Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Analysis/ConstantFolding.cpp
35233 views
1
//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines routines for folding instructions into constants.
10
//
11
// Also, to supplement the basic IR ConstantExpr simplifications,
12
// this file defines some additional folding routines that can make use of
13
// DataLayout information. These functions cannot go in IR due to library
14
// dependency issues.
15
//
16
//===----------------------------------------------------------------------===//
17
18
#include "llvm/Analysis/ConstantFolding.h"
19
#include "llvm/ADT/APFloat.h"
20
#include "llvm/ADT/APInt.h"
21
#include "llvm/ADT/APSInt.h"
22
#include "llvm/ADT/ArrayRef.h"
23
#include "llvm/ADT/DenseMap.h"
24
#include "llvm/ADT/STLExtras.h"
25
#include "llvm/ADT/SmallVector.h"
26
#include "llvm/ADT/StringRef.h"
27
#include "llvm/Analysis/TargetFolder.h"
28
#include "llvm/Analysis/TargetLibraryInfo.h"
29
#include "llvm/Analysis/ValueTracking.h"
30
#include "llvm/Analysis/VectorUtils.h"
31
#include "llvm/Config/config.h"
32
#include "llvm/IR/Constant.h"
33
#include "llvm/IR/ConstantFold.h"
34
#include "llvm/IR/Constants.h"
35
#include "llvm/IR/DataLayout.h"
36
#include "llvm/IR/DerivedTypes.h"
37
#include "llvm/IR/Function.h"
38
#include "llvm/IR/GlobalValue.h"
39
#include "llvm/IR/GlobalVariable.h"
40
#include "llvm/IR/InstrTypes.h"
41
#include "llvm/IR/Instruction.h"
42
#include "llvm/IR/Instructions.h"
43
#include "llvm/IR/IntrinsicInst.h"
44
#include "llvm/IR/Intrinsics.h"
45
#include "llvm/IR/IntrinsicsAArch64.h"
46
#include "llvm/IR/IntrinsicsAMDGPU.h"
47
#include "llvm/IR/IntrinsicsARM.h"
48
#include "llvm/IR/IntrinsicsWebAssembly.h"
49
#include "llvm/IR/IntrinsicsX86.h"
50
#include "llvm/IR/Operator.h"
51
#include "llvm/IR/Type.h"
52
#include "llvm/IR/Value.h"
53
#include "llvm/Support/Casting.h"
54
#include "llvm/Support/ErrorHandling.h"
55
#include "llvm/Support/KnownBits.h"
56
#include "llvm/Support/MathExtras.h"
57
#include <cassert>
58
#include <cerrno>
59
#include <cfenv>
60
#include <cmath>
61
#include <cstdint>
62
63
using namespace llvm;
64
65
namespace {
66
67
//===----------------------------------------------------------------------===//
68
// Constant Folding internal helper functions
69
//===----------------------------------------------------------------------===//
70
71
static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
72
Constant *C, Type *SrcEltTy,
73
unsigned NumSrcElts,
74
const DataLayout &DL) {
75
// Now that we know that the input value is a vector of integers, just shift
76
// and insert them into our result.
77
unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
78
for (unsigned i = 0; i != NumSrcElts; ++i) {
79
Constant *Element;
80
if (DL.isLittleEndian())
81
Element = C->getAggregateElement(NumSrcElts - i - 1);
82
else
83
Element = C->getAggregateElement(i);
84
85
if (Element && isa<UndefValue>(Element)) {
86
Result <<= BitShift;
87
continue;
88
}
89
90
auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
91
if (!ElementCI)
92
return ConstantExpr::getBitCast(C, DestTy);
93
94
Result <<= BitShift;
95
Result |= ElementCI->getValue().zext(Result.getBitWidth());
96
}
97
98
return nullptr;
99
}
100
101
/// Constant fold bitcast, symbolically evaluating it with DataLayout.
102
/// This always returns a non-null constant, but it may be a
103
/// ConstantExpr if unfoldable.
104
Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
105
assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) &&
106
"Invalid constantexpr bitcast!");
107
108
// Catch the obvious splat cases.
109
if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
110
return Res;
111
112
if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
113
// Handle a vector->scalar integer/fp cast.
114
if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
115
unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements();
116
Type *SrcEltTy = VTy->getElementType();
117
118
// If the vector is a vector of floating point, convert it to vector of int
119
// to simplify things.
120
if (SrcEltTy->isFloatingPointTy()) {
121
unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
122
auto *SrcIVTy = FixedVectorType::get(
123
IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
124
// Ask IR to do the conversion now that #elts line up.
125
C = ConstantExpr::getBitCast(C, SrcIVTy);
126
}
127
128
APInt Result(DL.getTypeSizeInBits(DestTy), 0);
129
if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
130
SrcEltTy, NumSrcElts, DL))
131
return CE;
132
133
if (isa<IntegerType>(DestTy))
134
return ConstantInt::get(DestTy, Result);
135
136
APFloat FP(DestTy->getFltSemantics(), Result);
137
return ConstantFP::get(DestTy->getContext(), FP);
138
}
139
}
140
141
// The code below only handles casts to vectors currently.
142
auto *DestVTy = dyn_cast<VectorType>(DestTy);
143
if (!DestVTy)
144
return ConstantExpr::getBitCast(C, DestTy);
145
146
// If this is a scalar -> vector cast, convert the input into a <1 x scalar>
147
// vector so the code below can handle it uniformly.
148
if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
149
Constant *Ops = C; // don't take the address of C!
150
return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
151
}
152
153
// If this is a bitcast from constant vector -> vector, fold it.
154
if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
155
return ConstantExpr::getBitCast(C, DestTy);
156
157
// If the element types match, IR can fold it.
158
unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements();
159
unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements();
160
if (NumDstElt == NumSrcElt)
161
return ConstantExpr::getBitCast(C, DestTy);
162
163
Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType();
164
Type *DstEltTy = DestVTy->getElementType();
165
166
// Otherwise, we're changing the number of elements in a vector, which
167
// requires endianness information to do the right thing. For example,
168
// bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
169
// folds to (little endian):
170
// <4 x i32> <i32 0, i32 0, i32 1, i32 0>
171
// and to (big endian):
172
// <4 x i32> <i32 0, i32 0, i32 0, i32 1>
173
174
// First thing is first. We only want to think about integer here, so if
175
// we have something in FP form, recast it as integer.
176
if (DstEltTy->isFloatingPointTy()) {
177
// Fold to an vector of integers with same size as our FP type.
178
unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
179
auto *DestIVTy = FixedVectorType::get(
180
IntegerType::get(C->getContext(), FPWidth), NumDstElt);
181
// Recursively handle this integer conversion, if possible.
182
C = FoldBitCast(C, DestIVTy, DL);
183
184
// Finally, IR can handle this now that #elts line up.
185
return ConstantExpr::getBitCast(C, DestTy);
186
}
187
188
// Okay, we know the destination is integer, if the input is FP, convert
189
// it to integer first.
190
if (SrcEltTy->isFloatingPointTy()) {
191
unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
192
auto *SrcIVTy = FixedVectorType::get(
193
IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
194
// Ask IR to do the conversion now that #elts line up.
195
C = ConstantExpr::getBitCast(C, SrcIVTy);
196
// If IR wasn't able to fold it, bail out.
197
if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
198
!isa<ConstantDataVector>(C))
199
return C;
200
}
201
202
// Now we know that the input and output vectors are both integer vectors
203
// of the same size, and that their #elements is not the same. Do the
204
// conversion here, which depends on whether the input or output has
205
// more elements.
206
bool isLittleEndian = DL.isLittleEndian();
207
208
SmallVector<Constant*, 32> Result;
209
if (NumDstElt < NumSrcElt) {
210
// Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
211
Constant *Zero = Constant::getNullValue(DstEltTy);
212
unsigned Ratio = NumSrcElt/NumDstElt;
213
unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
214
unsigned SrcElt = 0;
215
for (unsigned i = 0; i != NumDstElt; ++i) {
216
// Build each element of the result.
217
Constant *Elt = Zero;
218
unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
219
for (unsigned j = 0; j != Ratio; ++j) {
220
Constant *Src = C->getAggregateElement(SrcElt++);
221
if (Src && isa<UndefValue>(Src))
222
Src = Constant::getNullValue(
223
cast<VectorType>(C->getType())->getElementType());
224
else
225
Src = dyn_cast_or_null<ConstantInt>(Src);
226
if (!Src) // Reject constantexpr elements.
227
return ConstantExpr::getBitCast(C, DestTy);
228
229
// Zero extend the element to the right size.
230
Src = ConstantFoldCastOperand(Instruction::ZExt, Src, Elt->getType(),
231
DL);
232
assert(Src && "Constant folding cannot fail on plain integers");
233
234
// Shift it to the right place, depending on endianness.
235
Src = ConstantFoldBinaryOpOperands(
236
Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt),
237
DL);
238
assert(Src && "Constant folding cannot fail on plain integers");
239
240
ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
241
242
// Mix it in.
243
Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL);
244
assert(Elt && "Constant folding cannot fail on plain integers");
245
}
246
Result.push_back(Elt);
247
}
248
return ConstantVector::get(Result);
249
}
250
251
// Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
252
unsigned Ratio = NumDstElt/NumSrcElt;
253
unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
254
255
// Loop over each source value, expanding into multiple results.
256
for (unsigned i = 0; i != NumSrcElt; ++i) {
257
auto *Element = C->getAggregateElement(i);
258
259
if (!Element) // Reject constantexpr elements.
260
return ConstantExpr::getBitCast(C, DestTy);
261
262
if (isa<UndefValue>(Element)) {
263
// Correctly Propagate undef values.
264
Result.append(Ratio, UndefValue::get(DstEltTy));
265
continue;
266
}
267
268
auto *Src = dyn_cast<ConstantInt>(Element);
269
if (!Src)
270
return ConstantExpr::getBitCast(C, DestTy);
271
272
unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
273
for (unsigned j = 0; j != Ratio; ++j) {
274
// Shift the piece of the value into the right place, depending on
275
// endianness.
276
APInt Elt = Src->getValue().lshr(ShiftAmt);
277
ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
278
279
// Truncate and remember this piece.
280
Result.push_back(ConstantInt::get(DstEltTy, Elt.trunc(DstBitSize)));
281
}
282
}
283
284
return ConstantVector::get(Result);
285
}
286
287
} // end anonymous namespace
288
289
/// If this constant is a constant offset from a global, return the global and
290
/// the constant. Because of constantexprs, this function is recursive.
291
bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
292
APInt &Offset, const DataLayout &DL,
293
DSOLocalEquivalent **DSOEquiv) {
294
if (DSOEquiv)
295
*DSOEquiv = nullptr;
296
297
// Trivial case, constant is the global.
298
if ((GV = dyn_cast<GlobalValue>(C))) {
299
unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
300
Offset = APInt(BitWidth, 0);
301
return true;
302
}
303
304
if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) {
305
if (DSOEquiv)
306
*DSOEquiv = FoundDSOEquiv;
307
GV = FoundDSOEquiv->getGlobalValue();
308
unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
309
Offset = APInt(BitWidth, 0);
310
return true;
311
}
312
313
// Otherwise, if this isn't a constant expr, bail out.
314
auto *CE = dyn_cast<ConstantExpr>(C);
315
if (!CE) return false;
316
317
// Look through ptr->int and ptr->ptr casts.
318
if (CE->getOpcode() == Instruction::PtrToInt ||
319
CE->getOpcode() == Instruction::BitCast)
320
return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL,
321
DSOEquiv);
322
323
// i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
324
auto *GEP = dyn_cast<GEPOperator>(CE);
325
if (!GEP)
326
return false;
327
328
unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
329
APInt TmpOffset(BitWidth, 0);
330
331
// If the base isn't a global+constant, we aren't either.
332
if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL,
333
DSOEquiv))
334
return false;
335
336
// Otherwise, add any offset that our operands provide.
337
if (!GEP->accumulateConstantOffset(DL, TmpOffset))
338
return false;
339
340
Offset = TmpOffset;
341
return true;
342
}
343
344
Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
345
const DataLayout &DL) {
346
do {
347
Type *SrcTy = C->getType();
348
if (SrcTy == DestTy)
349
return C;
350
351
TypeSize DestSize = DL.getTypeSizeInBits(DestTy);
352
TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy);
353
if (!TypeSize::isKnownGE(SrcSize, DestSize))
354
return nullptr;
355
356
// Catch the obvious splat cases (since all-zeros can coerce non-integral
357
// pointers legally).
358
if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL))
359
return Res;
360
361
// If the type sizes are the same and a cast is legal, just directly
362
// cast the constant.
363
// But be careful not to coerce non-integral pointers illegally.
364
if (SrcSize == DestSize &&
365
DL.isNonIntegralPointerType(SrcTy->getScalarType()) ==
366
DL.isNonIntegralPointerType(DestTy->getScalarType())) {
367
Instruction::CastOps Cast = Instruction::BitCast;
368
// If we are going from a pointer to int or vice versa, we spell the cast
369
// differently.
370
if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
371
Cast = Instruction::IntToPtr;
372
else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
373
Cast = Instruction::PtrToInt;
374
375
if (CastInst::castIsValid(Cast, C, DestTy))
376
return ConstantFoldCastOperand(Cast, C, DestTy, DL);
377
}
378
379
// If this isn't an aggregate type, there is nothing we can do to drill down
380
// and find a bitcastable constant.
381
if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy())
382
return nullptr;
383
384
// We're simulating a load through a pointer that was bitcast to point to
385
// a different type, so we can try to walk down through the initial
386
// elements of an aggregate to see if some part of the aggregate is
387
// castable to implement the "load" semantic model.
388
if (SrcTy->isStructTy()) {
389
// Struct types might have leading zero-length elements like [0 x i32],
390
// which are certainly not what we are looking for, so skip them.
391
unsigned Elem = 0;
392
Constant *ElemC;
393
do {
394
ElemC = C->getAggregateElement(Elem++);
395
} while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero());
396
C = ElemC;
397
} else {
398
// For non-byte-sized vector elements, the first element is not
399
// necessarily located at the vector base address.
400
if (auto *VT = dyn_cast<VectorType>(SrcTy))
401
if (!DL.typeSizeEqualsStoreSize(VT->getElementType()))
402
return nullptr;
403
404
C = C->getAggregateElement(0u);
405
}
406
} while (C);
407
408
return nullptr;
409
}
410
411
namespace {
412
413
/// Recursive helper to read bits out of global. C is the constant being copied
414
/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
415
/// results into and BytesLeft is the number of bytes left in
416
/// the CurPtr buffer. DL is the DataLayout.
417
bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
418
unsigned BytesLeft, const DataLayout &DL) {
419
assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
420
"Out of range access");
421
422
// If this element is zero or undefined, we can just return since *CurPtr is
423
// zero initialized.
424
if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
425
return true;
426
427
if (auto *CI = dyn_cast<ConstantInt>(C)) {
428
if ((CI->getBitWidth() & 7) != 0)
429
return false;
430
const APInt &Val = CI->getValue();
431
unsigned IntBytes = unsigned(CI->getBitWidth()/8);
432
433
for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
434
unsigned n = ByteOffset;
435
if (!DL.isLittleEndian())
436
n = IntBytes - n - 1;
437
CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue();
438
++ByteOffset;
439
}
440
return true;
441
}
442
443
if (auto *CFP = dyn_cast<ConstantFP>(C)) {
444
if (CFP->getType()->isDoubleTy()) {
445
C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
446
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
447
}
448
if (CFP->getType()->isFloatTy()){
449
C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
450
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
451
}
452
if (CFP->getType()->isHalfTy()){
453
C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
454
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
455
}
456
return false;
457
}
458
459
if (auto *CS = dyn_cast<ConstantStruct>(C)) {
460
const StructLayout *SL = DL.getStructLayout(CS->getType());
461
unsigned Index = SL->getElementContainingOffset(ByteOffset);
462
uint64_t CurEltOffset = SL->getElementOffset(Index);
463
ByteOffset -= CurEltOffset;
464
465
while (true) {
466
// If the element access is to the element itself and not to tail padding,
467
// read the bytes from the element.
468
uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
469
470
if (ByteOffset < EltSize &&
471
!ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
472
BytesLeft, DL))
473
return false;
474
475
++Index;
476
477
// Check to see if we read from the last struct element, if so we're done.
478
if (Index == CS->getType()->getNumElements())
479
return true;
480
481
// If we read all of the bytes we needed from this element we're done.
482
uint64_t NextEltOffset = SL->getElementOffset(Index);
483
484
if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
485
return true;
486
487
// Move to the next element of the struct.
488
CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
489
BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
490
ByteOffset = 0;
491
CurEltOffset = NextEltOffset;
492
}
493
// not reached.
494
}
495
496
if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
497
isa<ConstantDataSequential>(C)) {
498
uint64_t NumElts, EltSize;
499
Type *EltTy;
500
if (auto *AT = dyn_cast<ArrayType>(C->getType())) {
501
NumElts = AT->getNumElements();
502
EltTy = AT->getElementType();
503
EltSize = DL.getTypeAllocSize(EltTy);
504
} else {
505
NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
506
EltTy = cast<FixedVectorType>(C->getType())->getElementType();
507
// TODO: For non-byte-sized vectors, current implementation assumes there is
508
// padding to the next byte boundary between elements.
509
if (!DL.typeSizeEqualsStoreSize(EltTy))
510
return false;
511
512
EltSize = DL.getTypeStoreSize(EltTy);
513
}
514
uint64_t Index = ByteOffset / EltSize;
515
uint64_t Offset = ByteOffset - Index * EltSize;
516
517
for (; Index != NumElts; ++Index) {
518
if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
519
BytesLeft, DL))
520
return false;
521
522
uint64_t BytesWritten = EltSize - Offset;
523
assert(BytesWritten <= EltSize && "Not indexing into this element?");
524
if (BytesWritten >= BytesLeft)
525
return true;
526
527
Offset = 0;
528
BytesLeft -= BytesWritten;
529
CurPtr += BytesWritten;
530
}
531
return true;
532
}
533
534
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
535
if (CE->getOpcode() == Instruction::IntToPtr &&
536
CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
537
return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
538
BytesLeft, DL);
539
}
540
}
541
542
// Otherwise, unknown initializer type.
543
return false;
544
}
545
546
Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy,
547
int64_t Offset, const DataLayout &DL) {
548
// Bail out early. Not expect to load from scalable global variable.
549
if (isa<ScalableVectorType>(LoadTy))
550
return nullptr;
551
552
auto *IntType = dyn_cast<IntegerType>(LoadTy);
553
554
// If this isn't an integer load we can't fold it directly.
555
if (!IntType) {
556
// If this is a non-integer load, we can try folding it as an int load and
557
// then bitcast the result. This can be useful for union cases. Note
558
// that address spaces don't matter here since we're not going to result in
559
// an actual new load.
560
if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() &&
561
!LoadTy->isVectorTy())
562
return nullptr;
563
564
Type *MapTy = Type::getIntNTy(C->getContext(),
565
DL.getTypeSizeInBits(LoadTy).getFixedValue());
566
if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) {
567
if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
568
!LoadTy->isX86_AMXTy())
569
// Materializing a zero can be done trivially without a bitcast
570
return Constant::getNullValue(LoadTy);
571
Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy;
572
Res = FoldBitCast(Res, CastTy, DL);
573
if (LoadTy->isPtrOrPtrVectorTy()) {
574
// For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr
575
if (Res->isNullValue() && !LoadTy->isX86_MMXTy() &&
576
!LoadTy->isX86_AMXTy())
577
return Constant::getNullValue(LoadTy);
578
if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
579
// Be careful not to replace a load of an addrspace value with an inttoptr here
580
return nullptr;
581
Res = ConstantExpr::getIntToPtr(Res, LoadTy);
582
}
583
return Res;
584
}
585
return nullptr;
586
}
587
588
unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
589
if (BytesLoaded > 32 || BytesLoaded == 0)
590
return nullptr;
591
592
// If we're not accessing anything in this constant, the result is undefined.
593
if (Offset <= -1 * static_cast<int64_t>(BytesLoaded))
594
return PoisonValue::get(IntType);
595
596
// TODO: We should be able to support scalable types.
597
TypeSize InitializerSize = DL.getTypeAllocSize(C->getType());
598
if (InitializerSize.isScalable())
599
return nullptr;
600
601
// If we're not accessing anything in this constant, the result is undefined.
602
if (Offset >= (int64_t)InitializerSize.getFixedValue())
603
return PoisonValue::get(IntType);
604
605
unsigned char RawBytes[32] = {0};
606
unsigned char *CurPtr = RawBytes;
607
unsigned BytesLeft = BytesLoaded;
608
609
// If we're loading off the beginning of the global, some bytes may be valid.
610
if (Offset < 0) {
611
CurPtr += -Offset;
612
BytesLeft += Offset;
613
Offset = 0;
614
}
615
616
if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL))
617
return nullptr;
618
619
APInt ResultVal = APInt(IntType->getBitWidth(), 0);
620
if (DL.isLittleEndian()) {
621
ResultVal = RawBytes[BytesLoaded - 1];
622
for (unsigned i = 1; i != BytesLoaded; ++i) {
623
ResultVal <<= 8;
624
ResultVal |= RawBytes[BytesLoaded - 1 - i];
625
}
626
} else {
627
ResultVal = RawBytes[0];
628
for (unsigned i = 1; i != BytesLoaded; ++i) {
629
ResultVal <<= 8;
630
ResultVal |= RawBytes[i];
631
}
632
}
633
634
return ConstantInt::get(IntType->getContext(), ResultVal);
635
}
636
637
} // anonymous namespace
638
639
// If GV is a constant with an initializer read its representation starting
640
// at Offset and return it as a constant array of unsigned char. Otherwise
641
// return null.
642
Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV,
643
uint64_t Offset) {
644
if (!GV->isConstant() || !GV->hasDefinitiveInitializer())
645
return nullptr;
646
647
const DataLayout &DL = GV->getDataLayout();
648
Constant *Init = const_cast<Constant *>(GV->getInitializer());
649
TypeSize InitSize = DL.getTypeAllocSize(Init->getType());
650
if (InitSize < Offset)
651
return nullptr;
652
653
uint64_t NBytes = InitSize - Offset;
654
if (NBytes > UINT16_MAX)
655
// Bail for large initializers in excess of 64K to avoid allocating
656
// too much memory.
657
// Offset is assumed to be less than or equal than InitSize (this
658
// is enforced in ReadDataFromGlobal).
659
return nullptr;
660
661
SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes));
662
unsigned char *CurPtr = RawBytes.data();
663
664
if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL))
665
return nullptr;
666
667
return ConstantDataArray::get(GV->getContext(), RawBytes);
668
}
669
670
/// If this Offset points exactly to the start of an aggregate element, return
671
/// that element, otherwise return nullptr.
672
Constant *getConstantAtOffset(Constant *Base, APInt Offset,
673
const DataLayout &DL) {
674
if (Offset.isZero())
675
return Base;
676
677
if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base))
678
return nullptr;
679
680
Type *ElemTy = Base->getType();
681
SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset);
682
if (!Offset.isZero() || !Indices[0].isZero())
683
return nullptr;
684
685
Constant *C = Base;
686
for (const APInt &Index : drop_begin(Indices)) {
687
if (Index.isNegative() || Index.getActiveBits() >= 32)
688
return nullptr;
689
690
C = C->getAggregateElement(Index.getZExtValue());
691
if (!C)
692
return nullptr;
693
}
694
695
return C;
696
}
697
698
Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
699
const APInt &Offset,
700
const DataLayout &DL) {
701
if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL))
702
if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL))
703
return Result;
704
705
// Explicitly check for out-of-bounds access, so we return poison even if the
706
// constant is a uniform value.
707
TypeSize Size = DL.getTypeAllocSize(C->getType());
708
if (!Size.isScalable() && Offset.sge(Size.getFixedValue()))
709
return PoisonValue::get(Ty);
710
711
// Try an offset-independent fold of a uniform value.
712
if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty, DL))
713
return Result;
714
715
// Try hard to fold loads from bitcasted strange and non-type-safe things.
716
if (Offset.getSignificantBits() <= 64)
717
if (Constant *Result =
718
FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL))
719
return Result;
720
721
return nullptr;
722
}
723
724
Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty,
725
const DataLayout &DL) {
726
return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL);
727
}
728
729
Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
730
APInt Offset,
731
const DataLayout &DL) {
732
// We can only fold loads from constant globals with a definitive initializer.
733
// Check this upfront, to skip expensive offset calculations.
734
auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C));
735
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
736
return nullptr;
737
738
C = cast<Constant>(C->stripAndAccumulateConstantOffsets(
739
DL, Offset, /* AllowNonInbounds */ true));
740
741
if (C == GV)
742
if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty,
743
Offset, DL))
744
return Result;
745
746
// If this load comes from anywhere in a uniform constant global, the value
747
// is always the same, regardless of the loaded offset.
748
return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty, DL);
749
}
750
751
Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
752
const DataLayout &DL) {
753
APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0);
754
return ConstantFoldLoadFromConstPtr(C, Ty, std::move(Offset), DL);
755
}
756
757
Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty,
758
const DataLayout &DL) {
759
if (isa<PoisonValue>(C))
760
return PoisonValue::get(Ty);
761
if (isa<UndefValue>(C))
762
return UndefValue::get(Ty);
763
// If padding is needed when storing C to memory, then it isn't considered as
764
// uniform.
765
if (!DL.typeSizeEqualsStoreSize(C->getType()))
766
return nullptr;
767
if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy())
768
return Constant::getNullValue(Ty);
769
if (C->isAllOnesValue() &&
770
(Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy()))
771
return Constant::getAllOnesValue(Ty);
772
return nullptr;
773
}
774
775
namespace {
776
777
/// One of Op0/Op1 is a constant expression.
778
/// Attempt to symbolically evaluate the result of a binary operator merging
779
/// these together. If target data info is available, it is provided as DL,
780
/// otherwise DL is null.
781
Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
782
const DataLayout &DL) {
783
// SROA
784
785
// Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
786
// Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
787
// bits.
788
789
if (Opc == Instruction::And) {
790
KnownBits Known0 = computeKnownBits(Op0, DL);
791
KnownBits Known1 = computeKnownBits(Op1, DL);
792
if ((Known1.One | Known0.Zero).isAllOnes()) {
793
// All the bits of Op0 that the 'and' could be masking are already zero.
794
return Op0;
795
}
796
if ((Known0.One | Known1.Zero).isAllOnes()) {
797
// All the bits of Op1 that the 'and' could be masking are already zero.
798
return Op1;
799
}
800
801
Known0 &= Known1;
802
if (Known0.isConstant())
803
return ConstantInt::get(Op0->getType(), Known0.getConstant());
804
}
805
806
// If the constant expr is something like &A[123] - &A[4].f, fold this into a
807
// constant. This happens frequently when iterating over a global array.
808
if (Opc == Instruction::Sub) {
809
GlobalValue *GV1, *GV2;
810
APInt Offs1, Offs2;
811
812
if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
813
if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
814
unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
815
816
// (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
817
// PtrToInt may change the bitwidth so we have convert to the right size
818
// first.
819
return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
820
Offs2.zextOrTrunc(OpSize));
821
}
822
}
823
824
return nullptr;
825
}
826
827
/// If array indices are not pointer-sized integers, explicitly cast them so
828
/// that they aren't implicitly casted by the getelementptr.
829
Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
830
Type *ResultTy, GEPNoWrapFlags NW,
831
std::optional<ConstantRange> InRange,
832
const DataLayout &DL, const TargetLibraryInfo *TLI) {
833
Type *IntIdxTy = DL.getIndexType(ResultTy);
834
Type *IntIdxScalarTy = IntIdxTy->getScalarType();
835
836
bool Any = false;
837
SmallVector<Constant*, 32> NewIdxs;
838
for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
839
if ((i == 1 ||
840
!isa<StructType>(GetElementPtrInst::getIndexedType(
841
SrcElemTy, Ops.slice(1, i - 1)))) &&
842
Ops[i]->getType()->getScalarType() != IntIdxScalarTy) {
843
Any = true;
844
Type *NewType =
845
Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy;
846
Constant *NewIdx = ConstantFoldCastOperand(
847
CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType,
848
DL);
849
if (!NewIdx)
850
return nullptr;
851
NewIdxs.push_back(NewIdx);
852
} else
853
NewIdxs.push_back(Ops[i]);
854
}
855
856
if (!Any)
857
return nullptr;
858
859
Constant *C =
860
ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], NewIdxs, NW, InRange);
861
return ConstantFoldConstant(C, DL, TLI);
862
}
863
864
/// If we can symbolically evaluate the GEP constant expression, do so.
865
Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
866
ArrayRef<Constant *> Ops,
867
const DataLayout &DL,
868
const TargetLibraryInfo *TLI) {
869
Type *SrcElemTy = GEP->getSourceElementType();
870
Type *ResTy = GEP->getType();
871
if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy))
872
return nullptr;
873
874
if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, GEP->getNoWrapFlags(),
875
GEP->getInRange(), DL, TLI))
876
return C;
877
878
Constant *Ptr = Ops[0];
879
if (!Ptr->getType()->isPointerTy())
880
return nullptr;
881
882
Type *IntIdxTy = DL.getIndexType(Ptr->getType());
883
884
for (unsigned i = 1, e = Ops.size(); i != e; ++i)
885
if (!isa<ConstantInt>(Ops[i]))
886
return nullptr;
887
888
unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy);
889
APInt Offset = APInt(
890
BitWidth,
891
DL.getIndexedOffsetInType(
892
SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)));
893
894
std::optional<ConstantRange> InRange = GEP->getInRange();
895
if (InRange)
896
InRange = InRange->sextOrTrunc(BitWidth);
897
898
// If this is a GEP of a GEP, fold it all into a single GEP.
899
GEPNoWrapFlags NW = GEP->getNoWrapFlags();
900
bool Overflow = false;
901
while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
902
NW &= GEP->getNoWrapFlags();
903
904
SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands()));
905
906
// Do not try the incorporate the sub-GEP if some index is not a number.
907
bool AllConstantInt = true;
908
for (Value *NestedOp : NestedOps)
909
if (!isa<ConstantInt>(NestedOp)) {
910
AllConstantInt = false;
911
break;
912
}
913
if (!AllConstantInt)
914
break;
915
916
// TODO: Try to intersect two inrange attributes?
917
if (!InRange) {
918
InRange = GEP->getInRange();
919
if (InRange)
920
// Adjust inrange by offset until now.
921
InRange = InRange->sextOrTrunc(BitWidth).subtract(Offset);
922
}
923
924
Ptr = cast<Constant>(GEP->getOperand(0));
925
SrcElemTy = GEP->getSourceElementType();
926
Offset = Offset.sadd_ov(
927
APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)),
928
Overflow);
929
}
930
931
// Preserving nusw (without inbounds) also requires that the offset
932
// additions did not overflow.
933
if (NW.hasNoUnsignedSignedWrap() && !NW.isInBounds() && Overflow)
934
NW = NW.withoutNoUnsignedSignedWrap();
935
936
// If the base value for this address is a literal integer value, fold the
937
// getelementptr to the resulting integer value casted to the pointer type.
938
APInt BasePtr(BitWidth, 0);
939
if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
940
if (CE->getOpcode() == Instruction::IntToPtr) {
941
if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
942
BasePtr = Base->getValue().zextOrTrunc(BitWidth);
943
}
944
}
945
946
auto *PTy = cast<PointerType>(Ptr->getType());
947
if ((Ptr->isNullValue() || BasePtr != 0) &&
948
!DL.isNonIntegralPointerType(PTy)) {
949
Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
950
return ConstantExpr::getIntToPtr(C, ResTy);
951
}
952
953
// Try to infer inbounds for GEPs of globals.
954
// TODO(gep_nowrap): Also infer nuw flag.
955
if (!NW.isInBounds() && Offset.isNonNegative()) {
956
bool CanBeNull, CanBeFreed;
957
uint64_t DerefBytes =
958
Ptr->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
959
if (DerefBytes != 0 && !CanBeNull && Offset.sle(DerefBytes))
960
NW |= GEPNoWrapFlags::inBounds();
961
}
962
963
// Otherwise canonicalize this to a single ptradd.
964
LLVMContext &Ctx = Ptr->getContext();
965
return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ctx), Ptr,
966
ConstantInt::get(Ctx, Offset), NW,
967
InRange);
968
}
969
970
/// Attempt to constant fold an instruction with the
971
/// specified opcode and operands. If successful, the constant result is
972
/// returned, if not, null is returned. Note that this function can fail when
973
/// attempting to fold instructions like loads and stores, which have no
974
/// constant expression form.
975
Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
976
ArrayRef<Constant *> Ops,
977
const DataLayout &DL,
978
const TargetLibraryInfo *TLI,
979
bool AllowNonDeterministic) {
980
Type *DestTy = InstOrCE->getType();
981
982
if (Instruction::isUnaryOp(Opcode))
983
return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
984
985
if (Instruction::isBinaryOp(Opcode)) {
986
switch (Opcode) {
987
default:
988
break;
989
case Instruction::FAdd:
990
case Instruction::FSub:
991
case Instruction::FMul:
992
case Instruction::FDiv:
993
case Instruction::FRem:
994
// Handle floating point instructions separately to account for denormals
995
// TODO: If a constant expression is being folded rather than an
996
// instruction, denormals will not be flushed/treated as zero
997
if (const auto *I = dyn_cast<Instruction>(InstOrCE)) {
998
return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I,
999
AllowNonDeterministic);
1000
}
1001
}
1002
return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
1003
}
1004
1005
if (Instruction::isCast(Opcode))
1006
return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
1007
1008
if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
1009
Type *SrcElemTy = GEP->getSourceElementType();
1010
if (!ConstantExpr::isSupportedGetElementPtr(SrcElemTy))
1011
return nullptr;
1012
1013
if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
1014
return C;
1015
1016
return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1),
1017
GEP->getNoWrapFlags(),
1018
GEP->getInRange());
1019
}
1020
1021
if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
1022
return CE->getWithOperands(Ops);
1023
1024
switch (Opcode) {
1025
default: return nullptr;
1026
case Instruction::ICmp:
1027
case Instruction::FCmp: {
1028
auto *C = cast<CmpInst>(InstOrCE);
1029
return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1],
1030
DL, TLI, C);
1031
}
1032
case Instruction::Freeze:
1033
return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr;
1034
case Instruction::Call:
1035
if (auto *F = dyn_cast<Function>(Ops.back())) {
1036
const auto *Call = cast<CallBase>(InstOrCE);
1037
if (canConstantFoldCallTo(Call, F))
1038
return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI,
1039
AllowNonDeterministic);
1040
}
1041
return nullptr;
1042
case Instruction::Select:
1043
return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]);
1044
case Instruction::ExtractElement:
1045
return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1046
case Instruction::ExtractValue:
1047
return ConstantFoldExtractValueInstruction(
1048
Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices());
1049
case Instruction::InsertElement:
1050
return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1051
case Instruction::InsertValue:
1052
return ConstantFoldInsertValueInstruction(
1053
Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices());
1054
case Instruction::ShuffleVector:
1055
return ConstantExpr::getShuffleVector(
1056
Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask());
1057
case Instruction::Load: {
1058
const auto *LI = dyn_cast<LoadInst>(InstOrCE);
1059
if (LI->isVolatile())
1060
return nullptr;
1061
return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL);
1062
}
1063
}
1064
}
1065
1066
} // end anonymous namespace
1067
1068
//===----------------------------------------------------------------------===//
1069
// Constant Folding public APIs
1070
//===----------------------------------------------------------------------===//
1071
1072
namespace {
1073
1074
Constant *
1075
ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
1076
const TargetLibraryInfo *TLI,
1077
SmallDenseMap<Constant *, Constant *> &FoldedOps) {
1078
if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
1079
return const_cast<Constant *>(C);
1080
1081
SmallVector<Constant *, 8> Ops;
1082
for (const Use &OldU : C->operands()) {
1083
Constant *OldC = cast<Constant>(&OldU);
1084
Constant *NewC = OldC;
1085
// Recursively fold the ConstantExpr's operands. If we have already folded
1086
// a ConstantExpr, we don't have to process it again.
1087
if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) {
1088
auto It = FoldedOps.find(OldC);
1089
if (It == FoldedOps.end()) {
1090
NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps);
1091
FoldedOps.insert({OldC, NewC});
1092
} else {
1093
NewC = It->second;
1094
}
1095
}
1096
Ops.push_back(NewC);
1097
}
1098
1099
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1100
if (Constant *Res = ConstantFoldInstOperandsImpl(
1101
CE, CE->getOpcode(), Ops, DL, TLI, /*AllowNonDeterministic=*/true))
1102
return Res;
1103
return const_cast<Constant *>(C);
1104
}
1105
1106
assert(isa<ConstantVector>(C));
1107
return ConstantVector::get(Ops);
1108
}
1109
1110
} // end anonymous namespace
1111
1112
Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
1113
const TargetLibraryInfo *TLI) {
1114
// Handle PHI nodes quickly here...
1115
if (auto *PN = dyn_cast<PHINode>(I)) {
1116
Constant *CommonValue = nullptr;
1117
1118
SmallDenseMap<Constant *, Constant *> FoldedOps;
1119
for (Value *Incoming : PN->incoming_values()) {
1120
// If the incoming value is undef then skip it. Note that while we could
1121
// skip the value if it is equal to the phi node itself we choose not to
1122
// because that would break the rule that constant folding only applies if
1123
// all operands are constants.
1124
if (isa<UndefValue>(Incoming))
1125
continue;
1126
// If the incoming value is not a constant, then give up.
1127
auto *C = dyn_cast<Constant>(Incoming);
1128
if (!C)
1129
return nullptr;
1130
// Fold the PHI's operands.
1131
C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1132
// If the incoming value is a different constant to
1133
// the one we saw previously, then give up.
1134
if (CommonValue && C != CommonValue)
1135
return nullptr;
1136
CommonValue = C;
1137
}
1138
1139
// If we reach here, all incoming values are the same constant or undef.
1140
return CommonValue ? CommonValue : UndefValue::get(PN->getType());
1141
}
1142
1143
// Scan the operand list, checking to see if they are all constants, if so,
1144
// hand off to ConstantFoldInstOperandsImpl.
1145
if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
1146
return nullptr;
1147
1148
SmallDenseMap<Constant *, Constant *> FoldedOps;
1149
SmallVector<Constant *, 8> Ops;
1150
for (const Use &OpU : I->operands()) {
1151
auto *Op = cast<Constant>(&OpU);
1152
// Fold the Instruction's operands.
1153
Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps);
1154
Ops.push_back(Op);
1155
}
1156
1157
return ConstantFoldInstOperands(I, Ops, DL, TLI);
1158
}
1159
1160
Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
1161
const TargetLibraryInfo *TLI) {
1162
SmallDenseMap<Constant *, Constant *> FoldedOps;
1163
return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
1164
}
1165
1166
Constant *llvm::ConstantFoldInstOperands(Instruction *I,
1167
ArrayRef<Constant *> Ops,
1168
const DataLayout &DL,
1169
const TargetLibraryInfo *TLI,
1170
bool AllowNonDeterministic) {
1171
return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI,
1172
AllowNonDeterministic);
1173
}
1174
1175
Constant *llvm::ConstantFoldCompareInstOperands(
1176
unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL,
1177
const TargetLibraryInfo *TLI, const Instruction *I) {
1178
CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate;
1179
// fold: icmp (inttoptr x), null -> icmp x, 0
1180
// fold: icmp null, (inttoptr x) -> icmp 0, x
1181
// fold: icmp (ptrtoint x), 0 -> icmp x, null
1182
// fold: icmp 0, (ptrtoint x) -> icmp null, x
1183
// fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1184
// fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1185
//
1186
// FIXME: The following comment is out of data and the DataLayout is here now.
1187
// ConstantExpr::getCompare cannot do this, because it doesn't have DL
1188
// around to know if bit truncation is happening.
1189
if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1190
if (Ops1->isNullValue()) {
1191
if (CE0->getOpcode() == Instruction::IntToPtr) {
1192
Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1193
// Convert the integer value to the right size to ensure we get the
1194
// proper extension or truncation.
1195
if (Constant *C = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1196
/*IsSigned*/ false, DL)) {
1197
Constant *Null = Constant::getNullValue(C->getType());
1198
return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1199
}
1200
}
1201
1202
// Only do this transformation if the int is intptrty in size, otherwise
1203
// there is a truncation or extension that we aren't modeling.
1204
if (CE0->getOpcode() == Instruction::PtrToInt) {
1205
Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1206
if (CE0->getType() == IntPtrTy) {
1207
Constant *C = CE0->getOperand(0);
1208
Constant *Null = Constant::getNullValue(C->getType());
1209
return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1210
}
1211
}
1212
}
1213
1214
if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1215
if (CE0->getOpcode() == CE1->getOpcode()) {
1216
if (CE0->getOpcode() == Instruction::IntToPtr) {
1217
Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1218
1219
// Convert the integer value to the right size to ensure we get the
1220
// proper extension or truncation.
1221
Constant *C0 = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy,
1222
/*IsSigned*/ false, DL);
1223
Constant *C1 = ConstantFoldIntegerCast(CE1->getOperand(0), IntPtrTy,
1224
/*IsSigned*/ false, DL);
1225
if (C0 && C1)
1226
return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1227
}
1228
1229
// Only do this transformation if the int is intptrty in size, otherwise
1230
// there is a truncation or extension that we aren't modeling.
1231
if (CE0->getOpcode() == Instruction::PtrToInt) {
1232
Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1233
if (CE0->getType() == IntPtrTy &&
1234
CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1235
return ConstantFoldCompareInstOperands(
1236
Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1237
}
1238
}
1239
}
1240
}
1241
1242
// Convert pointer comparison (base+offset1) pred (base+offset2) into
1243
// offset1 pred offset2, for the case where the offset is inbounds. This
1244
// only works for equality and unsigned comparison, as inbounds permits
1245
// crossing the sign boundary. However, the offset comparison itself is
1246
// signed.
1247
if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) {
1248
unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType());
1249
APInt Offset0(IndexWidth, 0);
1250
Value *Stripped0 =
1251
Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0);
1252
APInt Offset1(IndexWidth, 0);
1253
Value *Stripped1 =
1254
Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1);
1255
if (Stripped0 == Stripped1)
1256
return ConstantInt::getBool(
1257
Ops0->getContext(),
1258
ICmpInst::compare(Offset0, Offset1,
1259
ICmpInst::getSignedPredicate(Predicate)));
1260
}
1261
} else if (isa<ConstantExpr>(Ops1)) {
1262
// If RHS is a constant expression, but the left side isn't, swap the
1263
// operands and try again.
1264
Predicate = ICmpInst::getSwappedPredicate(Predicate);
1265
return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
1266
}
1267
1268
// Flush any denormal constant float input according to denormal handling
1269
// mode.
1270
Ops0 = FlushFPConstant(Ops0, I, /* IsOutput */ false);
1271
if (!Ops0)
1272
return nullptr;
1273
Ops1 = FlushFPConstant(Ops1, I, /* IsOutput */ false);
1274
if (!Ops1)
1275
return nullptr;
1276
1277
return ConstantFoldCompareInstruction(Predicate, Ops0, Ops1);
1278
}
1279
1280
Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
1281
const DataLayout &DL) {
1282
assert(Instruction::isUnaryOp(Opcode));
1283
1284
return ConstantFoldUnaryInstruction(Opcode, Op);
1285
}
1286
1287
Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
1288
Constant *RHS,
1289
const DataLayout &DL) {
1290
assert(Instruction::isBinaryOp(Opcode));
1291
if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
1292
if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
1293
return C;
1294
1295
if (ConstantExpr::isDesirableBinOp(Opcode))
1296
return ConstantExpr::get(Opcode, LHS, RHS);
1297
return ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1298
}
1299
1300
Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *I,
1301
bool IsOutput) {
1302
if (!I || !I->getParent() || !I->getFunction())
1303
return Operand;
1304
1305
ConstantFP *CFP = dyn_cast<ConstantFP>(Operand);
1306
if (!CFP)
1307
return Operand;
1308
1309
const APFloat &APF = CFP->getValueAPF();
1310
// TODO: Should this canonicalize nans?
1311
if (!APF.isDenormal())
1312
return Operand;
1313
1314
Type *Ty = CFP->getType();
1315
DenormalMode DenormMode =
1316
I->getFunction()->getDenormalMode(Ty->getFltSemantics());
1317
DenormalMode::DenormalModeKind Mode =
1318
IsOutput ? DenormMode.Output : DenormMode.Input;
1319
switch (Mode) {
1320
default:
1321
llvm_unreachable("unknown denormal mode");
1322
case DenormalMode::Dynamic:
1323
return nullptr;
1324
case DenormalMode::IEEE:
1325
return Operand;
1326
case DenormalMode::PreserveSign:
1327
if (APF.isDenormal()) {
1328
return ConstantFP::get(
1329
Ty->getContext(),
1330
APFloat::getZero(Ty->getFltSemantics(), APF.isNegative()));
1331
}
1332
return Operand;
1333
case DenormalMode::PositiveZero:
1334
if (APF.isDenormal()) {
1335
return ConstantFP::get(Ty->getContext(),
1336
APFloat::getZero(Ty->getFltSemantics(), false));
1337
}
1338
return Operand;
1339
}
1340
return Operand;
1341
}
1342
1343
Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS,
1344
Constant *RHS, const DataLayout &DL,
1345
const Instruction *I,
1346
bool AllowNonDeterministic) {
1347
if (Instruction::isBinaryOp(Opcode)) {
1348
// Flush denormal inputs if needed.
1349
Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false);
1350
if (!Op0)
1351
return nullptr;
1352
Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false);
1353
if (!Op1)
1354
return nullptr;
1355
1356
// If nsz or an algebraic FMF flag is set, the result of the FP operation
1357
// may change due to future optimization. Don't constant fold them if
1358
// non-deterministic results are not allowed.
1359
if (!AllowNonDeterministic)
1360
if (auto *FP = dyn_cast_or_null<FPMathOperator>(I))
1361
if (FP->hasNoSignedZeros() || FP->hasAllowReassoc() ||
1362
FP->hasAllowContract() || FP->hasAllowReciprocal())
1363
return nullptr;
1364
1365
// Calculate constant result.
1366
Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL);
1367
if (!C)
1368
return nullptr;
1369
1370
// Flush denormal output if needed.
1371
C = FlushFPConstant(C, I, /* IsOutput */ true);
1372
if (!C)
1373
return nullptr;
1374
1375
// The precise NaN value is non-deterministic.
1376
if (!AllowNonDeterministic && C->isNaN())
1377
return nullptr;
1378
1379
return C;
1380
}
1381
// If instruction lacks a parent/function and the denormal mode cannot be
1382
// determined, use the default (IEEE).
1383
return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL);
1384
}
1385
1386
Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
1387
Type *DestTy, const DataLayout &DL) {
1388
assert(Instruction::isCast(Opcode));
1389
switch (Opcode) {
1390
default:
1391
llvm_unreachable("Missing case");
1392
case Instruction::PtrToInt:
1393
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1394
Constant *FoldedValue = nullptr;
1395
// If the input is a inttoptr, eliminate the pair. This requires knowing
1396
// the width of a pointer, so it can't be done in ConstantExpr::getCast.
1397
if (CE->getOpcode() == Instruction::IntToPtr) {
1398
// zext/trunc the inttoptr to pointer size.
1399
FoldedValue = ConstantFoldIntegerCast(CE->getOperand(0),
1400
DL.getIntPtrType(CE->getType()),
1401
/*IsSigned=*/false, DL);
1402
} else if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
1403
// If we have GEP, we can perform the following folds:
1404
// (ptrtoint (gep null, x)) -> x
1405
// (ptrtoint (gep (gep null, x), y) -> x + y, etc.
1406
unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1407
APInt BaseOffset(BitWidth, 0);
1408
auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets(
1409
DL, BaseOffset, /*AllowNonInbounds=*/true));
1410
if (Base->isNullValue()) {
1411
FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset);
1412
} else {
1413
// ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V
1414
if (GEP->getNumIndices() == 1 &&
1415
GEP->getSourceElementType()->isIntegerTy(8)) {
1416
auto *Ptr = cast<Constant>(GEP->getPointerOperand());
1417
auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1));
1418
Type *IntIdxTy = DL.getIndexType(Ptr->getType());
1419
if (Sub && Sub->getType() == IntIdxTy &&
1420
Sub->getOpcode() == Instruction::Sub &&
1421
Sub->getOperand(0)->isNullValue())
1422
FoldedValue = ConstantExpr::getSub(
1423
ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1));
1424
}
1425
}
1426
}
1427
if (FoldedValue) {
1428
// Do a zext or trunc to get to the ptrtoint dest size.
1429
return ConstantFoldIntegerCast(FoldedValue, DestTy, /*IsSigned=*/false,
1430
DL);
1431
}
1432
}
1433
break;
1434
case Instruction::IntToPtr:
1435
// If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1436
// the int size is >= the ptr size and the address spaces are the same.
1437
// This requires knowing the width of a pointer, so it can't be done in
1438
// ConstantExpr::getCast.
1439
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1440
if (CE->getOpcode() == Instruction::PtrToInt) {
1441
Constant *SrcPtr = CE->getOperand(0);
1442
unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1443
unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1444
1445
if (MidIntSize >= SrcPtrSize) {
1446
unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1447
if (SrcAS == DestTy->getPointerAddressSpace())
1448
return FoldBitCast(CE->getOperand(0), DestTy, DL);
1449
}
1450
}
1451
}
1452
break;
1453
case Instruction::Trunc:
1454
case Instruction::ZExt:
1455
case Instruction::SExt:
1456
case Instruction::FPTrunc:
1457
case Instruction::FPExt:
1458
case Instruction::UIToFP:
1459
case Instruction::SIToFP:
1460
case Instruction::FPToUI:
1461
case Instruction::FPToSI:
1462
case Instruction::AddrSpaceCast:
1463
break;
1464
case Instruction::BitCast:
1465
return FoldBitCast(C, DestTy, DL);
1466
}
1467
1468
if (ConstantExpr::isDesirableCastOp(Opcode))
1469
return ConstantExpr::getCast(Opcode, C, DestTy);
1470
return ConstantFoldCastInstruction(Opcode, C, DestTy);
1471
}
1472
1473
Constant *llvm::ConstantFoldIntegerCast(Constant *C, Type *DestTy,
1474
bool IsSigned, const DataLayout &DL) {
1475
Type *SrcTy = C->getType();
1476
if (SrcTy == DestTy)
1477
return C;
1478
if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1479
return ConstantFoldCastOperand(Instruction::Trunc, C, DestTy, DL);
1480
if (IsSigned)
1481
return ConstantFoldCastOperand(Instruction::SExt, C, DestTy, DL);
1482
return ConstantFoldCastOperand(Instruction::ZExt, C, DestTy, DL);
1483
}
1484
1485
//===----------------------------------------------------------------------===//
1486
// Constant Folding for Calls
1487
//
1488
1489
bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
1490
if (Call->isNoBuiltin())
1491
return false;
1492
if (Call->getFunctionType() != F->getFunctionType())
1493
return false;
1494
switch (F->getIntrinsicID()) {
1495
// Operations that do not operate floating-point numbers and do not depend on
1496
// FP environment can be folded even in strictfp functions.
1497
case Intrinsic::bswap:
1498
case Intrinsic::ctpop:
1499
case Intrinsic::ctlz:
1500
case Intrinsic::cttz:
1501
case Intrinsic::fshl:
1502
case Intrinsic::fshr:
1503
case Intrinsic::launder_invariant_group:
1504
case Intrinsic::strip_invariant_group:
1505
case Intrinsic::masked_load:
1506
case Intrinsic::get_active_lane_mask:
1507
case Intrinsic::abs:
1508
case Intrinsic::smax:
1509
case Intrinsic::smin:
1510
case Intrinsic::umax:
1511
case Intrinsic::umin:
1512
case Intrinsic::scmp:
1513
case Intrinsic::ucmp:
1514
case Intrinsic::sadd_with_overflow:
1515
case Intrinsic::uadd_with_overflow:
1516
case Intrinsic::ssub_with_overflow:
1517
case Intrinsic::usub_with_overflow:
1518
case Intrinsic::smul_with_overflow:
1519
case Intrinsic::umul_with_overflow:
1520
case Intrinsic::sadd_sat:
1521
case Intrinsic::uadd_sat:
1522
case Intrinsic::ssub_sat:
1523
case Intrinsic::usub_sat:
1524
case Intrinsic::smul_fix:
1525
case Intrinsic::smul_fix_sat:
1526
case Intrinsic::bitreverse:
1527
case Intrinsic::is_constant:
1528
case Intrinsic::vector_reduce_add:
1529
case Intrinsic::vector_reduce_mul:
1530
case Intrinsic::vector_reduce_and:
1531
case Intrinsic::vector_reduce_or:
1532
case Intrinsic::vector_reduce_xor:
1533
case Intrinsic::vector_reduce_smin:
1534
case Intrinsic::vector_reduce_smax:
1535
case Intrinsic::vector_reduce_umin:
1536
case Intrinsic::vector_reduce_umax:
1537
// Target intrinsics
1538
case Intrinsic::amdgcn_perm:
1539
case Intrinsic::amdgcn_wave_reduce_umin:
1540
case Intrinsic::amdgcn_wave_reduce_umax:
1541
case Intrinsic::amdgcn_s_wqm:
1542
case Intrinsic::amdgcn_s_quadmask:
1543
case Intrinsic::amdgcn_s_bitreplicate:
1544
case Intrinsic::arm_mve_vctp8:
1545
case Intrinsic::arm_mve_vctp16:
1546
case Intrinsic::arm_mve_vctp32:
1547
case Intrinsic::arm_mve_vctp64:
1548
case Intrinsic::aarch64_sve_convert_from_svbool:
1549
// WebAssembly float semantics are always known
1550
case Intrinsic::wasm_trunc_signed:
1551
case Intrinsic::wasm_trunc_unsigned:
1552
return true;
1553
1554
// Floating point operations cannot be folded in strictfp functions in
1555
// general case. They can be folded if FP environment is known to compiler.
1556
case Intrinsic::minnum:
1557
case Intrinsic::maxnum:
1558
case Intrinsic::minimum:
1559
case Intrinsic::maximum:
1560
case Intrinsic::log:
1561
case Intrinsic::log2:
1562
case Intrinsic::log10:
1563
case Intrinsic::exp:
1564
case Intrinsic::exp2:
1565
case Intrinsic::exp10:
1566
case Intrinsic::sqrt:
1567
case Intrinsic::sin:
1568
case Intrinsic::cos:
1569
case Intrinsic::pow:
1570
case Intrinsic::powi:
1571
case Intrinsic::ldexp:
1572
case Intrinsic::fma:
1573
case Intrinsic::fmuladd:
1574
case Intrinsic::frexp:
1575
case Intrinsic::fptoui_sat:
1576
case Intrinsic::fptosi_sat:
1577
case Intrinsic::convert_from_fp16:
1578
case Intrinsic::convert_to_fp16:
1579
case Intrinsic::amdgcn_cos:
1580
case Intrinsic::amdgcn_cubeid:
1581
case Intrinsic::amdgcn_cubema:
1582
case Intrinsic::amdgcn_cubesc:
1583
case Intrinsic::amdgcn_cubetc:
1584
case Intrinsic::amdgcn_fmul_legacy:
1585
case Intrinsic::amdgcn_fma_legacy:
1586
case Intrinsic::amdgcn_fract:
1587
case Intrinsic::amdgcn_sin:
1588
// The intrinsics below depend on rounding mode in MXCSR.
1589
case Intrinsic::x86_sse_cvtss2si:
1590
case Intrinsic::x86_sse_cvtss2si64:
1591
case Intrinsic::x86_sse_cvttss2si:
1592
case Intrinsic::x86_sse_cvttss2si64:
1593
case Intrinsic::x86_sse2_cvtsd2si:
1594
case Intrinsic::x86_sse2_cvtsd2si64:
1595
case Intrinsic::x86_sse2_cvttsd2si:
1596
case Intrinsic::x86_sse2_cvttsd2si64:
1597
case Intrinsic::x86_avx512_vcvtss2si32:
1598
case Intrinsic::x86_avx512_vcvtss2si64:
1599
case Intrinsic::x86_avx512_cvttss2si:
1600
case Intrinsic::x86_avx512_cvttss2si64:
1601
case Intrinsic::x86_avx512_vcvtsd2si32:
1602
case Intrinsic::x86_avx512_vcvtsd2si64:
1603
case Intrinsic::x86_avx512_cvttsd2si:
1604
case Intrinsic::x86_avx512_cvttsd2si64:
1605
case Intrinsic::x86_avx512_vcvtss2usi32:
1606
case Intrinsic::x86_avx512_vcvtss2usi64:
1607
case Intrinsic::x86_avx512_cvttss2usi:
1608
case Intrinsic::x86_avx512_cvttss2usi64:
1609
case Intrinsic::x86_avx512_vcvtsd2usi32:
1610
case Intrinsic::x86_avx512_vcvtsd2usi64:
1611
case Intrinsic::x86_avx512_cvttsd2usi:
1612
case Intrinsic::x86_avx512_cvttsd2usi64:
1613
return !Call->isStrictFP();
1614
1615
// Sign operations are actually bitwise operations, they do not raise
1616
// exceptions even for SNANs.
1617
case Intrinsic::fabs:
1618
case Intrinsic::copysign:
1619
case Intrinsic::is_fpclass:
1620
// Non-constrained variants of rounding operations means default FP
1621
// environment, they can be folded in any case.
1622
case Intrinsic::ceil:
1623
case Intrinsic::floor:
1624
case Intrinsic::round:
1625
case Intrinsic::roundeven:
1626
case Intrinsic::trunc:
1627
case Intrinsic::nearbyint:
1628
case Intrinsic::rint:
1629
case Intrinsic::canonicalize:
1630
// Constrained intrinsics can be folded if FP environment is known
1631
// to compiler.
1632
case Intrinsic::experimental_constrained_fma:
1633
case Intrinsic::experimental_constrained_fmuladd:
1634
case Intrinsic::experimental_constrained_fadd:
1635
case Intrinsic::experimental_constrained_fsub:
1636
case Intrinsic::experimental_constrained_fmul:
1637
case Intrinsic::experimental_constrained_fdiv:
1638
case Intrinsic::experimental_constrained_frem:
1639
case Intrinsic::experimental_constrained_ceil:
1640
case Intrinsic::experimental_constrained_floor:
1641
case Intrinsic::experimental_constrained_round:
1642
case Intrinsic::experimental_constrained_roundeven:
1643
case Intrinsic::experimental_constrained_trunc:
1644
case Intrinsic::experimental_constrained_nearbyint:
1645
case Intrinsic::experimental_constrained_rint:
1646
case Intrinsic::experimental_constrained_fcmp:
1647
case Intrinsic::experimental_constrained_fcmps:
1648
return true;
1649
default:
1650
return false;
1651
case Intrinsic::not_intrinsic: break;
1652
}
1653
1654
if (!F->hasName() || Call->isStrictFP())
1655
return false;
1656
1657
// In these cases, the check of the length is required. We don't want to
1658
// return true for a name like "cos\0blah" which strcmp would return equal to
1659
// "cos", but has length 8.
1660
StringRef Name = F->getName();
1661
switch (Name[0]) {
1662
default:
1663
return false;
1664
case 'a':
1665
return Name == "acos" || Name == "acosf" ||
1666
Name == "asin" || Name == "asinf" ||
1667
Name == "atan" || Name == "atanf" ||
1668
Name == "atan2" || Name == "atan2f";
1669
case 'c':
1670
return Name == "ceil" || Name == "ceilf" ||
1671
Name == "cos" || Name == "cosf" ||
1672
Name == "cosh" || Name == "coshf";
1673
case 'e':
1674
return Name == "exp" || Name == "expf" ||
1675
Name == "exp2" || Name == "exp2f";
1676
case 'f':
1677
return Name == "fabs" || Name == "fabsf" ||
1678
Name == "floor" || Name == "floorf" ||
1679
Name == "fmod" || Name == "fmodf";
1680
case 'l':
1681
return Name == "log" || Name == "logf" || Name == "log2" ||
1682
Name == "log2f" || Name == "log10" || Name == "log10f" ||
1683
Name == "logl";
1684
case 'n':
1685
return Name == "nearbyint" || Name == "nearbyintf";
1686
case 'p':
1687
return Name == "pow" || Name == "powf";
1688
case 'r':
1689
return Name == "remainder" || Name == "remainderf" ||
1690
Name == "rint" || Name == "rintf" ||
1691
Name == "round" || Name == "roundf";
1692
case 's':
1693
return Name == "sin" || Name == "sinf" ||
1694
Name == "sinh" || Name == "sinhf" ||
1695
Name == "sqrt" || Name == "sqrtf";
1696
case 't':
1697
return Name == "tan" || Name == "tanf" ||
1698
Name == "tanh" || Name == "tanhf" ||
1699
Name == "trunc" || Name == "truncf";
1700
case '_':
1701
// Check for various function names that get used for the math functions
1702
// when the header files are preprocessed with the macro
1703
// __FINITE_MATH_ONLY__ enabled.
1704
// The '12' here is the length of the shortest name that can match.
1705
// We need to check the size before looking at Name[1] and Name[2]
1706
// so we may as well check a limit that will eliminate mismatches.
1707
if (Name.size() < 12 || Name[1] != '_')
1708
return false;
1709
switch (Name[2]) {
1710
default:
1711
return false;
1712
case 'a':
1713
return Name == "__acos_finite" || Name == "__acosf_finite" ||
1714
Name == "__asin_finite" || Name == "__asinf_finite" ||
1715
Name == "__atan2_finite" || Name == "__atan2f_finite";
1716
case 'c':
1717
return Name == "__cosh_finite" || Name == "__coshf_finite";
1718
case 'e':
1719
return Name == "__exp_finite" || Name == "__expf_finite" ||
1720
Name == "__exp2_finite" || Name == "__exp2f_finite";
1721
case 'l':
1722
return Name == "__log_finite" || Name == "__logf_finite" ||
1723
Name == "__log10_finite" || Name == "__log10f_finite";
1724
case 'p':
1725
return Name == "__pow_finite" || Name == "__powf_finite";
1726
case 's':
1727
return Name == "__sinh_finite" || Name == "__sinhf_finite";
1728
}
1729
}
1730
}
1731
1732
namespace {
1733
1734
Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1735
if (Ty->isHalfTy() || Ty->isFloatTy()) {
1736
APFloat APF(V);
1737
bool unused;
1738
APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
1739
return ConstantFP::get(Ty->getContext(), APF);
1740
}
1741
if (Ty->isDoubleTy())
1742
return ConstantFP::get(Ty->getContext(), APFloat(V));
1743
llvm_unreachable("Can only constant fold half/float/double");
1744
}
1745
1746
#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
1747
Constant *GetConstantFoldFPValue128(float128 V, Type *Ty) {
1748
if (Ty->isFP128Ty())
1749
return ConstantFP::get(Ty, V);
1750
llvm_unreachable("Can only constant fold fp128");
1751
}
1752
#endif
1753
1754
/// Clear the floating-point exception state.
1755
inline void llvm_fenv_clearexcept() {
1756
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1757
feclearexcept(FE_ALL_EXCEPT);
1758
#endif
1759
errno = 0;
1760
}
1761
1762
/// Test if a floating-point exception was raised.
1763
inline bool llvm_fenv_testexcept() {
1764
int errno_val = errno;
1765
if (errno_val == ERANGE || errno_val == EDOM)
1766
return true;
1767
#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1768
if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1769
return true;
1770
#endif
1771
return false;
1772
}
1773
1774
Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V,
1775
Type *Ty) {
1776
llvm_fenv_clearexcept();
1777
double Result = NativeFP(V.convertToDouble());
1778
if (llvm_fenv_testexcept()) {
1779
llvm_fenv_clearexcept();
1780
return nullptr;
1781
}
1782
1783
return GetConstantFoldFPValue(Result, Ty);
1784
}
1785
1786
#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
1787
Constant *ConstantFoldFP128(float128 (*NativeFP)(float128), const APFloat &V,
1788
Type *Ty) {
1789
llvm_fenv_clearexcept();
1790
float128 Result = NativeFP(V.convertToQuad());
1791
if (llvm_fenv_testexcept()) {
1792
llvm_fenv_clearexcept();
1793
return nullptr;
1794
}
1795
1796
return GetConstantFoldFPValue128(Result, Ty);
1797
}
1798
#endif
1799
1800
Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1801
const APFloat &V, const APFloat &W, Type *Ty) {
1802
llvm_fenv_clearexcept();
1803
double Result = NativeFP(V.convertToDouble(), W.convertToDouble());
1804
if (llvm_fenv_testexcept()) {
1805
llvm_fenv_clearexcept();
1806
return nullptr;
1807
}
1808
1809
return GetConstantFoldFPValue(Result, Ty);
1810
}
1811
1812
Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) {
1813
FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType());
1814
if (!VT)
1815
return nullptr;
1816
1817
// This isn't strictly necessary, but handle the special/common case of zero:
1818
// all integer reductions of a zero input produce zero.
1819
if (isa<ConstantAggregateZero>(Op))
1820
return ConstantInt::get(VT->getElementType(), 0);
1821
1822
// This is the same as the underlying binops - poison propagates.
1823
if (isa<PoisonValue>(Op) || Op->containsPoisonElement())
1824
return PoisonValue::get(VT->getElementType());
1825
1826
// TODO: Handle undef.
1827
if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op))
1828
return nullptr;
1829
1830
auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U));
1831
if (!EltC)
1832
return nullptr;
1833
1834
APInt Acc = EltC->getValue();
1835
for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) {
1836
if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I))))
1837
return nullptr;
1838
const APInt &X = EltC->getValue();
1839
switch (IID) {
1840
case Intrinsic::vector_reduce_add:
1841
Acc = Acc + X;
1842
break;
1843
case Intrinsic::vector_reduce_mul:
1844
Acc = Acc * X;
1845
break;
1846
case Intrinsic::vector_reduce_and:
1847
Acc = Acc & X;
1848
break;
1849
case Intrinsic::vector_reduce_or:
1850
Acc = Acc | X;
1851
break;
1852
case Intrinsic::vector_reduce_xor:
1853
Acc = Acc ^ X;
1854
break;
1855
case Intrinsic::vector_reduce_smin:
1856
Acc = APIntOps::smin(Acc, X);
1857
break;
1858
case Intrinsic::vector_reduce_smax:
1859
Acc = APIntOps::smax(Acc, X);
1860
break;
1861
case Intrinsic::vector_reduce_umin:
1862
Acc = APIntOps::umin(Acc, X);
1863
break;
1864
case Intrinsic::vector_reduce_umax:
1865
Acc = APIntOps::umax(Acc, X);
1866
break;
1867
}
1868
}
1869
1870
return ConstantInt::get(Op->getContext(), Acc);
1871
}
1872
1873
/// Attempt to fold an SSE floating point to integer conversion of a constant
1874
/// floating point. If roundTowardZero is false, the default IEEE rounding is
1875
/// used (toward nearest, ties to even). This matches the behavior of the
1876
/// non-truncating SSE instructions in the default rounding mode. The desired
1877
/// integer type Ty is used to select how many bits are available for the
1878
/// result. Returns null if the conversion cannot be performed, otherwise
1879
/// returns the Constant value resulting from the conversion.
1880
Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
1881
Type *Ty, bool IsSigned) {
1882
// All of these conversion intrinsics form an integer of at most 64bits.
1883
unsigned ResultWidth = Ty->getIntegerBitWidth();
1884
assert(ResultWidth <= 64 &&
1885
"Can only constant fold conversions to 64 and 32 bit ints");
1886
1887
uint64_t UIntVal;
1888
bool isExact = false;
1889
APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1890
: APFloat::rmNearestTiesToEven;
1891
APFloat::opStatus status =
1892
Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth,
1893
IsSigned, mode, &isExact);
1894
if (status != APFloat::opOK &&
1895
(!roundTowardZero || status != APFloat::opInexact))
1896
return nullptr;
1897
return ConstantInt::get(Ty, UIntVal, IsSigned);
1898
}
1899
1900
double getValueAsDouble(ConstantFP *Op) {
1901
Type *Ty = Op->getType();
1902
1903
if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())
1904
return Op->getValueAPF().convertToDouble();
1905
1906
bool unused;
1907
APFloat APF = Op->getValueAPF();
1908
APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
1909
return APF.convertToDouble();
1910
}
1911
1912
static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
1913
if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1914
C = &CI->getValue();
1915
return true;
1916
}
1917
if (isa<UndefValue>(Op)) {
1918
C = nullptr;
1919
return true;
1920
}
1921
return false;
1922
}
1923
1924
/// Checks if the given intrinsic call, which evaluates to constant, is allowed
1925
/// to be folded.
1926
///
1927
/// \param CI Constrained intrinsic call.
1928
/// \param St Exception flags raised during constant evaluation.
1929
static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI,
1930
APFloat::opStatus St) {
1931
std::optional<RoundingMode> ORM = CI->getRoundingMode();
1932
std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
1933
1934
// If the operation does not change exception status flags, it is safe
1935
// to fold.
1936
if (St == APFloat::opStatus::opOK)
1937
return true;
1938
1939
// If evaluation raised FP exception, the result can depend on rounding
1940
// mode. If the latter is unknown, folding is not possible.
1941
if (ORM && *ORM == RoundingMode::Dynamic)
1942
return false;
1943
1944
// If FP exceptions are ignored, fold the call, even if such exception is
1945
// raised.
1946
if (EB && *EB != fp::ExceptionBehavior::ebStrict)
1947
return true;
1948
1949
// Leave the calculation for runtime so that exception flags be correctly set
1950
// in hardware.
1951
return false;
1952
}
1953
1954
/// Returns the rounding mode that should be used for constant evaluation.
1955
static RoundingMode
1956
getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) {
1957
std::optional<RoundingMode> ORM = CI->getRoundingMode();
1958
if (!ORM || *ORM == RoundingMode::Dynamic)
1959
// Even if the rounding mode is unknown, try evaluating the operation.
1960
// If it does not raise inexact exception, rounding was not applied,
1961
// so the result is exact and does not depend on rounding mode. Whether
1962
// other FP exceptions are raised, it does not depend on rounding mode.
1963
return RoundingMode::NearestTiesToEven;
1964
return *ORM;
1965
}
1966
1967
/// Try to constant fold llvm.canonicalize for the given caller and value.
1968
static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI,
1969
const APFloat &Src) {
1970
// Zero, positive and negative, is always OK to fold.
1971
if (Src.isZero()) {
1972
// Get a fresh 0, since ppc_fp128 does have non-canonical zeros.
1973
return ConstantFP::get(
1974
CI->getContext(),
1975
APFloat::getZero(Src.getSemantics(), Src.isNegative()));
1976
}
1977
1978
if (!Ty->isIEEELikeFPTy())
1979
return nullptr;
1980
1981
// Zero is always canonical and the sign must be preserved.
1982
//
1983
// Denorms and nans may have special encodings, but it should be OK to fold a
1984
// totally average number.
1985
if (Src.isNormal() || Src.isInfinity())
1986
return ConstantFP::get(CI->getContext(), Src);
1987
1988
if (Src.isDenormal() && CI->getParent() && CI->getFunction()) {
1989
DenormalMode DenormMode =
1990
CI->getFunction()->getDenormalMode(Src.getSemantics());
1991
1992
if (DenormMode == DenormalMode::getIEEE())
1993
return ConstantFP::get(CI->getContext(), Src);
1994
1995
if (DenormMode.Input == DenormalMode::Dynamic)
1996
return nullptr;
1997
1998
// If we know if either input or output is flushed, we can fold.
1999
if ((DenormMode.Input == DenormalMode::Dynamic &&
2000
DenormMode.Output == DenormalMode::IEEE) ||
2001
(DenormMode.Input == DenormalMode::IEEE &&
2002
DenormMode.Output == DenormalMode::Dynamic))
2003
return nullptr;
2004
2005
bool IsPositive =
2006
(!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero ||
2007
(DenormMode.Output == DenormalMode::PositiveZero &&
2008
DenormMode.Input == DenormalMode::IEEE));
2009
2010
return ConstantFP::get(CI->getContext(),
2011
APFloat::getZero(Src.getSemantics(), !IsPositive));
2012
}
2013
2014
return nullptr;
2015
}
2016
2017
static Constant *ConstantFoldScalarCall1(StringRef Name,
2018
Intrinsic::ID IntrinsicID,
2019
Type *Ty,
2020
ArrayRef<Constant *> Operands,
2021
const TargetLibraryInfo *TLI,
2022
const CallBase *Call) {
2023
assert(Operands.size() == 1 && "Wrong number of operands.");
2024
2025
if (IntrinsicID == Intrinsic::is_constant) {
2026
// We know we have a "Constant" argument. But we want to only
2027
// return true for manifest constants, not those that depend on
2028
// constants with unknowable values, e.g. GlobalValue or BlockAddress.
2029
if (Operands[0]->isManifestConstant())
2030
return ConstantInt::getTrue(Ty->getContext());
2031
return nullptr;
2032
}
2033
2034
if (isa<PoisonValue>(Operands[0])) {
2035
// TODO: All of these operations should probably propagate poison.
2036
if (IntrinsicID == Intrinsic::canonicalize)
2037
return PoisonValue::get(Ty);
2038
}
2039
2040
if (isa<UndefValue>(Operands[0])) {
2041
// cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
2042
// ctpop() is between 0 and bitwidth, pick 0 for undef.
2043
// fptoui.sat and fptosi.sat can always fold to zero (for a zero input).
2044
if (IntrinsicID == Intrinsic::cos ||
2045
IntrinsicID == Intrinsic::ctpop ||
2046
IntrinsicID == Intrinsic::fptoui_sat ||
2047
IntrinsicID == Intrinsic::fptosi_sat ||
2048
IntrinsicID == Intrinsic::canonicalize)
2049
return Constant::getNullValue(Ty);
2050
if (IntrinsicID == Intrinsic::bswap ||
2051
IntrinsicID == Intrinsic::bitreverse ||
2052
IntrinsicID == Intrinsic::launder_invariant_group ||
2053
IntrinsicID == Intrinsic::strip_invariant_group)
2054
return Operands[0];
2055
}
2056
2057
if (isa<ConstantPointerNull>(Operands[0])) {
2058
// launder(null) == null == strip(null) iff in addrspace 0
2059
if (IntrinsicID == Intrinsic::launder_invariant_group ||
2060
IntrinsicID == Intrinsic::strip_invariant_group) {
2061
// If instruction is not yet put in a basic block (e.g. when cloning
2062
// a function during inlining), Call's caller may not be available.
2063
// So check Call's BB first before querying Call->getCaller.
2064
const Function *Caller =
2065
Call->getParent() ? Call->getCaller() : nullptr;
2066
if (Caller &&
2067
!NullPointerIsDefined(
2068
Caller, Operands[0]->getType()->getPointerAddressSpace())) {
2069
return Operands[0];
2070
}
2071
return nullptr;
2072
}
2073
}
2074
2075
if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
2076
if (IntrinsicID == Intrinsic::convert_to_fp16) {
2077
APFloat Val(Op->getValueAPF());
2078
2079
bool lost = false;
2080
Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
2081
2082
return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
2083
}
2084
2085
APFloat U = Op->getValueAPF();
2086
2087
if (IntrinsicID == Intrinsic::wasm_trunc_signed ||
2088
IntrinsicID == Intrinsic::wasm_trunc_unsigned) {
2089
bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed;
2090
2091
if (U.isNaN())
2092
return nullptr;
2093
2094
unsigned Width = Ty->getIntegerBitWidth();
2095
APSInt Int(Width, !Signed);
2096
bool IsExact = false;
2097
APFloat::opStatus Status =
2098
U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2099
2100
if (Status == APFloat::opOK || Status == APFloat::opInexact)
2101
return ConstantInt::get(Ty, Int);
2102
2103
return nullptr;
2104
}
2105
2106
if (IntrinsicID == Intrinsic::fptoui_sat ||
2107
IntrinsicID == Intrinsic::fptosi_sat) {
2108
// convertToInteger() already has the desired saturation semantics.
2109
APSInt Int(Ty->getIntegerBitWidth(),
2110
IntrinsicID == Intrinsic::fptoui_sat);
2111
bool IsExact;
2112
U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact);
2113
return ConstantInt::get(Ty, Int);
2114
}
2115
2116
if (IntrinsicID == Intrinsic::canonicalize)
2117
return constantFoldCanonicalize(Ty, Call, U);
2118
2119
#if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128)
2120
if (Ty->isFP128Ty()) {
2121
if (IntrinsicID == Intrinsic::log) {
2122
float128 Result = logf128(Op->getValueAPF().convertToQuad());
2123
return GetConstantFoldFPValue128(Result, Ty);
2124
}
2125
2126
LibFunc Fp128Func = NotLibFunc;
2127
if (TLI->getLibFunc(Name, Fp128Func) && TLI->has(Fp128Func) &&
2128
Fp128Func == LibFunc_logl)
2129
return ConstantFoldFP128(logf128, Op->getValueAPF(), Ty);
2130
}
2131
#endif
2132
2133
if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2134
return nullptr;
2135
2136
// Use internal versions of these intrinsics.
2137
2138
if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) {
2139
U.roundToIntegral(APFloat::rmNearestTiesToEven);
2140
return ConstantFP::get(Ty->getContext(), U);
2141
}
2142
2143
if (IntrinsicID == Intrinsic::round) {
2144
U.roundToIntegral(APFloat::rmNearestTiesToAway);
2145
return ConstantFP::get(Ty->getContext(), U);
2146
}
2147
2148
if (IntrinsicID == Intrinsic::roundeven) {
2149
U.roundToIntegral(APFloat::rmNearestTiesToEven);
2150
return ConstantFP::get(Ty->getContext(), U);
2151
}
2152
2153
if (IntrinsicID == Intrinsic::ceil) {
2154
U.roundToIntegral(APFloat::rmTowardPositive);
2155
return ConstantFP::get(Ty->getContext(), U);
2156
}
2157
2158
if (IntrinsicID == Intrinsic::floor) {
2159
U.roundToIntegral(APFloat::rmTowardNegative);
2160
return ConstantFP::get(Ty->getContext(), U);
2161
}
2162
2163
if (IntrinsicID == Intrinsic::trunc) {
2164
U.roundToIntegral(APFloat::rmTowardZero);
2165
return ConstantFP::get(Ty->getContext(), U);
2166
}
2167
2168
if (IntrinsicID == Intrinsic::fabs) {
2169
U.clearSign();
2170
return ConstantFP::get(Ty->getContext(), U);
2171
}
2172
2173
if (IntrinsicID == Intrinsic::amdgcn_fract) {
2174
// The v_fract instruction behaves like the OpenCL spec, which defines
2175
// fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is
2176
// there to prevent fract(-small) from returning 1.0. It returns the
2177
// largest positive floating-point number less than 1.0."
2178
APFloat FloorU(U);
2179
FloorU.roundToIntegral(APFloat::rmTowardNegative);
2180
APFloat FractU(U - FloorU);
2181
APFloat AlmostOne(U.getSemantics(), 1);
2182
AlmostOne.next(/*nextDown*/ true);
2183
return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne));
2184
}
2185
2186
// Rounding operations (floor, trunc, ceil, round and nearbyint) do not
2187
// raise FP exceptions, unless the argument is signaling NaN.
2188
2189
std::optional<APFloat::roundingMode> RM;
2190
switch (IntrinsicID) {
2191
default:
2192
break;
2193
case Intrinsic::experimental_constrained_nearbyint:
2194
case Intrinsic::experimental_constrained_rint: {
2195
auto CI = cast<ConstrainedFPIntrinsic>(Call);
2196
RM = CI->getRoundingMode();
2197
if (!RM || *RM == RoundingMode::Dynamic)
2198
return nullptr;
2199
break;
2200
}
2201
case Intrinsic::experimental_constrained_round:
2202
RM = APFloat::rmNearestTiesToAway;
2203
break;
2204
case Intrinsic::experimental_constrained_ceil:
2205
RM = APFloat::rmTowardPositive;
2206
break;
2207
case Intrinsic::experimental_constrained_floor:
2208
RM = APFloat::rmTowardNegative;
2209
break;
2210
case Intrinsic::experimental_constrained_trunc:
2211
RM = APFloat::rmTowardZero;
2212
break;
2213
}
2214
if (RM) {
2215
auto CI = cast<ConstrainedFPIntrinsic>(Call);
2216
if (U.isFinite()) {
2217
APFloat::opStatus St = U.roundToIntegral(*RM);
2218
if (IntrinsicID == Intrinsic::experimental_constrained_rint &&
2219
St == APFloat::opInexact) {
2220
std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2221
if (EB && *EB == fp::ebStrict)
2222
return nullptr;
2223
}
2224
} else if (U.isSignaling()) {
2225
std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior();
2226
if (EB && *EB != fp::ebIgnore)
2227
return nullptr;
2228
U = APFloat::getQNaN(U.getSemantics());
2229
}
2230
return ConstantFP::get(Ty->getContext(), U);
2231
}
2232
2233
/// We only fold functions with finite arguments. Folding NaN and inf is
2234
/// likely to be aborted with an exception anyway, and some host libms
2235
/// have known errors raising exceptions.
2236
if (!U.isFinite())
2237
return nullptr;
2238
2239
/// Currently APFloat versions of these functions do not exist, so we use
2240
/// the host native double versions. Float versions are not called
2241
/// directly but for all these it is true (float)(f((double)arg)) ==
2242
/// f(arg). Long double not supported yet.
2243
const APFloat &APF = Op->getValueAPF();
2244
2245
switch (IntrinsicID) {
2246
default: break;
2247
case Intrinsic::log:
2248
return ConstantFoldFP(log, APF, Ty);
2249
case Intrinsic::log2:
2250
// TODO: What about hosts that lack a C99 library?
2251
return ConstantFoldFP(log2, APF, Ty);
2252
case Intrinsic::log10:
2253
// TODO: What about hosts that lack a C99 library?
2254
return ConstantFoldFP(log10, APF, Ty);
2255
case Intrinsic::exp:
2256
return ConstantFoldFP(exp, APF, Ty);
2257
case Intrinsic::exp2:
2258
// Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2259
return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2260
case Intrinsic::exp10:
2261
// Fold exp10(x) as pow(10, x), in case the host lacks a C99 library.
2262
return ConstantFoldBinaryFP(pow, APFloat(10.0), APF, Ty);
2263
case Intrinsic::sin:
2264
return ConstantFoldFP(sin, APF, Ty);
2265
case Intrinsic::cos:
2266
return ConstantFoldFP(cos, APF, Ty);
2267
case Intrinsic::sqrt:
2268
return ConstantFoldFP(sqrt, APF, Ty);
2269
case Intrinsic::amdgcn_cos:
2270
case Intrinsic::amdgcn_sin: {
2271
double V = getValueAsDouble(Op);
2272
if (V < -256.0 || V > 256.0)
2273
// The gfx8 and gfx9 architectures handle arguments outside the range
2274
// [-256, 256] differently. This should be a rare case so bail out
2275
// rather than trying to handle the difference.
2276
return nullptr;
2277
bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos;
2278
double V4 = V * 4.0;
2279
if (V4 == floor(V4)) {
2280
// Force exact results for quarter-integer inputs.
2281
const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 };
2282
V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3];
2283
} else {
2284
if (IsCos)
2285
V = cos(V * 2.0 * numbers::pi);
2286
else
2287
V = sin(V * 2.0 * numbers::pi);
2288
}
2289
return GetConstantFoldFPValue(V, Ty);
2290
}
2291
}
2292
2293
if (!TLI)
2294
return nullptr;
2295
2296
LibFunc Func = NotLibFunc;
2297
if (!TLI->getLibFunc(Name, Func))
2298
return nullptr;
2299
2300
switch (Func) {
2301
default:
2302
break;
2303
case LibFunc_acos:
2304
case LibFunc_acosf:
2305
case LibFunc_acos_finite:
2306
case LibFunc_acosf_finite:
2307
if (TLI->has(Func))
2308
return ConstantFoldFP(acos, APF, Ty);
2309
break;
2310
case LibFunc_asin:
2311
case LibFunc_asinf:
2312
case LibFunc_asin_finite:
2313
case LibFunc_asinf_finite:
2314
if (TLI->has(Func))
2315
return ConstantFoldFP(asin, APF, Ty);
2316
break;
2317
case LibFunc_atan:
2318
case LibFunc_atanf:
2319
if (TLI->has(Func))
2320
return ConstantFoldFP(atan, APF, Ty);
2321
break;
2322
case LibFunc_ceil:
2323
case LibFunc_ceilf:
2324
if (TLI->has(Func)) {
2325
U.roundToIntegral(APFloat::rmTowardPositive);
2326
return ConstantFP::get(Ty->getContext(), U);
2327
}
2328
break;
2329
case LibFunc_cos:
2330
case LibFunc_cosf:
2331
if (TLI->has(Func))
2332
return ConstantFoldFP(cos, APF, Ty);
2333
break;
2334
case LibFunc_cosh:
2335
case LibFunc_coshf:
2336
case LibFunc_cosh_finite:
2337
case LibFunc_coshf_finite:
2338
if (TLI->has(Func))
2339
return ConstantFoldFP(cosh, APF, Ty);
2340
break;
2341
case LibFunc_exp:
2342
case LibFunc_expf:
2343
case LibFunc_exp_finite:
2344
case LibFunc_expf_finite:
2345
if (TLI->has(Func))
2346
return ConstantFoldFP(exp, APF, Ty);
2347
break;
2348
case LibFunc_exp2:
2349
case LibFunc_exp2f:
2350
case LibFunc_exp2_finite:
2351
case LibFunc_exp2f_finite:
2352
if (TLI->has(Func))
2353
// Fold exp2(x) as pow(2, x), in case the host lacks a C99 library.
2354
return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty);
2355
break;
2356
case LibFunc_fabs:
2357
case LibFunc_fabsf:
2358
if (TLI->has(Func)) {
2359
U.clearSign();
2360
return ConstantFP::get(Ty->getContext(), U);
2361
}
2362
break;
2363
case LibFunc_floor:
2364
case LibFunc_floorf:
2365
if (TLI->has(Func)) {
2366
U.roundToIntegral(APFloat::rmTowardNegative);
2367
return ConstantFP::get(Ty->getContext(), U);
2368
}
2369
break;
2370
case LibFunc_log:
2371
case LibFunc_logf:
2372
case LibFunc_log_finite:
2373
case LibFunc_logf_finite:
2374
if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2375
return ConstantFoldFP(log, APF, Ty);
2376
break;
2377
case LibFunc_log2:
2378
case LibFunc_log2f:
2379
case LibFunc_log2_finite:
2380
case LibFunc_log2f_finite:
2381
if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2382
// TODO: What about hosts that lack a C99 library?
2383
return ConstantFoldFP(log2, APF, Ty);
2384
break;
2385
case LibFunc_log10:
2386
case LibFunc_log10f:
2387
case LibFunc_log10_finite:
2388
case LibFunc_log10f_finite:
2389
if (!APF.isNegative() && !APF.isZero() && TLI->has(Func))
2390
// TODO: What about hosts that lack a C99 library?
2391
return ConstantFoldFP(log10, APF, Ty);
2392
break;
2393
case LibFunc_logl:
2394
return nullptr;
2395
case LibFunc_nearbyint:
2396
case LibFunc_nearbyintf:
2397
case LibFunc_rint:
2398
case LibFunc_rintf:
2399
if (TLI->has(Func)) {
2400
U.roundToIntegral(APFloat::rmNearestTiesToEven);
2401
return ConstantFP::get(Ty->getContext(), U);
2402
}
2403
break;
2404
case LibFunc_round:
2405
case LibFunc_roundf:
2406
if (TLI->has(Func)) {
2407
U.roundToIntegral(APFloat::rmNearestTiesToAway);
2408
return ConstantFP::get(Ty->getContext(), U);
2409
}
2410
break;
2411
case LibFunc_sin:
2412
case LibFunc_sinf:
2413
if (TLI->has(Func))
2414
return ConstantFoldFP(sin, APF, Ty);
2415
break;
2416
case LibFunc_sinh:
2417
case LibFunc_sinhf:
2418
case LibFunc_sinh_finite:
2419
case LibFunc_sinhf_finite:
2420
if (TLI->has(Func))
2421
return ConstantFoldFP(sinh, APF, Ty);
2422
break;
2423
case LibFunc_sqrt:
2424
case LibFunc_sqrtf:
2425
if (!APF.isNegative() && TLI->has(Func))
2426
return ConstantFoldFP(sqrt, APF, Ty);
2427
break;
2428
case LibFunc_tan:
2429
case LibFunc_tanf:
2430
if (TLI->has(Func))
2431
return ConstantFoldFP(tan, APF, Ty);
2432
break;
2433
case LibFunc_tanh:
2434
case LibFunc_tanhf:
2435
if (TLI->has(Func))
2436
return ConstantFoldFP(tanh, APF, Ty);
2437
break;
2438
case LibFunc_trunc:
2439
case LibFunc_truncf:
2440
if (TLI->has(Func)) {
2441
U.roundToIntegral(APFloat::rmTowardZero);
2442
return ConstantFP::get(Ty->getContext(), U);
2443
}
2444
break;
2445
}
2446
return nullptr;
2447
}
2448
2449
if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
2450
switch (IntrinsicID) {
2451
case Intrinsic::bswap:
2452
return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
2453
case Intrinsic::ctpop:
2454
return ConstantInt::get(Ty, Op->getValue().popcount());
2455
case Intrinsic::bitreverse:
2456
return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
2457
case Intrinsic::convert_from_fp16: {
2458
APFloat Val(APFloat::IEEEhalf(), Op->getValue());
2459
2460
bool lost = false;
2461
APFloat::opStatus status = Val.convert(
2462
Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
2463
2464
// Conversion is always precise.
2465
(void)status;
2466
assert(status != APFloat::opInexact && !lost &&
2467
"Precision lost during fp16 constfolding");
2468
2469
return ConstantFP::get(Ty->getContext(), Val);
2470
}
2471
2472
case Intrinsic::amdgcn_s_wqm: {
2473
uint64_t Val = Op->getZExtValue();
2474
Val |= (Val & 0x5555555555555555ULL) << 1 |
2475
((Val >> 1) & 0x5555555555555555ULL);
2476
Val |= (Val & 0x3333333333333333ULL) << 2 |
2477
((Val >> 2) & 0x3333333333333333ULL);
2478
return ConstantInt::get(Ty, Val);
2479
}
2480
2481
case Intrinsic::amdgcn_s_quadmask: {
2482
uint64_t Val = Op->getZExtValue();
2483
uint64_t QuadMask = 0;
2484
for (unsigned I = 0; I < Op->getBitWidth() / 4; ++I, Val >>= 4) {
2485
if (!(Val & 0xF))
2486
continue;
2487
2488
QuadMask |= (1ULL << I);
2489
}
2490
return ConstantInt::get(Ty, QuadMask);
2491
}
2492
2493
case Intrinsic::amdgcn_s_bitreplicate: {
2494
uint64_t Val = Op->getZExtValue();
2495
Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16;
2496
Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8;
2497
Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4;
2498
Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2;
2499
Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1;
2500
Val = Val | Val << 1;
2501
return ConstantInt::get(Ty, Val);
2502
}
2503
2504
default:
2505
return nullptr;
2506
}
2507
}
2508
2509
switch (IntrinsicID) {
2510
default: break;
2511
case Intrinsic::vector_reduce_add:
2512
case Intrinsic::vector_reduce_mul:
2513
case Intrinsic::vector_reduce_and:
2514
case Intrinsic::vector_reduce_or:
2515
case Intrinsic::vector_reduce_xor:
2516
case Intrinsic::vector_reduce_smin:
2517
case Intrinsic::vector_reduce_smax:
2518
case Intrinsic::vector_reduce_umin:
2519
case Intrinsic::vector_reduce_umax:
2520
if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0]))
2521
return C;
2522
break;
2523
}
2524
2525
// Support ConstantVector in case we have an Undef in the top.
2526
if (isa<ConstantVector>(Operands[0]) ||
2527
isa<ConstantDataVector>(Operands[0])) {
2528
auto *Op = cast<Constant>(Operands[0]);
2529
switch (IntrinsicID) {
2530
default: break;
2531
case Intrinsic::x86_sse_cvtss2si:
2532
case Intrinsic::x86_sse_cvtss2si64:
2533
case Intrinsic::x86_sse2_cvtsd2si:
2534
case Intrinsic::x86_sse2_cvtsd2si64:
2535
if (ConstantFP *FPOp =
2536
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2537
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2538
/*roundTowardZero=*/false, Ty,
2539
/*IsSigned*/true);
2540
break;
2541
case Intrinsic::x86_sse_cvttss2si:
2542
case Intrinsic::x86_sse_cvttss2si64:
2543
case Intrinsic::x86_sse2_cvttsd2si:
2544
case Intrinsic::x86_sse2_cvttsd2si64:
2545
if (ConstantFP *FPOp =
2546
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2547
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2548
/*roundTowardZero=*/true, Ty,
2549
/*IsSigned*/true);
2550
break;
2551
}
2552
}
2553
2554
return nullptr;
2555
}
2556
2557
static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2,
2558
const ConstrainedFPIntrinsic *Call) {
2559
APFloat::opStatus St = APFloat::opOK;
2560
auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call);
2561
FCmpInst::Predicate Cond = FCmp->getPredicate();
2562
if (FCmp->isSignaling()) {
2563
if (Op1.isNaN() || Op2.isNaN())
2564
St = APFloat::opInvalidOp;
2565
} else {
2566
if (Op1.isSignaling() || Op2.isSignaling())
2567
St = APFloat::opInvalidOp;
2568
}
2569
bool Result = FCmpInst::compare(Op1, Op2, Cond);
2570
if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St))
2571
return ConstantInt::get(Call->getType()->getScalarType(), Result);
2572
return nullptr;
2573
}
2574
2575
static Constant *ConstantFoldLibCall2(StringRef Name, Type *Ty,
2576
ArrayRef<Constant *> Operands,
2577
const TargetLibraryInfo *TLI) {
2578
if (!TLI)
2579
return nullptr;
2580
2581
LibFunc Func = NotLibFunc;
2582
if (!TLI->getLibFunc(Name, Func))
2583
return nullptr;
2584
2585
const auto *Op1 = dyn_cast<ConstantFP>(Operands[0]);
2586
if (!Op1)
2587
return nullptr;
2588
2589
const auto *Op2 = dyn_cast<ConstantFP>(Operands[1]);
2590
if (!Op2)
2591
return nullptr;
2592
2593
const APFloat &Op1V = Op1->getValueAPF();
2594
const APFloat &Op2V = Op2->getValueAPF();
2595
2596
switch (Func) {
2597
default:
2598
break;
2599
case LibFunc_pow:
2600
case LibFunc_powf:
2601
case LibFunc_pow_finite:
2602
case LibFunc_powf_finite:
2603
if (TLI->has(Func))
2604
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2605
break;
2606
case LibFunc_fmod:
2607
case LibFunc_fmodf:
2608
if (TLI->has(Func)) {
2609
APFloat V = Op1->getValueAPF();
2610
if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF()))
2611
return ConstantFP::get(Ty->getContext(), V);
2612
}
2613
break;
2614
case LibFunc_remainder:
2615
case LibFunc_remainderf:
2616
if (TLI->has(Func)) {
2617
APFloat V = Op1->getValueAPF();
2618
if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF()))
2619
return ConstantFP::get(Ty->getContext(), V);
2620
}
2621
break;
2622
case LibFunc_atan2:
2623
case LibFunc_atan2f:
2624
// atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm
2625
// (Solaris), so we do not assume a known result for that.
2626
if (Op1V.isZero() && Op2V.isZero())
2627
return nullptr;
2628
[[fallthrough]];
2629
case LibFunc_atan2_finite:
2630
case LibFunc_atan2f_finite:
2631
if (TLI->has(Func))
2632
return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
2633
break;
2634
}
2635
2636
return nullptr;
2637
}
2638
2639
static Constant *ConstantFoldIntrinsicCall2(Intrinsic::ID IntrinsicID, Type *Ty,
2640
ArrayRef<Constant *> Operands,
2641
const CallBase *Call) {
2642
assert(Operands.size() == 2 && "Wrong number of operands.");
2643
2644
if (Ty->isFloatingPointTy()) {
2645
// TODO: We should have undef handling for all of the FP intrinsics that
2646
// are attempted to be folded in this function.
2647
bool IsOp0Undef = isa<UndefValue>(Operands[0]);
2648
bool IsOp1Undef = isa<UndefValue>(Operands[1]);
2649
switch (IntrinsicID) {
2650
case Intrinsic::maxnum:
2651
case Intrinsic::minnum:
2652
case Intrinsic::maximum:
2653
case Intrinsic::minimum:
2654
// If one argument is undef, return the other argument.
2655
if (IsOp0Undef)
2656
return Operands[1];
2657
if (IsOp1Undef)
2658
return Operands[0];
2659
break;
2660
}
2661
}
2662
2663
if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
2664
const APFloat &Op1V = Op1->getValueAPF();
2665
2666
if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
2667
if (Op2->getType() != Op1->getType())
2668
return nullptr;
2669
const APFloat &Op2V = Op2->getValueAPF();
2670
2671
if (const auto *ConstrIntr =
2672
dyn_cast_if_present<ConstrainedFPIntrinsic>(Call)) {
2673
RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
2674
APFloat Res = Op1V;
2675
APFloat::opStatus St;
2676
switch (IntrinsicID) {
2677
default:
2678
return nullptr;
2679
case Intrinsic::experimental_constrained_fadd:
2680
St = Res.add(Op2V, RM);
2681
break;
2682
case Intrinsic::experimental_constrained_fsub:
2683
St = Res.subtract(Op2V, RM);
2684
break;
2685
case Intrinsic::experimental_constrained_fmul:
2686
St = Res.multiply(Op2V, RM);
2687
break;
2688
case Intrinsic::experimental_constrained_fdiv:
2689
St = Res.divide(Op2V, RM);
2690
break;
2691
case Intrinsic::experimental_constrained_frem:
2692
St = Res.mod(Op2V);
2693
break;
2694
case Intrinsic::experimental_constrained_fcmp:
2695
case Intrinsic::experimental_constrained_fcmps:
2696
return evaluateCompare(Op1V, Op2V, ConstrIntr);
2697
}
2698
if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr),
2699
St))
2700
return ConstantFP::get(Ty->getContext(), Res);
2701
return nullptr;
2702
}
2703
2704
switch (IntrinsicID) {
2705
default:
2706
break;
2707
case Intrinsic::copysign:
2708
return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V));
2709
case Intrinsic::minnum:
2710
return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V));
2711
case Intrinsic::maxnum:
2712
return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V));
2713
case Intrinsic::minimum:
2714
return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V));
2715
case Intrinsic::maximum:
2716
return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V));
2717
}
2718
2719
if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
2720
return nullptr;
2721
2722
switch (IntrinsicID) {
2723
default:
2724
break;
2725
case Intrinsic::pow:
2726
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
2727
case Intrinsic::amdgcn_fmul_legacy:
2728
// The legacy behaviour is that multiplying +/- 0.0 by anything, even
2729
// NaN or infinity, gives +0.0.
2730
if (Op1V.isZero() || Op2V.isZero())
2731
return ConstantFP::getZero(Ty);
2732
return ConstantFP::get(Ty->getContext(), Op1V * Op2V);
2733
}
2734
2735
} else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
2736
switch (IntrinsicID) {
2737
case Intrinsic::ldexp: {
2738
return ConstantFP::get(
2739
Ty->getContext(),
2740
scalbn(Op1V, Op2C->getSExtValue(), APFloat::rmNearestTiesToEven));
2741
}
2742
case Intrinsic::is_fpclass: {
2743
FPClassTest Mask = static_cast<FPClassTest>(Op2C->getZExtValue());
2744
bool Result =
2745
((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) ||
2746
((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) ||
2747
((Mask & fcNegInf) && Op1V.isNegInfinity()) ||
2748
((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) ||
2749
((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) ||
2750
((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) ||
2751
((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) ||
2752
((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) ||
2753
((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) ||
2754
((Mask & fcPosInf) && Op1V.isPosInfinity());
2755
return ConstantInt::get(Ty, Result);
2756
}
2757
case Intrinsic::powi: {
2758
int Exp = static_cast<int>(Op2C->getSExtValue());
2759
switch (Ty->getTypeID()) {
2760
case Type::HalfTyID:
2761
case Type::FloatTyID: {
2762
APFloat Res(static_cast<float>(std::pow(Op1V.convertToFloat(), Exp)));
2763
if (Ty->isHalfTy()) {
2764
bool Unused;
2765
Res.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
2766
&Unused);
2767
}
2768
return ConstantFP::get(Ty->getContext(), Res);
2769
}
2770
case Type::DoubleTyID:
2771
return ConstantFP::get(Ty, std::pow(Op1V.convertToDouble(), Exp));
2772
default:
2773
return nullptr;
2774
}
2775
}
2776
default:
2777
break;
2778
}
2779
}
2780
return nullptr;
2781
}
2782
2783
if (Operands[0]->getType()->isIntegerTy() &&
2784
Operands[1]->getType()->isIntegerTy()) {
2785
const APInt *C0, *C1;
2786
if (!getConstIntOrUndef(Operands[0], C0) ||
2787
!getConstIntOrUndef(Operands[1], C1))
2788
return nullptr;
2789
2790
switch (IntrinsicID) {
2791
default: break;
2792
case Intrinsic::smax:
2793
case Intrinsic::smin:
2794
case Intrinsic::umax:
2795
case Intrinsic::umin:
2796
// This is the same as for binary ops - poison propagates.
2797
// TODO: Poison handling should be consolidated.
2798
if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2799
return PoisonValue::get(Ty);
2800
2801
if (!C0 && !C1)
2802
return UndefValue::get(Ty);
2803
if (!C0 || !C1)
2804
return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty);
2805
return ConstantInt::get(
2806
Ty, ICmpInst::compare(*C0, *C1,
2807
MinMaxIntrinsic::getPredicate(IntrinsicID))
2808
? *C0
2809
: *C1);
2810
2811
case Intrinsic::scmp:
2812
case Intrinsic::ucmp:
2813
if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2814
return PoisonValue::get(Ty);
2815
2816
if (!C0 || !C1)
2817
return ConstantInt::get(Ty, 0);
2818
2819
int Res;
2820
if (IntrinsicID == Intrinsic::scmp)
2821
Res = C0->sgt(*C1) ? 1 : C0->slt(*C1) ? -1 : 0;
2822
else
2823
Res = C0->ugt(*C1) ? 1 : C0->ult(*C1) ? -1 : 0;
2824
return ConstantInt::get(Ty, Res, /*IsSigned=*/true);
2825
2826
case Intrinsic::usub_with_overflow:
2827
case Intrinsic::ssub_with_overflow:
2828
// X - undef -> { 0, false }
2829
// undef - X -> { 0, false }
2830
if (!C0 || !C1)
2831
return Constant::getNullValue(Ty);
2832
[[fallthrough]];
2833
case Intrinsic::uadd_with_overflow:
2834
case Intrinsic::sadd_with_overflow:
2835
// X + undef -> { -1, false }
2836
// undef + x -> { -1, false }
2837
if (!C0 || !C1) {
2838
return ConstantStruct::get(
2839
cast<StructType>(Ty),
2840
{Constant::getAllOnesValue(Ty->getStructElementType(0)),
2841
Constant::getNullValue(Ty->getStructElementType(1))});
2842
}
2843
[[fallthrough]];
2844
case Intrinsic::smul_with_overflow:
2845
case Intrinsic::umul_with_overflow: {
2846
// undef * X -> { 0, false }
2847
// X * undef -> { 0, false }
2848
if (!C0 || !C1)
2849
return Constant::getNullValue(Ty);
2850
2851
APInt Res;
2852
bool Overflow;
2853
switch (IntrinsicID) {
2854
default: llvm_unreachable("Invalid case");
2855
case Intrinsic::sadd_with_overflow:
2856
Res = C0->sadd_ov(*C1, Overflow);
2857
break;
2858
case Intrinsic::uadd_with_overflow:
2859
Res = C0->uadd_ov(*C1, Overflow);
2860
break;
2861
case Intrinsic::ssub_with_overflow:
2862
Res = C0->ssub_ov(*C1, Overflow);
2863
break;
2864
case Intrinsic::usub_with_overflow:
2865
Res = C0->usub_ov(*C1, Overflow);
2866
break;
2867
case Intrinsic::smul_with_overflow:
2868
Res = C0->smul_ov(*C1, Overflow);
2869
break;
2870
case Intrinsic::umul_with_overflow:
2871
Res = C0->umul_ov(*C1, Overflow);
2872
break;
2873
}
2874
Constant *Ops[] = {
2875
ConstantInt::get(Ty->getContext(), Res),
2876
ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
2877
};
2878
return ConstantStruct::get(cast<StructType>(Ty), Ops);
2879
}
2880
case Intrinsic::uadd_sat:
2881
case Intrinsic::sadd_sat:
2882
// This is the same as for binary ops - poison propagates.
2883
// TODO: Poison handling should be consolidated.
2884
if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2885
return PoisonValue::get(Ty);
2886
2887
if (!C0 && !C1)
2888
return UndefValue::get(Ty);
2889
if (!C0 || !C1)
2890
return Constant::getAllOnesValue(Ty);
2891
if (IntrinsicID == Intrinsic::uadd_sat)
2892
return ConstantInt::get(Ty, C0->uadd_sat(*C1));
2893
else
2894
return ConstantInt::get(Ty, C0->sadd_sat(*C1));
2895
case Intrinsic::usub_sat:
2896
case Intrinsic::ssub_sat:
2897
// This is the same as for binary ops - poison propagates.
2898
// TODO: Poison handling should be consolidated.
2899
if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
2900
return PoisonValue::get(Ty);
2901
2902
if (!C0 && !C1)
2903
return UndefValue::get(Ty);
2904
if (!C0 || !C1)
2905
return Constant::getNullValue(Ty);
2906
if (IntrinsicID == Intrinsic::usub_sat)
2907
return ConstantInt::get(Ty, C0->usub_sat(*C1));
2908
else
2909
return ConstantInt::get(Ty, C0->ssub_sat(*C1));
2910
case Intrinsic::cttz:
2911
case Intrinsic::ctlz:
2912
assert(C1 && "Must be constant int");
2913
2914
// cttz(0, 1) and ctlz(0, 1) are poison.
2915
if (C1->isOne() && (!C0 || C0->isZero()))
2916
return PoisonValue::get(Ty);
2917
if (!C0)
2918
return Constant::getNullValue(Ty);
2919
if (IntrinsicID == Intrinsic::cttz)
2920
return ConstantInt::get(Ty, C0->countr_zero());
2921
else
2922
return ConstantInt::get(Ty, C0->countl_zero());
2923
2924
case Intrinsic::abs:
2925
assert(C1 && "Must be constant int");
2926
assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1");
2927
2928
// Undef or minimum val operand with poison min --> undef
2929
if (C1->isOne() && (!C0 || C0->isMinSignedValue()))
2930
return UndefValue::get(Ty);
2931
2932
// Undef operand with no poison min --> 0 (sign bit must be clear)
2933
if (!C0)
2934
return Constant::getNullValue(Ty);
2935
2936
return ConstantInt::get(Ty, C0->abs());
2937
case Intrinsic::amdgcn_wave_reduce_umin:
2938
case Intrinsic::amdgcn_wave_reduce_umax:
2939
return dyn_cast<Constant>(Operands[0]);
2940
}
2941
2942
return nullptr;
2943
}
2944
2945
// Support ConstantVector in case we have an Undef in the top.
2946
if ((isa<ConstantVector>(Operands[0]) ||
2947
isa<ConstantDataVector>(Operands[0])) &&
2948
// Check for default rounding mode.
2949
// FIXME: Support other rounding modes?
2950
isa<ConstantInt>(Operands[1]) &&
2951
cast<ConstantInt>(Operands[1])->getValue() == 4) {
2952
auto *Op = cast<Constant>(Operands[0]);
2953
switch (IntrinsicID) {
2954
default: break;
2955
case Intrinsic::x86_avx512_vcvtss2si32:
2956
case Intrinsic::x86_avx512_vcvtss2si64:
2957
case Intrinsic::x86_avx512_vcvtsd2si32:
2958
case Intrinsic::x86_avx512_vcvtsd2si64:
2959
if (ConstantFP *FPOp =
2960
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2961
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2962
/*roundTowardZero=*/false, Ty,
2963
/*IsSigned*/true);
2964
break;
2965
case Intrinsic::x86_avx512_vcvtss2usi32:
2966
case Intrinsic::x86_avx512_vcvtss2usi64:
2967
case Intrinsic::x86_avx512_vcvtsd2usi32:
2968
case Intrinsic::x86_avx512_vcvtsd2usi64:
2969
if (ConstantFP *FPOp =
2970
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2971
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2972
/*roundTowardZero=*/false, Ty,
2973
/*IsSigned*/false);
2974
break;
2975
case Intrinsic::x86_avx512_cvttss2si:
2976
case Intrinsic::x86_avx512_cvttss2si64:
2977
case Intrinsic::x86_avx512_cvttsd2si:
2978
case Intrinsic::x86_avx512_cvttsd2si64:
2979
if (ConstantFP *FPOp =
2980
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2981
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2982
/*roundTowardZero=*/true, Ty,
2983
/*IsSigned*/true);
2984
break;
2985
case Intrinsic::x86_avx512_cvttss2usi:
2986
case Intrinsic::x86_avx512_cvttss2usi64:
2987
case Intrinsic::x86_avx512_cvttsd2usi:
2988
case Intrinsic::x86_avx512_cvttsd2usi64:
2989
if (ConstantFP *FPOp =
2990
dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
2991
return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
2992
/*roundTowardZero=*/true, Ty,
2993
/*IsSigned*/false);
2994
break;
2995
}
2996
}
2997
return nullptr;
2998
}
2999
3000
static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID,
3001
const APFloat &S0,
3002
const APFloat &S1,
3003
const APFloat &S2) {
3004
unsigned ID;
3005
const fltSemantics &Sem = S0.getSemantics();
3006
APFloat MA(Sem), SC(Sem), TC(Sem);
3007
if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) {
3008
if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) {
3009
// S2 < 0
3010
ID = 5;
3011
SC = -S0;
3012
} else {
3013
ID = 4;
3014
SC = S0;
3015
}
3016
MA = S2;
3017
TC = -S1;
3018
} else if (abs(S1) >= abs(S0)) {
3019
if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) {
3020
// S1 < 0
3021
ID = 3;
3022
TC = -S2;
3023
} else {
3024
ID = 2;
3025
TC = S2;
3026
}
3027
MA = S1;
3028
SC = S0;
3029
} else {
3030
if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) {
3031
// S0 < 0
3032
ID = 1;
3033
SC = S2;
3034
} else {
3035
ID = 0;
3036
SC = -S2;
3037
}
3038
MA = S0;
3039
TC = -S1;
3040
}
3041
switch (IntrinsicID) {
3042
default:
3043
llvm_unreachable("unhandled amdgcn cube intrinsic");
3044
case Intrinsic::amdgcn_cubeid:
3045
return APFloat(Sem, ID);
3046
case Intrinsic::amdgcn_cubema:
3047
return MA + MA;
3048
case Intrinsic::amdgcn_cubesc:
3049
return SC;
3050
case Intrinsic::amdgcn_cubetc:
3051
return TC;
3052
}
3053
}
3054
3055
static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands,
3056
Type *Ty) {
3057
const APInt *C0, *C1, *C2;
3058
if (!getConstIntOrUndef(Operands[0], C0) ||
3059
!getConstIntOrUndef(Operands[1], C1) ||
3060
!getConstIntOrUndef(Operands[2], C2))
3061
return nullptr;
3062
3063
if (!C2)
3064
return UndefValue::get(Ty);
3065
3066
APInt Val(32, 0);
3067
unsigned NumUndefBytes = 0;
3068
for (unsigned I = 0; I < 32; I += 8) {
3069
unsigned Sel = C2->extractBitsAsZExtValue(8, I);
3070
unsigned B = 0;
3071
3072
if (Sel >= 13)
3073
B = 0xff;
3074
else if (Sel == 12)
3075
B = 0x00;
3076
else {
3077
const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1;
3078
if (!Src)
3079
++NumUndefBytes;
3080
else if (Sel < 8)
3081
B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8);
3082
else
3083
B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff;
3084
}
3085
3086
Val.insertBits(B, I, 8);
3087
}
3088
3089
if (NumUndefBytes == 4)
3090
return UndefValue::get(Ty);
3091
3092
return ConstantInt::get(Ty, Val);
3093
}
3094
3095
static Constant *ConstantFoldScalarCall3(StringRef Name,
3096
Intrinsic::ID IntrinsicID,
3097
Type *Ty,
3098
ArrayRef<Constant *> Operands,
3099
const TargetLibraryInfo *TLI,
3100
const CallBase *Call) {
3101
assert(Operands.size() == 3 && "Wrong number of operands.");
3102
3103
if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
3104
if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
3105
if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
3106
const APFloat &C1 = Op1->getValueAPF();
3107
const APFloat &C2 = Op2->getValueAPF();
3108
const APFloat &C3 = Op3->getValueAPF();
3109
3110
if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) {
3111
RoundingMode RM = getEvaluationRoundingMode(ConstrIntr);
3112
APFloat Res = C1;
3113
APFloat::opStatus St;
3114
switch (IntrinsicID) {
3115
default:
3116
return nullptr;
3117
case Intrinsic::experimental_constrained_fma:
3118
case Intrinsic::experimental_constrained_fmuladd:
3119
St = Res.fusedMultiplyAdd(C2, C3, RM);
3120
break;
3121
}
3122
if (mayFoldConstrained(
3123
const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St))
3124
return ConstantFP::get(Ty->getContext(), Res);
3125
return nullptr;
3126
}
3127
3128
switch (IntrinsicID) {
3129
default: break;
3130
case Intrinsic::amdgcn_fma_legacy: {
3131
// The legacy behaviour is that multiplying +/- 0.0 by anything, even
3132
// NaN or infinity, gives +0.0.
3133
if (C1.isZero() || C2.isZero()) {
3134
// It's tempting to just return C3 here, but that would give the
3135
// wrong result if C3 was -0.0.
3136
return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3);
3137
}
3138
[[fallthrough]];
3139
}
3140
case Intrinsic::fma:
3141
case Intrinsic::fmuladd: {
3142
APFloat V = C1;
3143
V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven);
3144
return ConstantFP::get(Ty->getContext(), V);
3145
}
3146
case Intrinsic::amdgcn_cubeid:
3147
case Intrinsic::amdgcn_cubema:
3148
case Intrinsic::amdgcn_cubesc:
3149
case Intrinsic::amdgcn_cubetc: {
3150
APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3);
3151
return ConstantFP::get(Ty->getContext(), V);
3152
}
3153
}
3154
}
3155
}
3156
}
3157
3158
if (IntrinsicID == Intrinsic::smul_fix ||
3159
IntrinsicID == Intrinsic::smul_fix_sat) {
3160
// poison * C -> poison
3161
// C * poison -> poison
3162
if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1]))
3163
return PoisonValue::get(Ty);
3164
3165
const APInt *C0, *C1;
3166
if (!getConstIntOrUndef(Operands[0], C0) ||
3167
!getConstIntOrUndef(Operands[1], C1))
3168
return nullptr;
3169
3170
// undef * C -> 0
3171
// C * undef -> 0
3172
if (!C0 || !C1)
3173
return Constant::getNullValue(Ty);
3174
3175
// This code performs rounding towards negative infinity in case the result
3176
// cannot be represented exactly for the given scale. Targets that do care
3177
// about rounding should use a target hook for specifying how rounding
3178
// should be done, and provide their own folding to be consistent with
3179
// rounding. This is the same approach as used by
3180
// DAGTypeLegalizer::ExpandIntRes_MULFIX.
3181
unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue();
3182
unsigned Width = C0->getBitWidth();
3183
assert(Scale < Width && "Illegal scale.");
3184
unsigned ExtendedWidth = Width * 2;
3185
APInt Product =
3186
(C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale);
3187
if (IntrinsicID == Intrinsic::smul_fix_sat) {
3188
APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth);
3189
APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth);
3190
Product = APIntOps::smin(Product, Max);
3191
Product = APIntOps::smax(Product, Min);
3192
}
3193
return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width));
3194
}
3195
3196
if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
3197
const APInt *C0, *C1, *C2;
3198
if (!getConstIntOrUndef(Operands[0], C0) ||
3199
!getConstIntOrUndef(Operands[1], C1) ||
3200
!getConstIntOrUndef(Operands[2], C2))
3201
return nullptr;
3202
3203
bool IsRight = IntrinsicID == Intrinsic::fshr;
3204
if (!C2)
3205
return Operands[IsRight ? 1 : 0];
3206
if (!C0 && !C1)
3207
return UndefValue::get(Ty);
3208
3209
// The shift amount is interpreted as modulo the bitwidth. If the shift
3210
// amount is effectively 0, avoid UB due to oversized inverse shift below.
3211
unsigned BitWidth = C2->getBitWidth();
3212
unsigned ShAmt = C2->urem(BitWidth);
3213
if (!ShAmt)
3214
return Operands[IsRight ? 1 : 0];
3215
3216
// (C0 << ShlAmt) | (C1 >> LshrAmt)
3217
unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
3218
unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
3219
if (!C0)
3220
return ConstantInt::get(Ty, C1->lshr(LshrAmt));
3221
if (!C1)
3222
return ConstantInt::get(Ty, C0->shl(ShlAmt));
3223
return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
3224
}
3225
3226
if (IntrinsicID == Intrinsic::amdgcn_perm)
3227
return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty);
3228
3229
return nullptr;
3230
}
3231
3232
static Constant *ConstantFoldScalarCall(StringRef Name,
3233
Intrinsic::ID IntrinsicID,
3234
Type *Ty,
3235
ArrayRef<Constant *> Operands,
3236
const TargetLibraryInfo *TLI,
3237
const CallBase *Call) {
3238
if (Operands.size() == 1)
3239
return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
3240
3241
if (Operands.size() == 2) {
3242
if (Constant *FoldedLibCall =
3243
ConstantFoldLibCall2(Name, Ty, Operands, TLI)) {
3244
return FoldedLibCall;
3245
}
3246
return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands, Call);
3247
}
3248
3249
if (Operands.size() == 3)
3250
return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
3251
3252
return nullptr;
3253
}
3254
3255
static Constant *ConstantFoldFixedVectorCall(
3256
StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy,
3257
ArrayRef<Constant *> Operands, const DataLayout &DL,
3258
const TargetLibraryInfo *TLI, const CallBase *Call) {
3259
SmallVector<Constant *, 4> Result(FVTy->getNumElements());
3260
SmallVector<Constant *, 4> Lane(Operands.size());
3261
Type *Ty = FVTy->getElementType();
3262
3263
switch (IntrinsicID) {
3264
case Intrinsic::masked_load: {
3265
auto *SrcPtr = Operands[0];
3266
auto *Mask = Operands[2];
3267
auto *Passthru = Operands[3];
3268
3269
Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL);
3270
3271
SmallVector<Constant *, 32> NewElements;
3272
for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3273
auto *MaskElt = Mask->getAggregateElement(I);
3274
if (!MaskElt)
3275
break;
3276
auto *PassthruElt = Passthru->getAggregateElement(I);
3277
auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
3278
if (isa<UndefValue>(MaskElt)) {
3279
if (PassthruElt)
3280
NewElements.push_back(PassthruElt);
3281
else if (VecElt)
3282
NewElements.push_back(VecElt);
3283
else
3284
return nullptr;
3285
}
3286
if (MaskElt->isNullValue()) {
3287
if (!PassthruElt)
3288
return nullptr;
3289
NewElements.push_back(PassthruElt);
3290
} else if (MaskElt->isOneValue()) {
3291
if (!VecElt)
3292
return nullptr;
3293
NewElements.push_back(VecElt);
3294
} else {
3295
return nullptr;
3296
}
3297
}
3298
if (NewElements.size() != FVTy->getNumElements())
3299
return nullptr;
3300
return ConstantVector::get(NewElements);
3301
}
3302
case Intrinsic::arm_mve_vctp8:
3303
case Intrinsic::arm_mve_vctp16:
3304
case Intrinsic::arm_mve_vctp32:
3305
case Intrinsic::arm_mve_vctp64: {
3306
if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
3307
unsigned Lanes = FVTy->getNumElements();
3308
uint64_t Limit = Op->getZExtValue();
3309
3310
SmallVector<Constant *, 16> NCs;
3311
for (unsigned i = 0; i < Lanes; i++) {
3312
if (i < Limit)
3313
NCs.push_back(ConstantInt::getTrue(Ty));
3314
else
3315
NCs.push_back(ConstantInt::getFalse(Ty));
3316
}
3317
return ConstantVector::get(NCs);
3318
}
3319
return nullptr;
3320
}
3321
case Intrinsic::get_active_lane_mask: {
3322
auto *Op0 = dyn_cast<ConstantInt>(Operands[0]);
3323
auto *Op1 = dyn_cast<ConstantInt>(Operands[1]);
3324
if (Op0 && Op1) {
3325
unsigned Lanes = FVTy->getNumElements();
3326
uint64_t Base = Op0->getZExtValue();
3327
uint64_t Limit = Op1->getZExtValue();
3328
3329
SmallVector<Constant *, 16> NCs;
3330
for (unsigned i = 0; i < Lanes; i++) {
3331
if (Base + i < Limit)
3332
NCs.push_back(ConstantInt::getTrue(Ty));
3333
else
3334
NCs.push_back(ConstantInt::getFalse(Ty));
3335
}
3336
return ConstantVector::get(NCs);
3337
}
3338
return nullptr;
3339
}
3340
default:
3341
break;
3342
}
3343
3344
for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) {
3345
// Gather a column of constants.
3346
for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
3347
// Some intrinsics use a scalar type for certain arguments.
3348
if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) {
3349
Lane[J] = Operands[J];
3350
continue;
3351
}
3352
3353
Constant *Agg = Operands[J]->getAggregateElement(I);
3354
if (!Agg)
3355
return nullptr;
3356
3357
Lane[J] = Agg;
3358
}
3359
3360
// Use the regular scalar folding to simplify this column.
3361
Constant *Folded =
3362
ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
3363
if (!Folded)
3364
return nullptr;
3365
Result[I] = Folded;
3366
}
3367
3368
return ConstantVector::get(Result);
3369
}
3370
3371
static Constant *ConstantFoldScalableVectorCall(
3372
StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy,
3373
ArrayRef<Constant *> Operands, const DataLayout &DL,
3374
const TargetLibraryInfo *TLI, const CallBase *Call) {
3375
switch (IntrinsicID) {
3376
case Intrinsic::aarch64_sve_convert_from_svbool: {
3377
auto *Src = dyn_cast<Constant>(Operands[0]);
3378
if (!Src || !Src->isNullValue())
3379
break;
3380
3381
return ConstantInt::getFalse(SVTy);
3382
}
3383
default:
3384
break;
3385
}
3386
return nullptr;
3387
}
3388
3389
static std::pair<Constant *, Constant *>
3390
ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) {
3391
if (isa<PoisonValue>(Op))
3392
return {Op, PoisonValue::get(IntTy)};
3393
3394
auto *ConstFP = dyn_cast<ConstantFP>(Op);
3395
if (!ConstFP)
3396
return {};
3397
3398
const APFloat &U = ConstFP->getValueAPF();
3399
int FrexpExp;
3400
APFloat FrexpMant = frexp(U, FrexpExp, APFloat::rmNearestTiesToEven);
3401
Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant);
3402
3403
// The exponent is an "unspecified value" for inf/nan. We use zero to avoid
3404
// using undef.
3405
Constant *Result1 = FrexpMant.isFinite() ? ConstantInt::get(IntTy, FrexpExp)
3406
: ConstantInt::getNullValue(IntTy);
3407
return {Result0, Result1};
3408
}
3409
3410
/// Handle intrinsics that return tuples, which may be tuples of vectors.
3411
static Constant *
3412
ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID,
3413
StructType *StTy, ArrayRef<Constant *> Operands,
3414
const DataLayout &DL, const TargetLibraryInfo *TLI,
3415
const CallBase *Call) {
3416
3417
switch (IntrinsicID) {
3418
case Intrinsic::frexp: {
3419
Type *Ty0 = StTy->getContainedType(0);
3420
Type *Ty1 = StTy->getContainedType(1)->getScalarType();
3421
3422
if (auto *FVTy0 = dyn_cast<FixedVectorType>(Ty0)) {
3423
SmallVector<Constant *, 4> Results0(FVTy0->getNumElements());
3424
SmallVector<Constant *, 4> Results1(FVTy0->getNumElements());
3425
3426
for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) {
3427
Constant *Lane = Operands[0]->getAggregateElement(I);
3428
std::tie(Results0[I], Results1[I]) =
3429
ConstantFoldScalarFrexpCall(Lane, Ty1);
3430
if (!Results0[I])
3431
return nullptr;
3432
}
3433
3434
return ConstantStruct::get(StTy, ConstantVector::get(Results0),
3435
ConstantVector::get(Results1));
3436
}
3437
3438
auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1);
3439
if (!Result0)
3440
return nullptr;
3441
return ConstantStruct::get(StTy, Result0, Result1);
3442
}
3443
default:
3444
// TODO: Constant folding of vector intrinsics that fall through here does
3445
// not work (e.g. overflow intrinsics)
3446
return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI, Call);
3447
}
3448
3449
return nullptr;
3450
}
3451
3452
} // end anonymous namespace
3453
3454
Constant *llvm::ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS,
3455
Constant *RHS, Type *Ty,
3456
Instruction *FMFSource) {
3457
return ConstantFoldIntrinsicCall2(ID, Ty, {LHS, RHS},
3458
dyn_cast_if_present<CallBase>(FMFSource));
3459
}
3460
3461
Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
3462
ArrayRef<Constant *> Operands,
3463
const TargetLibraryInfo *TLI,
3464
bool AllowNonDeterministic) {
3465
if (Call->isNoBuiltin())
3466
return nullptr;
3467
if (!F->hasName())
3468
return nullptr;
3469
3470
// If this is not an intrinsic and not recognized as a library call, bail out.
3471
Intrinsic::ID IID = F->getIntrinsicID();
3472
if (IID == Intrinsic::not_intrinsic) {
3473
if (!TLI)
3474
return nullptr;
3475
LibFunc LibF;
3476
if (!TLI->getLibFunc(*F, LibF))
3477
return nullptr;
3478
}
3479
3480
// Conservatively assume that floating-point libcalls may be
3481
// non-deterministic.
3482
Type *Ty = F->getReturnType();
3483
if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy())
3484
return nullptr;
3485
3486
StringRef Name = F->getName();
3487
if (auto *FVTy = dyn_cast<FixedVectorType>(Ty))
3488
return ConstantFoldFixedVectorCall(
3489
Name, IID, FVTy, Operands, F->getDataLayout(), TLI, Call);
3490
3491
if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty))
3492
return ConstantFoldScalableVectorCall(
3493
Name, IID, SVTy, Operands, F->getDataLayout(), TLI, Call);
3494
3495
if (auto *StTy = dyn_cast<StructType>(Ty))
3496
return ConstantFoldStructCall(Name, IID, StTy, Operands,
3497
F->getDataLayout(), TLI, Call);
3498
3499
// TODO: If this is a library function, we already discovered that above,
3500
// so we should pass the LibFunc, not the name (and it might be better
3501
// still to separate intrinsic handling from libcalls).
3502
return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI, Call);
3503
}
3504
3505
bool llvm::isMathLibCallNoop(const CallBase *Call,
3506
const TargetLibraryInfo *TLI) {
3507
// FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
3508
// (and to some extent ConstantFoldScalarCall).
3509
if (Call->isNoBuiltin() || Call->isStrictFP())
3510
return false;
3511
Function *F = Call->getCalledFunction();
3512
if (!F)
3513
return false;
3514
3515
LibFunc Func;
3516
if (!TLI || !TLI->getLibFunc(*F, Func))
3517
return false;
3518
3519
if (Call->arg_size() == 1) {
3520
if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
3521
const APFloat &Op = OpC->getValueAPF();
3522
switch (Func) {
3523
case LibFunc_logl:
3524
case LibFunc_log:
3525
case LibFunc_logf:
3526
case LibFunc_log2l:
3527
case LibFunc_log2:
3528
case LibFunc_log2f:
3529
case LibFunc_log10l:
3530
case LibFunc_log10:
3531
case LibFunc_log10f:
3532
return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
3533
3534
case LibFunc_expl:
3535
case LibFunc_exp:
3536
case LibFunc_expf:
3537
// FIXME: These boundaries are slightly conservative.
3538
if (OpC->getType()->isDoubleTy())
3539
return !(Op < APFloat(-745.0) || Op > APFloat(709.0));
3540
if (OpC->getType()->isFloatTy())
3541
return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f));
3542
break;
3543
3544
case LibFunc_exp2l:
3545
case LibFunc_exp2:
3546
case LibFunc_exp2f:
3547
// FIXME: These boundaries are slightly conservative.
3548
if (OpC->getType()->isDoubleTy())
3549
return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0));
3550
if (OpC->getType()->isFloatTy())
3551
return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f));
3552
break;
3553
3554
case LibFunc_sinl:
3555
case LibFunc_sin:
3556
case LibFunc_sinf:
3557
case LibFunc_cosl:
3558
case LibFunc_cos:
3559
case LibFunc_cosf:
3560
return !Op.isInfinity();
3561
3562
case LibFunc_tanl:
3563
case LibFunc_tan:
3564
case LibFunc_tanf: {
3565
// FIXME: Stop using the host math library.
3566
// FIXME: The computation isn't done in the right precision.
3567
Type *Ty = OpC->getType();
3568
if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy())
3569
return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr;
3570
break;
3571
}
3572
3573
case LibFunc_atan:
3574
case LibFunc_atanf:
3575
case LibFunc_atanl:
3576
// Per POSIX, this MAY fail if Op is denormal. We choose not failing.
3577
return true;
3578
3579
3580
case LibFunc_asinl:
3581
case LibFunc_asin:
3582
case LibFunc_asinf:
3583
case LibFunc_acosl:
3584
case LibFunc_acos:
3585
case LibFunc_acosf:
3586
return !(Op < APFloat(Op.getSemantics(), "-1") ||
3587
Op > APFloat(Op.getSemantics(), "1"));
3588
3589
case LibFunc_sinh:
3590
case LibFunc_cosh:
3591
case LibFunc_sinhf:
3592
case LibFunc_coshf:
3593
case LibFunc_sinhl:
3594
case LibFunc_coshl:
3595
// FIXME: These boundaries are slightly conservative.
3596
if (OpC->getType()->isDoubleTy())
3597
return !(Op < APFloat(-710.0) || Op > APFloat(710.0));
3598
if (OpC->getType()->isFloatTy())
3599
return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f));
3600
break;
3601
3602
case LibFunc_sqrtl:
3603
case LibFunc_sqrt:
3604
case LibFunc_sqrtf:
3605
return Op.isNaN() || Op.isZero() || !Op.isNegative();
3606
3607
// FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
3608
// maybe others?
3609
default:
3610
break;
3611
}
3612
}
3613
}
3614
3615
if (Call->arg_size() == 2) {
3616
ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
3617
ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
3618
if (Op0C && Op1C) {
3619
const APFloat &Op0 = Op0C->getValueAPF();
3620
const APFloat &Op1 = Op1C->getValueAPF();
3621
3622
switch (Func) {
3623
case LibFunc_powl:
3624
case LibFunc_pow:
3625
case LibFunc_powf: {
3626
// FIXME: Stop using the host math library.
3627
// FIXME: The computation isn't done in the right precision.
3628
Type *Ty = Op0C->getType();
3629
if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
3630
if (Ty == Op1C->getType())
3631
return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr;
3632
}
3633
break;
3634
}
3635
3636
case LibFunc_fmodl:
3637
case LibFunc_fmod:
3638
case LibFunc_fmodf:
3639
case LibFunc_remainderl:
3640
case LibFunc_remainder:
3641
case LibFunc_remainderf:
3642
return Op0.isNaN() || Op1.isNaN() ||
3643
(!Op0.isInfinity() && !Op1.isZero());
3644
3645
case LibFunc_atan2:
3646
case LibFunc_atan2f:
3647
case LibFunc_atan2l:
3648
// Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and
3649
// GLIBC and MSVC do not appear to raise an error on those, we
3650
// cannot rely on that behavior. POSIX and C11 say that a domain error
3651
// may occur, so allow for that possibility.
3652
return !Op0.isZero() || !Op1.isZero();
3653
3654
default:
3655
break;
3656
}
3657
}
3658
}
3659
3660
return false;
3661
}
3662
3663
void TargetFolder::anchor() {}
3664
3665