Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Analysis/InlineSizeEstimatorAnalysis.cpp
35233 views
1
//===- InlineSizeEstimatorAnalysis.cpp - IR to native size from ML model --===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This implements feature and label extraction for offline supervised learning
10
// of a IR to native size model.
11
//
12
//===----------------------------------------------------------------------===//
13
#include "llvm/Analysis/InlineSizeEstimatorAnalysis.h"
14
15
#ifdef LLVM_HAVE_TFLITE
16
#include "llvm/Analysis/Utils/TFUtils.h"
17
#endif
18
#include "llvm/IR/Function.h"
19
#include "llvm/IR/PassManager.h"
20
#include "llvm/Support/raw_ostream.h"
21
22
using namespace llvm;
23
24
AnalysisKey InlineSizeEstimatorAnalysis::Key;
25
26
#ifdef LLVM_HAVE_TFLITE
27
#include "llvm/Analysis/LoopInfo.h"
28
#include "llvm/Analysis/TargetLibraryInfo.h"
29
#include "llvm/Analysis/TargetTransformInfo.h"
30
#include "llvm/IR/BasicBlock.h"
31
#include "llvm/IR/Dominators.h"
32
#include "llvm/IR/Instructions.h"
33
#include "llvm/Support/Casting.h"
34
#include "llvm/Support/CommandLine.h"
35
#include <algorithm>
36
#include <deque>
37
#include <optional>
38
39
cl::opt<std::string> TFIR2NativeModelPath(
40
"ml-inliner-ir2native-model", cl::Hidden,
41
cl::desc("Path to saved model evaluating native size from IR."));
42
43
#define DEBUG_TYPE "inline-size-estimator"
44
namespace {
45
unsigned getMaxInstructionID() {
46
#define LAST_OTHER_INST(NR) return NR;
47
#include "llvm/IR/Instruction.def"
48
}
49
50
class IRToNativeSizeLearning {
51
public:
52
enum class NamedFeatureIndex : size_t {
53
InitialSize,
54
Blocks,
55
Calls,
56
IsLocal,
57
IsLinkOnceODR,
58
IsLinkOnce,
59
Loops,
60
MaxLoopDepth,
61
MaxDomTreeLevel,
62
63
NumNamedFeatures
64
};
65
static const size_t NumNamedFeatures =
66
static_cast<size_t>(NamedFeatureIndex::NumNamedFeatures);
67
struct FunctionFeatures {
68
static const size_t FeatureCount;
69
70
std::array<int32_t, NumNamedFeatures> NamedFeatures = {0};
71
std::vector<int32_t> InstructionHistogram;
72
std::vector<int32_t> InstructionPairHistogram;
73
74
void fillTensor(int32_t *Ptr) const;
75
int32_t &operator[](NamedFeatureIndex Pos) {
76
return NamedFeatures[static_cast<size_t>(Pos)];
77
}
78
};
79
IRToNativeSizeLearning() = default;
80
81
static FunctionFeatures getFunctionFeatures(Function &F,
82
FunctionAnalysisManager &FAM);
83
};
84
85
// This is a point in time - we determined including these pairs of
86
// consecutive instructions (in the IR layout available at inline time) as
87
// features improves the model performance. We want to move away from manual
88
// feature selection.
89
// The array is given in opcode pairs rather than labels because 1) labels
90
// weren't readily available, and 2) the successions were hand - extracted.
91
//
92
// This array must be sorted.
93
static const std::array<std::pair<size_t, size_t>, 137>
94
ImportantInstructionSuccessions{
95
{{1, 1}, {1, 4}, {1, 5}, {1, 7}, {1, 8}, {1, 9}, {1, 11},
96
{1, 12}, {1, 13}, {1, 14}, {1, 18}, {1, 20}, {1, 22}, {1, 24},
97
{1, 25}, {1, 26}, {1, 27}, {1, 28}, {1, 29}, {1, 30}, {1, 31},
98
{1, 32}, {1, 33}, {1, 34}, {1, 39}, {1, 40}, {1, 42}, {1, 45},
99
{2, 1}, {2, 2}, {2, 13}, {2, 28}, {2, 29}, {2, 32}, {2, 33},
100
{2, 34}, {2, 38}, {2, 48}, {2, 49}, {2, 53}, {2, 55}, {2, 56},
101
{13, 2}, {13, 13}, {13, 26}, {13, 33}, {13, 34}, {13, 56}, {15, 27},
102
{28, 2}, {28, 48}, {28, 53}, {29, 2}, {29, 33}, {29, 56}, {31, 31},
103
{31, 33}, {31, 34}, {31, 49}, {32, 1}, {32, 2}, {32, 13}, {32, 15},
104
{32, 28}, {32, 29}, {32, 32}, {32, 33}, {32, 34}, {32, 39}, {32, 40},
105
{32, 48}, {32, 49}, {32, 53}, {32, 56}, {33, 1}, {33, 2}, {33, 32},
106
{33, 33}, {33, 34}, {33, 49}, {33, 53}, {33, 56}, {34, 1}, {34, 2},
107
{34, 32}, {34, 33}, {34, 34}, {34, 49}, {34, 53}, {34, 56}, {38, 34},
108
{39, 57}, {40, 34}, {47, 15}, {47, 49}, {48, 2}, {48, 34}, {48, 56},
109
{49, 1}, {49, 2}, {49, 28}, {49, 32}, {49, 33}, {49, 34}, {49, 39},
110
{49, 49}, {49, 56}, {53, 1}, {53, 2}, {53, 28}, {53, 34}, {53, 53},
111
{53, 57}, {55, 1}, {55, 28}, {55, 34}, {55, 53}, {55, 55}, {55, 56},
112
{56, 1}, {56, 2}, {56, 7}, {56, 13}, {56, 32}, {56, 33}, {56, 34},
113
{56, 49}, {56, 53}, {56, 56}, {56, 64}, {57, 34}, {57, 56}, {57, 57},
114
{64, 1}, {64, 64}, {65, 1}, {65, 65}}};
115
116
// We have: 9 calculated features (the features here); 1 feature for each
117
// instruction opcode; and 1 feature for each manually-identified sequence.
118
// For the latter 2, we build a histogram: we count the number of
119
// occurrences of each instruction opcode or succession of instructions,
120
// respectively.
121
// Note that instruction opcodes start from 1. For convenience, we also have an
122
// always 0 feature for the '0' opcode, hence the extra 1.
123
const size_t IRToNativeSizeLearning::FunctionFeatures::FeatureCount =
124
ImportantInstructionSuccessions.size() + getMaxInstructionID() + 1 +
125
IRToNativeSizeLearning::NumNamedFeatures;
126
127
size_t getSize(Function &F, TargetTransformInfo &TTI) {
128
size_t Ret = 0;
129
for (const auto &BB : F)
130
for (const auto &I : BB)
131
Ret += *(TTI.getInstructionCost(
132
&I, TargetTransformInfo::TargetCostKind::TCK_CodeSize).getValue());
133
return Ret;
134
}
135
136
size_t getSize(Function &F, FunctionAnalysisManager &FAM) {
137
auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
138
return getSize(F, TTI);
139
}
140
141
unsigned getMaxDominatorTreeDepth(const Function &F,
142
const DominatorTree &Tree) {
143
unsigned Ret = 0;
144
for (const auto &BB : F)
145
if (const auto *TN = Tree.getNode(&BB))
146
Ret = std::max(Ret, TN->getLevel());
147
return Ret;
148
}
149
} // namespace
150
151
IRToNativeSizeLearning::FunctionFeatures
152
IRToNativeSizeLearning::getFunctionFeatures(Function &F,
153
FunctionAnalysisManager &FAM) {
154
assert(llvm::is_sorted(ImportantInstructionSuccessions) &&
155
"expected function features are sorted");
156
157
auto &DomTree = FAM.getResult<DominatorTreeAnalysis>(F);
158
FunctionFeatures FF;
159
size_t InstrCount = getMaxInstructionID() + 1;
160
FF.InstructionHistogram.resize(InstrCount);
161
162
FF.InstructionPairHistogram.resize(ImportantInstructionSuccessions.size());
163
164
int StartID = 0;
165
int LastID = StartID;
166
auto getPairIndex = [](size_t a, size_t b) {
167
auto I = llvm::find(ImportantInstructionSuccessions, std::make_pair(a, b));
168
if (I == ImportantInstructionSuccessions.end())
169
return -1;
170
return static_cast<int>(
171
std::distance(ImportantInstructionSuccessions.begin(), I));
172
};
173
174
// We don't want debug calls, because they'd just add noise.
175
for (const auto &BB : F) {
176
for (const auto &I : BB.instructionsWithoutDebug()) {
177
auto ID = I.getOpcode();
178
179
++FF.InstructionHistogram[ID];
180
int PairIndex = getPairIndex(LastID, ID);
181
if (PairIndex >= 0)
182
++FF.InstructionPairHistogram[PairIndex];
183
LastID = ID;
184
if (isa<CallBase>(I))
185
++FF[NamedFeatureIndex::Calls];
186
}
187
}
188
189
FF[NamedFeatureIndex::InitialSize] = getSize(F, FAM);
190
FF[NamedFeatureIndex::IsLocal] = F.hasLocalLinkage();
191
FF[NamedFeatureIndex::IsLinkOnceODR] = F.hasLinkOnceODRLinkage();
192
FF[NamedFeatureIndex::IsLinkOnce] = F.hasLinkOnceLinkage();
193
FF[NamedFeatureIndex::Blocks] = F.size();
194
auto &LI = FAM.getResult<LoopAnalysis>(F);
195
FF[NamedFeatureIndex::Loops] = std::distance(LI.begin(), LI.end());
196
for (auto &L : LI)
197
FF[NamedFeatureIndex::MaxLoopDepth] =
198
std::max(FF[NamedFeatureIndex::MaxLoopDepth],
199
static_cast<int32_t>(L->getLoopDepth()));
200
FF[NamedFeatureIndex::MaxDomTreeLevel] = getMaxDominatorTreeDepth(F, DomTree);
201
return FF;
202
}
203
204
void IRToNativeSizeLearning::FunctionFeatures::fillTensor(int32_t *Ptr) const {
205
std::copy(NamedFeatures.begin(), NamedFeatures.end(), Ptr);
206
Ptr += NamedFeatures.size();
207
std::copy(InstructionHistogram.begin(), InstructionHistogram.end(), Ptr);
208
Ptr += InstructionHistogram.size();
209
std::copy(InstructionPairHistogram.begin(), InstructionPairHistogram.end(),
210
Ptr);
211
}
212
213
bool InlineSizeEstimatorAnalysis::isEvaluatorRequested() {
214
return !TFIR2NativeModelPath.empty();
215
}
216
217
InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis() {
218
if (!isEvaluatorRequested()) {
219
return;
220
}
221
std::vector<TensorSpec> InputSpecs{TensorSpec::createSpec<int32_t>(
222
"serving_default_input_1",
223
{1, static_cast<int64_t>(
224
IRToNativeSizeLearning::FunctionFeatures::FeatureCount)})};
225
std::vector<TensorSpec> OutputSpecs{
226
TensorSpec::createSpec<float>("StatefulPartitionedCall", {1})};
227
Evaluator = std::make_unique<TFModelEvaluator>(
228
TFIR2NativeModelPath.getValue().c_str(), InputSpecs, OutputSpecs);
229
if (!Evaluator || !Evaluator->isValid()) {
230
Evaluator.reset();
231
return;
232
}
233
}
234
235
InlineSizeEstimatorAnalysis::Result
236
InlineSizeEstimatorAnalysis::run(const Function &F,
237
FunctionAnalysisManager &FAM) {
238
if (!Evaluator)
239
return std::nullopt;
240
auto Features = IRToNativeSizeLearning::getFunctionFeatures(
241
const_cast<Function &>(F), FAM);
242
int32_t *V = Evaluator->getInput<int32_t>(0);
243
Features.fillTensor(V);
244
auto ER = Evaluator->evaluate();
245
if (!ER)
246
return std::nullopt;
247
float Ret = *ER->getTensorValue<float>(0);
248
if (Ret < 0.0)
249
Ret = 0.0;
250
return static_cast<size_t>(Ret);
251
}
252
253
InlineSizeEstimatorAnalysis::~InlineSizeEstimatorAnalysis() {}
254
InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis(
255
InlineSizeEstimatorAnalysis &&Other)
256
: Evaluator(std::move(Other.Evaluator)) {}
257
258
#else
259
namespace llvm {
260
class TFModelEvaluator {};
261
} // namespace llvm
262
InlineSizeEstimatorAnalysis::InlineSizeEstimatorAnalysis() = default;
263
InlineSizeEstimatorAnalysis ::InlineSizeEstimatorAnalysis(
264
InlineSizeEstimatorAnalysis &&) {}
265
InlineSizeEstimatorAnalysis::~InlineSizeEstimatorAnalysis() = default;
266
InlineSizeEstimatorAnalysis::Result
267
InlineSizeEstimatorAnalysis::run(const Function &F,
268
FunctionAnalysisManager &FAM) {
269
return std::nullopt;
270
}
271
bool InlineSizeEstimatorAnalysis::isEvaluatorRequested() { return false; }
272
#endif
273
274
PreservedAnalyses
275
InlineSizeEstimatorAnalysisPrinterPass::run(Function &F,
276
FunctionAnalysisManager &AM) {
277
OS << "[InlineSizeEstimatorAnalysis] size estimate for " << F.getName()
278
<< ": " << AM.getResult<InlineSizeEstimatorAnalysis>(F) << "\n";
279
return PreservedAnalyses::all();
280
}
281
282