Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Analysis/FunctionPropertiesAnalysis.cpp
35232 views
1
//===- FunctionPropertiesAnalysis.cpp - Function Properties Analysis ------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the FunctionPropertiesInfo and FunctionPropertiesAnalysis
10
// classes used to extract function properties.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "llvm/Analysis/FunctionPropertiesAnalysis.h"
15
#include "llvm/ADT/STLExtras.h"
16
#include "llvm/ADT/SetVector.h"
17
#include "llvm/Analysis/LoopInfo.h"
18
#include "llvm/IR/CFG.h"
19
#include "llvm/IR/Constants.h"
20
#include "llvm/IR/Dominators.h"
21
#include "llvm/IR/Instructions.h"
22
#include "llvm/IR/IntrinsicInst.h"
23
#include "llvm/Support/CommandLine.h"
24
#include <deque>
25
26
using namespace llvm;
27
28
namespace llvm {
29
cl::opt<bool> EnableDetailedFunctionProperties(
30
"enable-detailed-function-properties", cl::Hidden, cl::init(false),
31
cl::desc("Whether or not to compute detailed function properties."));
32
33
cl::opt<unsigned> BigBasicBlockInstructionThreshold(
34
"big-basic-block-instruction-threshold", cl::Hidden, cl::init(500),
35
cl::desc("The minimum number of instructions a basic block should contain "
36
"before being considered big."));
37
38
cl::opt<unsigned> MediumBasicBlockInstructionThreshold(
39
"medium-basic-block-instruction-threshold", cl::Hidden, cl::init(15),
40
cl::desc("The minimum number of instructions a basic block should contain "
41
"before being considered medium-sized."));
42
} // namespace llvm
43
44
static cl::opt<unsigned> CallWithManyArgumentsThreshold(
45
"call-with-many-arguments-threshold", cl::Hidden, cl::init(4),
46
cl::desc("The minimum number of arguments a function call must have before "
47
"it is considered having many arguments."));
48
49
namespace {
50
int64_t getNrBlocksFromCond(const BasicBlock &BB) {
51
int64_t Ret = 0;
52
if (const auto *BI = dyn_cast<BranchInst>(BB.getTerminator())) {
53
if (BI->isConditional())
54
Ret += BI->getNumSuccessors();
55
} else if (const auto *SI = dyn_cast<SwitchInst>(BB.getTerminator())) {
56
Ret += (SI->getNumCases() + (nullptr != SI->getDefaultDest()));
57
}
58
return Ret;
59
}
60
61
int64_t getUses(const Function &F) {
62
return ((!F.hasLocalLinkage()) ? 1 : 0) + F.getNumUses();
63
}
64
} // namespace
65
66
void FunctionPropertiesInfo::reIncludeBB(const BasicBlock &BB) {
67
updateForBB(BB, +1);
68
}
69
70
void FunctionPropertiesInfo::updateForBB(const BasicBlock &BB,
71
int64_t Direction) {
72
assert(Direction == 1 || Direction == -1);
73
BasicBlockCount += Direction;
74
BlocksReachedFromConditionalInstruction +=
75
(Direction * getNrBlocksFromCond(BB));
76
for (const auto &I : BB) {
77
if (auto *CS = dyn_cast<CallBase>(&I)) {
78
const auto *Callee = CS->getCalledFunction();
79
if (Callee && !Callee->isIntrinsic() && !Callee->isDeclaration())
80
DirectCallsToDefinedFunctions += Direction;
81
}
82
if (I.getOpcode() == Instruction::Load) {
83
LoadInstCount += Direction;
84
} else if (I.getOpcode() == Instruction::Store) {
85
StoreInstCount += Direction;
86
}
87
}
88
TotalInstructionCount += Direction * BB.sizeWithoutDebug();
89
90
if (EnableDetailedFunctionProperties) {
91
unsigned SuccessorCount = succ_size(&BB);
92
if (SuccessorCount == 1)
93
BasicBlocksWithSingleSuccessor += Direction;
94
else if (SuccessorCount == 2)
95
BasicBlocksWithTwoSuccessors += Direction;
96
else if (SuccessorCount > 2)
97
BasicBlocksWithMoreThanTwoSuccessors += Direction;
98
99
unsigned PredecessorCount = pred_size(&BB);
100
if (PredecessorCount == 1)
101
BasicBlocksWithSinglePredecessor += Direction;
102
else if (PredecessorCount == 2)
103
BasicBlocksWithTwoPredecessors += Direction;
104
else if (PredecessorCount > 2)
105
BasicBlocksWithMoreThanTwoPredecessors += Direction;
106
107
if (TotalInstructionCount > BigBasicBlockInstructionThreshold)
108
BigBasicBlocks += Direction;
109
else if (TotalInstructionCount > MediumBasicBlockInstructionThreshold)
110
MediumBasicBlocks += Direction;
111
else
112
SmallBasicBlocks += Direction;
113
114
// Calculate critical edges by looking through all successors of a basic
115
// block that has multiple successors and finding ones that have multiple
116
// predecessors, which represent critical edges.
117
if (SuccessorCount > 1) {
118
for (const auto *Successor : successors(&BB)) {
119
if (pred_size(Successor) > 1)
120
CriticalEdgeCount += Direction;
121
}
122
}
123
124
ControlFlowEdgeCount += Direction * SuccessorCount;
125
126
if (const auto *BI = dyn_cast<BranchInst>(BB.getTerminator())) {
127
if (!BI->isConditional())
128
UnconditionalBranchCount += Direction;
129
}
130
131
for (const Instruction &I : BB.instructionsWithoutDebug()) {
132
if (I.isCast())
133
CastInstructionCount += Direction;
134
135
if (I.getType()->isFloatTy())
136
FloatingPointInstructionCount += Direction;
137
else if (I.getType()->isIntegerTy())
138
IntegerInstructionCount += Direction;
139
140
if (isa<IntrinsicInst>(I))
141
++IntrinsicCount;
142
143
if (const auto *Call = dyn_cast<CallInst>(&I)) {
144
if (Call->isIndirectCall())
145
IndirectCallCount += Direction;
146
else
147
DirectCallCount += Direction;
148
149
if (Call->getType()->isIntegerTy())
150
CallReturnsIntegerCount += Direction;
151
else if (Call->getType()->isFloatingPointTy())
152
CallReturnsFloatCount += Direction;
153
else if (Call->getType()->isPointerTy())
154
CallReturnsPointerCount += Direction;
155
else if (Call->getType()->isVectorTy()) {
156
if (Call->getType()->getScalarType()->isIntegerTy())
157
CallReturnsVectorIntCount += Direction;
158
else if (Call->getType()->getScalarType()->isFloatingPointTy())
159
CallReturnsVectorFloatCount += Direction;
160
else if (Call->getType()->getScalarType()->isPointerTy())
161
CallReturnsVectorPointerCount += Direction;
162
}
163
164
if (Call->arg_size() > CallWithManyArgumentsThreshold)
165
CallWithManyArgumentsCount += Direction;
166
167
for (const auto &Arg : Call->args()) {
168
if (Arg->getType()->isPointerTy()) {
169
CallWithPointerArgumentCount += Direction;
170
break;
171
}
172
}
173
}
174
175
#define COUNT_OPERAND(OPTYPE) \
176
if (isa<OPTYPE>(Operand)) { \
177
OPTYPE##OperandCount += Direction; \
178
continue; \
179
}
180
181
for (unsigned int OperandIndex = 0; OperandIndex < I.getNumOperands();
182
++OperandIndex) {
183
Value *Operand = I.getOperand(OperandIndex);
184
COUNT_OPERAND(GlobalValue)
185
COUNT_OPERAND(ConstantInt)
186
COUNT_OPERAND(ConstantFP)
187
COUNT_OPERAND(Constant)
188
COUNT_OPERAND(Instruction)
189
COUNT_OPERAND(BasicBlock)
190
COUNT_OPERAND(InlineAsm)
191
COUNT_OPERAND(Argument)
192
193
// We only get to this point if we haven't matched any of the other
194
// operand types.
195
UnknownOperandCount += Direction;
196
}
197
198
#undef CHECK_OPERAND
199
}
200
}
201
}
202
203
void FunctionPropertiesInfo::updateAggregateStats(const Function &F,
204
const LoopInfo &LI) {
205
206
Uses = getUses(F);
207
TopLevelLoopCount = llvm::size(LI);
208
MaxLoopDepth = 0;
209
std::deque<const Loop *> Worklist;
210
llvm::append_range(Worklist, LI);
211
while (!Worklist.empty()) {
212
const auto *L = Worklist.front();
213
MaxLoopDepth =
214
std::max(MaxLoopDepth, static_cast<int64_t>(L->getLoopDepth()));
215
Worklist.pop_front();
216
llvm::append_range(Worklist, L->getSubLoops());
217
}
218
}
219
220
FunctionPropertiesInfo FunctionPropertiesInfo::getFunctionPropertiesInfo(
221
Function &F, FunctionAnalysisManager &FAM) {
222
return getFunctionPropertiesInfo(F, FAM.getResult<DominatorTreeAnalysis>(F),
223
FAM.getResult<LoopAnalysis>(F));
224
}
225
226
FunctionPropertiesInfo FunctionPropertiesInfo::getFunctionPropertiesInfo(
227
const Function &F, const DominatorTree &DT, const LoopInfo &LI) {
228
229
FunctionPropertiesInfo FPI;
230
for (const auto &BB : F)
231
if (DT.isReachableFromEntry(&BB))
232
FPI.reIncludeBB(BB);
233
FPI.updateAggregateStats(F, LI);
234
return FPI;
235
}
236
237
void FunctionPropertiesInfo::print(raw_ostream &OS) const {
238
#define PRINT_PROPERTY(PROP_NAME) OS << #PROP_NAME ": " << PROP_NAME << "\n";
239
240
PRINT_PROPERTY(BasicBlockCount)
241
PRINT_PROPERTY(BlocksReachedFromConditionalInstruction)
242
PRINT_PROPERTY(Uses)
243
PRINT_PROPERTY(DirectCallsToDefinedFunctions)
244
PRINT_PROPERTY(LoadInstCount)
245
PRINT_PROPERTY(StoreInstCount)
246
PRINT_PROPERTY(MaxLoopDepth)
247
PRINT_PROPERTY(TopLevelLoopCount)
248
PRINT_PROPERTY(TotalInstructionCount)
249
250
if (EnableDetailedFunctionProperties) {
251
PRINT_PROPERTY(BasicBlocksWithSingleSuccessor)
252
PRINT_PROPERTY(BasicBlocksWithTwoSuccessors)
253
PRINT_PROPERTY(BasicBlocksWithMoreThanTwoSuccessors)
254
PRINT_PROPERTY(BasicBlocksWithSinglePredecessor)
255
PRINT_PROPERTY(BasicBlocksWithTwoPredecessors)
256
PRINT_PROPERTY(BasicBlocksWithMoreThanTwoPredecessors)
257
PRINT_PROPERTY(BigBasicBlocks)
258
PRINT_PROPERTY(MediumBasicBlocks)
259
PRINT_PROPERTY(SmallBasicBlocks)
260
PRINT_PROPERTY(CastInstructionCount)
261
PRINT_PROPERTY(FloatingPointInstructionCount)
262
PRINT_PROPERTY(IntegerInstructionCount)
263
PRINT_PROPERTY(ConstantIntOperandCount)
264
PRINT_PROPERTY(ConstantFPOperandCount)
265
PRINT_PROPERTY(ConstantOperandCount)
266
PRINT_PROPERTY(InstructionOperandCount)
267
PRINT_PROPERTY(BasicBlockOperandCount)
268
PRINT_PROPERTY(GlobalValueOperandCount)
269
PRINT_PROPERTY(InlineAsmOperandCount)
270
PRINT_PROPERTY(ArgumentOperandCount)
271
PRINT_PROPERTY(UnknownOperandCount)
272
PRINT_PROPERTY(CriticalEdgeCount)
273
PRINT_PROPERTY(ControlFlowEdgeCount)
274
PRINT_PROPERTY(UnconditionalBranchCount)
275
PRINT_PROPERTY(IntrinsicCount)
276
PRINT_PROPERTY(DirectCallCount)
277
PRINT_PROPERTY(IndirectCallCount)
278
PRINT_PROPERTY(CallReturnsIntegerCount)
279
PRINT_PROPERTY(CallReturnsFloatCount)
280
PRINT_PROPERTY(CallReturnsPointerCount)
281
PRINT_PROPERTY(CallReturnsVectorIntCount)
282
PRINT_PROPERTY(CallReturnsVectorFloatCount)
283
PRINT_PROPERTY(CallReturnsVectorPointerCount)
284
PRINT_PROPERTY(CallWithManyArgumentsCount)
285
PRINT_PROPERTY(CallWithPointerArgumentCount)
286
}
287
288
#undef PRINT_PROPERTY
289
290
OS << "\n";
291
}
292
293
AnalysisKey FunctionPropertiesAnalysis::Key;
294
295
FunctionPropertiesInfo
296
FunctionPropertiesAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
297
return FunctionPropertiesInfo::getFunctionPropertiesInfo(F, FAM);
298
}
299
300
PreservedAnalyses
301
FunctionPropertiesPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
302
OS << "Printing analysis results of CFA for function "
303
<< "'" << F.getName() << "':"
304
<< "\n";
305
AM.getResult<FunctionPropertiesAnalysis>(F).print(OS);
306
return PreservedAnalyses::all();
307
}
308
309
FunctionPropertiesUpdater::FunctionPropertiesUpdater(
310
FunctionPropertiesInfo &FPI, CallBase &CB)
311
: FPI(FPI), CallSiteBB(*CB.getParent()), Caller(*CallSiteBB.getParent()) {
312
assert(isa<CallInst>(CB) || isa<InvokeInst>(CB));
313
// For BBs that are likely to change, we subtract from feature totals their
314
// contribution. Some features, like max loop counts or depths, are left
315
// invalid, as they will be updated post-inlining.
316
SmallPtrSet<const BasicBlock *, 4> LikelyToChangeBBs;
317
// The CB BB will change - it'll either be split or the callee's body (single
318
// BB) will be pasted in.
319
LikelyToChangeBBs.insert(&CallSiteBB);
320
321
// The caller's entry BB may change due to new alloca instructions.
322
LikelyToChangeBBs.insert(&*Caller.begin());
323
324
// The successors may become unreachable in the case of `invoke` inlining.
325
// We track successors separately, too, because they form a boundary, together
326
// with the CB BB ('Entry') between which the inlined callee will be pasted.
327
Successors.insert(succ_begin(&CallSiteBB), succ_end(&CallSiteBB));
328
329
// Inlining only handles invoke and calls. If this is an invoke, and inlining
330
// it pulls another invoke, the original landing pad may get split, so as to
331
// share its content with other potential users. So the edge up to which we
332
// need to invalidate and then re-account BB data is the successors of the
333
// current landing pad. We can leave the current lp, too - if it doesn't get
334
// split, then it will be the place traversal stops. Either way, the
335
// discounted BBs will be checked if reachable and re-added.
336
if (const auto *II = dyn_cast<InvokeInst>(&CB)) {
337
const auto *UnwindDest = II->getUnwindDest();
338
Successors.insert(succ_begin(UnwindDest), succ_end(UnwindDest));
339
}
340
341
// Exclude the CallSiteBB, if it happens to be its own successor (1-BB loop).
342
// We are only interested in BBs the graph moves past the callsite BB to
343
// define the frontier past which we don't want to re-process BBs. Including
344
// the callsite BB in this case would prematurely stop the traversal in
345
// finish().
346
Successors.erase(&CallSiteBB);
347
348
for (const auto *BB : Successors)
349
LikelyToChangeBBs.insert(BB);
350
351
// Commit the change. While some of the BBs accounted for above may play dual
352
// role - e.g. caller's entry BB may be the same as the callsite BB - set
353
// insertion semantics make sure we account them once. This needs to be
354
// followed in `finish`, too.
355
for (const auto *BB : LikelyToChangeBBs)
356
FPI.updateForBB(*BB, -1);
357
}
358
359
void FunctionPropertiesUpdater::finish(FunctionAnalysisManager &FAM) const {
360
// Update feature values from the BBs that were copied from the callee, or
361
// might have been modified because of inlining. The latter have been
362
// subtracted in the FunctionPropertiesUpdater ctor.
363
// There could be successors that were reached before but now are only
364
// reachable from elsewhere in the CFG.
365
// One example is the following diamond CFG (lines are arrows pointing down):
366
// A
367
// / \
368
// B C
369
// | |
370
// | D
371
// | |
372
// | E
373
// \ /
374
// F
375
// There's a call site in C that is inlined. Upon doing that, it turns out
376
// it expands to
377
// call void @llvm.trap()
378
// unreachable
379
// F isn't reachable from C anymore, but we did discount it when we set up
380
// FunctionPropertiesUpdater, so we need to re-include it here.
381
// At the same time, D and E were reachable before, but now are not anymore,
382
// so we need to leave D out (we discounted it at setup), and explicitly
383
// remove E.
384
SetVector<const BasicBlock *> Reinclude;
385
SetVector<const BasicBlock *> Unreachable;
386
const auto &DT =
387
FAM.getResult<DominatorTreeAnalysis>(const_cast<Function &>(Caller));
388
389
if (&CallSiteBB != &*Caller.begin())
390
Reinclude.insert(&*Caller.begin());
391
392
// Distribute the successors to the 2 buckets.
393
for (const auto *Succ : Successors)
394
if (DT.isReachableFromEntry(Succ))
395
Reinclude.insert(Succ);
396
else
397
Unreachable.insert(Succ);
398
399
// For reinclusion, we want to stop at the reachable successors, who are at
400
// the beginning of the worklist; but, starting from the callsite bb and
401
// ending at those successors, we also want to perform a traversal.
402
// IncludeSuccessorsMark is the index after which we include successors.
403
const auto IncludeSuccessorsMark = Reinclude.size();
404
bool CSInsertion = Reinclude.insert(&CallSiteBB);
405
(void)CSInsertion;
406
assert(CSInsertion);
407
for (size_t I = 0; I < Reinclude.size(); ++I) {
408
const auto *BB = Reinclude[I];
409
FPI.reIncludeBB(*BB);
410
if (I >= IncludeSuccessorsMark)
411
Reinclude.insert(succ_begin(BB), succ_end(BB));
412
}
413
414
// For exclusion, we don't need to exclude the set of BBs that were successors
415
// before and are now unreachable, because we already did that at setup. For
416
// the rest, as long as a successor is unreachable, we want to explicitly
417
// exclude it.
418
const auto AlreadyExcludedMark = Unreachable.size();
419
for (size_t I = 0; I < Unreachable.size(); ++I) {
420
const auto *U = Unreachable[I];
421
if (I >= AlreadyExcludedMark)
422
FPI.updateForBB(*U, -1);
423
for (const auto *Succ : successors(U))
424
if (!DT.isReachableFromEntry(Succ))
425
Unreachable.insert(Succ);
426
}
427
428
const auto &LI = FAM.getResult<LoopAnalysis>(const_cast<Function &>(Caller));
429
FPI.updateAggregateStats(Caller, LI);
430
}
431
432
bool FunctionPropertiesUpdater::isUpdateValid(Function &F,
433
const FunctionPropertiesInfo &FPI,
434
FunctionAnalysisManager &FAM) {
435
DominatorTree DT(F);
436
LoopInfo LI(DT);
437
auto Fresh = FunctionPropertiesInfo::getFunctionPropertiesInfo(F, DT, LI);
438
return FPI == Fresh;
439
}
440
441