Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Analysis/DemandedBits.cpp
35233 views
1
//===- DemandedBits.cpp - Determine demanded bits -------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This pass implements a demanded bits analysis. A demanded bit is one that
10
// contributes to a result; bits that are not demanded can be either zero or
11
// one without affecting control or data flow. For example in this sequence:
12
//
13
// %1 = add i32 %x, %y
14
// %2 = trunc i32 %1 to i16
15
//
16
// Only the lowest 16 bits of %1 are demanded; the rest are removed by the
17
// trunc.
18
//
19
//===----------------------------------------------------------------------===//
20
21
#include "llvm/Analysis/DemandedBits.h"
22
#include "llvm/ADT/APInt.h"
23
#include "llvm/ADT/SetVector.h"
24
#include "llvm/Analysis/AssumptionCache.h"
25
#include "llvm/Analysis/ValueTracking.h"
26
#include "llvm/IR/DataLayout.h"
27
#include "llvm/IR/Dominators.h"
28
#include "llvm/IR/InstIterator.h"
29
#include "llvm/IR/Instruction.h"
30
#include "llvm/IR/IntrinsicInst.h"
31
#include "llvm/IR/Module.h"
32
#include "llvm/IR/Operator.h"
33
#include "llvm/IR/PassManager.h"
34
#include "llvm/IR/PatternMatch.h"
35
#include "llvm/IR/Type.h"
36
#include "llvm/IR/Use.h"
37
#include "llvm/Support/Casting.h"
38
#include "llvm/Support/Debug.h"
39
#include "llvm/Support/KnownBits.h"
40
#include "llvm/Support/raw_ostream.h"
41
#include <algorithm>
42
#include <cstdint>
43
44
using namespace llvm;
45
using namespace llvm::PatternMatch;
46
47
#define DEBUG_TYPE "demanded-bits"
48
49
static bool isAlwaysLive(Instruction *I) {
50
return I->isTerminator() || isa<DbgInfoIntrinsic>(I) || I->isEHPad() ||
51
I->mayHaveSideEffects();
52
}
53
54
void DemandedBits::determineLiveOperandBits(
55
const Instruction *UserI, const Value *Val, unsigned OperandNo,
56
const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2,
57
bool &KnownBitsComputed) {
58
unsigned BitWidth = AB.getBitWidth();
59
60
// We're called once per operand, but for some instructions, we need to
61
// compute known bits of both operands in order to determine the live bits of
62
// either (when both operands are instructions themselves). We don't,
63
// however, want to do this twice, so we cache the result in APInts that live
64
// in the caller. For the two-relevant-operands case, both operand values are
65
// provided here.
66
auto ComputeKnownBits =
67
[&](unsigned BitWidth, const Value *V1, const Value *V2) {
68
if (KnownBitsComputed)
69
return;
70
KnownBitsComputed = true;
71
72
const DataLayout &DL = UserI->getDataLayout();
73
Known = KnownBits(BitWidth);
74
computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT);
75
76
if (V2) {
77
Known2 = KnownBits(BitWidth);
78
computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT);
79
}
80
};
81
82
switch (UserI->getOpcode()) {
83
default: break;
84
case Instruction::Call:
85
case Instruction::Invoke:
86
if (const auto *II = dyn_cast<IntrinsicInst>(UserI)) {
87
switch (II->getIntrinsicID()) {
88
default: break;
89
case Intrinsic::bswap:
90
// The alive bits of the input are the swapped alive bits of
91
// the output.
92
AB = AOut.byteSwap();
93
break;
94
case Intrinsic::bitreverse:
95
// The alive bits of the input are the reversed alive bits of
96
// the output.
97
AB = AOut.reverseBits();
98
break;
99
case Intrinsic::ctlz:
100
if (OperandNo == 0) {
101
// We need some output bits, so we need all bits of the
102
// input to the left of, and including, the leftmost bit
103
// known to be one.
104
ComputeKnownBits(BitWidth, Val, nullptr);
105
AB = APInt::getHighBitsSet(BitWidth,
106
std::min(BitWidth, Known.countMaxLeadingZeros()+1));
107
}
108
break;
109
case Intrinsic::cttz:
110
if (OperandNo == 0) {
111
// We need some output bits, so we need all bits of the
112
// input to the right of, and including, the rightmost bit
113
// known to be one.
114
ComputeKnownBits(BitWidth, Val, nullptr);
115
AB = APInt::getLowBitsSet(BitWidth,
116
std::min(BitWidth, Known.countMaxTrailingZeros()+1));
117
}
118
break;
119
case Intrinsic::fshl:
120
case Intrinsic::fshr: {
121
const APInt *SA;
122
if (OperandNo == 2) {
123
// Shift amount is modulo the bitwidth. For powers of two we have
124
// SA % BW == SA & (BW - 1).
125
if (isPowerOf2_32(BitWidth))
126
AB = BitWidth - 1;
127
} else if (match(II->getOperand(2), m_APInt(SA))) {
128
// Normalize to funnel shift left. APInt shifts of BitWidth are well-
129
// defined, so no need to special-case zero shifts here.
130
uint64_t ShiftAmt = SA->urem(BitWidth);
131
if (II->getIntrinsicID() == Intrinsic::fshr)
132
ShiftAmt = BitWidth - ShiftAmt;
133
134
if (OperandNo == 0)
135
AB = AOut.lshr(ShiftAmt);
136
else if (OperandNo == 1)
137
AB = AOut.shl(BitWidth - ShiftAmt);
138
}
139
break;
140
}
141
case Intrinsic::umax:
142
case Intrinsic::umin:
143
case Intrinsic::smax:
144
case Intrinsic::smin:
145
// If low bits of result are not demanded, they are also not demanded
146
// for the min/max operands.
147
AB = APInt::getBitsSetFrom(BitWidth, AOut.countr_zero());
148
break;
149
}
150
}
151
break;
152
case Instruction::Add:
153
if (AOut.isMask()) {
154
AB = AOut;
155
} else {
156
ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
157
AB = determineLiveOperandBitsAdd(OperandNo, AOut, Known, Known2);
158
}
159
break;
160
case Instruction::Sub:
161
if (AOut.isMask()) {
162
AB = AOut;
163
} else {
164
ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
165
AB = determineLiveOperandBitsSub(OperandNo, AOut, Known, Known2);
166
}
167
break;
168
case Instruction::Mul:
169
// Find the highest live output bit. We don't need any more input
170
// bits than that (adds, and thus subtracts, ripple only to the
171
// left).
172
AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
173
break;
174
case Instruction::Shl:
175
if (OperandNo == 0) {
176
const APInt *ShiftAmtC;
177
if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
178
uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
179
AB = AOut.lshr(ShiftAmt);
180
181
// If the shift is nuw/nsw, then the high bits are not dead
182
// (because we've promised that they *must* be zero).
183
const auto *S = cast<ShlOperator>(UserI);
184
if (S->hasNoSignedWrap())
185
AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
186
else if (S->hasNoUnsignedWrap())
187
AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
188
}
189
}
190
break;
191
case Instruction::LShr:
192
if (OperandNo == 0) {
193
const APInt *ShiftAmtC;
194
if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
195
uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
196
AB = AOut.shl(ShiftAmt);
197
198
// If the shift is exact, then the low bits are not dead
199
// (they must be zero).
200
if (cast<LShrOperator>(UserI)->isExact())
201
AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
202
}
203
}
204
break;
205
case Instruction::AShr:
206
if (OperandNo == 0) {
207
const APInt *ShiftAmtC;
208
if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
209
uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
210
AB = AOut.shl(ShiftAmt);
211
// Because the high input bit is replicated into the
212
// high-order bits of the result, if we need any of those
213
// bits, then we must keep the highest input bit.
214
if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
215
.getBoolValue())
216
AB.setSignBit();
217
218
// If the shift is exact, then the low bits are not dead
219
// (they must be zero).
220
if (cast<AShrOperator>(UserI)->isExact())
221
AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
222
}
223
}
224
break;
225
case Instruction::And:
226
AB = AOut;
227
228
// For bits that are known zero, the corresponding bits in the
229
// other operand are dead (unless they're both zero, in which
230
// case they can't both be dead, so just mark the LHS bits as
231
// dead).
232
ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
233
if (OperandNo == 0)
234
AB &= ~Known2.Zero;
235
else
236
AB &= ~(Known.Zero & ~Known2.Zero);
237
break;
238
case Instruction::Or:
239
AB = AOut;
240
241
// For bits that are known one, the corresponding bits in the
242
// other operand are dead (unless they're both one, in which
243
// case they can't both be dead, so just mark the LHS bits as
244
// dead).
245
ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
246
if (OperandNo == 0)
247
AB &= ~Known2.One;
248
else
249
AB &= ~(Known.One & ~Known2.One);
250
break;
251
case Instruction::Xor:
252
case Instruction::PHI:
253
AB = AOut;
254
break;
255
case Instruction::Trunc:
256
AB = AOut.zext(BitWidth);
257
break;
258
case Instruction::ZExt:
259
AB = AOut.trunc(BitWidth);
260
break;
261
case Instruction::SExt:
262
AB = AOut.trunc(BitWidth);
263
// Because the high input bit is replicated into the
264
// high-order bits of the result, if we need any of those
265
// bits, then we must keep the highest input bit.
266
if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
267
AOut.getBitWidth() - BitWidth))
268
.getBoolValue())
269
AB.setSignBit();
270
break;
271
case Instruction::Select:
272
if (OperandNo != 0)
273
AB = AOut;
274
break;
275
case Instruction::ExtractElement:
276
if (OperandNo == 0)
277
AB = AOut;
278
break;
279
case Instruction::InsertElement:
280
case Instruction::ShuffleVector:
281
if (OperandNo == 0 || OperandNo == 1)
282
AB = AOut;
283
break;
284
}
285
}
286
287
void DemandedBits::performAnalysis() {
288
if (Analyzed)
289
// Analysis already completed for this function.
290
return;
291
Analyzed = true;
292
293
Visited.clear();
294
AliveBits.clear();
295
DeadUses.clear();
296
297
SmallSetVector<Instruction*, 16> Worklist;
298
299
// Collect the set of "root" instructions that are known live.
300
for (Instruction &I : instructions(F)) {
301
if (!isAlwaysLive(&I))
302
continue;
303
304
LLVM_DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
305
// For integer-valued instructions, set up an initial empty set of alive
306
// bits and add the instruction to the work list. For other instructions
307
// add their operands to the work list (for integer values operands, mark
308
// all bits as live).
309
Type *T = I.getType();
310
if (T->isIntOrIntVectorTy()) {
311
if (AliveBits.try_emplace(&I, T->getScalarSizeInBits(), 0).second)
312
Worklist.insert(&I);
313
314
continue;
315
}
316
317
// Non-integer-typed instructions...
318
for (Use &OI : I.operands()) {
319
if (auto *J = dyn_cast<Instruction>(OI)) {
320
Type *T = J->getType();
321
if (T->isIntOrIntVectorTy())
322
AliveBits[J] = APInt::getAllOnes(T->getScalarSizeInBits());
323
else
324
Visited.insert(J);
325
Worklist.insert(J);
326
}
327
}
328
// To save memory, we don't add I to the Visited set here. Instead, we
329
// check isAlwaysLive on every instruction when searching for dead
330
// instructions later (we need to check isAlwaysLive for the
331
// integer-typed instructions anyway).
332
}
333
334
// Propagate liveness backwards to operands.
335
while (!Worklist.empty()) {
336
Instruction *UserI = Worklist.pop_back_val();
337
338
LLVM_DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
339
APInt AOut;
340
bool InputIsKnownDead = false;
341
if (UserI->getType()->isIntOrIntVectorTy()) {
342
AOut = AliveBits[UserI];
343
LLVM_DEBUG(dbgs() << " Alive Out: 0x"
344
<< Twine::utohexstr(AOut.getLimitedValue()));
345
346
// If all bits of the output are dead, then all bits of the input
347
// are also dead.
348
InputIsKnownDead = !AOut && !isAlwaysLive(UserI);
349
}
350
LLVM_DEBUG(dbgs() << "\n");
351
352
KnownBits Known, Known2;
353
bool KnownBitsComputed = false;
354
// Compute the set of alive bits for each operand. These are anded into the
355
// existing set, if any, and if that changes the set of alive bits, the
356
// operand is added to the work-list.
357
for (Use &OI : UserI->operands()) {
358
// We also want to detect dead uses of arguments, but will only store
359
// demanded bits for instructions.
360
auto *I = dyn_cast<Instruction>(OI);
361
if (!I && !isa<Argument>(OI))
362
continue;
363
364
Type *T = OI->getType();
365
if (T->isIntOrIntVectorTy()) {
366
unsigned BitWidth = T->getScalarSizeInBits();
367
APInt AB = APInt::getAllOnes(BitWidth);
368
if (InputIsKnownDead) {
369
AB = APInt(BitWidth, 0);
370
} else {
371
// Bits of each operand that are used to compute alive bits of the
372
// output are alive, all others are dead.
373
determineLiveOperandBits(UserI, OI, OI.getOperandNo(), AOut, AB,
374
Known, Known2, KnownBitsComputed);
375
376
// Keep track of uses which have no demanded bits.
377
if (AB.isZero())
378
DeadUses.insert(&OI);
379
else
380
DeadUses.erase(&OI);
381
}
382
383
if (I) {
384
// If we've added to the set of alive bits (or the operand has not
385
// been previously visited), then re-queue the operand to be visited
386
// again.
387
auto Res = AliveBits.try_emplace(I);
388
if (Res.second || (AB |= Res.first->second) != Res.first->second) {
389
Res.first->second = std::move(AB);
390
Worklist.insert(I);
391
}
392
}
393
} else if (I && Visited.insert(I).second) {
394
Worklist.insert(I);
395
}
396
}
397
}
398
}
399
400
APInt DemandedBits::getDemandedBits(Instruction *I) {
401
performAnalysis();
402
403
auto Found = AliveBits.find(I);
404
if (Found != AliveBits.end())
405
return Found->second;
406
407
const DataLayout &DL = I->getDataLayout();
408
return APInt::getAllOnes(DL.getTypeSizeInBits(I->getType()->getScalarType()));
409
}
410
411
APInt DemandedBits::getDemandedBits(Use *U) {
412
Type *T = (*U)->getType();
413
auto *UserI = cast<Instruction>(U->getUser());
414
const DataLayout &DL = UserI->getDataLayout();
415
unsigned BitWidth = DL.getTypeSizeInBits(T->getScalarType());
416
417
// We only track integer uses, everything else produces a mask with all bits
418
// set
419
if (!T->isIntOrIntVectorTy())
420
return APInt::getAllOnes(BitWidth);
421
422
if (isUseDead(U))
423
return APInt(BitWidth, 0);
424
425
performAnalysis();
426
427
APInt AOut = getDemandedBits(UserI);
428
APInt AB = APInt::getAllOnes(BitWidth);
429
KnownBits Known, Known2;
430
bool KnownBitsComputed = false;
431
432
determineLiveOperandBits(UserI, *U, U->getOperandNo(), AOut, AB, Known,
433
Known2, KnownBitsComputed);
434
435
return AB;
436
}
437
438
bool DemandedBits::isInstructionDead(Instruction *I) {
439
performAnalysis();
440
441
return !Visited.count(I) && !AliveBits.contains(I) && !isAlwaysLive(I);
442
}
443
444
bool DemandedBits::isUseDead(Use *U) {
445
// We only track integer uses, everything else is assumed live.
446
if (!(*U)->getType()->isIntOrIntVectorTy())
447
return false;
448
449
// Uses by always-live instructions are never dead.
450
auto *UserI = cast<Instruction>(U->getUser());
451
if (isAlwaysLive(UserI))
452
return false;
453
454
performAnalysis();
455
if (DeadUses.count(U))
456
return true;
457
458
// If no output bits are demanded, no input bits are demanded and the use
459
// is dead. These uses might not be explicitly present in the DeadUses map.
460
if (UserI->getType()->isIntOrIntVectorTy()) {
461
auto Found = AliveBits.find(UserI);
462
if (Found != AliveBits.end() && Found->second.isZero())
463
return true;
464
}
465
466
return false;
467
}
468
469
void DemandedBits::print(raw_ostream &OS) {
470
auto PrintDB = [&](const Instruction *I, const APInt &A, Value *V = nullptr) {
471
OS << "DemandedBits: 0x" << Twine::utohexstr(A.getLimitedValue())
472
<< " for ";
473
if (V) {
474
V->printAsOperand(OS, false);
475
OS << " in ";
476
}
477
OS << *I << '\n';
478
};
479
480
OS << "Printing analysis 'Demanded Bits Analysis' for function '" << F.getName() << "':\n";
481
performAnalysis();
482
for (auto &KV : AliveBits) {
483
Instruction *I = KV.first;
484
PrintDB(I, KV.second);
485
486
for (Use &OI : I->operands()) {
487
PrintDB(I, getDemandedBits(&OI), OI);
488
}
489
}
490
}
491
492
static APInt determineLiveOperandBitsAddCarry(unsigned OperandNo,
493
const APInt &AOut,
494
const KnownBits &LHS,
495
const KnownBits &RHS,
496
bool CarryZero, bool CarryOne) {
497
assert(!(CarryZero && CarryOne) &&
498
"Carry can't be zero and one at the same time");
499
500
// The following check should be done by the caller, as it also indicates
501
// that LHS and RHS don't need to be computed.
502
//
503
// if (AOut.isMask())
504
// return AOut;
505
506
// Boundary bits' carry out is unaffected by their carry in.
507
APInt Bound = (LHS.Zero & RHS.Zero) | (LHS.One & RHS.One);
508
509
// First, the alive carry bits are determined from the alive output bits:
510
// Let demand ripple to the right but only up to any set bit in Bound.
511
// AOut = -1----
512
// Bound = ----1-
513
// ACarry&~AOut = --111-
514
APInt RBound = Bound.reverseBits();
515
APInt RAOut = AOut.reverseBits();
516
APInt RProp = RAOut + (RAOut | ~RBound);
517
APInt RACarry = RProp ^ ~RBound;
518
APInt ACarry = RACarry.reverseBits();
519
520
// Then, the alive input bits are determined from the alive carry bits:
521
APInt NeededToMaintainCarryZero;
522
APInt NeededToMaintainCarryOne;
523
if (OperandNo == 0) {
524
NeededToMaintainCarryZero = LHS.Zero | ~RHS.Zero;
525
NeededToMaintainCarryOne = LHS.One | ~RHS.One;
526
} else {
527
NeededToMaintainCarryZero = RHS.Zero | ~LHS.Zero;
528
NeededToMaintainCarryOne = RHS.One | ~LHS.One;
529
}
530
531
// As in computeForAddCarry
532
APInt PossibleSumZero = ~LHS.Zero + ~RHS.Zero + !CarryZero;
533
APInt PossibleSumOne = LHS.One + RHS.One + CarryOne;
534
535
// The below is simplified from
536
//
537
// APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero);
538
// APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One;
539
// APInt CarryUnknown = ~(CarryKnownZero | CarryKnownOne);
540
//
541
// APInt NeededToMaintainCarry =
542
// (CarryKnownZero & NeededToMaintainCarryZero) |
543
// (CarryKnownOne & NeededToMaintainCarryOne) |
544
// CarryUnknown;
545
546
APInt NeededToMaintainCarry = (~PossibleSumZero | NeededToMaintainCarryZero) &
547
(PossibleSumOne | NeededToMaintainCarryOne);
548
549
APInt AB = AOut | (ACarry & NeededToMaintainCarry);
550
return AB;
551
}
552
553
APInt DemandedBits::determineLiveOperandBitsAdd(unsigned OperandNo,
554
const APInt &AOut,
555
const KnownBits &LHS,
556
const KnownBits &RHS) {
557
return determineLiveOperandBitsAddCarry(OperandNo, AOut, LHS, RHS, true,
558
false);
559
}
560
561
APInt DemandedBits::determineLiveOperandBitsSub(unsigned OperandNo,
562
const APInt &AOut,
563
const KnownBits &LHS,
564
const KnownBits &RHS) {
565
KnownBits NRHS;
566
NRHS.Zero = RHS.One;
567
NRHS.One = RHS.Zero;
568
return determineLiveOperandBitsAddCarry(OperandNo, AOut, LHS, NRHS, false,
569
true);
570
}
571
572
AnalysisKey DemandedBitsAnalysis::Key;
573
574
DemandedBits DemandedBitsAnalysis::run(Function &F,
575
FunctionAnalysisManager &AM) {
576
auto &AC = AM.getResult<AssumptionAnalysis>(F);
577
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
578
return DemandedBits(F, AC, DT);
579
}
580
581
PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
582
FunctionAnalysisManager &AM) {
583
AM.getResult<DemandedBitsAnalysis>(F).print(OS);
584
return PreservedAnalyses::all();
585
}
586
587