struct, add the member offset.
661
unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
662
if (FieldNo == 0)
663
continue;
664
665
Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
666
continue;
667
}
668
669
// For an array/pointer, add the element offset, explicitly scaled.
670
if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
671
if (CIdx->isZero())
672
continue;
673
674
// Don't attempt to analyze GEPs if the scalable index is not zero.
675
TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL);
676
if (AllocTypeSize.isScalable()) {
677
Decomposed.Base = V;
678
return Decomposed;
679
}
680
681
Decomposed.Offset += AllocTypeSize.getFixedValue() *
682
CIdx->getValue().sextOrTrunc(MaxIndexSize);
683
continue;
684
}
685
686
TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL);
687
if (AllocTypeSize.isScalable()) {
688
Decomposed.Base = V;
689
return Decomposed;
690
}
691
692
GepHasConstantOffset = false;
693
694
// If the integer type is smaller than the index size, it is implicitly
695
// sign extended or truncated to index size.
696
unsigned Width = Index->getType()->getIntegerBitWidth();
697
unsigned SExtBits = IndexSize > Width ? IndexSize - Width : 0;
698
unsigned TruncBits = IndexSize < Width ? Width - IndexSize : 0;
699
LinearExpression LE = GetLinearExpression(
700
CastedValue(Index, 0, SExtBits, TruncBits, false), DL, 0, AC, DT);
701
702
// Scale by the type size.
703
unsigned TypeSize = AllocTypeSize.getFixedValue();
704
LE = LE.mul(APInt(IndexSize, TypeSize), GEPOp->isInBounds());
705
Decomposed.Offset += LE.Offset.sext(MaxIndexSize);
706
APInt Scale = LE.Scale.sext(MaxIndexSize);
707
708
// If we already had an occurrence of this index variable, merge this
709
// scale into it. For example, we want to handle:
710
// A[x][x] -> x*16 + x*4 -> x*20
711
// This also ensures that 'x' only appears in the index list once.
712
for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
713
if ((Decomposed.VarIndices[i].Val.V == LE.Val.V ||
714
areBothVScale(Decomposed.VarIndices[i].Val.V, LE.Val.V)) &&
715
Decomposed.VarIndices[i].Val.hasSameCastsAs(LE.Val)) {
716
Scale += Decomposed.VarIndices[i].Scale;
717
LE.IsNSW = false; // We cannot guarantee nsw for the merge.
718
Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
719
break;
720
}
721
}
722
723
// Make sure that we have a scale that makes sense for this target's
724
// index size.
725
adjustToIndexSize(Scale, IndexSize);
726
727
if (!!Scale) {
728
VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW,
729
/* IsNegated */ false};
730
Decomposed.VarIndices.push_back(Entry);
731
}
732
}
733
734
// Take care of wrap-arounds
735
if (GepHasConstantOffset)
736
adjustToIndexSize(Decomposed.Offset, IndexSize);
737
738
// Analyze the base pointer next.
739
V = GEPOp->getOperand(0);
740
} while (--MaxLookup);
741
742
// If the chain of expressions is too deep, just return early.
743
Decomposed.Base = V;
744
SearchLimitReached++;
745
return Decomposed;
746
}
747
748
ModRefInfo BasicAAResult::getModRefInfoMask(const MemoryLocation &Loc,
749
AAQueryInfo &AAQI,
750
bool IgnoreLocals) {
751
assert(Visited.empty() && "Visited must be cleared after use!");
752
auto _ = make_scope_exit([&] { Visited.clear(); });
753
754
unsigned MaxLookup = 8;
755
SmallVector<const Value *, 16> Worklist;
756
Worklist.push_back(Loc.Ptr);
757
ModRefInfo Result = ModRefInfo::NoModRef;
758
759
do {
760
const Value *V = getUnderlyingObject(Worklist.pop_back_val());
761
if (!Visited.insert(V).second)
762
continue;
763
764
// Ignore allocas if we were instructed to do so.
765
if (IgnoreLocals && isa<AllocaInst>(V))
766
continue;
767
768
// If the location points to memory that is known to be invariant for
769
// the life of the underlying SSA value, then we can exclude Mod from
770
// the set of valid memory effects.
771
//
772
// An argument that is marked readonly and noalias is known to be
773
// invariant while that function is executing.
774
if (const Argument *Arg = dyn_cast<Argument>(V)) {
775
if (Arg->hasNoAliasAttr() && Arg->onlyReadsMemory()) {
776
Result |= ModRefInfo::Ref;
777
continue;
778
}
779
}
780
781
// A global constant can't be mutated.
782
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
783
// Note: this doesn't require GV to be "ODR" because it isn't legal for a
784
// global to be marked constant in some modules and non-constant in
785
// others. GV may even be a declaration, not a definition.
786
if (!GV->isConstant())
787
return ModRefInfo::ModRef;
788
continue;
789
}
790
791
// If both select values point to local memory, then so does the select.
792
if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
793
Worklist.push_back(SI->getTrueValue());
794
Worklist.push_back(SI->getFalseValue());
795
continue;
796
}
797
798
// If all values incoming to a phi node point to local memory, then so does
799
// the phi.
800
if (const PHINode *PN = dyn_cast<PHINode>(V)) {
801
// Don't bother inspecting phi nodes with many operands.
802
if (PN->getNumIncomingValues() > MaxLookup)
803
return ModRefInfo::ModRef;
804
append_range(Worklist, PN->incoming_values());
805
continue;
806
}
807
808
// Otherwise be conservative.
809
return ModRefInfo::ModRef;
810
} while (!Worklist.empty() && --MaxLookup);
811
812
// If we hit the maximum number of instructions to examine, be conservative.
813
if (!Worklist.empty())
814
return ModRefInfo::ModRef;
815
816
return Result;
817
}
818
819
static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
820
const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
821
return II && II->getIntrinsicID() == IID;
822
}
823
824
/// Returns the behavior when calling the given call site.
825
MemoryEffects BasicAAResult::getMemoryEffects(const CallBase *Call,
826
AAQueryInfo &AAQI) {
827
MemoryEffects Min = Call->getAttributes().getMemoryEffects();
828
829
if (const Function *F = dyn_cast<Function>(Call->getCalledOperand())) {
830
MemoryEffects FuncME = AAQI.AAR.getMemoryEffects(F);
831
// Operand bundles on the call may also read or write memory, in addition
832
// to the behavior of the called function.
833
if (Call->hasReadingOperandBundles())
834
FuncME |= MemoryEffects::readOnly();
835
if (Call->hasClobberingOperandBundles())
836
FuncME |= MemoryEffects::writeOnly();
837
Min &= FuncME;
838
}
839
840
return Min;
841
}
842
843
/// Returns the behavior when calling the given function. For use when the call
844
/// site is not known.
845
MemoryEffects BasicAAResult::getMemoryEffects(const Function *F) {
846
switch (F->getIntrinsicID()) {
847
case Intrinsic::experimental_guard:
848
case Intrinsic::experimental_deoptimize:
849
// These intrinsics can read arbitrary memory, and additionally modref
850
// inaccessible memory to model control dependence.
851
return MemoryEffects::readOnly() |
852
MemoryEffects::inaccessibleMemOnly(ModRefInfo::ModRef);
853
}
854
855
return F->getMemoryEffects();
856
}
857
858
ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
859
unsigned ArgIdx) {
860
if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly))
861
return ModRefInfo::Mod;
862
863
if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly))
864
return ModRefInfo::Ref;
865
866
if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone))
867
return ModRefInfo::NoModRef;
868
869
return ModRefInfo::ModRef;
870
}
871
872
#ifndef NDEBUG
873
static const Function *getParent(const Value *V) {
874
if (const Instruction *inst = dyn_cast<Instruction>(V)) {
875
if (!inst->getParent())
876
return nullptr;
877
return inst->getParent()->getParent();
878
}
879
880
if (const Argument *arg = dyn_cast<Argument>(V))
881
return arg->getParent();
882
883
return nullptr;
884
}
885
886
static bool notDifferentParent(const Value *O1, const Value *O2) {
887
888
const Function *F1 = getParent(O1);
889
const Function *F2 = getParent(O2);
890
891
return !F1 || !F2 || F1 == F2;
892
}
893
#endif
894
895
AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
896
const MemoryLocation &LocB, AAQueryInfo &AAQI,
897
const Instruction *CtxI) {
898
assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
899
"BasicAliasAnalysis doesn't support interprocedural queries.");
900
return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI, CtxI);
901
}
902
903
/// Checks to see if the specified callsite can clobber the specified memory
904
/// object.
905
///
906
/// Since we only look at local properties of this function, we really can't
907
/// say much about this query. We do, however, use simple "address taken"
908
/// analysis on local objects.
909
ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
910
const MemoryLocation &Loc,
911
AAQueryInfo &AAQI) {
912
assert(notDifferentParent(Call, Loc.Ptr) &&
913
"AliasAnalysis query involving multiple functions!");
914
915
const Value *Object = getUnderlyingObject(Loc.Ptr);
916
917
// Calls marked 'tail' cannot read or write allocas from the current frame
918
// because the current frame might be destroyed by the time they run. However,
919
// a tail call may use an alloca with byval. Calling with byval copies the
920
// contents of the alloca into argument registers or stack slots, so there is
921
// no lifetime issue.
922
if (isa<AllocaInst>(Object))
923
if (const CallInst *CI = dyn_cast<CallInst>(Call))
924
if (CI->isTailCall() &&
925
!CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
926
return ModRefInfo::NoModRef;
927
928
// Stack restore is able to modify unescaped dynamic allocas. Assume it may
929
// modify them even though the alloca is not escaped.
930
if (auto *AI = dyn_cast<AllocaInst>(Object))
931
if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
932
return ModRefInfo::Mod;
933
934
// A call can access a locally allocated object either because it is passed as
935
// an argument to the call, or because it has escaped prior to the call.
936
//
937
// Make sure the object has not escaped here, and then check that none of the
938
// call arguments alias the object below.
939
if (!isa<Constant>(Object) && Call != Object &&
940
AAQI.CI->isNotCapturedBefore(Object, Call, /*OrAt*/ false)) {
941
942
// Optimistically assume that call doesn't touch Object and check this
943
// assumption in the following loop.
944
ModRefInfo Result = ModRefInfo::NoModRef;
945
946
unsigned OperandNo = 0;
947
for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
948
CI != CE; ++CI, ++OperandNo) {
949
if (!(*CI)->getType()->isPointerTy())
950
continue;
951
952
// Call doesn't access memory through this operand, so we don't care
953
// if it aliases with Object.
954
if (Call->doesNotAccessMemory(OperandNo))
955
continue;
956
957
// If this is a no-capture pointer argument, see if we can tell that it
958
// is impossible to alias the pointer we're checking.
959
AliasResult AR =
960
AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(*CI),
961
MemoryLocation::getBeforeOrAfter(Object), AAQI);
962
// Operand doesn't alias 'Object', continue looking for other aliases
963
if (AR == AliasResult::NoAlias)
964
continue;
965
// Operand aliases 'Object', but call doesn't modify it. Strengthen
966
// initial assumption and keep looking in case if there are more aliases.
967
if (Call->onlyReadsMemory(OperandNo)) {
968
Result |= ModRefInfo::Ref;
969
continue;
970
}
971
// Operand aliases 'Object' but call only writes into it.
972
if (Call->onlyWritesMemory(OperandNo)) {
973
Result |= ModRefInfo::Mod;
974
continue;
975
}
976
// This operand aliases 'Object' and call reads and writes into it.
977
// Setting ModRef will not yield an early return below, MustAlias is not
978
// used further.
979
Result = ModRefInfo::ModRef;
980
break;
981
}
982
983
// Early return if we improved mod ref information
984
if (!isModAndRefSet(Result))
985
return Result;
986
}
987
988
// If the call is malloc/calloc like, we can assume that it doesn't
989
// modify any IR visible value. This is only valid because we assume these
990
// routines do not read values visible in the IR. TODO: Consider special
991
// casing realloc and strdup routines which access only their arguments as
992
// well. Or alternatively, replace all of this with inaccessiblememonly once
993
// that's implemented fully.
994
if (isMallocOrCallocLikeFn(Call, &TLI)) {
995
// Be conservative if the accessed pointer may alias the allocation -
996
// fallback to the generic handling below.
997
if (AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(Call), Loc, AAQI) ==
998
AliasResult::NoAlias)
999
return ModRefInfo::NoModRef;
1000
}
1001
1002
// Like assumes, invariant.start intrinsics were also marked as arbitrarily
1003
// writing so that proper control dependencies are maintained but they never
1004
// mod any particular memory location visible to the IR.
1005
// *Unlike* assumes (which are now modeled as NoModRef), invariant.start
1006
// intrinsic is now modeled as reading memory. This prevents hoisting the
1007
// invariant.start intrinsic over stores. Consider:
1008
// *ptr = 40;
1009
// *ptr = 50;
1010
// invariant_start(ptr)
1011
// int val = *ptr;
1012
// print(val);
1013
//
1014
// This cannot be transformed to:
1015
//
1016
// *ptr = 40;
1017
// invariant_start(ptr)
1018
// *ptr = 50;
1019
// int val = *ptr;
1020
// print(val);
1021
//
1022
// The transformation will cause the second store to be ignored (based on
1023
// rules of invariant.start) and print 40, while the first program always
1024
// prints 50.
1025
if (isIntrinsicCall(Call, Intrinsic::invariant_start))
1026
return ModRefInfo::Ref;
1027
1028
// Be conservative.
1029
return ModRefInfo::ModRef;
1030
}
1031
1032
ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
1033
const CallBase *Call2,
1034
AAQueryInfo &AAQI) {
1035
// Guard intrinsics are marked as arbitrarily writing so that proper control
1036
// dependencies are maintained but they never mods any particular memory
1037
// location.
1038
//
1039
// *Unlike* assumes, guard intrinsics are modeled as reading memory since the
1040
// heap state at the point the guard is issued needs to be consistent in case
1041
// the guard invokes the "deopt" continuation.
1042
1043
// NB! This function is *not* commutative, so we special case two
1044
// possibilities for guard intrinsics.
1045
1046
if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
1047
return isModSet(getMemoryEffects(Call2, AAQI).getModRef())
1048
? ModRefInfo::Ref
1049
: ModRefInfo::NoModRef;
1050
1051
if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
1052
return isModSet(getMemoryEffects(Call1, AAQI).getModRef())
1053
? ModRefInfo::Mod
1054
: ModRefInfo::NoModRef;
1055
1056
// Be conservative.
1057
return ModRefInfo::ModRef;
1058
}
1059
1060
/// Return true if we know V to the base address of the corresponding memory
1061
/// object. This implies that any address less than V must be out of bounds
1062
/// for the underlying object. Note that just being isIdentifiedObject() is
1063
/// not enough - For example, a negative offset from a noalias argument or call
1064
/// can be inbounds w.r.t the actual underlying object.
1065
static bool isBaseOfObject(const Value *V) {
1066
// TODO: We can handle other cases here
1067
// 1) For GC languages, arguments to functions are often required to be
1068
// base pointers.
1069
// 2) Result of allocation routines are often base pointers. Leverage TLI.
1070
return (isa<AllocaInst>(V) || isa<GlobalVariable>(V));
1071
}
1072
1073
/// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
1074
/// another pointer.
1075
///
1076
/// We know that V1 is a GEP, but we don't know anything about V2.
1077
/// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
1078
/// V2.
1079
AliasResult BasicAAResult::aliasGEP(
1080
const GEPOperator *GEP1, LocationSize V1Size,
1081
const Value *V2, LocationSize V2Size,
1082
const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
1083
if (!V1Size.hasValue() && !V2Size.hasValue()) {
1084
// TODO: This limitation exists for compile-time reasons. Relax it if we
1085
// can avoid exponential pathological cases.
1086
if (!isa<GEPOperator>(V2))
1087
return AliasResult::MayAlias;
1088
1089
// If both accesses have unknown size, we can only check whether the base
1090
// objects don't alias.
1091
AliasResult BaseAlias =
1092
AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(UnderlyingV1),
1093
MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
1094
return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias
1095
: AliasResult::MayAlias;
1096
}
1097
1098
DominatorTree *DT = getDT(AAQI);
1099
DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
1100
DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
1101
1102
// Bail if we were not able to decompose anything.
1103
if (DecompGEP1.Base == GEP1 && DecompGEP2.Base == V2)
1104
return AliasResult::MayAlias;
1105
1106
// Subtract the GEP2 pointer from the GEP1 pointer to find out their
1107
// symbolic difference.
1108
subtractDecomposedGEPs(DecompGEP1, DecompGEP2, AAQI);
1109
1110
// If an inbounds GEP would have to start from an out of bounds address
1111
// for the two to alias, then we can assume noalias.
1112
// TODO: Remove !isScalable() once BasicAA fully support scalable location
1113
// size
1114
if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() &&
1115
V2Size.hasValue() && !V2Size.isScalable() &&
1116
DecompGEP1.Offset.sge(V2Size.getValue()) &&
1117
isBaseOfObject(DecompGEP2.Base))
1118
return AliasResult::NoAlias;
1119
1120
if (isa<GEPOperator>(V2)) {
1121
// Symmetric case to above.
1122
if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() &&
1123
V1Size.hasValue() && !V1Size.isScalable() &&
1124
DecompGEP1.Offset.sle(-V1Size.getValue()) &&
1125
isBaseOfObject(DecompGEP1.Base))
1126
return AliasResult::NoAlias;
1127
}
1128
1129
// For GEPs with identical offsets, we can preserve the size and AAInfo
1130
// when performing the alias check on the underlying objects.
1131
if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
1132
return AAQI.AAR.alias(MemoryLocation(DecompGEP1.Base, V1Size),
1133
MemoryLocation(DecompGEP2.Base, V2Size), AAQI);
1134
1135
// Do the base pointers alias?
1136
AliasResult BaseAlias =
1137
AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(DecompGEP1.Base),
1138
MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI);
1139
1140
// If we get a No or May, then return it immediately, no amount of analysis
1141
// will improve this situation.
1142
if (BaseAlias != AliasResult::MustAlias) {
1143
assert(BaseAlias == AliasResult::NoAlias ||
1144
BaseAlias == AliasResult::MayAlias);
1145
return BaseAlias;
1146
}
1147
1148
// If there is a constant difference between the pointers, but the difference
1149
// is less than the size of the associated memory object, then we know
1150
// that the objects are partially overlapping. If the difference is
1151
// greater, we know they do not overlap.
1152
if (DecompGEP1.VarIndices.empty()) {
1153
APInt &Off = DecompGEP1.Offset;
1154
1155
// Initialize for Off >= 0 (V2 <= GEP1) case.
1156
const Value *LeftPtr = V2;
1157
const Value *RightPtr = GEP1;
1158
LocationSize VLeftSize = V2Size;
1159
LocationSize VRightSize = V1Size;
1160
const bool Swapped = Off.isNegative();
1161
1162
if (Swapped) {
1163
// Swap if we have the situation where:
1164
// + +
1165
// | BaseOffset |
1166
// ---------------->|
1167
// |-->V1Size |-------> V2Size
1168
// GEP1 V2
1169
std::swap(LeftPtr, RightPtr);
1170
std::swap(VLeftSize, VRightSize);
1171
Off = -Off;
1172
}
1173
1174
if (!VLeftSize.hasValue())
1175
return AliasResult::MayAlias;
1176
1177
const TypeSize LSize = VLeftSize.getValue();
1178
if (!LSize.isScalable()) {
1179
if (Off.ult(LSize)) {
1180
// Conservatively drop processing if a phi was visited and/or offset is
1181
// too big.
1182
AliasResult AR = AliasResult::PartialAlias;
1183
if (VRightSize.hasValue() && !VRightSize.isScalable() &&
1184
Off.ule(INT32_MAX) && (Off + VRightSize.getValue()).ule(LSize)) {
1185
// Memory referenced by right pointer is nested. Save the offset in
1186
// cache. Note that originally offset estimated as GEP1-V2, but
1187
// AliasResult contains the shift that represents GEP1+Offset=V2.
1188
AR.setOffset(-Off.getSExtValue());
1189
AR.swap(Swapped);
1190
}
1191
return AR;
1192
}
1193
return AliasResult::NoAlias;
1194
} else {
1195
// We can use the getVScaleRange to prove that Off >= (CR.upper * LSize).
1196
ConstantRange CR = getVScaleRange(&F, Off.getBitWidth());
1197
bool Overflow;
1198
APInt UpperRange = CR.getUnsignedMax().umul_ov(
1199
APInt(Off.getBitWidth(), LSize.getKnownMinValue()), Overflow);
1200
if (!Overflow && Off.uge(UpperRange))
1201
return AliasResult::NoAlias;
1202
}
1203
}
1204
1205
// VScale Alias Analysis - Given one scalable offset between accesses and a
1206
// scalable typesize, we can divide each side by vscale, treating both values
1207
// as a constant. We prove that Offset/vscale >= TypeSize/vscale.
1208
if (DecompGEP1.VarIndices.size() == 1 &&
1209
DecompGEP1.VarIndices[0].Val.TruncBits == 0 &&
1210
DecompGEP1.Offset.isZero() &&
1211
PatternMatch::match(DecompGEP1.VarIndices[0].Val.V,
1212
PatternMatch::m_VScale())) {
1213
const VariableGEPIndex &ScalableVar = DecompGEP1.VarIndices[0];
1214
APInt Scale =
1215
ScalableVar.IsNegated ? -ScalableVar.Scale : ScalableVar.Scale;
1216
LocationSize VLeftSize = Scale.isNegative() ? V1Size : V2Size;
1217
1218
// Check if the offset is known to not overflow, if it does then attempt to
1219
// prove it with the known values of vscale_range.
1220
bool Overflows = !DecompGEP1.VarIndices[0].IsNSW;
1221
if (Overflows) {
1222
ConstantRange CR = getVScaleRange(&F, Scale.getBitWidth());
1223
(void)CR.getSignedMax().smul_ov(Scale, Overflows);
1224
}
1225
1226
if (!Overflows) {
1227
// Note that we do not check that the typesize is scalable, as vscale >= 1
1228
// so noalias still holds so long as the dependency distance is at least
1229
// as big as the typesize.
1230
if (VLeftSize.hasValue() &&
1231
Scale.abs().uge(VLeftSize.getValue().getKnownMinValue()))
1232
return AliasResult::NoAlias;
1233
}
1234
}
1235
1236
// Bail on analysing scalable LocationSize
1237
if (V1Size.isScalable() || V2Size.isScalable())
1238
return AliasResult::MayAlias;
1239
1240
// We need to know both acess sizes for all the following heuristics.
1241
if (!V1Size.hasValue() || !V2Size.hasValue())
1242
return AliasResult::MayAlias;
1243
1244
APInt GCD;
1245
ConstantRange OffsetRange = ConstantRange(DecompGEP1.Offset);
1246
for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
1247
const VariableGEPIndex &Index = DecompGEP1.VarIndices[i];
1248
const APInt &Scale = Index.Scale;
1249
APInt ScaleForGCD = Scale;
1250
if (!Index.IsNSW)
1251
ScaleForGCD =
1252
APInt::getOneBitSet(Scale.getBitWidth(), Scale.countr_zero());
1253
1254
if (i == 0)
1255
GCD = ScaleForGCD.abs();
1256
else
1257
GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs());
1258
1259
ConstantRange CR = computeConstantRange(Index.Val.V, /* ForSigned */ false,
1260
true, &AC, Index.CxtI);
1261
KnownBits Known =
1262
computeKnownBits(Index.Val.V, DL, 0, &AC, Index.CxtI, DT);
1263
CR = CR.intersectWith(
1264
ConstantRange::fromKnownBits(Known, /* Signed */ true),
1265
ConstantRange::Signed);
1266
CR = Index.Val.evaluateWith(CR).sextOrTrunc(OffsetRange.getBitWidth());
1267
1268
assert(OffsetRange.getBitWidth() == Scale.getBitWidth() &&
1269
"Bit widths are normalized to MaxIndexSize");
1270
if (Index.IsNSW)
1271
CR = CR.smul_sat(ConstantRange(Scale));
1272
else
1273
CR = CR.smul_fast(ConstantRange(Scale));
1274
1275
if (Index.IsNegated)
1276
OffsetRange = OffsetRange.sub(CR);
1277
else
1278
OffsetRange = OffsetRange.add(CR);
1279
}
1280
1281
// We now have accesses at two offsets from the same base:
1282
// 1. (...)*GCD + DecompGEP1.Offset with size V1Size
1283
// 2. 0 with size V2Size
1284
// Using arithmetic modulo GCD, the accesses are at
1285
// [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
1286
// into the range [V2Size..GCD), then we know they cannot overlap.
1287
APInt ModOffset = DecompGEP1.Offset.srem(GCD);
1288
if (ModOffset.isNegative())
1289
ModOffset += GCD; // We want mod, not rem.
1290
if (ModOffset.uge(V2Size.getValue()) &&
1291
(GCD - ModOffset).uge(V1Size.getValue()))
1292
return AliasResult::NoAlias;
1293
1294
// Compute ranges of potentially accessed bytes for both accesses. If the
1295
// interseciton is empty, there can be no overlap.
1296
unsigned BW = OffsetRange.getBitWidth();
1297
ConstantRange Range1 = OffsetRange.add(
1298
ConstantRange(APInt(BW, 0), APInt(BW, V1Size.getValue())));
1299
ConstantRange Range2 =
1300
ConstantRange(APInt(BW, 0), APInt(BW, V2Size.getValue()));
1301
if (Range1.intersectWith(Range2).isEmptySet())
1302
return AliasResult::NoAlias;
1303
1304
// Try to determine the range of values for VarIndex such that
1305
// VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex.
1306
std::optional<APInt> MinAbsVarIndex;
1307
if (DecompGEP1.VarIndices.size() == 1) {
1308
// VarIndex = Scale*V.
1309
const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
1310
if (Var.Val.TruncBits == 0 &&
1311
isKnownNonZero(Var.Val.V, SimplifyQuery(DL, DT, &AC, Var.CxtI))) {
1312
// Check if abs(V*Scale) >= abs(Scale) holds in the presence of
1313
// potentially wrapping math.
1314
auto MultiplyByScaleNoWrap = [](const VariableGEPIndex &Var) {
1315
if (Var.IsNSW)
1316
return true;
1317
1318
int ValOrigBW = Var.Val.V->getType()->getPrimitiveSizeInBits();
1319
// If Scale is small enough so that abs(V*Scale) >= abs(Scale) holds.
1320
// The max value of abs(V) is 2^ValOrigBW - 1. Multiplying with a
1321
// constant smaller than 2^(bitwidth(Val) - ValOrigBW) won't wrap.
1322
int MaxScaleValueBW = Var.Val.getBitWidth() - ValOrigBW;
1323
if (MaxScaleValueBW <= 0)
1324
return false;
1325
return Var.Scale.ule(
1326
APInt::getMaxValue(MaxScaleValueBW).zext(Var.Scale.getBitWidth()));
1327
};
1328
// Refine MinAbsVarIndex, if abs(Scale*V) >= abs(Scale) holds in the
1329
// presence of potentially wrapping math.
1330
if (MultiplyByScaleNoWrap(Var)) {
1331
// If V != 0 then abs(VarIndex) >= abs(Scale).
1332
MinAbsVarIndex = Var.Scale.abs();
1333
}
1334
}
1335
} else if (DecompGEP1.VarIndices.size() == 2) {
1336
// VarIndex = Scale*V0 + (-Scale)*V1.
1337
// If V0 != V1 then abs(VarIndex) >= abs(Scale).
1338
// Check that MayBeCrossIteration is false, to avoid reasoning about
1339
// inequality of values across loop iterations.
1340
const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
1341
const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
1342
if (Var0.hasNegatedScaleOf(Var1) && Var0.Val.TruncBits == 0 &&
1343
Var0.Val.hasSameCastsAs(Var1.Val) && !AAQI.MayBeCrossIteration &&
1344
isKnownNonEqual(Var0.Val.V, Var1.Val.V, DL, &AC, /* CxtI */ nullptr,
1345
DT))
1346
MinAbsVarIndex = Var0.Scale.abs();
1347
}
1348
1349
if (MinAbsVarIndex) {
1350
// The constant offset will have added at least +/-MinAbsVarIndex to it.
1351
APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
1352
APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
1353
// We know that Offset <= OffsetLo || Offset >= OffsetHi
1354
if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
1355
OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
1356
return AliasResult::NoAlias;
1357
}
1358
1359
if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT, AAQI))
1360
return AliasResult::NoAlias;
1361
1362
// Statically, we can see that the base objects are the same, but the
1363
// pointers have dynamic offsets which we can't resolve. And none of our
1364
// little tricks above worked.
1365
return AliasResult::MayAlias;
1366
}
1367
1368
static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
1369
// If the results agree, take it.
1370
if (A == B)
1371
return A;
1372
// A mix of PartialAlias and MustAlias is PartialAlias.
1373
if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) ||
1374
(B == AliasResult::PartialAlias && A == AliasResult::MustAlias))
1375
return AliasResult::PartialAlias;
1376
// Otherwise, we don't know anything.
1377
return AliasResult::MayAlias;
1378
}
1379
1380
/// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
1381
/// against another.
1382
AliasResult
1383
BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
1384
const Value *V2, LocationSize V2Size,
1385
AAQueryInfo &AAQI) {
1386
// If the values are Selects with the same condition, we can do a more precise
1387
// check: just check for aliases between the values on corresponding arms.
1388
if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1389
if (isValueEqualInPotentialCycles(SI->getCondition(), SI2->getCondition(),
1390
AAQI)) {
1391
AliasResult Alias =
1392
AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize),
1393
MemoryLocation(SI2->getTrueValue(), V2Size), AAQI);
1394
if (Alias == AliasResult::MayAlias)
1395
return AliasResult::MayAlias;
1396
AliasResult ThisAlias =
1397
AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize),
1398
MemoryLocation(SI2->getFalseValue(), V2Size), AAQI);
1399
return MergeAliasResults(ThisAlias, Alias);
1400
}
1401
1402
// If both arms of the Select node NoAlias or MustAlias V2, then returns
1403
// NoAlias / MustAlias. Otherwise, returns MayAlias.
1404
AliasResult Alias = AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize),
1405
MemoryLocation(V2, V2Size), AAQI);
1406
if (Alias == AliasResult::MayAlias)
1407
return AliasResult::MayAlias;
1408
1409
AliasResult ThisAlias =
1410
AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize),
1411
MemoryLocation(V2, V2Size), AAQI);
1412
return MergeAliasResults(ThisAlias, Alias);
1413
}
1414
1415
/// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
1416
/// another.
1417
AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
1418
const Value *V2, LocationSize V2Size,
1419
AAQueryInfo &AAQI) {
1420
if (!PN->getNumIncomingValues())
1421
return AliasResult::NoAlias;
1422
// If the values are PHIs in the same block, we can do a more precise
1423
// as well as efficient check: just check for aliases between the values
1424
// on corresponding edges.
1425
if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1426
if (PN2->getParent() == PN->getParent()) {
1427
std::optional<AliasResult> Alias;
1428
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1429
AliasResult ThisAlias = AAQI.AAR.alias(
1430
MemoryLocation(PN->getIncomingValue(i), PNSize),
1431
MemoryLocation(
1432
PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size),
1433
AAQI);
1434
if (Alias)
1435
*Alias = MergeAliasResults(*Alias, ThisAlias);
1436
else
1437
Alias = ThisAlias;
1438
if (*Alias == AliasResult::MayAlias)
1439
break;
1440
}
1441
return *Alias;
1442
}
1443
1444
SmallVector<Value *, 4> V1Srcs;
1445
// If a phi operand recurses back to the phi, we can still determine NoAlias
1446
// if we don't alias the underlying objects of the other phi operands, as we
1447
// know that the recursive phi needs to be based on them in some way.
1448
bool isRecursive = false;
1449
auto CheckForRecPhi = [&](Value *PV) {
1450
if (!EnableRecPhiAnalysis)
1451
return false;
1452
if (getUnderlyingObject(PV) == PN) {
1453
isRecursive = true;
1454
return true;
1455
}
1456
return false;
1457
};
1458
1459
SmallPtrSet<Value *, 4> UniqueSrc;
1460
Value *OnePhi = nullptr;
1461
for (Value *PV1 : PN->incoming_values()) {
1462
// Skip the phi itself being the incoming value.
1463
if (PV1 == PN)
1464
continue;
1465
1466
if (isa<PHINode>(PV1)) {
1467
if (OnePhi && OnePhi != PV1) {
1468
// To control potential compile time explosion, we choose to be
1469
// conserviate when we have more than one Phi input. It is important
1470
// that we handle the single phi case as that lets us handle LCSSA
1471
// phi nodes and (combined with the recursive phi handling) simple
1472
// pointer induction variable patterns.
1473
return AliasResult::MayAlias;
1474
}
1475
OnePhi = PV1;
1476
}
1477
1478
if (CheckForRecPhi(PV1))
1479
continue;
1480
1481
if (UniqueSrc.insert(PV1).second)
1482
V1Srcs.push_back(PV1);
1483
}
1484
1485
if (OnePhi && UniqueSrc.size() > 1)
1486
// Out of an abundance of caution, allow only the trivial lcssa and
1487
// recursive phi cases.
1488
return AliasResult::MayAlias;
1489
1490
// If V1Srcs is empty then that means that the phi has no underlying non-phi
1491
// value. This should only be possible in blocks unreachable from the entry
1492
// block, but return MayAlias just in case.
1493
if (V1Srcs.empty())
1494
return AliasResult::MayAlias;
1495
1496
// If this PHI node is recursive, indicate that the pointer may be moved
1497
// across iterations. We can only prove NoAlias if different underlying
1498
// objects are involved.
1499
if (isRecursive)
1500
PNSize = LocationSize::beforeOrAfterPointer();
1501
1502
// In the recursive alias queries below, we may compare values from two
1503
// different loop iterations.
1504
SaveAndRestore SavedMayBeCrossIteration(AAQI.MayBeCrossIteration, true);
1505
1506
AliasResult Alias = AAQI.AAR.alias(MemoryLocation(V1Srcs[0], PNSize),
1507
MemoryLocation(V2, V2Size), AAQI);
1508
1509
// Early exit if the check of the first PHI source against V2 is MayAlias.
1510
// Other results are not possible.
1511
if (Alias == AliasResult::MayAlias)
1512
return AliasResult::MayAlias;
1513
// With recursive phis we cannot guarantee that MustAlias/PartialAlias will
1514
// remain valid to all elements and needs to conservatively return MayAlias.
1515
if (isRecursive && Alias != AliasResult::NoAlias)
1516
return AliasResult::MayAlias;
1517
1518
// If all sources of the PHI node NoAlias or MustAlias V2, then returns
1519
// NoAlias / MustAlias. Otherwise, returns MayAlias.
1520
for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1521
Value *V = V1Srcs[i];
1522
1523
AliasResult ThisAlias = AAQI.AAR.alias(
1524
MemoryLocation(V, PNSize), MemoryLocation(V2, V2Size), AAQI);
1525
Alias = MergeAliasResults(ThisAlias, Alias);
1526
if (Alias == AliasResult::MayAlias)
1527
break;
1528
}
1529
1530
return Alias;
1531
}
1532
1533
/// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
1534
/// array references.
1535
AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
1536
const Value *V2, LocationSize V2Size,
1537
AAQueryInfo &AAQI,
1538
const Instruction *CtxI) {
1539
// If either of the memory references is empty, it doesn't matter what the
1540
// pointer values are.
1541
if (V1Size.isZero() || V2Size.isZero())
1542
return AliasResult::NoAlias;
1543
1544
// Strip off any casts if they exist.
1545
V1 = V1->stripPointerCastsForAliasAnalysis();
1546
V2 = V2->stripPointerCastsForAliasAnalysis();
1547
1548
// If V1 or V2 is undef, the result is NoAlias because we can always pick a
1549
// value for undef that aliases nothing in the program.
1550
if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
1551
return AliasResult::NoAlias;
1552
1553
// Are we checking for alias of the same value?
1554
// Because we look 'through' phi nodes, we could look at "Value" pointers from
1555
// different iterations. We must therefore make sure that this is not the
1556
// case. The function isValueEqualInPotentialCycles ensures that this cannot
1557
// happen by looking at the visited phi nodes and making sure they cannot
1558
// reach the value.
1559
if (isValueEqualInPotentialCycles(V1, V2, AAQI))
1560
return AliasResult::MustAlias;
1561
1562
if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1563
return AliasResult::NoAlias; // Scalars cannot alias each other
1564
1565
// Figure out what objects these things are pointing to if we can.
1566
const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
1567
const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
1568
1569
// Null values in the default address space don't point to any object, so they
1570
// don't alias any other pointer.
1571
if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1572
if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1573
return AliasResult::NoAlias;
1574
if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1575
if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
1576
return AliasResult::NoAlias;
1577
1578
if (O1 != O2) {
1579
// If V1/V2 point to two different objects, we know that we have no alias.
1580
if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1581
return AliasResult::NoAlias;
1582
1583
// Function arguments can't alias with things that are known to be
1584
// unambigously identified at the function level.
1585
if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
1586
(isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
1587
return AliasResult::NoAlias;
1588
1589
// If one pointer is the result of a call/invoke or load and the other is a
1590
// non-escaping local object within the same function, then we know the
1591
// object couldn't escape to a point where the call could return it.
1592
//
1593
// Note that if the pointers are in different functions, there are a
1594
// variety of complications. A call with a nocapture argument may still
1595
// temporary store the nocapture argument's value in a temporary memory
1596
// location if that memory location doesn't escape. Or it may pass a
1597
// nocapture value to other functions as long as they don't capture it.
1598
if (isEscapeSource(O1) && AAQI.CI->isNotCapturedBefore(
1599
O2, dyn_cast<Instruction>(O1), /*OrAt*/ true))
1600
return AliasResult::NoAlias;
1601
if (isEscapeSource(O2) && AAQI.CI->isNotCapturedBefore(
1602
O1, dyn_cast<Instruction>(O2), /*OrAt*/ true))
1603
return AliasResult::NoAlias;
1604
}
1605
1606
// If the size of one access is larger than the entire object on the other
1607
// side, then we know such behavior is undefined and can assume no alias.
1608
bool NullIsValidLocation = NullPointerIsDefined(&F);
1609
if ((isObjectSmallerThan(
1610
O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
1611
TLI, NullIsValidLocation)) ||
1612
(isObjectSmallerThan(
1613
O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
1614
TLI, NullIsValidLocation)))
1615
return AliasResult::NoAlias;
1616
1617
if (EnableSeparateStorageAnalysis) {
1618
for (AssumptionCache::ResultElem &Elem : AC.assumptionsFor(O1)) {
1619
if (!Elem || Elem.Index == AssumptionCache::ExprResultIdx)
1620
continue;
1621
1622
AssumeInst *Assume = cast<AssumeInst>(Elem);
1623
OperandBundleUse OBU = Assume->getOperandBundleAt(Elem.Index);
1624
if (OBU.getTagName() == "separate_storage") {
1625
assert(OBU.Inputs.size() == 2);
1626
const Value *Hint1 = OBU.Inputs[0].get();
1627
const Value *Hint2 = OBU.Inputs[1].get();
1628
// This is often a no-op; instcombine rewrites this for us. No-op
1629
// getUnderlyingObject calls are fast, though.
1630
const Value *HintO1 = getUnderlyingObject(Hint1);
1631
const Value *HintO2 = getUnderlyingObject(Hint2);
1632
1633
DominatorTree *DT = getDT(AAQI);
1634
auto ValidAssumeForPtrContext = [&](const Value *Ptr) {
1635
if (const Instruction *PtrI = dyn_cast<Instruction>(Ptr)) {
1636
return isValidAssumeForContext(Assume, PtrI, DT,
1637
/* AllowEphemerals */ true);
1638
}
1639
if (const Argument *PtrA = dyn_cast<Argument>(Ptr)) {
1640
const Instruction *FirstI =
1641
&*PtrA->getParent()->getEntryBlock().begin();
1642
return isValidAssumeForContext(Assume, FirstI, DT,
1643
/* AllowEphemerals */ true);
1644
}
1645
return false;
1646
};
1647
1648
if ((O1 == HintO1 && O2 == HintO2) || (O1 == HintO2 && O2 == HintO1)) {
1649
// Note that we go back to V1 and V2 for the
1650
// ValidAssumeForPtrContext checks; they're dominated by O1 and O2,
1651
// so strictly more assumptions are valid for them.
1652
if ((CtxI && isValidAssumeForContext(Assume, CtxI, DT,
1653
/* AllowEphemerals */ true)) ||
1654
ValidAssumeForPtrContext(V1) || ValidAssumeForPtrContext(V2)) {
1655
return AliasResult::NoAlias;
1656
}
1657
}
1658
}
1659
}
1660
}
1661
1662
// If one the accesses may be before the accessed pointer, canonicalize this
1663
// by using unknown after-pointer sizes for both accesses. This is
1664
// equivalent, because regardless of which pointer is lower, one of them
1665
// will always came after the other, as long as the underlying objects aren't
1666
// disjoint. We do this so that the rest of BasicAA does not have to deal
1667
// with accesses before the base pointer, and to improve cache utilization by
1668
// merging equivalent states.
1669
if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
1670
V1Size = LocationSize::afterPointer();
1671
V2Size = LocationSize::afterPointer();
1672
}
1673
1674
// FIXME: If this depth limit is hit, then we may cache sub-optimal results
1675
// for recursive queries. For this reason, this limit is chosen to be large
1676
// enough to be very rarely hit, while still being small enough to avoid
1677
// stack overflows.
1678
if (AAQI.Depth >= 512)
1679
return AliasResult::MayAlias;
1680
1681
// Check the cache before climbing up use-def chains. This also terminates
1682
// otherwise infinitely recursive queries. Include MayBeCrossIteration in the
1683
// cache key, because some cases where MayBeCrossIteration==false returns
1684
// MustAlias or NoAlias may become MayAlias under MayBeCrossIteration==true.
1685
AAQueryInfo::LocPair Locs({V1, V1Size, AAQI.MayBeCrossIteration},
1686
{V2, V2Size, AAQI.MayBeCrossIteration});
1687
const bool Swapped = V1 > V2;
1688
if (Swapped)
1689
std::swap(Locs.first, Locs.second);
1690
const auto &Pair = AAQI.AliasCache.try_emplace(
1691
Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0});
1692
if (!Pair.second) {
1693
auto &Entry = Pair.first->second;
1694
if (!Entry.isDefinitive()) {
1695
// Remember that we used an assumption. This may either be a direct use
1696
// of an assumption, or a use of an entry that may itself be based on an
1697
// assumption.
1698
++AAQI.NumAssumptionUses;
1699
if (Entry.isAssumption())
1700
++Entry.NumAssumptionUses;
1701
}
1702
// Cache contains sorted {V1,V2} pairs but we should return original order.
1703
auto Result = Entry.Result;
1704
Result.swap(Swapped);
1705
return Result;
1706
}
1707
1708
int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
1709
unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
1710
AliasResult Result =
1711
aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2);
1712
1713
auto It = AAQI.AliasCache.find(Locs);
1714
assert(It != AAQI.AliasCache.end() && "Must be in cache");
1715
auto &Entry = It->second;
1716
1717
// Check whether a NoAlias assumption has been used, but disproven.
1718
bool AssumptionDisproven =
1719
Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias;
1720
if (AssumptionDisproven)
1721
Result = AliasResult::MayAlias;
1722
1723
// This is a definitive result now, when considered as a root query.
1724
AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
1725
Entry.Result = Result;
1726
// Cache contains sorted {V1,V2} pairs.
1727
Entry.Result.swap(Swapped);
1728
1729
// If the assumption has been disproven, remove any results that may have
1730
// been based on this assumption. Do this after the Entry updates above to
1731
// avoid iterator invalidation.
1732
if (AssumptionDisproven)
1733
while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
1734
AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val());
1735
1736
// The result may still be based on assumptions higher up in the chain.
1737
// Remember it, so it can be purged from the cache later.
1738
if (OrigNumAssumptionUses != AAQI.NumAssumptionUses &&
1739
Result != AliasResult::MayAlias) {
1740
AAQI.AssumptionBasedResults.push_back(Locs);
1741
Entry.NumAssumptionUses = AAQueryInfo::CacheEntry::AssumptionBased;
1742
} else {
1743
Entry.NumAssumptionUses = AAQueryInfo::CacheEntry::Definitive;
1744
}
1745
1746
// Depth is incremented before this function is called, so Depth==1 indicates
1747
// a root query.
1748
if (AAQI.Depth == 1) {
1749
// Any remaining assumption based results must be based on proven
1750
// assumptions, so convert them to definitive results.
1751
for (const auto &Loc : AAQI.AssumptionBasedResults) {
1752
auto It = AAQI.AliasCache.find(Loc);
1753
if (It != AAQI.AliasCache.end())
1754
It->second.NumAssumptionUses = AAQueryInfo::CacheEntry::Definitive;
1755
}
1756
AAQI.AssumptionBasedResults.clear();
1757
AAQI.NumAssumptionUses = 0;
1758
}
1759
return Result;
1760
}
1761
1762
AliasResult BasicAAResult::aliasCheckRecursive(
1763
const Value *V1, LocationSize V1Size,
1764
const Value *V2, LocationSize V2Size,
1765
AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
1766
if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1767
AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI);
1768
if (Result != AliasResult::MayAlias)
1769
return Result;
1770
} else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
1771
AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI);
1772
Result.swap();
1773
if (Result != AliasResult::MayAlias)
1774
return Result;
1775
}
1776
1777
if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1778
AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI);
1779
if (Result != AliasResult::MayAlias)
1780
return Result;
1781
} else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
1782
AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI);
1783
Result.swap();
1784
if (Result != AliasResult::MayAlias)
1785
return Result;
1786
}
1787
1788
if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1789
AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI);
1790
if (Result != AliasResult::MayAlias)
1791
return Result;
1792
} else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
1793
AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI);
1794
Result.swap();
1795
if (Result != AliasResult::MayAlias)
1796
return Result;
1797
}
1798
1799
// If both pointers are pointing into the same object and one of them
1800
// accesses the entire object, then the accesses must overlap in some way.
1801
if (O1 == O2) {
1802
bool NullIsValidLocation = NullPointerIsDefined(&F);
1803
if (V1Size.isPrecise() && V2Size.isPrecise() &&
1804
(isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
1805
isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
1806
return AliasResult::PartialAlias;
1807
}
1808
1809
return AliasResult::MayAlias;
1810
}
1811
1812
/// Check whether two Values can be considered equivalent.
1813
///
1814
/// If the values may come from different cycle iterations, this will also
1815
/// check that the values are not part of cycle. We have to do this because we
1816
/// are looking through phi nodes, that is we say
1817
/// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
1818
bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
1819
const Value *V2,
1820
const AAQueryInfo &AAQI) {
1821
if (V != V2)
1822
return false;
1823
1824
if (!AAQI.MayBeCrossIteration)
1825
return true;
1826
1827
// Non-instructions and instructions in the entry block cannot be part of
1828
// a loop.
1829
const Instruction *Inst = dyn_cast<Instruction>(V);
1830
if (!Inst || Inst->getParent()->isEntryBlock())
1831
return true;
1832
1833
return isNotInCycle(Inst, getDT(AAQI), /*LI*/ nullptr);
1834
}
1835
1836
/// Computes the symbolic difference between two de-composed GEPs.
1837
void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP,
1838
const DecomposedGEP &SrcGEP,
1839
const AAQueryInfo &AAQI) {
1840
DestGEP.Offset -= SrcGEP.Offset;
1841
for (const VariableGEPIndex &Src : SrcGEP.VarIndices) {
1842
// Find V in Dest. This is N^2, but pointer indices almost never have more
1843
// than a few variable indexes.
1844
bool Found = false;
1845
for (auto I : enumerate(DestGEP.VarIndices)) {
1846
VariableGEPIndex &Dest = I.value();
1847
if ((!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V, AAQI) &&
1848
!areBothVScale(Dest.Val.V, Src.Val.V)) ||
1849
!Dest.Val.hasSameCastsAs(Src.Val))
1850
continue;
1851
1852
// Normalize IsNegated if we're going to lose the NSW flag anyway.
1853
if (Dest.IsNegated) {
1854
Dest.Scale = -Dest.Scale;
1855
Dest.IsNegated = false;
1856
Dest.IsNSW = false;
1857
}
1858
1859
// If we found it, subtract off Scale V's from the entry in Dest. If it
1860
// goes to zero, remove the entry.
1861
if (Dest.Scale != Src.Scale) {
1862
Dest.Scale -= Src.Scale;
1863
Dest.IsNSW = false;
1864
} else {
1865
DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index());
1866
}
1867
Found = true;
1868
break;
1869
}
1870
1871
// If we didn't consume this entry, add it to the end of the Dest list.
1872
if (!Found) {
1873
VariableGEPIndex Entry = {Src.Val, Src.Scale, Src.CxtI, Src.IsNSW,
1874
/* IsNegated */ true};
1875
DestGEP.VarIndices.push_back(Entry);
1876
}
1877
}
1878
}
1879
1880
bool BasicAAResult::constantOffsetHeuristic(const DecomposedGEP &GEP,
1881
LocationSize MaybeV1Size,
1882
LocationSize MaybeV2Size,
1883
AssumptionCache *AC,
1884
DominatorTree *DT,
1885
const AAQueryInfo &AAQI) {
1886
if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
1887
!MaybeV2Size.hasValue())
1888
return false;
1889
1890
const uint64_t V1Size = MaybeV1Size.getValue();
1891
const uint64_t V2Size = MaybeV2Size.getValue();
1892
1893
const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1];
1894
1895
if (Var0.Val.TruncBits != 0 || !Var0.Val.hasSameCastsAs(Var1.Val) ||
1896
!Var0.hasNegatedScaleOf(Var1) ||
1897
Var0.Val.V->getType() != Var1.Val.V->getType())
1898
return false;
1899
1900
// We'll strip off the Extensions of Var0 and Var1 and do another round
1901
// of GetLinearExpression decomposition. In the example above, if Var0
1902
// is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
1903
1904
LinearExpression E0 =
1905
GetLinearExpression(CastedValue(Var0.Val.V), DL, 0, AC, DT);
1906
LinearExpression E1 =
1907
GetLinearExpression(CastedValue(Var1.Val.V), DL, 0, AC, DT);
1908
if (E0.Scale != E1.Scale || !E0.Val.hasSameCastsAs(E1.Val) ||
1909
!isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V, AAQI))
1910
return false;
1911
1912
// We have a hit - Var0 and Var1 only differ by a constant offset!
1913
1914
// If we've been sext'ed then zext'd the maximum difference between Var0 and
1915
// Var1 is possible to calculate, but we're just interested in the absolute
1916
// minimum difference between the two. The minimum distance may occur due to
1917
// wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
1918
// the minimum distance between %i and %i + 5 is 3.
1919
APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff;
1920
MinDiff = APIntOps::umin(MinDiff, Wrapped);
1921
APInt MinDiffBytes =
1922
MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
1923
1924
// We can't definitely say whether GEP1 is before or after V2 due to wrapping
1925
// arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
1926
// values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
1927
// V2Size can fit in the MinDiffBytes gap.
1928
return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) &&
1929
MinDiffBytes.uge(V2Size + GEP.Offset.abs());
1930
}
1931
1932
//===----------------------------------------------------------------------===//
1933
// BasicAliasAnalysis Pass
1934
//===----------------------------------------------------------------------===//
1935
1936
AnalysisKey BasicAA::Key;
1937
1938
BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
1939
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1940
auto &AC = AM.getResult<AssumptionAnalysis>(F);
1941
auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1942
return BasicAAResult(F.getDataLayout(), F, TLI, AC, DT);
1943
}
1944
1945
BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
1946
initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
1947
}
1948
1949
char BasicAAWrapperPass::ID = 0;
1950
1951
void BasicAAWrapperPass::anchor() {}
1952
1953
INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
1954
"Basic Alias Analysis (stateless AA impl)", true, true)
1955
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1956
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1957
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1958
INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
1959
"Basic Alias Analysis (stateless AA impl)", true, true)
1960
1961
FunctionPass *llvm::createBasicAAWrapperPass() {
1962
return new BasicAAWrapperPass();
1963
}
1964
1965
bool BasicAAWrapperPass::runOnFunction(Function &F) {
1966
auto &ACT = getAnalysis<AssumptionCacheTracker>();
1967
auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
1968
auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
1969
1970
Result.reset(new BasicAAResult(F.getDataLayout(), F,
1971
TLIWP.getTLI(F), ACT.getAssumptionCache(F),
1972
&DTWP.getDomTree()));
1973
1974
return false;
1975
}
1976
1977
void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1978
AU.setPreservesAll();
1979
AU.addRequiredTransitive<AssumptionCacheTracker>();
1980
AU.addRequiredTransitive<DominatorTreeWrapperPass>();
1981
AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1982
}
1983
1984