Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Analysis/BlockFrequencyInfoImpl.cpp
35234 views
1
//===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Loops should be simplified before this analysis.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
14
#include "llvm/ADT/APInt.h"
15
#include "llvm/ADT/DenseMap.h"
16
#include "llvm/ADT/SCCIterator.h"
17
#include "llvm/ADT/SmallString.h"
18
#include "llvm/Config/llvm-config.h"
19
#include "llvm/IR/Function.h"
20
#include "llvm/Support/BlockFrequency.h"
21
#include "llvm/Support/BranchProbability.h"
22
#include "llvm/Support/Compiler.h"
23
#include "llvm/Support/Debug.h"
24
#include "llvm/Support/MathExtras.h"
25
#include "llvm/Support/ScaledNumber.h"
26
#include "llvm/Support/raw_ostream.h"
27
#include <algorithm>
28
#include <cassert>
29
#include <cstddef>
30
#include <cstdint>
31
#include <iterator>
32
#include <list>
33
#include <numeric>
34
#include <optional>
35
#include <utility>
36
#include <vector>
37
38
using namespace llvm;
39
using namespace llvm::bfi_detail;
40
41
#define DEBUG_TYPE "block-freq"
42
43
namespace llvm {
44
cl::opt<bool> CheckBFIUnknownBlockQueries(
45
"check-bfi-unknown-block-queries",
46
cl::init(false), cl::Hidden,
47
cl::desc("Check if block frequency is queried for an unknown block "
48
"for debugging missed BFI updates"));
49
50
cl::opt<bool> UseIterativeBFIInference(
51
"use-iterative-bfi-inference", cl::Hidden,
52
cl::desc("Apply an iterative post-processing to infer correct BFI counts"));
53
54
cl::opt<unsigned> IterativeBFIMaxIterationsPerBlock(
55
"iterative-bfi-max-iterations-per-block", cl::init(1000), cl::Hidden,
56
cl::desc("Iterative inference: maximum number of update iterations "
57
"per block"));
58
59
cl::opt<double> IterativeBFIPrecision(
60
"iterative-bfi-precision", cl::init(1e-12), cl::Hidden,
61
cl::desc("Iterative inference: delta convergence precision; smaller values "
62
"typically lead to better results at the cost of worsen runtime"));
63
} // namespace llvm
64
65
ScaledNumber<uint64_t> BlockMass::toScaled() const {
66
if (isFull())
67
return ScaledNumber<uint64_t>(1, 0);
68
return ScaledNumber<uint64_t>(getMass() + 1, -64);
69
}
70
71
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
72
LLVM_DUMP_METHOD void BlockMass::dump() const { print(dbgs()); }
73
#endif
74
75
static char getHexDigit(int N) {
76
assert(N < 16);
77
if (N < 10)
78
return '0' + N;
79
return 'a' + N - 10;
80
}
81
82
raw_ostream &BlockMass::print(raw_ostream &OS) const {
83
for (int Digits = 0; Digits < 16; ++Digits)
84
OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
85
return OS;
86
}
87
88
namespace {
89
90
using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
91
using Distribution = BlockFrequencyInfoImplBase::Distribution;
92
using WeightList = BlockFrequencyInfoImplBase::Distribution::WeightList;
93
using Scaled64 = BlockFrequencyInfoImplBase::Scaled64;
94
using LoopData = BlockFrequencyInfoImplBase::LoopData;
95
using Weight = BlockFrequencyInfoImplBase::Weight;
96
using FrequencyData = BlockFrequencyInfoImplBase::FrequencyData;
97
98
/// Dithering mass distributer.
99
///
100
/// This class splits up a single mass into portions by weight, dithering to
101
/// spread out error. No mass is lost. The dithering precision depends on the
102
/// precision of the product of \a BlockMass and \a BranchProbability.
103
///
104
/// The distribution algorithm follows.
105
///
106
/// 1. Initialize by saving the sum of the weights in \a RemWeight and the
107
/// mass to distribute in \a RemMass.
108
///
109
/// 2. For each portion:
110
///
111
/// 1. Construct a branch probability, P, as the portion's weight divided
112
/// by the current value of \a RemWeight.
113
/// 2. Calculate the portion's mass as \a RemMass times P.
114
/// 3. Update \a RemWeight and \a RemMass at each portion by subtracting
115
/// the current portion's weight and mass.
116
struct DitheringDistributer {
117
uint32_t RemWeight;
118
BlockMass RemMass;
119
120
DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
121
122
BlockMass takeMass(uint32_t Weight);
123
};
124
125
} // end anonymous namespace
126
127
DitheringDistributer::DitheringDistributer(Distribution &Dist,
128
const BlockMass &Mass) {
129
Dist.normalize();
130
RemWeight = Dist.Total;
131
RemMass = Mass;
132
}
133
134
BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
135
assert(Weight && "invalid weight");
136
assert(Weight <= RemWeight);
137
BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
138
139
// Decrement totals (dither).
140
RemWeight -= Weight;
141
RemMass -= Mass;
142
return Mass;
143
}
144
145
void Distribution::add(const BlockNode &Node, uint64_t Amount,
146
Weight::DistType Type) {
147
assert(Amount && "invalid weight of 0");
148
uint64_t NewTotal = Total + Amount;
149
150
// Check for overflow. It should be impossible to overflow twice.
151
bool IsOverflow = NewTotal < Total;
152
assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
153
DidOverflow |= IsOverflow;
154
155
// Update the total.
156
Total = NewTotal;
157
158
// Save the weight.
159
Weights.push_back(Weight(Type, Node, Amount));
160
}
161
162
static void combineWeight(Weight &W, const Weight &OtherW) {
163
assert(OtherW.TargetNode.isValid());
164
if (!W.Amount) {
165
W = OtherW;
166
return;
167
}
168
assert(W.Type == OtherW.Type);
169
assert(W.TargetNode == OtherW.TargetNode);
170
assert(OtherW.Amount && "Expected non-zero weight");
171
if (W.Amount > W.Amount + OtherW.Amount)
172
// Saturate on overflow.
173
W.Amount = UINT64_MAX;
174
else
175
W.Amount += OtherW.Amount;
176
}
177
178
static void combineWeightsBySorting(WeightList &Weights) {
179
// Sort so edges to the same node are adjacent.
180
llvm::sort(Weights, [](const Weight &L, const Weight &R) {
181
return L.TargetNode < R.TargetNode;
182
});
183
184
// Combine adjacent edges.
185
WeightList::iterator O = Weights.begin();
186
for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
187
++O, (I = L)) {
188
*O = *I;
189
190
// Find the adjacent weights to the same node.
191
for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
192
combineWeight(*O, *L);
193
}
194
195
// Erase extra entries.
196
Weights.erase(O, Weights.end());
197
}
198
199
static void combineWeightsByHashing(WeightList &Weights) {
200
// Collect weights into a DenseMap.
201
using HashTable = DenseMap<BlockNode::IndexType, Weight>;
202
203
HashTable Combined(NextPowerOf2(2 * Weights.size()));
204
for (const Weight &W : Weights)
205
combineWeight(Combined[W.TargetNode.Index], W);
206
207
// Check whether anything changed.
208
if (Weights.size() == Combined.size())
209
return;
210
211
// Fill in the new weights.
212
Weights.clear();
213
Weights.reserve(Combined.size());
214
for (const auto &I : Combined)
215
Weights.push_back(I.second);
216
}
217
218
static void combineWeights(WeightList &Weights) {
219
// Use a hash table for many successors to keep this linear.
220
if (Weights.size() > 128) {
221
combineWeightsByHashing(Weights);
222
return;
223
}
224
225
combineWeightsBySorting(Weights);
226
}
227
228
static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
229
assert(Shift >= 0);
230
assert(Shift < 64);
231
if (!Shift)
232
return N;
233
return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
234
}
235
236
void Distribution::normalize() {
237
// Early exit for termination nodes.
238
if (Weights.empty())
239
return;
240
241
// Only bother if there are multiple successors.
242
if (Weights.size() > 1)
243
combineWeights(Weights);
244
245
// Early exit when combined into a single successor.
246
if (Weights.size() == 1) {
247
Total = 1;
248
Weights.front().Amount = 1;
249
return;
250
}
251
252
// Determine how much to shift right so that the total fits into 32-bits.
253
//
254
// If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1
255
// for each weight can cause a 32-bit overflow.
256
int Shift = 0;
257
if (DidOverflow)
258
Shift = 33;
259
else if (Total > UINT32_MAX)
260
Shift = 33 - llvm::countl_zero(Total);
261
262
// Early exit if nothing needs to be scaled.
263
if (!Shift) {
264
// If we didn't overflow then combineWeights() shouldn't have changed the
265
// sum of the weights, but let's double-check.
266
assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0),
267
[](uint64_t Sum, const Weight &W) {
268
return Sum + W.Amount;
269
}) &&
270
"Expected total to be correct");
271
return;
272
}
273
274
// Recompute the total through accumulation (rather than shifting it) so that
275
// it's accurate after shifting and any changes combineWeights() made above.
276
Total = 0;
277
278
// Sum the weights to each node and shift right if necessary.
279
for (Weight &W : Weights) {
280
// Scale down below UINT32_MAX. Since Shift is larger than necessary, we
281
// can round here without concern about overflow.
282
assert(W.TargetNode.isValid());
283
W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
284
assert(W.Amount <= UINT32_MAX);
285
286
// Update the total.
287
Total += W.Amount;
288
}
289
assert(Total <= UINT32_MAX);
290
}
291
292
void BlockFrequencyInfoImplBase::clear() {
293
// Swap with a default-constructed std::vector, since std::vector<>::clear()
294
// does not actually clear heap storage.
295
std::vector<FrequencyData>().swap(Freqs);
296
IsIrrLoopHeader.clear();
297
std::vector<WorkingData>().swap(Working);
298
Loops.clear();
299
}
300
301
/// Clear all memory not needed downstream.
302
///
303
/// Releases all memory not used downstream. In particular, saves Freqs.
304
static void cleanup(BlockFrequencyInfoImplBase &BFI) {
305
std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
306
SparseBitVector<> SavedIsIrrLoopHeader(std::move(BFI.IsIrrLoopHeader));
307
BFI.clear();
308
BFI.Freqs = std::move(SavedFreqs);
309
BFI.IsIrrLoopHeader = std::move(SavedIsIrrLoopHeader);
310
}
311
312
bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
313
const LoopData *OuterLoop,
314
const BlockNode &Pred,
315
const BlockNode &Succ,
316
uint64_t Weight) {
317
if (!Weight)
318
Weight = 1;
319
320
auto isLoopHeader = [&OuterLoop](const BlockNode &Node) {
321
return OuterLoop && OuterLoop->isHeader(Node);
322
};
323
324
BlockNode Resolved = Working[Succ.Index].getResolvedNode();
325
326
#ifndef NDEBUG
327
auto debugSuccessor = [&](const char *Type) {
328
dbgs() << " =>"
329
<< " [" << Type << "] weight = " << Weight;
330
if (!isLoopHeader(Resolved))
331
dbgs() << ", succ = " << getBlockName(Succ);
332
if (Resolved != Succ)
333
dbgs() << ", resolved = " << getBlockName(Resolved);
334
dbgs() << "\n";
335
};
336
(void)debugSuccessor;
337
#endif
338
339
if (isLoopHeader(Resolved)) {
340
LLVM_DEBUG(debugSuccessor("backedge"));
341
Dist.addBackedge(Resolved, Weight);
342
return true;
343
}
344
345
if (Working[Resolved.Index].getContainingLoop() != OuterLoop) {
346
LLVM_DEBUG(debugSuccessor(" exit "));
347
Dist.addExit(Resolved, Weight);
348
return true;
349
}
350
351
if (Resolved < Pred) {
352
if (!isLoopHeader(Pred)) {
353
// If OuterLoop is an irreducible loop, we can't actually handle this.
354
assert((!OuterLoop || !OuterLoop->isIrreducible()) &&
355
"unhandled irreducible control flow");
356
357
// Irreducible backedge. Abort.
358
LLVM_DEBUG(debugSuccessor("abort!!!"));
359
return false;
360
}
361
362
// If "Pred" is a loop header, then this isn't really a backedge; rather,
363
// OuterLoop must be irreducible. These false backedges can come only from
364
// secondary loop headers.
365
assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) &&
366
"unhandled irreducible control flow");
367
}
368
369
LLVM_DEBUG(debugSuccessor(" local "));
370
Dist.addLocal(Resolved, Weight);
371
return true;
372
}
373
374
bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
375
const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) {
376
// Copy the exit map into Dist.
377
for (const auto &I : Loop.Exits)
378
if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first,
379
I.second.getMass()))
380
// Irreducible backedge.
381
return false;
382
383
return true;
384
}
385
386
/// Compute the loop scale for a loop.
387
void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
388
// Compute loop scale.
389
LLVM_DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n");
390
391
// Infinite loops need special handling. If we give the back edge an infinite
392
// mass, they may saturate all the other scales in the function down to 1,
393
// making all the other region temperatures look exactly the same. Choose an
394
// arbitrary scale to avoid these issues.
395
//
396
// FIXME: An alternate way would be to select a symbolic scale which is later
397
// replaced to be the maximum of all computed scales plus 1. This would
398
// appropriately describe the loop as having a large scale, without skewing
399
// the final frequency computation.
400
const Scaled64 InfiniteLoopScale(1, 12);
401
402
// LoopScale == 1 / ExitMass
403
// ExitMass == HeadMass - BackedgeMass
404
BlockMass TotalBackedgeMass;
405
for (auto &Mass : Loop.BackedgeMass)
406
TotalBackedgeMass += Mass;
407
BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass;
408
409
// Block scale stores the inverse of the scale. If this is an infinite loop,
410
// its exit mass will be zero. In this case, use an arbitrary scale for the
411
// loop scale.
412
Loop.Scale =
413
ExitMass.isEmpty() ? InfiniteLoopScale : ExitMass.toScaled().inverse();
414
415
LLVM_DEBUG(dbgs() << " - exit-mass = " << ExitMass << " ("
416
<< BlockMass::getFull() << " - " << TotalBackedgeMass
417
<< ")\n"
418
<< " - scale = " << Loop.Scale << "\n");
419
}
420
421
/// Package up a loop.
422
void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) {
423
LLVM_DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n");
424
425
// Clear the subloop exits to prevent quadratic memory usage.
426
for (const BlockNode &M : Loop.Nodes) {
427
if (auto *Loop = Working[M.Index].getPackagedLoop())
428
Loop->Exits.clear();
429
LLVM_DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
430
}
431
Loop.IsPackaged = true;
432
}
433
434
#ifndef NDEBUG
435
static void debugAssign(const BlockFrequencyInfoImplBase &BFI,
436
const DitheringDistributer &D, const BlockNode &T,
437
const BlockMass &M, const char *Desc) {
438
dbgs() << " => assign " << M << " (" << D.RemMass << ")";
439
if (Desc)
440
dbgs() << " [" << Desc << "]";
441
if (T.isValid())
442
dbgs() << " to " << BFI.getBlockName(T);
443
dbgs() << "\n";
444
}
445
#endif
446
447
void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
448
LoopData *OuterLoop,
449
Distribution &Dist) {
450
BlockMass Mass = Working[Source.Index].getMass();
451
LLVM_DEBUG(dbgs() << " => mass: " << Mass << "\n");
452
453
// Distribute mass to successors as laid out in Dist.
454
DitheringDistributer D(Dist, Mass);
455
456
for (const Weight &W : Dist.Weights) {
457
// Check for a local edge (non-backedge and non-exit).
458
BlockMass Taken = D.takeMass(W.Amount);
459
if (W.Type == Weight::Local) {
460
Working[W.TargetNode.Index].getMass() += Taken;
461
LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
462
continue;
463
}
464
465
// Backedges and exits only make sense if we're processing a loop.
466
assert(OuterLoop && "backedge or exit outside of loop");
467
468
// Check for a backedge.
469
if (W.Type == Weight::Backedge) {
470
OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(W.TargetNode)] += Taken;
471
LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back"));
472
continue;
473
}
474
475
// This must be an exit.
476
assert(W.Type == Weight::Exit);
477
OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken));
478
LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit"));
479
}
480
}
481
482
static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
483
const Scaled64 &Min, const Scaled64 &Max) {
484
// Scale the Factor to a size that creates integers. If possible scale
485
// integers so that Max == UINT64_MAX so that they can be best differentiated.
486
// Is is possible that the range between min and max cannot be accurately
487
// represented in a 64bit integer without either loosing precision for small
488
// values (so small unequal numbers all map to 1) or saturaturing big numbers
489
// loosing precision for big numbers (so unequal big numbers may map to
490
// UINT64_MAX). We choose to loose precision for small numbers.
491
const unsigned MaxBits = sizeof(Scaled64::DigitsType) * CHAR_BIT;
492
// Users often add up multiple BlockFrequency values or multiply them with
493
// things like instruction costs. Leave some room to avoid saturating
494
// operations reaching UIN64_MAX too early.
495
const unsigned Slack = 10;
496
Scaled64 ScalingFactor = Scaled64(1, MaxBits - Slack) / Max;
497
498
// Translate the floats to integers.
499
LLVM_DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
500
<< ", factor = " << ScalingFactor << "\n");
501
(void)Min;
502
for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
503
Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor;
504
BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
505
LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
506
<< BFI.Freqs[Index].Scaled << ", scaled = " << Scaled
507
<< ", int = " << BFI.Freqs[Index].Integer << "\n");
508
}
509
}
510
511
/// Unwrap a loop package.
512
///
513
/// Visits all the members of a loop, adjusting their BlockData according to
514
/// the loop's pseudo-node.
515
static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
516
LLVM_DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop)
517
<< ": mass = " << Loop.Mass << ", scale = " << Loop.Scale
518
<< "\n");
519
Loop.Scale *= Loop.Mass.toScaled();
520
Loop.IsPackaged = false;
521
LLVM_DEBUG(dbgs() << " => combined-scale = " << Loop.Scale << "\n");
522
523
// Propagate the head scale through the loop. Since members are visited in
524
// RPO, the head scale will be updated by the loop scale first, and then the
525
// final head scale will be used for updated the rest of the members.
526
for (const BlockNode &N : Loop.Nodes) {
527
const auto &Working = BFI.Working[N.Index];
528
Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale
529
: BFI.Freqs[N.Index].Scaled;
530
Scaled64 New = Loop.Scale * F;
531
LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => "
532
<< New << "\n");
533
F = New;
534
}
535
}
536
537
void BlockFrequencyInfoImplBase::unwrapLoops() {
538
// Set initial frequencies from loop-local masses.
539
for (size_t Index = 0; Index < Working.size(); ++Index)
540
Freqs[Index].Scaled = Working[Index].Mass.toScaled();
541
542
for (LoopData &Loop : Loops)
543
unwrapLoop(*this, Loop);
544
}
545
546
void BlockFrequencyInfoImplBase::finalizeMetrics() {
547
// Unwrap loop packages in reverse post-order, tracking min and max
548
// frequencies.
549
auto Min = Scaled64::getLargest();
550
auto Max = Scaled64::getZero();
551
for (size_t Index = 0; Index < Working.size(); ++Index) {
552
// Update min/max scale.
553
Min = std::min(Min, Freqs[Index].Scaled);
554
Max = std::max(Max, Freqs[Index].Scaled);
555
}
556
557
// Convert to integers.
558
convertFloatingToInteger(*this, Min, Max);
559
560
// Clean up data structures.
561
cleanup(*this);
562
563
// Print out the final stats.
564
LLVM_DEBUG(dump());
565
}
566
567
BlockFrequency
568
BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
569
if (!Node.isValid()) {
570
#ifndef NDEBUG
571
if (CheckBFIUnknownBlockQueries) {
572
SmallString<256> Msg;
573
raw_svector_ostream OS(Msg);
574
OS << "*** Detected BFI query for unknown block " << getBlockName(Node);
575
report_fatal_error(OS.str());
576
}
577
#endif
578
return BlockFrequency(0);
579
}
580
return BlockFrequency(Freqs[Node.Index].Integer);
581
}
582
583
std::optional<uint64_t>
584
BlockFrequencyInfoImplBase::getBlockProfileCount(const Function &F,
585
const BlockNode &Node,
586
bool AllowSynthetic) const {
587
return getProfileCountFromFreq(F, getBlockFreq(Node), AllowSynthetic);
588
}
589
590
std::optional<uint64_t> BlockFrequencyInfoImplBase::getProfileCountFromFreq(
591
const Function &F, BlockFrequency Freq, bool AllowSynthetic) const {
592
auto EntryCount = F.getEntryCount(AllowSynthetic);
593
if (!EntryCount)
594
return std::nullopt;
595
// Use 128 bit APInt to do the arithmetic to avoid overflow.
596
APInt BlockCount(128, EntryCount->getCount());
597
APInt BlockFreq(128, Freq.getFrequency());
598
APInt EntryFreq(128, getEntryFreq().getFrequency());
599
BlockCount *= BlockFreq;
600
// Rounded division of BlockCount by EntryFreq. Since EntryFreq is unsigned
601
// lshr by 1 gives EntryFreq/2.
602
BlockCount = (BlockCount + EntryFreq.lshr(1)).udiv(EntryFreq);
603
return BlockCount.getLimitedValue();
604
}
605
606
bool
607
BlockFrequencyInfoImplBase::isIrrLoopHeader(const BlockNode &Node) {
608
if (!Node.isValid())
609
return false;
610
return IsIrrLoopHeader.test(Node.Index);
611
}
612
613
Scaled64
614
BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
615
if (!Node.isValid())
616
return Scaled64::getZero();
617
return Freqs[Node.Index].Scaled;
618
}
619
620
void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode &Node,
621
BlockFrequency Freq) {
622
assert(Node.isValid() && "Expected valid node");
623
assert(Node.Index < Freqs.size() && "Expected legal index");
624
Freqs[Node.Index].Integer = Freq.getFrequency();
625
}
626
627
std::string
628
BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
629
return {};
630
}
631
632
std::string
633
BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const {
634
return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*");
635
}
636
637
void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) {
638
Start = OuterLoop.getHeader();
639
Nodes.reserve(OuterLoop.Nodes.size());
640
for (auto N : OuterLoop.Nodes)
641
addNode(N);
642
indexNodes();
643
}
644
645
void IrreducibleGraph::addNodesInFunction() {
646
Start = 0;
647
for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
648
if (!BFI.Working[Index].isPackaged())
649
addNode(Index);
650
indexNodes();
651
}
652
653
void IrreducibleGraph::indexNodes() {
654
for (auto &I : Nodes)
655
Lookup[I.Node.Index] = &I;
656
}
657
658
void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ,
659
const BFIBase::LoopData *OuterLoop) {
660
if (OuterLoop && OuterLoop->isHeader(Succ))
661
return;
662
auto L = Lookup.find(Succ.Index);
663
if (L == Lookup.end())
664
return;
665
IrrNode &SuccIrr = *L->second;
666
Irr.Edges.push_back(&SuccIrr);
667
SuccIrr.Edges.push_front(&Irr);
668
++SuccIrr.NumIn;
669
}
670
671
namespace llvm {
672
673
template <> struct GraphTraits<IrreducibleGraph> {
674
using GraphT = bfi_detail::IrreducibleGraph;
675
using NodeRef = const GraphT::IrrNode *;
676
using ChildIteratorType = GraphT::IrrNode::iterator;
677
678
static NodeRef getEntryNode(const GraphT &G) { return G.StartIrr; }
679
static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
680
static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
681
};
682
683
} // end namespace llvm
684
685
/// Find extra irreducible headers.
686
///
687
/// Find entry blocks and other blocks with backedges, which exist when \c G
688
/// contains irreducible sub-SCCs.
689
static void findIrreducibleHeaders(
690
const BlockFrequencyInfoImplBase &BFI,
691
const IrreducibleGraph &G,
692
const std::vector<const IrreducibleGraph::IrrNode *> &SCC,
693
LoopData::NodeList &Headers, LoopData::NodeList &Others) {
694
// Map from nodes in the SCC to whether it's an entry block.
695
SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC;
696
697
// InSCC also acts the set of nodes in the graph. Seed it.
698
for (const auto *I : SCC)
699
InSCC[I] = false;
700
701
for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) {
702
auto &Irr = *I->first;
703
for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
704
if (InSCC.count(P))
705
continue;
706
707
// This is an entry block.
708
I->second = true;
709
Headers.push_back(Irr.Node);
710
LLVM_DEBUG(dbgs() << " => entry = " << BFI.getBlockName(Irr.Node)
711
<< "\n");
712
break;
713
}
714
}
715
assert(Headers.size() >= 2 &&
716
"Expected irreducible CFG; -loop-info is likely invalid");
717
if (Headers.size() == InSCC.size()) {
718
// Every block is a header.
719
llvm::sort(Headers);
720
return;
721
}
722
723
// Look for extra headers from irreducible sub-SCCs.
724
for (const auto &I : InSCC) {
725
// Entry blocks are already headers.
726
if (I.second)
727
continue;
728
729
auto &Irr = *I.first;
730
for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
731
// Skip forward edges.
732
if (P->Node < Irr.Node)
733
continue;
734
735
// Skip predecessors from entry blocks. These can have inverted
736
// ordering.
737
if (InSCC.lookup(P))
738
continue;
739
740
// Store the extra header.
741
Headers.push_back(Irr.Node);
742
LLVM_DEBUG(dbgs() << " => extra = " << BFI.getBlockName(Irr.Node)
743
<< "\n");
744
break;
745
}
746
if (Headers.back() == Irr.Node)
747
// Added this as a header.
748
continue;
749
750
// This is not a header.
751
Others.push_back(Irr.Node);
752
LLVM_DEBUG(dbgs() << " => other = " << BFI.getBlockName(Irr.Node) << "\n");
753
}
754
llvm::sort(Headers);
755
llvm::sort(Others);
756
}
757
758
static void createIrreducibleLoop(
759
BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G,
760
LoopData *OuterLoop, std::list<LoopData>::iterator Insert,
761
const std::vector<const IrreducibleGraph::IrrNode *> &SCC) {
762
// Translate the SCC into RPO.
763
LLVM_DEBUG(dbgs() << " - found-scc\n");
764
765
LoopData::NodeList Headers;
766
LoopData::NodeList Others;
767
findIrreducibleHeaders(BFI, G, SCC, Headers, Others);
768
769
auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(),
770
Headers.end(), Others.begin(), Others.end());
771
772
// Update loop hierarchy.
773
for (const auto &N : Loop->Nodes)
774
if (BFI.Working[N.Index].isLoopHeader())
775
BFI.Working[N.Index].Loop->Parent = &*Loop;
776
else
777
BFI.Working[N.Index].Loop = &*Loop;
778
}
779
780
iterator_range<std::list<LoopData>::iterator>
781
BlockFrequencyInfoImplBase::analyzeIrreducible(
782
const IrreducibleGraph &G, LoopData *OuterLoop,
783
std::list<LoopData>::iterator Insert) {
784
assert((OuterLoop == nullptr) == (Insert == Loops.begin()));
785
auto Prev = OuterLoop ? std::prev(Insert) : Loops.end();
786
787
for (auto I = scc_begin(G); !I.isAtEnd(); ++I) {
788
if (I->size() < 2)
789
continue;
790
791
// Translate the SCC into RPO.
792
createIrreducibleLoop(*this, G, OuterLoop, Insert, *I);
793
}
794
795
if (OuterLoop)
796
return make_range(std::next(Prev), Insert);
797
return make_range(Loops.begin(), Insert);
798
}
799
800
void
801
BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) {
802
OuterLoop.Exits.clear();
803
for (auto &Mass : OuterLoop.BackedgeMass)
804
Mass = BlockMass::getEmpty();
805
auto O = OuterLoop.Nodes.begin() + 1;
806
for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I)
807
if (!Working[I->Index].isPackaged())
808
*O++ = *I;
809
OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end());
810
}
811
812
void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) {
813
assert(Loop.isIrreducible() && "this only makes sense on irreducible loops");
814
815
// Since the loop has more than one header block, the mass flowing back into
816
// each header will be different. Adjust the mass in each header loop to
817
// reflect the masses flowing through back edges.
818
//
819
// To do this, we distribute the initial mass using the backedge masses
820
// as weights for the distribution.
821
BlockMass LoopMass = BlockMass::getFull();
822
Distribution Dist;
823
824
LLVM_DEBUG(dbgs() << "adjust-loop-header-mass:\n");
825
for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
826
auto &HeaderNode = Loop.Nodes[H];
827
auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(HeaderNode)];
828
LLVM_DEBUG(dbgs() << " - Add back edge mass for node "
829
<< getBlockName(HeaderNode) << ": " << BackedgeMass
830
<< "\n");
831
if (BackedgeMass.getMass() > 0)
832
Dist.addLocal(HeaderNode, BackedgeMass.getMass());
833
else
834
LLVM_DEBUG(dbgs() << " Nothing added. Back edge mass is zero\n");
835
}
836
837
DitheringDistributer D(Dist, LoopMass);
838
839
LLVM_DEBUG(dbgs() << " Distribute loop mass " << LoopMass
840
<< " to headers using above weights\n");
841
for (const Weight &W : Dist.Weights) {
842
BlockMass Taken = D.takeMass(W.Amount);
843
assert(W.Type == Weight::Local && "all weights should be local");
844
Working[W.TargetNode.Index].getMass() = Taken;
845
LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
846
}
847
}
848
849
void BlockFrequencyInfoImplBase::distributeIrrLoopHeaderMass(Distribution &Dist) {
850
BlockMass LoopMass = BlockMass::getFull();
851
DitheringDistributer D(Dist, LoopMass);
852
for (const Weight &W : Dist.Weights) {
853
BlockMass Taken = D.takeMass(W.Amount);
854
assert(W.Type == Weight::Local && "all weights should be local");
855
Working[W.TargetNode.Index].getMass() = Taken;
856
LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
857
}
858
}
859
860