Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Analysis/GlobalsModRef.cpp
35233 views
1
//===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This simple pass provides alias and mod/ref information for global values
10
// that do not have their address taken, and keeps track of whether functions
11
// read or write memory (are "pure"). For this simple (but very common) case,
12
// we can provide pretty accurate and useful information.
13
//
14
//===----------------------------------------------------------------------===//
15
16
#include "llvm/Analysis/GlobalsModRef.h"
17
#include "llvm/ADT/SCCIterator.h"
18
#include "llvm/ADT/SmallPtrSet.h"
19
#include "llvm/ADT/Statistic.h"
20
#include "llvm/Analysis/CallGraph.h"
21
#include "llvm/Analysis/MemoryBuiltins.h"
22
#include "llvm/Analysis/TargetLibraryInfo.h"
23
#include "llvm/Analysis/ValueTracking.h"
24
#include "llvm/IR/InstIterator.h"
25
#include "llvm/IR/Instructions.h"
26
#include "llvm/IR/Module.h"
27
#include "llvm/IR/PassManager.h"
28
#include "llvm/InitializePasses.h"
29
#include "llvm/Pass.h"
30
#include "llvm/Support/CommandLine.h"
31
32
using namespace llvm;
33
34
#define DEBUG_TYPE "globalsmodref-aa"
35
36
STATISTIC(NumNonAddrTakenGlobalVars,
37
"Number of global vars without address taken");
38
STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken");
39
STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory");
40
STATISTIC(NumReadMemFunctions, "Number of functions that only read memory");
41
STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects");
42
43
// An option to enable unsafe alias results from the GlobalsModRef analysis.
44
// When enabled, GlobalsModRef will provide no-alias results which in extremely
45
// rare cases may not be conservatively correct. In particular, in the face of
46
// transforms which cause asymmetry between how effective getUnderlyingObject
47
// is for two pointers, it may produce incorrect results.
48
//
49
// These unsafe results have been returned by GMR for many years without
50
// causing significant issues in the wild and so we provide a mechanism to
51
// re-enable them for users of LLVM that have a particular performance
52
// sensitivity and no known issues. The option also makes it easy to evaluate
53
// the performance impact of these results.
54
static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults(
55
"enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden);
56
57
/// The mod/ref information collected for a particular function.
58
///
59
/// We collect information about mod/ref behavior of a function here, both in
60
/// general and as pertains to specific globals. We only have this detailed
61
/// information when we know *something* useful about the behavior. If we
62
/// saturate to fully general mod/ref, we remove the info for the function.
63
class GlobalsAAResult::FunctionInfo {
64
typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType;
65
66
/// Build a wrapper struct that has 8-byte alignment. All heap allocations
67
/// should provide this much alignment at least, but this makes it clear we
68
/// specifically rely on this amount of alignment.
69
struct alignas(8) AlignedMap {
70
AlignedMap() = default;
71
AlignedMap(const AlignedMap &Arg) = default;
72
GlobalInfoMapType Map;
73
};
74
75
/// Pointer traits for our aligned map.
76
struct AlignedMapPointerTraits {
77
static inline void *getAsVoidPointer(AlignedMap *P) { return P; }
78
static inline AlignedMap *getFromVoidPointer(void *P) {
79
return (AlignedMap *)P;
80
}
81
static constexpr int NumLowBitsAvailable = 3;
82
static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable),
83
"AlignedMap insufficiently aligned to have enough low bits.");
84
};
85
86
/// The bit that flags that this function may read any global. This is
87
/// chosen to mix together with ModRefInfo bits.
88
/// FIXME: This assumes ModRefInfo lattice will remain 4 bits!
89
/// FunctionInfo.getModRefInfo() masks out everything except ModRef so
90
/// this remains correct.
91
enum { MayReadAnyGlobal = 4 };
92
93
/// Checks to document the invariants of the bit packing here.
94
static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::ModRef)) == 0,
95
"ModRef and the MayReadAnyGlobal flag bits overlap.");
96
static_assert(((MayReadAnyGlobal | static_cast<int>(ModRefInfo::ModRef)) >>
97
AlignedMapPointerTraits::NumLowBitsAvailable) == 0,
98
"Insufficient low bits to store our flag and ModRef info.");
99
100
public:
101
FunctionInfo() = default;
102
~FunctionInfo() {
103
delete Info.getPointer();
104
}
105
// Spell out the copy ond move constructors and assignment operators to get
106
// deep copy semantics and correct move semantics in the face of the
107
// pointer-int pair.
108
FunctionInfo(const FunctionInfo &Arg)
109
: Info(nullptr, Arg.Info.getInt()) {
110
if (const auto *ArgPtr = Arg.Info.getPointer())
111
Info.setPointer(new AlignedMap(*ArgPtr));
112
}
113
FunctionInfo(FunctionInfo &&Arg)
114
: Info(Arg.Info.getPointer(), Arg.Info.getInt()) {
115
Arg.Info.setPointerAndInt(nullptr, 0);
116
}
117
FunctionInfo &operator=(const FunctionInfo &RHS) {
118
delete Info.getPointer();
119
Info.setPointerAndInt(nullptr, RHS.Info.getInt());
120
if (const auto *RHSPtr = RHS.Info.getPointer())
121
Info.setPointer(new AlignedMap(*RHSPtr));
122
return *this;
123
}
124
FunctionInfo &operator=(FunctionInfo &&RHS) {
125
delete Info.getPointer();
126
Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt());
127
RHS.Info.setPointerAndInt(nullptr, 0);
128
return *this;
129
}
130
131
/// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return
132
/// the corresponding ModRefInfo.
133
ModRefInfo globalClearMayReadAnyGlobal(int I) const {
134
return ModRefInfo(I & static_cast<int>(ModRefInfo::ModRef));
135
}
136
137
/// Returns the \c ModRefInfo info for this function.
138
ModRefInfo getModRefInfo() const {
139
return globalClearMayReadAnyGlobal(Info.getInt());
140
}
141
142
/// Adds new \c ModRefInfo for this function to its state.
143
void addModRefInfo(ModRefInfo NewMRI) {
144
Info.setInt(Info.getInt() | static_cast<int>(NewMRI));
145
}
146
147
/// Returns whether this function may read any global variable, and we don't
148
/// know which global.
149
bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; }
150
151
/// Sets this function as potentially reading from any global.
152
void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); }
153
154
/// Returns the \c ModRefInfo info for this function w.r.t. a particular
155
/// global, which may be more precise than the general information above.
156
ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const {
157
ModRefInfo GlobalMRI =
158
mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef;
159
if (AlignedMap *P = Info.getPointer()) {
160
auto I = P->Map.find(&GV);
161
if (I != P->Map.end())
162
GlobalMRI |= I->second;
163
}
164
return GlobalMRI;
165
}
166
167
/// Add mod/ref info from another function into ours, saturating towards
168
/// ModRef.
169
void addFunctionInfo(const FunctionInfo &FI) {
170
addModRefInfo(FI.getModRefInfo());
171
172
if (FI.mayReadAnyGlobal())
173
setMayReadAnyGlobal();
174
175
if (AlignedMap *P = FI.Info.getPointer())
176
for (const auto &G : P->Map)
177
addModRefInfoForGlobal(*G.first, G.second);
178
}
179
180
void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) {
181
AlignedMap *P = Info.getPointer();
182
if (!P) {
183
P = new AlignedMap();
184
Info.setPointer(P);
185
}
186
auto &GlobalMRI = P->Map[&GV];
187
GlobalMRI |= NewMRI;
188
}
189
190
/// Clear a global's ModRef info. Should be used when a global is being
191
/// deleted.
192
void eraseModRefInfoForGlobal(const GlobalValue &GV) {
193
if (AlignedMap *P = Info.getPointer())
194
P->Map.erase(&GV);
195
}
196
197
private:
198
/// All of the information is encoded into a single pointer, with a three bit
199
/// integer in the low three bits. The high bit provides a flag for when this
200
/// function may read any global. The low two bits are the ModRefInfo. And
201
/// the pointer, when non-null, points to a map from GlobalValue to
202
/// ModRefInfo specific to that GlobalValue.
203
PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info;
204
};
205
206
void GlobalsAAResult::DeletionCallbackHandle::deleted() {
207
Value *V = getValPtr();
208
if (auto *F = dyn_cast<Function>(V))
209
GAR->FunctionInfos.erase(F);
210
211
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
212
if (GAR->NonAddressTakenGlobals.erase(GV)) {
213
// This global might be an indirect global. If so, remove it and
214
// remove any AllocRelatedValues for it.
215
if (GAR->IndirectGlobals.erase(GV)) {
216
// Remove any entries in AllocsForIndirectGlobals for this global.
217
for (auto I = GAR->AllocsForIndirectGlobals.begin(),
218
E = GAR->AllocsForIndirectGlobals.end();
219
I != E; ++I)
220
if (I->second == GV)
221
GAR->AllocsForIndirectGlobals.erase(I);
222
}
223
224
// Scan the function info we have collected and remove this global
225
// from all of them.
226
for (auto &FIPair : GAR->FunctionInfos)
227
FIPair.second.eraseModRefInfoForGlobal(*GV);
228
}
229
}
230
231
// If this is an allocation related to an indirect global, remove it.
232
GAR->AllocsForIndirectGlobals.erase(V);
233
234
// And clear out the handle.
235
setValPtr(nullptr);
236
GAR->Handles.erase(I);
237
// This object is now destroyed!
238
}
239
240
MemoryEffects GlobalsAAResult::getMemoryEffects(const Function *F) {
241
if (FunctionInfo *FI = getFunctionInfo(F))
242
return MemoryEffects(FI->getModRefInfo());
243
244
return MemoryEffects::unknown();
245
}
246
247
/// Returns the function info for the function, or null if we don't have
248
/// anything useful to say about it.
249
GlobalsAAResult::FunctionInfo *
250
GlobalsAAResult::getFunctionInfo(const Function *F) {
251
auto I = FunctionInfos.find(F);
252
if (I != FunctionInfos.end())
253
return &I->second;
254
return nullptr;
255
}
256
257
/// AnalyzeGlobals - Scan through the users of all of the internal
258
/// GlobalValue's in the program. If none of them have their "address taken"
259
/// (really, their address passed to something nontrivial), record this fact,
260
/// and record the functions that they are used directly in.
261
void GlobalsAAResult::AnalyzeGlobals(Module &M) {
262
SmallPtrSet<Function *, 32> TrackedFunctions;
263
for (Function &F : M)
264
if (F.hasLocalLinkage()) {
265
if (!AnalyzeUsesOfPointer(&F)) {
266
// Remember that we are tracking this global.
267
NonAddressTakenGlobals.insert(&F);
268
TrackedFunctions.insert(&F);
269
Handles.emplace_front(*this, &F);
270
Handles.front().I = Handles.begin();
271
++NumNonAddrTakenFunctions;
272
} else
273
UnknownFunctionsWithLocalLinkage = true;
274
}
275
276
SmallPtrSet<Function *, 16> Readers, Writers;
277
for (GlobalVariable &GV : M.globals())
278
if (GV.hasLocalLinkage()) {
279
if (!AnalyzeUsesOfPointer(&GV, &Readers,
280
GV.isConstant() ? nullptr : &Writers)) {
281
// Remember that we are tracking this global, and the mod/ref fns
282
NonAddressTakenGlobals.insert(&GV);
283
Handles.emplace_front(*this, &GV);
284
Handles.front().I = Handles.begin();
285
286
for (Function *Reader : Readers) {
287
if (TrackedFunctions.insert(Reader).second) {
288
Handles.emplace_front(*this, Reader);
289
Handles.front().I = Handles.begin();
290
}
291
FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref);
292
}
293
294
if (!GV.isConstant()) // No need to keep track of writers to constants
295
for (Function *Writer : Writers) {
296
if (TrackedFunctions.insert(Writer).second) {
297
Handles.emplace_front(*this, Writer);
298
Handles.front().I = Handles.begin();
299
}
300
FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod);
301
}
302
++NumNonAddrTakenGlobalVars;
303
304
// If this global holds a pointer type, see if it is an indirect global.
305
if (GV.getValueType()->isPointerTy() &&
306
AnalyzeIndirectGlobalMemory(&GV))
307
++NumIndirectGlobalVars;
308
}
309
Readers.clear();
310
Writers.clear();
311
}
312
}
313
314
/// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer.
315
/// If this is used by anything complex (i.e., the address escapes), return
316
/// true. Also, while we are at it, keep track of those functions that read and
317
/// write to the value.
318
///
319
/// If OkayStoreDest is non-null, stores into this global are allowed.
320
bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V,
321
SmallPtrSetImpl<Function *> *Readers,
322
SmallPtrSetImpl<Function *> *Writers,
323
GlobalValue *OkayStoreDest) {
324
if (!V->getType()->isPointerTy())
325
return true;
326
327
for (Use &U : V->uses()) {
328
User *I = U.getUser();
329
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
330
if (Readers)
331
Readers->insert(LI->getParent()->getParent());
332
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
333
if (V == SI->getOperand(1)) {
334
if (Writers)
335
Writers->insert(SI->getParent()->getParent());
336
} else if (SI->getOperand(1) != OkayStoreDest) {
337
return true; // Storing the pointer
338
}
339
} else if (Operator::getOpcode(I) == Instruction::GetElementPtr) {
340
if (AnalyzeUsesOfPointer(I, Readers, Writers))
341
return true;
342
} else if (Operator::getOpcode(I) == Instruction::BitCast ||
343
Operator::getOpcode(I) == Instruction::AddrSpaceCast) {
344
if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest))
345
return true;
346
} else if (auto *Call = dyn_cast<CallBase>(I)) {
347
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
348
if (II->getIntrinsicID() == Intrinsic::threadlocal_address &&
349
V == II->getArgOperand(0)) {
350
if (AnalyzeUsesOfPointer(II, Readers, Writers))
351
return true;
352
continue;
353
}
354
}
355
// Make sure that this is just the function being called, not that it is
356
// passing into the function.
357
if (Call->isDataOperand(&U)) {
358
// Detect calls to free.
359
if (Call->isArgOperand(&U) &&
360
getFreedOperand(Call, &GetTLI(*Call->getFunction())) == U) {
361
if (Writers)
362
Writers->insert(Call->getParent()->getParent());
363
} else {
364
// In general, we return true for unknown calls, but there are
365
// some simple checks that we can do for functions that
366
// will never call back into the module.
367
auto *F = Call->getCalledFunction();
368
// TODO: we should be able to remove isDeclaration() check
369
// and let the function body analysis check for captures,
370
// and collect the mod-ref effects. This information will
371
// be later propagated via the call graph.
372
if (!F || !F->isDeclaration())
373
return true;
374
// Note that the NoCallback check here is a little bit too
375
// conservative. If there are no captures of the global
376
// in the module, then this call may not be a capture even
377
// if it does not have NoCallback.
378
if (!Call->hasFnAttr(Attribute::NoCallback) ||
379
!Call->isArgOperand(&U) ||
380
!Call->doesNotCapture(Call->getArgOperandNo(&U)))
381
return true;
382
383
// Conservatively, assume the call reads and writes the global.
384
// We could use memory attributes to make it more precise.
385
if (Readers)
386
Readers->insert(Call->getParent()->getParent());
387
if (Writers)
388
Writers->insert(Call->getParent()->getParent());
389
}
390
}
391
} else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
392
if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
393
return true; // Allow comparison against null.
394
} else if (Constant *C = dyn_cast<Constant>(I)) {
395
// Ignore constants which don't have any live uses.
396
if (isa<GlobalValue>(C) || C->isConstantUsed())
397
return true;
398
} else {
399
return true;
400
}
401
}
402
403
return false;
404
}
405
406
/// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable
407
/// which holds a pointer type. See if the global always points to non-aliased
408
/// heap memory: that is, all initializers of the globals store a value known
409
/// to be obtained via a noalias return function call which have no other use.
410
/// Further, all loads out of GV must directly use the memory, not store the
411
/// pointer somewhere. If this is true, we consider the memory pointed to by
412
/// GV to be owned by GV and can disambiguate other pointers from it.
413
bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) {
414
// Keep track of values related to the allocation of the memory, f.e. the
415
// value produced by the noalias call and any casts.
416
std::vector<Value *> AllocRelatedValues;
417
418
// If the initializer is a valid pointer, bail.
419
if (Constant *C = GV->getInitializer())
420
if (!C->isNullValue())
421
return false;
422
423
// Walk the user list of the global. If we find anything other than a direct
424
// load or store, bail out.
425
for (User *U : GV->users()) {
426
if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
427
// The pointer loaded from the global can only be used in simple ways:
428
// we allow addressing of it and loading storing to it. We do *not* allow
429
// storing the loaded pointer somewhere else or passing to a function.
430
if (AnalyzeUsesOfPointer(LI))
431
return false; // Loaded pointer escapes.
432
// TODO: Could try some IP mod/ref of the loaded pointer.
433
} else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
434
// Storing the global itself.
435
if (SI->getOperand(0) == GV)
436
return false;
437
438
// If storing the null pointer, ignore it.
439
if (isa<ConstantPointerNull>(SI->getOperand(0)))
440
continue;
441
442
// Check the value being stored.
443
Value *Ptr = getUnderlyingObject(SI->getOperand(0));
444
445
if (!isNoAliasCall(Ptr))
446
return false; // Too hard to analyze.
447
448
// Analyze all uses of the allocation. If any of them are used in a
449
// non-simple way (e.g. stored to another global) bail out.
450
if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr,
451
GV))
452
return false; // Loaded pointer escapes.
453
454
// Remember that this allocation is related to the indirect global.
455
AllocRelatedValues.push_back(Ptr);
456
} else {
457
// Something complex, bail out.
458
return false;
459
}
460
}
461
462
// Okay, this is an indirect global. Remember all of the allocations for
463
// this global in AllocsForIndirectGlobals.
464
while (!AllocRelatedValues.empty()) {
465
AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV;
466
Handles.emplace_front(*this, AllocRelatedValues.back());
467
Handles.front().I = Handles.begin();
468
AllocRelatedValues.pop_back();
469
}
470
IndirectGlobals.insert(GV);
471
Handles.emplace_front(*this, GV);
472
Handles.front().I = Handles.begin();
473
return true;
474
}
475
476
void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) {
477
// We do a bottom-up SCC traversal of the call graph. In other words, we
478
// visit all callees before callers (leaf-first).
479
unsigned SCCID = 0;
480
for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
481
const std::vector<CallGraphNode *> &SCC = *I;
482
assert(!SCC.empty() && "SCC with no functions?");
483
484
for (auto *CGN : SCC)
485
if (Function *F = CGN->getFunction())
486
FunctionToSCCMap[F] = SCCID;
487
++SCCID;
488
}
489
}
490
491
/// AnalyzeCallGraph - At this point, we know the functions where globals are
492
/// immediately stored to and read from. Propagate this information up the call
493
/// graph to all callers and compute the mod/ref info for all memory for each
494
/// function.
495
void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) {
496
// We do a bottom-up SCC traversal of the call graph. In other words, we
497
// visit all callees before callers (leaf-first).
498
for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
499
const std::vector<CallGraphNode *> &SCC = *I;
500
assert(!SCC.empty() && "SCC with no functions?");
501
502
Function *F = SCC[0]->getFunction();
503
504
if (!F || !F->isDefinitionExact()) {
505
// Calls externally or not exact - can't say anything useful. Remove any
506
// existing function records (may have been created when scanning
507
// globals).
508
for (auto *Node : SCC)
509
FunctionInfos.erase(Node->getFunction());
510
continue;
511
}
512
513
FunctionInfo &FI = FunctionInfos[F];
514
Handles.emplace_front(*this, F);
515
Handles.front().I = Handles.begin();
516
bool KnowNothing = false;
517
518
// Intrinsics, like any other synchronizing function, can make effects
519
// of other threads visible. Without nosync we know nothing really.
520
// Similarly, if `nocallback` is missing the function, or intrinsic,
521
// can call into the module arbitrarily. If both are set the function
522
// has an effect but will not interact with accesses of internal
523
// globals inside the module. We are conservative here for optnone
524
// functions, might not be necessary.
525
auto MaySyncOrCallIntoModule = [](const Function &F) {
526
return !F.isDeclaration() || !F.hasNoSync() ||
527
!F.hasFnAttribute(Attribute::NoCallback);
528
};
529
530
// Collect the mod/ref properties due to called functions. We only compute
531
// one mod-ref set.
532
for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) {
533
if (!F) {
534
KnowNothing = true;
535
break;
536
}
537
538
if (F->isDeclaration() || F->hasOptNone()) {
539
// Try to get mod/ref behaviour from function attributes.
540
if (F->doesNotAccessMemory()) {
541
// Can't do better than that!
542
} else if (F->onlyReadsMemory()) {
543
FI.addModRefInfo(ModRefInfo::Ref);
544
if (!F->onlyAccessesArgMemory() && MaySyncOrCallIntoModule(*F))
545
// This function might call back into the module and read a global -
546
// consider every global as possibly being read by this function.
547
FI.setMayReadAnyGlobal();
548
} else {
549
FI.addModRefInfo(ModRefInfo::ModRef);
550
if (!F->onlyAccessesArgMemory())
551
FI.setMayReadAnyGlobal();
552
if (MaySyncOrCallIntoModule(*F)) {
553
KnowNothing = true;
554
break;
555
}
556
}
557
continue;
558
}
559
560
for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end();
561
CI != E && !KnowNothing; ++CI)
562
if (Function *Callee = CI->second->getFunction()) {
563
if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) {
564
// Propagate function effect up.
565
FI.addFunctionInfo(*CalleeFI);
566
} else {
567
// Can't say anything about it. However, if it is inside our SCC,
568
// then nothing needs to be done.
569
CallGraphNode *CalleeNode = CG[Callee];
570
if (!is_contained(SCC, CalleeNode))
571
KnowNothing = true;
572
}
573
} else {
574
KnowNothing = true;
575
}
576
}
577
578
// If we can't say anything useful about this SCC, remove all SCC functions
579
// from the FunctionInfos map.
580
if (KnowNothing) {
581
for (auto *Node : SCC)
582
FunctionInfos.erase(Node->getFunction());
583
continue;
584
}
585
586
// Scan the function bodies for explicit loads or stores.
587
for (auto *Node : SCC) {
588
if (isModAndRefSet(FI.getModRefInfo()))
589
break; // The mod/ref lattice saturates here.
590
591
// Don't prove any properties based on the implementation of an optnone
592
// function. Function attributes were already used as a best approximation
593
// above.
594
if (Node->getFunction()->hasOptNone())
595
continue;
596
597
for (Instruction &I : instructions(Node->getFunction())) {
598
if (isModAndRefSet(FI.getModRefInfo()))
599
break; // The mod/ref lattice saturates here.
600
601
// We handle calls specially because the graph-relevant aspects are
602
// handled above.
603
if (isa<CallBase>(&I))
604
continue;
605
606
// All non-call instructions we use the primary predicates for whether
607
// they read or write memory.
608
if (I.mayReadFromMemory())
609
FI.addModRefInfo(ModRefInfo::Ref);
610
if (I.mayWriteToMemory())
611
FI.addModRefInfo(ModRefInfo::Mod);
612
}
613
}
614
615
if (!isModSet(FI.getModRefInfo()))
616
++NumReadMemFunctions;
617
if (!isModOrRefSet(FI.getModRefInfo()))
618
++NumNoMemFunctions;
619
620
// Finally, now that we know the full effect on this SCC, clone the
621
// information to each function in the SCC.
622
// FI is a reference into FunctionInfos, so copy it now so that it doesn't
623
// get invalidated if DenseMap decides to re-hash.
624
FunctionInfo CachedFI = FI;
625
for (unsigned i = 1, e = SCC.size(); i != e; ++i)
626
FunctionInfos[SCC[i]->getFunction()] = CachedFI;
627
}
628
}
629
630
// GV is a non-escaping global. V is a pointer address that has been loaded from.
631
// If we can prove that V must escape, we can conclude that a load from V cannot
632
// alias GV.
633
static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV,
634
const Value *V,
635
int &Depth,
636
const DataLayout &DL) {
637
SmallPtrSet<const Value *, 8> Visited;
638
SmallVector<const Value *, 8> Inputs;
639
Visited.insert(V);
640
Inputs.push_back(V);
641
do {
642
const Value *Input = Inputs.pop_back_val();
643
644
if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) ||
645
isa<InvokeInst>(Input))
646
// Arguments to functions or returns from functions are inherently
647
// escaping, so we can immediately classify those as not aliasing any
648
// non-addr-taken globals.
649
//
650
// (Transitive) loads from a global are also safe - if this aliased
651
// another global, its address would escape, so no alias.
652
continue;
653
654
// Recurse through a limited number of selects, loads and PHIs. This is an
655
// arbitrary depth of 4, lower numbers could be used to fix compile time
656
// issues if needed, but this is generally expected to be only be important
657
// for small depths.
658
if (++Depth > 4)
659
return false;
660
661
if (auto *LI = dyn_cast<LoadInst>(Input)) {
662
Inputs.push_back(getUnderlyingObject(LI->getPointerOperand()));
663
continue;
664
}
665
if (auto *SI = dyn_cast<SelectInst>(Input)) {
666
const Value *LHS = getUnderlyingObject(SI->getTrueValue());
667
const Value *RHS = getUnderlyingObject(SI->getFalseValue());
668
if (Visited.insert(LHS).second)
669
Inputs.push_back(LHS);
670
if (Visited.insert(RHS).second)
671
Inputs.push_back(RHS);
672
continue;
673
}
674
if (auto *PN = dyn_cast<PHINode>(Input)) {
675
for (const Value *Op : PN->incoming_values()) {
676
Op = getUnderlyingObject(Op);
677
if (Visited.insert(Op).second)
678
Inputs.push_back(Op);
679
}
680
continue;
681
}
682
683
return false;
684
} while (!Inputs.empty());
685
686
// All inputs were known to be no-alias.
687
return true;
688
}
689
690
// There are particular cases where we can conclude no-alias between
691
// a non-addr-taken global and some other underlying object. Specifically,
692
// a non-addr-taken global is known to not be escaped from any function. It is
693
// also incorrect for a transformation to introduce an escape of a global in
694
// a way that is observable when it was not there previously. One function
695
// being transformed to introduce an escape which could possibly be observed
696
// (via loading from a global or the return value for example) within another
697
// function is never safe. If the observation is made through non-atomic
698
// operations on different threads, it is a data-race and UB. If the
699
// observation is well defined, by being observed the transformation would have
700
// changed program behavior by introducing the observed escape, making it an
701
// invalid transform.
702
//
703
// This property does require that transformations which *temporarily* escape
704
// a global that was not previously escaped, prior to restoring it, cannot rely
705
// on the results of GMR::alias. This seems a reasonable restriction, although
706
// currently there is no way to enforce it. There is also no realistic
707
// optimization pass that would make this mistake. The closest example is
708
// a transformation pass which does reg2mem of SSA values but stores them into
709
// global variables temporarily before restoring the global variable's value.
710
// This could be useful to expose "benign" races for example. However, it seems
711
// reasonable to require that a pass which introduces escapes of global
712
// variables in this way to either not trust AA results while the escape is
713
// active, or to be forced to operate as a module pass that cannot co-exist
714
// with an alias analysis such as GMR.
715
bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV,
716
const Value *V) {
717
// In order to know that the underlying object cannot alias the
718
// non-addr-taken global, we must know that it would have to be an escape.
719
// Thus if the underlying object is a function argument, a load from
720
// a global, or the return of a function, it cannot alias. We can also
721
// recurse through PHI nodes and select nodes provided all of their inputs
722
// resolve to one of these known-escaping roots.
723
SmallPtrSet<const Value *, 8> Visited;
724
SmallVector<const Value *, 8> Inputs;
725
Visited.insert(V);
726
Inputs.push_back(V);
727
int Depth = 0;
728
do {
729
const Value *Input = Inputs.pop_back_val();
730
731
if (auto *InputGV = dyn_cast<GlobalValue>(Input)) {
732
// If one input is the very global we're querying against, then we can't
733
// conclude no-alias.
734
if (InputGV == GV)
735
return false;
736
737
// Distinct GlobalVariables never alias, unless overriden or zero-sized.
738
// FIXME: The condition can be refined, but be conservative for now.
739
auto *GVar = dyn_cast<GlobalVariable>(GV);
740
auto *InputGVar = dyn_cast<GlobalVariable>(InputGV);
741
if (GVar && InputGVar &&
742
!GVar->isDeclaration() && !InputGVar->isDeclaration() &&
743
!GVar->isInterposable() && !InputGVar->isInterposable()) {
744
Type *GVType = GVar->getInitializer()->getType();
745
Type *InputGVType = InputGVar->getInitializer()->getType();
746
if (GVType->isSized() && InputGVType->isSized() &&
747
(DL.getTypeAllocSize(GVType) > 0) &&
748
(DL.getTypeAllocSize(InputGVType) > 0))
749
continue;
750
}
751
752
// Conservatively return false, even though we could be smarter
753
// (e.g. look through GlobalAliases).
754
return false;
755
}
756
757
if (isa<Argument>(Input) || isa<CallInst>(Input) ||
758
isa<InvokeInst>(Input)) {
759
// Arguments to functions or returns from functions are inherently
760
// escaping, so we can immediately classify those as not aliasing any
761
// non-addr-taken globals.
762
continue;
763
}
764
765
// Recurse through a limited number of selects, loads and PHIs. This is an
766
// arbitrary depth of 4, lower numbers could be used to fix compile time
767
// issues if needed, but this is generally expected to be only be important
768
// for small depths.
769
if (++Depth > 4)
770
return false;
771
772
if (auto *LI = dyn_cast<LoadInst>(Input)) {
773
// A pointer loaded from a global would have been captured, and we know
774
// that the global is non-escaping, so no alias.
775
const Value *Ptr = getUnderlyingObject(LI->getPointerOperand());
776
if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL))
777
// The load does not alias with GV.
778
continue;
779
// Otherwise, a load could come from anywhere, so bail.
780
return false;
781
}
782
if (auto *SI = dyn_cast<SelectInst>(Input)) {
783
const Value *LHS = getUnderlyingObject(SI->getTrueValue());
784
const Value *RHS = getUnderlyingObject(SI->getFalseValue());
785
if (Visited.insert(LHS).second)
786
Inputs.push_back(LHS);
787
if (Visited.insert(RHS).second)
788
Inputs.push_back(RHS);
789
continue;
790
}
791
if (auto *PN = dyn_cast<PHINode>(Input)) {
792
for (const Value *Op : PN->incoming_values()) {
793
Op = getUnderlyingObject(Op);
794
if (Visited.insert(Op).second)
795
Inputs.push_back(Op);
796
}
797
continue;
798
}
799
800
// FIXME: It would be good to handle other obvious no-alias cases here, but
801
// it isn't clear how to do so reasonably without building a small version
802
// of BasicAA into this code.
803
return false;
804
} while (!Inputs.empty());
805
806
// If all the inputs to V were definitively no-alias, then V is no-alias.
807
return true;
808
}
809
810
bool GlobalsAAResult::invalidate(Module &, const PreservedAnalyses &PA,
811
ModuleAnalysisManager::Invalidator &) {
812
// Check whether the analysis has been explicitly invalidated. Otherwise, it's
813
// stateless and remains preserved.
814
auto PAC = PA.getChecker<GlobalsAA>();
815
return !PAC.preservedWhenStateless();
816
}
817
818
/// alias - If one of the pointers is to a global that we are tracking, and the
819
/// other is some random pointer, we know there cannot be an alias, because the
820
/// address of the global isn't taken.
821
AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA,
822
const MemoryLocation &LocB,
823
AAQueryInfo &AAQI, const Instruction *) {
824
// Get the base object these pointers point to.
825
const Value *UV1 =
826
getUnderlyingObject(LocA.Ptr->stripPointerCastsForAliasAnalysis());
827
const Value *UV2 =
828
getUnderlyingObject(LocB.Ptr->stripPointerCastsForAliasAnalysis());
829
830
// If either of the underlying values is a global, they may be non-addr-taken
831
// globals, which we can answer queries about.
832
const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1);
833
const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2);
834
if (GV1 || GV2) {
835
// If the global's address is taken, pretend we don't know it's a pointer to
836
// the global.
837
if (GV1 && !NonAddressTakenGlobals.count(GV1))
838
GV1 = nullptr;
839
if (GV2 && !NonAddressTakenGlobals.count(GV2))
840
GV2 = nullptr;
841
842
// If the two pointers are derived from two different non-addr-taken
843
// globals we know these can't alias.
844
if (GV1 && GV2 && GV1 != GV2)
845
return AliasResult::NoAlias;
846
847
// If one is and the other isn't, it isn't strictly safe but we can fake
848
// this result if necessary for performance. This does not appear to be
849
// a common problem in practice.
850
if (EnableUnsafeGlobalsModRefAliasResults)
851
if ((GV1 || GV2) && GV1 != GV2)
852
return AliasResult::NoAlias;
853
854
// Check for a special case where a non-escaping global can be used to
855
// conclude no-alias.
856
if ((GV1 || GV2) && GV1 != GV2) {
857
const GlobalValue *GV = GV1 ? GV1 : GV2;
858
const Value *UV = GV1 ? UV2 : UV1;
859
if (isNonEscapingGlobalNoAlias(GV, UV))
860
return AliasResult::NoAlias;
861
}
862
863
// Otherwise if they are both derived from the same addr-taken global, we
864
// can't know the two accesses don't overlap.
865
}
866
867
// These pointers may be based on the memory owned by an indirect global. If
868
// so, we may be able to handle this. First check to see if the base pointer
869
// is a direct load from an indirect global.
870
GV1 = GV2 = nullptr;
871
if (const LoadInst *LI = dyn_cast<LoadInst>(UV1))
872
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
873
if (IndirectGlobals.count(GV))
874
GV1 = GV;
875
if (const LoadInst *LI = dyn_cast<LoadInst>(UV2))
876
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0)))
877
if (IndirectGlobals.count(GV))
878
GV2 = GV;
879
880
// These pointers may also be from an allocation for the indirect global. If
881
// so, also handle them.
882
if (!GV1)
883
GV1 = AllocsForIndirectGlobals.lookup(UV1);
884
if (!GV2)
885
GV2 = AllocsForIndirectGlobals.lookup(UV2);
886
887
// Now that we know whether the two pointers are related to indirect globals,
888
// use this to disambiguate the pointers. If the pointers are based on
889
// different indirect globals they cannot alias.
890
if (GV1 && GV2 && GV1 != GV2)
891
return AliasResult::NoAlias;
892
893
// If one is based on an indirect global and the other isn't, it isn't
894
// strictly safe but we can fake this result if necessary for performance.
895
// This does not appear to be a common problem in practice.
896
if (EnableUnsafeGlobalsModRefAliasResults)
897
if ((GV1 || GV2) && GV1 != GV2)
898
return AliasResult::NoAlias;
899
900
return AliasResult::MayAlias;
901
}
902
903
ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call,
904
const GlobalValue *GV,
905
AAQueryInfo &AAQI) {
906
if (Call->doesNotAccessMemory())
907
return ModRefInfo::NoModRef;
908
ModRefInfo ConservativeResult =
909
Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef;
910
911
// Iterate through all the arguments to the called function. If any argument
912
// is based on GV, return the conservative result.
913
for (const auto &A : Call->args()) {
914
SmallVector<const Value*, 4> Objects;
915
getUnderlyingObjects(A, Objects);
916
917
// All objects must be identified.
918
if (!all_of(Objects, isIdentifiedObject) &&
919
// Try ::alias to see if all objects are known not to alias GV.
920
!all_of(Objects, [&](const Value *V) {
921
return this->alias(MemoryLocation::getBeforeOrAfter(V),
922
MemoryLocation::getBeforeOrAfter(GV), AAQI,
923
nullptr) == AliasResult::NoAlias;
924
}))
925
return ConservativeResult;
926
927
if (is_contained(Objects, GV))
928
return ConservativeResult;
929
}
930
931
// We identified all objects in the argument list, and none of them were GV.
932
return ModRefInfo::NoModRef;
933
}
934
935
ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call,
936
const MemoryLocation &Loc,
937
AAQueryInfo &AAQI) {
938
ModRefInfo Known = ModRefInfo::ModRef;
939
940
// If we are asking for mod/ref info of a direct call with a pointer to a
941
// global we are tracking, return information if we have it.
942
if (const GlobalValue *GV =
943
dyn_cast<GlobalValue>(getUnderlyingObject(Loc.Ptr)))
944
// If GV is internal to this IR and there is no function with local linkage
945
// that has had their address taken, keep looking for a tighter ModRefInfo.
946
if (GV->hasLocalLinkage() && !UnknownFunctionsWithLocalLinkage)
947
if (const Function *F = Call->getCalledFunction())
948
if (NonAddressTakenGlobals.count(GV))
949
if (const FunctionInfo *FI = getFunctionInfo(F))
950
Known = FI->getModRefInfoForGlobal(*GV) |
951
getModRefInfoForArgument(Call, GV, AAQI);
952
953
return Known;
954
}
955
956
GlobalsAAResult::GlobalsAAResult(
957
const DataLayout &DL,
958
std::function<const TargetLibraryInfo &(Function &F)> GetTLI)
959
: DL(DL), GetTLI(std::move(GetTLI)) {}
960
961
GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg)
962
: AAResultBase(std::move(Arg)), DL(Arg.DL), GetTLI(std::move(Arg.GetTLI)),
963
NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)),
964
IndirectGlobals(std::move(Arg.IndirectGlobals)),
965
AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)),
966
FunctionInfos(std::move(Arg.FunctionInfos)),
967
Handles(std::move(Arg.Handles)) {
968
// Update the parent for each DeletionCallbackHandle.
969
for (auto &H : Handles) {
970
assert(H.GAR == &Arg);
971
H.GAR = this;
972
}
973
}
974
975
GlobalsAAResult::~GlobalsAAResult() = default;
976
977
/*static*/ GlobalsAAResult GlobalsAAResult::analyzeModule(
978
Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI,
979
CallGraph &CG) {
980
GlobalsAAResult Result(M.getDataLayout(), GetTLI);
981
982
// Discover which functions aren't recursive, to feed into AnalyzeGlobals.
983
Result.CollectSCCMembership(CG);
984
985
// Find non-addr taken globals.
986
Result.AnalyzeGlobals(M);
987
988
// Propagate on CG.
989
Result.AnalyzeCallGraph(CG, M);
990
991
return Result;
992
}
993
994
AnalysisKey GlobalsAA::Key;
995
996
GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) {
997
FunctionAnalysisManager &FAM =
998
AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
999
auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
1000
return FAM.getResult<TargetLibraryAnalysis>(F);
1001
};
1002
return GlobalsAAResult::analyzeModule(M, GetTLI,
1003
AM.getResult<CallGraphAnalysis>(M));
1004
}
1005
1006
PreservedAnalyses RecomputeGlobalsAAPass::run(Module &M,
1007
ModuleAnalysisManager &AM) {
1008
if (auto *G = AM.getCachedResult<GlobalsAA>(M)) {
1009
auto &CG = AM.getResult<CallGraphAnalysis>(M);
1010
G->NonAddressTakenGlobals.clear();
1011
G->UnknownFunctionsWithLocalLinkage = false;
1012
G->IndirectGlobals.clear();
1013
G->AllocsForIndirectGlobals.clear();
1014
G->FunctionInfos.clear();
1015
G->FunctionToSCCMap.clear();
1016
G->Handles.clear();
1017
G->CollectSCCMembership(CG);
1018
G->AnalyzeGlobals(M);
1019
G->AnalyzeCallGraph(CG, M);
1020
}
1021
return PreservedAnalyses::all();
1022
}
1023
1024
char GlobalsAAWrapperPass::ID = 0;
1025
INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa",
1026
"Globals Alias Analysis", false, true)
1027
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1028
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1029
INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa",
1030
"Globals Alias Analysis", false, true)
1031
1032
ModulePass *llvm::createGlobalsAAWrapperPass() {
1033
return new GlobalsAAWrapperPass();
1034
}
1035
1036
GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) {
1037
initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry());
1038
}
1039
1040
bool GlobalsAAWrapperPass::runOnModule(Module &M) {
1041
auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
1042
return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1043
};
1044
Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule(
1045
M, GetTLI, getAnalysis<CallGraphWrapperPass>().getCallGraph())));
1046
return false;
1047
}
1048
1049
bool GlobalsAAWrapperPass::doFinalization(Module &M) {
1050
Result.reset();
1051
return false;
1052
}
1053
1054
void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1055
AU.setPreservesAll();
1056
AU.addRequired<CallGraphWrapperPass>();
1057
AU.addRequired<TargetLibraryInfoWrapperPass>();
1058
}
1059
1060