Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Analysis/CFG.cpp
35233 views
1
//===-- CFG.cpp - BasicBlock analysis --------------------------------------==//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This family of functions performs analyses on basic blocks, and instructions
10
// contained within basic blocks.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "llvm/Analysis/CFG.h"
15
#include "llvm/Analysis/LoopInfo.h"
16
#include "llvm/IR/Dominators.h"
17
#include "llvm/Support/CommandLine.h"
18
19
using namespace llvm;
20
21
// The max number of basic blocks explored during reachability analysis between
22
// two basic blocks. This is kept reasonably small to limit compile time when
23
// repeatedly used by clients of this analysis (such as captureTracking).
24
static cl::opt<unsigned> DefaultMaxBBsToExplore(
25
"dom-tree-reachability-max-bbs-to-explore", cl::Hidden,
26
cl::desc("Max number of BBs to explore for reachability analysis"),
27
cl::init(32));
28
29
/// FindFunctionBackedges - Analyze the specified function to find all of the
30
/// loop backedges in the function and return them. This is a relatively cheap
31
/// (compared to computing dominators and loop info) analysis.
32
///
33
/// The output is added to Result, as pairs of <from,to> edge info.
34
void llvm::FindFunctionBackedges(const Function &F,
35
SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) {
36
const BasicBlock *BB = &F.getEntryBlock();
37
if (succ_empty(BB))
38
return;
39
40
SmallPtrSet<const BasicBlock*, 8> Visited;
41
SmallVector<std::pair<const BasicBlock *, const_succ_iterator>, 8> VisitStack;
42
SmallPtrSet<const BasicBlock*, 8> InStack;
43
44
Visited.insert(BB);
45
VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
46
InStack.insert(BB);
47
do {
48
std::pair<const BasicBlock *, const_succ_iterator> &Top = VisitStack.back();
49
const BasicBlock *ParentBB = Top.first;
50
const_succ_iterator &I = Top.second;
51
52
bool FoundNew = false;
53
while (I != succ_end(ParentBB)) {
54
BB = *I++;
55
if (Visited.insert(BB).second) {
56
FoundNew = true;
57
break;
58
}
59
// Successor is in VisitStack, it's a back edge.
60
if (InStack.count(BB))
61
Result.push_back(std::make_pair(ParentBB, BB));
62
}
63
64
if (FoundNew) {
65
// Go down one level if there is a unvisited successor.
66
InStack.insert(BB);
67
VisitStack.push_back(std::make_pair(BB, succ_begin(BB)));
68
} else {
69
// Go up one level.
70
InStack.erase(VisitStack.pop_back_val().first);
71
}
72
} while (!VisitStack.empty());
73
}
74
75
/// GetSuccessorNumber - Search for the specified successor of basic block BB
76
/// and return its position in the terminator instruction's list of
77
/// successors. It is an error to call this with a block that is not a
78
/// successor.
79
unsigned llvm::GetSuccessorNumber(const BasicBlock *BB,
80
const BasicBlock *Succ) {
81
const Instruction *Term = BB->getTerminator();
82
#ifndef NDEBUG
83
unsigned e = Term->getNumSuccessors();
84
#endif
85
for (unsigned i = 0; ; ++i) {
86
assert(i != e && "Didn't find edge?");
87
if (Term->getSuccessor(i) == Succ)
88
return i;
89
}
90
}
91
92
/// isCriticalEdge - Return true if the specified edge is a critical edge.
93
/// Critical edges are edges from a block with multiple successors to a block
94
/// with multiple predecessors.
95
bool llvm::isCriticalEdge(const Instruction *TI, unsigned SuccNum,
96
bool AllowIdenticalEdges) {
97
assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
98
return isCriticalEdge(TI, TI->getSuccessor(SuccNum), AllowIdenticalEdges);
99
}
100
101
bool llvm::isCriticalEdge(const Instruction *TI, const BasicBlock *Dest,
102
bool AllowIdenticalEdges) {
103
assert(TI->isTerminator() && "Must be a terminator to have successors!");
104
if (TI->getNumSuccessors() == 1) return false;
105
106
assert(is_contained(predecessors(Dest), TI->getParent()) &&
107
"No edge between TI's block and Dest.");
108
109
const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
110
111
// If there is more than one predecessor, this is a critical edge...
112
assert(I != E && "No preds, but we have an edge to the block?");
113
const BasicBlock *FirstPred = *I;
114
++I; // Skip one edge due to the incoming arc from TI.
115
if (!AllowIdenticalEdges)
116
return I != E;
117
118
// If AllowIdenticalEdges is true, then we allow this edge to be considered
119
// non-critical iff all preds come from TI's block.
120
for (; I != E; ++I)
121
if (*I != FirstPred)
122
return true;
123
return false;
124
}
125
126
// LoopInfo contains a mapping from basic block to the innermost loop. Find
127
// the outermost loop in the loop nest that contains BB.
128
static const Loop *getOutermostLoop(const LoopInfo *LI, const BasicBlock *BB) {
129
const Loop *L = LI->getLoopFor(BB);
130
return L ? L->getOutermostLoop() : nullptr;
131
}
132
133
template <class StopSetT>
134
static bool isReachableImpl(SmallVectorImpl<BasicBlock *> &Worklist,
135
const StopSetT &StopSet,
136
const SmallPtrSetImpl<BasicBlock *> *ExclusionSet,
137
const DominatorTree *DT, const LoopInfo *LI) {
138
// When a stop block is unreachable, it's dominated from everywhere,
139
// regardless of whether there's a path between the two blocks.
140
if (DT) {
141
for (auto *BB : StopSet) {
142
if (!DT->isReachableFromEntry(BB)) {
143
DT = nullptr;
144
break;
145
}
146
}
147
}
148
149
// We can't skip directly from a block that dominates the stop block if the
150
// exclusion block is potentially in between.
151
if (ExclusionSet && !ExclusionSet->empty())
152
DT = nullptr;
153
154
// Normally any block in a loop is reachable from any other block in a loop,
155
// however excluded blocks might partition the body of a loop to make that
156
// untrue.
157
SmallPtrSet<const Loop *, 8> LoopsWithHoles;
158
if (LI && ExclusionSet) {
159
for (auto *BB : *ExclusionSet) {
160
if (const Loop *L = getOutermostLoop(LI, BB))
161
LoopsWithHoles.insert(L);
162
}
163
}
164
165
SmallPtrSet<const Loop *, 2> StopLoops;
166
if (LI) {
167
for (auto *StopSetBB : StopSet) {
168
if (const Loop *L = getOutermostLoop(LI, StopSetBB))
169
StopLoops.insert(L);
170
}
171
}
172
173
unsigned Limit = DefaultMaxBBsToExplore;
174
SmallPtrSet<const BasicBlock*, 32> Visited;
175
do {
176
BasicBlock *BB = Worklist.pop_back_val();
177
if (!Visited.insert(BB).second)
178
continue;
179
if (StopSet.contains(BB))
180
return true;
181
if (ExclusionSet && ExclusionSet->count(BB))
182
continue;
183
if (DT) {
184
if (llvm::any_of(StopSet, [&](const BasicBlock *StopBB) {
185
return DT->dominates(BB, StopBB);
186
}))
187
return true;
188
}
189
190
const Loop *Outer = nullptr;
191
if (LI) {
192
Outer = getOutermostLoop(LI, BB);
193
// If we're in a loop with a hole, not all blocks in the loop are
194
// reachable from all other blocks. That implies we can't simply jump to
195
// the loop's exit blocks, as that exit might need to pass through an
196
// excluded block. Clear Outer so we process BB's successors.
197
if (LoopsWithHoles.count(Outer))
198
Outer = nullptr;
199
if (StopLoops.contains(Outer))
200
return true;
201
}
202
203
if (!--Limit) {
204
// We haven't been able to prove it one way or the other. Conservatively
205
// answer true -- that there is potentially a path.
206
return true;
207
}
208
209
if (Outer) {
210
// All blocks in a single loop are reachable from all other blocks. From
211
// any of these blocks, we can skip directly to the exits of the loop,
212
// ignoring any other blocks inside the loop body.
213
Outer->getExitBlocks(Worklist);
214
} else {
215
Worklist.append(succ_begin(BB), succ_end(BB));
216
}
217
} while (!Worklist.empty());
218
219
// We have exhausted all possible paths and are certain that 'To' can not be
220
// reached from 'From'.
221
return false;
222
}
223
224
template <class T> class SingleEntrySet {
225
public:
226
using const_iterator = const T *;
227
228
SingleEntrySet(T Elem) : Elem(Elem) {}
229
230
bool contains(T Other) const { return Elem == Other; }
231
232
const_iterator begin() const { return &Elem; }
233
const_iterator end() const { return &Elem + 1; }
234
235
private:
236
T Elem;
237
};
238
239
bool llvm::isPotentiallyReachableFromMany(
240
SmallVectorImpl<BasicBlock *> &Worklist, const BasicBlock *StopBB,
241
const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
242
const LoopInfo *LI) {
243
return isReachableImpl<SingleEntrySet<const BasicBlock *>>(
244
Worklist, SingleEntrySet<const BasicBlock *>(StopBB), ExclusionSet, DT,
245
LI);
246
}
247
248
bool llvm::isManyPotentiallyReachableFromMany(
249
SmallVectorImpl<BasicBlock *> &Worklist,
250
const SmallPtrSetImpl<const BasicBlock *> &StopSet,
251
const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
252
const LoopInfo *LI) {
253
return isReachableImpl<SmallPtrSetImpl<const BasicBlock *>>(
254
Worklist, StopSet, ExclusionSet, DT, LI);
255
}
256
257
bool llvm::isPotentiallyReachable(
258
const BasicBlock *A, const BasicBlock *B,
259
const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
260
const LoopInfo *LI) {
261
assert(A->getParent() == B->getParent() &&
262
"This analysis is function-local!");
263
264
if (DT) {
265
if (DT->isReachableFromEntry(A) && !DT->isReachableFromEntry(B))
266
return false;
267
if (!ExclusionSet || ExclusionSet->empty()) {
268
if (A->isEntryBlock() && DT->isReachableFromEntry(B))
269
return true;
270
if (B->isEntryBlock() && DT->isReachableFromEntry(A))
271
return false;
272
}
273
}
274
275
SmallVector<BasicBlock*, 32> Worklist;
276
Worklist.push_back(const_cast<BasicBlock*>(A));
277
278
return isPotentiallyReachableFromMany(Worklist, B, ExclusionSet, DT, LI);
279
}
280
281
bool llvm::isPotentiallyReachable(
282
const Instruction *A, const Instruction *B,
283
const SmallPtrSetImpl<BasicBlock *> *ExclusionSet, const DominatorTree *DT,
284
const LoopInfo *LI) {
285
assert(A->getParent()->getParent() == B->getParent()->getParent() &&
286
"This analysis is function-local!");
287
288
if (A->getParent() == B->getParent()) {
289
// The same block case is special because it's the only time we're looking
290
// within a single block to see which instruction comes first. Once we
291
// start looking at multiple blocks, the first instruction of the block is
292
// reachable, so we only need to determine reachability between whole
293
// blocks.
294
BasicBlock *BB = const_cast<BasicBlock *>(A->getParent());
295
296
// If the block is in a loop then we can reach any instruction in the block
297
// from any other instruction in the block by going around a backedge.
298
if (LI && LI->getLoopFor(BB) != nullptr)
299
return true;
300
301
// If A comes before B, then B is definitively reachable from A.
302
if (A == B || A->comesBefore(B))
303
return true;
304
305
// Can't be in a loop if it's the entry block -- the entry block may not
306
// have predecessors.
307
if (BB->isEntryBlock())
308
return false;
309
310
// Otherwise, continue doing the normal per-BB CFG walk.
311
SmallVector<BasicBlock*, 32> Worklist;
312
Worklist.append(succ_begin(BB), succ_end(BB));
313
if (Worklist.empty()) {
314
// We've proven that there's no path!
315
return false;
316
}
317
318
return isPotentiallyReachableFromMany(Worklist, B->getParent(),
319
ExclusionSet, DT, LI);
320
}
321
322
return isPotentiallyReachable(
323
A->getParent(), B->getParent(), ExclusionSet, DT, LI);
324
}
325
326