Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Analysis/DependenceGraphBuilder.cpp
35233 views
1
//===- DependenceGraphBuilder.cpp ------------------------------------------==//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
// This file implements common steps of the build algorithm for construction
9
// of dependence graphs such as DDG and PDG.
10
//===----------------------------------------------------------------------===//
11
12
#include "llvm/Analysis/DependenceGraphBuilder.h"
13
#include "llvm/ADT/DepthFirstIterator.h"
14
#include "llvm/ADT/EnumeratedArray.h"
15
#include "llvm/ADT/PostOrderIterator.h"
16
#include "llvm/ADT/SCCIterator.h"
17
#include "llvm/ADT/Statistic.h"
18
#include "llvm/Analysis/DDG.h"
19
20
using namespace llvm;
21
22
#define DEBUG_TYPE "dgb"
23
24
STATISTIC(TotalGraphs, "Number of dependence graphs created.");
25
STATISTIC(TotalDefUseEdges, "Number of def-use edges created.");
26
STATISTIC(TotalMemoryEdges, "Number of memory dependence edges created.");
27
STATISTIC(TotalFineGrainedNodes, "Number of fine-grained nodes created.");
28
STATISTIC(TotalPiBlockNodes, "Number of pi-block nodes created.");
29
STATISTIC(TotalConfusedEdges,
30
"Number of confused memory dependencies between two nodes.");
31
STATISTIC(TotalEdgeReversals,
32
"Number of times the source and sink of dependence was reversed to "
33
"expose cycles in the graph.");
34
35
using InstructionListType = SmallVector<Instruction *, 2>;
36
37
//===--------------------------------------------------------------------===//
38
// AbstractDependenceGraphBuilder implementation
39
//===--------------------------------------------------------------------===//
40
41
template <class G>
42
void AbstractDependenceGraphBuilder<G>::computeInstructionOrdinals() {
43
// The BBList is expected to be in program order.
44
size_t NextOrdinal = 1;
45
for (auto *BB : BBList)
46
for (auto &I : *BB)
47
InstOrdinalMap.insert(std::make_pair(&I, NextOrdinal++));
48
}
49
50
template <class G>
51
void AbstractDependenceGraphBuilder<G>::createFineGrainedNodes() {
52
++TotalGraphs;
53
assert(IMap.empty() && "Expected empty instruction map at start");
54
for (BasicBlock *BB : BBList)
55
for (Instruction &I : *BB) {
56
auto &NewNode = createFineGrainedNode(I);
57
IMap.insert(std::make_pair(&I, &NewNode));
58
NodeOrdinalMap.insert(std::make_pair(&NewNode, getOrdinal(I)));
59
++TotalFineGrainedNodes;
60
}
61
}
62
63
template <class G>
64
void AbstractDependenceGraphBuilder<G>::createAndConnectRootNode() {
65
// Create a root node that connects to every connected component of the graph.
66
// This is done to allow graph iterators to visit all the disjoint components
67
// of the graph, in a single walk.
68
//
69
// This algorithm works by going through each node of the graph and for each
70
// node N, do a DFS starting from N. A rooted edge is established between the
71
// root node and N (if N is not yet visited). All the nodes reachable from N
72
// are marked as visited and are skipped in the DFS of subsequent nodes.
73
//
74
// Note: This algorithm tries to limit the number of edges out of the root
75
// node to some extent, but there may be redundant edges created depending on
76
// the iteration order. For example for a graph {A -> B}, an edge from the
77
// root node is added to both nodes if B is visited before A. While it does
78
// not result in minimal number of edges, this approach saves compile-time
79
// while keeping the number of edges in check.
80
auto &RootNode = createRootNode();
81
df_iterator_default_set<const NodeType *, 4> Visited;
82
for (auto *N : Graph) {
83
if (*N == RootNode)
84
continue;
85
for (auto I : depth_first_ext(N, Visited))
86
if (I == N)
87
createRootedEdge(RootNode, *N);
88
}
89
}
90
91
template <class G> void AbstractDependenceGraphBuilder<G>::createPiBlocks() {
92
if (!shouldCreatePiBlocks())
93
return;
94
95
LLVM_DEBUG(dbgs() << "==== Start of Creation of Pi-Blocks ===\n");
96
97
// The overall algorithm is as follows:
98
// 1. Identify SCCs and for each SCC create a pi-block node containing all
99
// the nodes in that SCC.
100
// 2. Identify incoming edges incident to the nodes inside of the SCC and
101
// reconnect them to the pi-block node.
102
// 3. Identify outgoing edges from the nodes inside of the SCC to nodes
103
// outside of it and reconnect them so that the edges are coming out of the
104
// SCC node instead.
105
106
// Adding nodes as we iterate through the SCCs cause the SCC
107
// iterators to get invalidated. To prevent this invalidation, we first
108
// collect a list of nodes that are part of an SCC, and then iterate over
109
// those lists to create the pi-block nodes. Each element of the list is a
110
// list of nodes in an SCC. Note: trivial SCCs containing a single node are
111
// ignored.
112
SmallVector<NodeListType, 4> ListOfSCCs;
113
for (auto &SCC : make_range(scc_begin(&Graph), scc_end(&Graph))) {
114
if (SCC.size() > 1)
115
ListOfSCCs.emplace_back(SCC.begin(), SCC.end());
116
}
117
118
for (NodeListType &NL : ListOfSCCs) {
119
LLVM_DEBUG(dbgs() << "Creating pi-block node with " << NL.size()
120
<< " nodes in it.\n");
121
122
// SCC iterator may put the nodes in an order that's different from the
123
// program order. To preserve original program order, we sort the list of
124
// nodes based on ordinal numbers computed earlier.
125
llvm::sort(NL, [&](NodeType *LHS, NodeType *RHS) {
126
return getOrdinal(*LHS) < getOrdinal(*RHS);
127
});
128
129
NodeType &PiNode = createPiBlock(NL);
130
++TotalPiBlockNodes;
131
132
// Build a set to speed up the lookup for edges whose targets
133
// are inside the SCC.
134
SmallPtrSet<NodeType *, 4> NodesInSCC(NL.begin(), NL.end());
135
136
// We have the set of nodes in the SCC. We go through the set of nodes
137
// that are outside of the SCC and look for edges that cross the two sets.
138
for (NodeType *N : Graph) {
139
140
// Skip the SCC node and all the nodes inside of it.
141
if (*N == PiNode || NodesInSCC.count(N))
142
continue;
143
144
enum Direction {
145
Incoming, // Incoming edges to the SCC
146
Outgoing, // Edges going ot of the SCC
147
DirectionCount // To make the enum usable as an array index.
148
};
149
150
// Use these flags to help us avoid creating redundant edges. If there
151
// are more than one edges from an outside node to inside nodes, we only
152
// keep one edge from that node to the pi-block node. Similarly, if
153
// there are more than one edges from inside nodes to an outside node,
154
// we only keep one edge from the pi-block node to the outside node.
155
// There is a flag defined for each direction (incoming vs outgoing) and
156
// for each type of edge supported, using a two-dimensional boolean
157
// array.
158
using EdgeKind = typename EdgeType::EdgeKind;
159
EnumeratedArray<bool, EdgeKind> EdgeAlreadyCreated[DirectionCount]{false,
160
false};
161
162
auto createEdgeOfKind = [this](NodeType &Src, NodeType &Dst,
163
const EdgeKind K) {
164
switch (K) {
165
case EdgeKind::RegisterDefUse:
166
createDefUseEdge(Src, Dst);
167
break;
168
case EdgeKind::MemoryDependence:
169
createMemoryEdge(Src, Dst);
170
break;
171
case EdgeKind::Rooted:
172
createRootedEdge(Src, Dst);
173
break;
174
default:
175
llvm_unreachable("Unsupported type of edge.");
176
}
177
};
178
179
auto reconnectEdges = [&](NodeType *Src, NodeType *Dst, NodeType *New,
180
const Direction Dir) {
181
if (!Src->hasEdgeTo(*Dst))
182
return;
183
LLVM_DEBUG(
184
dbgs() << "reconnecting("
185
<< (Dir == Direction::Incoming ? "incoming)" : "outgoing)")
186
<< ":\nSrc:" << *Src << "\nDst:" << *Dst << "\nNew:" << *New
187
<< "\n");
188
assert((Dir == Direction::Incoming || Dir == Direction::Outgoing) &&
189
"Invalid direction.");
190
191
SmallVector<EdgeType *, 10> EL;
192
Src->findEdgesTo(*Dst, EL);
193
for (EdgeType *OldEdge : EL) {
194
EdgeKind Kind = OldEdge->getKind();
195
if (!EdgeAlreadyCreated[Dir][Kind]) {
196
if (Dir == Direction::Incoming) {
197
createEdgeOfKind(*Src, *New, Kind);
198
LLVM_DEBUG(dbgs() << "created edge from Src to New.\n");
199
} else if (Dir == Direction::Outgoing) {
200
createEdgeOfKind(*New, *Dst, Kind);
201
LLVM_DEBUG(dbgs() << "created edge from New to Dst.\n");
202
}
203
EdgeAlreadyCreated[Dir][Kind] = true;
204
}
205
Src->removeEdge(*OldEdge);
206
destroyEdge(*OldEdge);
207
LLVM_DEBUG(dbgs() << "removed old edge between Src and Dst.\n\n");
208
}
209
};
210
211
for (NodeType *SCCNode : NL) {
212
// Process incoming edges incident to the pi-block node.
213
reconnectEdges(N, SCCNode, &PiNode, Direction::Incoming);
214
215
// Process edges that are coming out of the pi-block node.
216
reconnectEdges(SCCNode, N, &PiNode, Direction::Outgoing);
217
}
218
}
219
}
220
221
// Ordinal maps are no longer needed.
222
InstOrdinalMap.clear();
223
NodeOrdinalMap.clear();
224
225
LLVM_DEBUG(dbgs() << "==== End of Creation of Pi-Blocks ===\n");
226
}
227
228
template <class G> void AbstractDependenceGraphBuilder<G>::createDefUseEdges() {
229
for (NodeType *N : Graph) {
230
InstructionListType SrcIList;
231
N->collectInstructions([](const Instruction *I) { return true; }, SrcIList);
232
233
// Use a set to mark the targets that we link to N, so we don't add
234
// duplicate def-use edges when more than one instruction in a target node
235
// use results of instructions that are contained in N.
236
SmallPtrSet<NodeType *, 4> VisitedTargets;
237
238
for (Instruction *II : SrcIList) {
239
for (User *U : II->users()) {
240
Instruction *UI = dyn_cast<Instruction>(U);
241
if (!UI)
242
continue;
243
NodeType *DstNode = nullptr;
244
if (IMap.find(UI) != IMap.end())
245
DstNode = IMap.find(UI)->second;
246
247
// In the case of loops, the scope of the subgraph is all the
248
// basic blocks (and instructions within them) belonging to the loop. We
249
// simply ignore all the edges coming from (or going into) instructions
250
// or basic blocks outside of this range.
251
if (!DstNode) {
252
LLVM_DEBUG(
253
dbgs()
254
<< "skipped def-use edge since the sink" << *UI
255
<< " is outside the range of instructions being considered.\n");
256
continue;
257
}
258
259
// Self dependencies are ignored because they are redundant and
260
// uninteresting.
261
if (DstNode == N) {
262
LLVM_DEBUG(dbgs()
263
<< "skipped def-use edge since the sink and the source ("
264
<< N << ") are the same.\n");
265
continue;
266
}
267
268
if (VisitedTargets.insert(DstNode).second) {
269
createDefUseEdge(*N, *DstNode);
270
++TotalDefUseEdges;
271
}
272
}
273
}
274
}
275
}
276
277
template <class G>
278
void AbstractDependenceGraphBuilder<G>::createMemoryDependencyEdges() {
279
using DGIterator = typename G::iterator;
280
auto isMemoryAccess = [](const Instruction *I) {
281
return I->mayReadOrWriteMemory();
282
};
283
for (DGIterator SrcIt = Graph.begin(), E = Graph.end(); SrcIt != E; ++SrcIt) {
284
InstructionListType SrcIList;
285
(*SrcIt)->collectInstructions(isMemoryAccess, SrcIList);
286
if (SrcIList.empty())
287
continue;
288
289
for (DGIterator DstIt = SrcIt; DstIt != E; ++DstIt) {
290
if (**SrcIt == **DstIt)
291
continue;
292
InstructionListType DstIList;
293
(*DstIt)->collectInstructions(isMemoryAccess, DstIList);
294
if (DstIList.empty())
295
continue;
296
bool ForwardEdgeCreated = false;
297
bool BackwardEdgeCreated = false;
298
for (Instruction *ISrc : SrcIList) {
299
for (Instruction *IDst : DstIList) {
300
auto D = DI.depends(ISrc, IDst, true);
301
if (!D)
302
continue;
303
304
// If we have a dependence with its left-most non-'=' direction
305
// being '>' we need to reverse the direction of the edge, because
306
// the source of the dependence cannot occur after the sink. For
307
// confused dependencies, we will create edges in both directions to
308
// represent the possibility of a cycle.
309
310
auto createConfusedEdges = [&](NodeType &Src, NodeType &Dst) {
311
if (!ForwardEdgeCreated) {
312
createMemoryEdge(Src, Dst);
313
++TotalMemoryEdges;
314
}
315
if (!BackwardEdgeCreated) {
316
createMemoryEdge(Dst, Src);
317
++TotalMemoryEdges;
318
}
319
ForwardEdgeCreated = BackwardEdgeCreated = true;
320
++TotalConfusedEdges;
321
};
322
323
auto createForwardEdge = [&](NodeType &Src, NodeType &Dst) {
324
if (!ForwardEdgeCreated) {
325
createMemoryEdge(Src, Dst);
326
++TotalMemoryEdges;
327
}
328
ForwardEdgeCreated = true;
329
};
330
331
auto createBackwardEdge = [&](NodeType &Src, NodeType &Dst) {
332
if (!BackwardEdgeCreated) {
333
createMemoryEdge(Dst, Src);
334
++TotalMemoryEdges;
335
}
336
BackwardEdgeCreated = true;
337
};
338
339
if (D->isConfused())
340
createConfusedEdges(**SrcIt, **DstIt);
341
else if (D->isOrdered() && !D->isLoopIndependent()) {
342
bool ReversedEdge = false;
343
for (unsigned Level = 1; Level <= D->getLevels(); ++Level) {
344
if (D->getDirection(Level) == Dependence::DVEntry::EQ)
345
continue;
346
else if (D->getDirection(Level) == Dependence::DVEntry::GT) {
347
createBackwardEdge(**SrcIt, **DstIt);
348
ReversedEdge = true;
349
++TotalEdgeReversals;
350
break;
351
} else if (D->getDirection(Level) == Dependence::DVEntry::LT)
352
break;
353
else {
354
createConfusedEdges(**SrcIt, **DstIt);
355
break;
356
}
357
}
358
if (!ReversedEdge)
359
createForwardEdge(**SrcIt, **DstIt);
360
} else
361
createForwardEdge(**SrcIt, **DstIt);
362
363
// Avoid creating duplicate edges.
364
if (ForwardEdgeCreated && BackwardEdgeCreated)
365
break;
366
}
367
368
// If we've created edges in both directions, there is no more
369
// unique edge that we can create between these two nodes, so we
370
// can exit early.
371
if (ForwardEdgeCreated && BackwardEdgeCreated)
372
break;
373
}
374
}
375
}
376
}
377
378
template <class G> void AbstractDependenceGraphBuilder<G>::simplify() {
379
if (!shouldSimplify())
380
return;
381
LLVM_DEBUG(dbgs() << "==== Start of Graph Simplification ===\n");
382
383
// This algorithm works by first collecting a set of candidate nodes that have
384
// an out-degree of one (in terms of def-use edges), and then ignoring those
385
// whose targets have an in-degree more than one. Each node in the resulting
386
// set can then be merged with its corresponding target and put back into the
387
// worklist until no further merge candidates are available.
388
SmallPtrSet<NodeType *, 32> CandidateSourceNodes;
389
390
// A mapping between nodes and their in-degree. To save space, this map
391
// only contains nodes that are targets of nodes in the CandidateSourceNodes.
392
DenseMap<NodeType *, unsigned> TargetInDegreeMap;
393
394
for (NodeType *N : Graph) {
395
if (N->getEdges().size() != 1)
396
continue;
397
EdgeType &Edge = N->back();
398
if (!Edge.isDefUse())
399
continue;
400
CandidateSourceNodes.insert(N);
401
402
// Insert an element into the in-degree map and initialize to zero. The
403
// count will get updated in the next step.
404
TargetInDegreeMap.insert({&Edge.getTargetNode(), 0});
405
}
406
407
LLVM_DEBUG({
408
dbgs() << "Size of candidate src node list:" << CandidateSourceNodes.size()
409
<< "\nNode with single outgoing def-use edge:\n";
410
for (NodeType *N : CandidateSourceNodes) {
411
dbgs() << N << "\n";
412
}
413
});
414
415
for (NodeType *N : Graph) {
416
for (EdgeType *E : *N) {
417
NodeType *Tgt = &E->getTargetNode();
418
auto TgtIT = TargetInDegreeMap.find(Tgt);
419
if (TgtIT != TargetInDegreeMap.end())
420
++(TgtIT->second);
421
}
422
}
423
424
LLVM_DEBUG({
425
dbgs() << "Size of target in-degree map:" << TargetInDegreeMap.size()
426
<< "\nContent of in-degree map:\n";
427
for (auto &I : TargetInDegreeMap) {
428
dbgs() << I.first << " --> " << I.second << "\n";
429
}
430
});
431
432
SmallVector<NodeType *, 32> Worklist(CandidateSourceNodes.begin(),
433
CandidateSourceNodes.end());
434
while (!Worklist.empty()) {
435
NodeType &Src = *Worklist.pop_back_val();
436
// As nodes get merged, we need to skip any node that has been removed from
437
// the candidate set (see below).
438
if (!CandidateSourceNodes.erase(&Src))
439
continue;
440
441
assert(Src.getEdges().size() == 1 &&
442
"Expected a single edge from the candidate src node.");
443
NodeType &Tgt = Src.back().getTargetNode();
444
assert(TargetInDegreeMap.find(&Tgt) != TargetInDegreeMap.end() &&
445
"Expected target to be in the in-degree map.");
446
447
if (TargetInDegreeMap[&Tgt] != 1)
448
continue;
449
450
if (!areNodesMergeable(Src, Tgt))
451
continue;
452
453
// Do not merge if there is also an edge from target to src (immediate
454
// cycle).
455
if (Tgt.hasEdgeTo(Src))
456
continue;
457
458
LLVM_DEBUG(dbgs() << "Merging:" << Src << "\nWith:" << Tgt << "\n");
459
460
mergeNodes(Src, Tgt);
461
462
// If the target node is in the candidate set itself, we need to put the
463
// src node back into the worklist again so it gives the target a chance
464
// to get merged into it. For example if we have:
465
// {(a)->(b), (b)->(c), (c)->(d), ...} and the worklist is initially {b, a},
466
// then after merging (a) and (b) together, we need to put (a,b) back in
467
// the worklist so that (c) can get merged in as well resulting in
468
// {(a,b,c) -> d}
469
// We also need to remove the old target (b), from the worklist. We first
470
// remove it from the candidate set here, and skip any item from the
471
// worklist that is not in the set.
472
if (CandidateSourceNodes.erase(&Tgt)) {
473
Worklist.push_back(&Src);
474
CandidateSourceNodes.insert(&Src);
475
LLVM_DEBUG(dbgs() << "Putting " << &Src << " back in the worklist.\n");
476
}
477
}
478
LLVM_DEBUG(dbgs() << "=== End of Graph Simplification ===\n");
479
}
480
481
template <class G>
482
void AbstractDependenceGraphBuilder<G>::sortNodesTopologically() {
483
484
// If we don't create pi-blocks, then we may not have a DAG.
485
if (!shouldCreatePiBlocks())
486
return;
487
488
SmallVector<NodeType *, 64> NodesInPO;
489
using NodeKind = typename NodeType::NodeKind;
490
for (NodeType *N : post_order(&Graph)) {
491
if (N->getKind() == NodeKind::PiBlock) {
492
// Put members of the pi-block right after the pi-block itself, for
493
// convenience.
494
const NodeListType &PiBlockMembers = getNodesInPiBlock(*N);
495
llvm::append_range(NodesInPO, PiBlockMembers);
496
}
497
NodesInPO.push_back(N);
498
}
499
500
size_t OldSize = Graph.Nodes.size();
501
Graph.Nodes.clear();
502
append_range(Graph.Nodes, reverse(NodesInPO));
503
if (Graph.Nodes.size() != OldSize)
504
assert(false &&
505
"Expected the number of nodes to stay the same after the sort");
506
}
507
508
template class llvm::AbstractDependenceGraphBuilder<DataDependenceGraph>;
509
template class llvm::DependenceGraphInfo<DDGNode>;
510
511