Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/AsmParser/LLParser.cpp
35233 views
1
//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the parser class for .ll files.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "llvm/AsmParser/LLParser.h"
14
#include "llvm/ADT/APSInt.h"
15
#include "llvm/ADT/DenseMap.h"
16
#include "llvm/ADT/STLExtras.h"
17
#include "llvm/ADT/ScopeExit.h"
18
#include "llvm/ADT/SmallPtrSet.h"
19
#include "llvm/AsmParser/LLToken.h"
20
#include "llvm/AsmParser/SlotMapping.h"
21
#include "llvm/BinaryFormat/Dwarf.h"
22
#include "llvm/IR/Argument.h"
23
#include "llvm/IR/AutoUpgrade.h"
24
#include "llvm/IR/BasicBlock.h"
25
#include "llvm/IR/CallingConv.h"
26
#include "llvm/IR/Comdat.h"
27
#include "llvm/IR/ConstantRange.h"
28
#include "llvm/IR/ConstantRangeList.h"
29
#include "llvm/IR/Constants.h"
30
#include "llvm/IR/DebugInfoMetadata.h"
31
#include "llvm/IR/DerivedTypes.h"
32
#include "llvm/IR/Function.h"
33
#include "llvm/IR/GlobalIFunc.h"
34
#include "llvm/IR/GlobalObject.h"
35
#include "llvm/IR/InlineAsm.h"
36
#include "llvm/IR/InstIterator.h"
37
#include "llvm/IR/Instructions.h"
38
#include "llvm/IR/IntrinsicInst.h"
39
#include "llvm/IR/Intrinsics.h"
40
#include "llvm/IR/LLVMContext.h"
41
#include "llvm/IR/Metadata.h"
42
#include "llvm/IR/Module.h"
43
#include "llvm/IR/Operator.h"
44
#include "llvm/IR/Value.h"
45
#include "llvm/IR/ValueSymbolTable.h"
46
#include "llvm/Support/Casting.h"
47
#include "llvm/Support/ErrorHandling.h"
48
#include "llvm/Support/MathExtras.h"
49
#include "llvm/Support/ModRef.h"
50
#include "llvm/Support/SaveAndRestore.h"
51
#include "llvm/Support/raw_ostream.h"
52
#include <algorithm>
53
#include <cassert>
54
#include <cstring>
55
#include <optional>
56
#include <vector>
57
58
using namespace llvm;
59
60
static cl::opt<bool> AllowIncompleteIR(
61
"allow-incomplete-ir", cl::init(false), cl::Hidden,
62
cl::desc(
63
"Allow incomplete IR on a best effort basis (references to unknown "
64
"metadata will be dropped)"));
65
66
extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
67
extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat;
68
extern bool WriteNewDbgInfoFormatToBitcode;
69
extern cl::opt<bool> WriteNewDbgInfoFormat;
70
71
static std::string getTypeString(Type *T) {
72
std::string Result;
73
raw_string_ostream Tmp(Result);
74
Tmp << *T;
75
return Tmp.str();
76
}
77
78
/// Run: module ::= toplevelentity*
79
bool LLParser::Run(bool UpgradeDebugInfo,
80
DataLayoutCallbackTy DataLayoutCallback) {
81
// Prime the lexer.
82
Lex.Lex();
83
84
if (Context.shouldDiscardValueNames())
85
return error(
86
Lex.getLoc(),
87
"Can't read textual IR with a Context that discards named Values");
88
89
if (M) {
90
if (parseTargetDefinitions(DataLayoutCallback))
91
return true;
92
}
93
94
return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
95
validateEndOfIndex();
96
}
97
98
bool LLParser::parseStandaloneConstantValue(Constant *&C,
99
const SlotMapping *Slots) {
100
restoreParsingState(Slots);
101
Lex.Lex();
102
103
Type *Ty = nullptr;
104
if (parseType(Ty) || parseConstantValue(Ty, C))
105
return true;
106
if (Lex.getKind() != lltok::Eof)
107
return error(Lex.getLoc(), "expected end of string");
108
return false;
109
}
110
111
bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
112
const SlotMapping *Slots) {
113
restoreParsingState(Slots);
114
Lex.Lex();
115
116
Read = 0;
117
SMLoc Start = Lex.getLoc();
118
Ty = nullptr;
119
if (parseType(Ty))
120
return true;
121
SMLoc End = Lex.getLoc();
122
Read = End.getPointer() - Start.getPointer();
123
124
return false;
125
}
126
127
bool LLParser::parseDIExpressionBodyAtBeginning(MDNode *&Result, unsigned &Read,
128
const SlotMapping *Slots) {
129
restoreParsingState(Slots);
130
Lex.Lex();
131
132
Read = 0;
133
SMLoc Start = Lex.getLoc();
134
Result = nullptr;
135
bool Status = parseDIExpressionBody(Result, /*IsDistinct=*/false);
136
SMLoc End = Lex.getLoc();
137
Read = End.getPointer() - Start.getPointer();
138
139
return Status;
140
}
141
142
void LLParser::restoreParsingState(const SlotMapping *Slots) {
143
if (!Slots)
144
return;
145
NumberedVals = Slots->GlobalValues;
146
NumberedMetadata = Slots->MetadataNodes;
147
for (const auto &I : Slots->NamedTypes)
148
NamedTypes.insert(
149
std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
150
for (const auto &I : Slots->Types)
151
NumberedTypes.insert(
152
std::make_pair(I.first, std::make_pair(I.second, LocTy())));
153
}
154
155
static void dropIntrinsicWithUnknownMetadataArgument(IntrinsicInst *II) {
156
// White-list intrinsics that are safe to drop.
157
if (!isa<DbgInfoIntrinsic>(II) &&
158
II->getIntrinsicID() != Intrinsic::experimental_noalias_scope_decl)
159
return;
160
161
SmallVector<MetadataAsValue *> MVs;
162
for (Value *V : II->args())
163
if (auto *MV = dyn_cast<MetadataAsValue>(V))
164
if (auto *MD = dyn_cast<MDNode>(MV->getMetadata()))
165
if (MD->isTemporary())
166
MVs.push_back(MV);
167
168
if (!MVs.empty()) {
169
assert(II->use_empty() && "Cannot have uses");
170
II->eraseFromParent();
171
172
// Also remove no longer used MetadataAsValue wrappers.
173
for (MetadataAsValue *MV : MVs)
174
if (MV->use_empty())
175
delete MV;
176
}
177
}
178
179
void LLParser::dropUnknownMetadataReferences() {
180
auto Pred = [](unsigned MDKind, MDNode *Node) { return Node->isTemporary(); };
181
for (Function &F : *M) {
182
F.eraseMetadataIf(Pred);
183
for (Instruction &I : make_early_inc_range(instructions(F))) {
184
I.eraseMetadataIf(Pred);
185
186
if (auto *II = dyn_cast<IntrinsicInst>(&I))
187
dropIntrinsicWithUnknownMetadataArgument(II);
188
}
189
}
190
191
for (GlobalVariable &GV : M->globals())
192
GV.eraseMetadataIf(Pred);
193
194
for (const auto &[ID, Info] : make_early_inc_range(ForwardRefMDNodes)) {
195
// Check whether there is only a single use left, which would be in our
196
// own NumberedMetadata.
197
if (Info.first->getNumTemporaryUses() == 1) {
198
NumberedMetadata.erase(ID);
199
ForwardRefMDNodes.erase(ID);
200
}
201
}
202
}
203
204
/// validateEndOfModule - Do final validity and basic correctness checks at the
205
/// end of the module.
206
bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
207
if (!M)
208
return false;
209
210
// We should have already returned an error if we observed both intrinsics and
211
// records in this IR.
212
assert(!(SeenNewDbgInfoFormat && SeenOldDbgInfoFormat) &&
213
"Mixed debug intrinsics/records seen without a parsing error?");
214
if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) {
215
UseNewDbgInfoFormat = SeenNewDbgInfoFormat;
216
WriteNewDbgInfoFormatToBitcode = SeenNewDbgInfoFormat;
217
WriteNewDbgInfoFormat = SeenNewDbgInfoFormat;
218
M->setNewDbgInfoFormatFlag(SeenNewDbgInfoFormat);
219
}
220
221
// Handle any function attribute group forward references.
222
for (const auto &RAG : ForwardRefAttrGroups) {
223
Value *V = RAG.first;
224
const std::vector<unsigned> &Attrs = RAG.second;
225
AttrBuilder B(Context);
226
227
for (const auto &Attr : Attrs) {
228
auto R = NumberedAttrBuilders.find(Attr);
229
if (R != NumberedAttrBuilders.end())
230
B.merge(R->second);
231
}
232
233
if (Function *Fn = dyn_cast<Function>(V)) {
234
AttributeList AS = Fn->getAttributes();
235
AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
236
AS = AS.removeFnAttributes(Context);
237
238
FnAttrs.merge(B);
239
240
// If the alignment was parsed as an attribute, move to the alignment
241
// field.
242
if (MaybeAlign A = FnAttrs.getAlignment()) {
243
Fn->setAlignment(*A);
244
FnAttrs.removeAttribute(Attribute::Alignment);
245
}
246
247
AS = AS.addFnAttributes(Context, FnAttrs);
248
Fn->setAttributes(AS);
249
} else if (CallInst *CI = dyn_cast<CallInst>(V)) {
250
AttributeList AS = CI->getAttributes();
251
AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
252
AS = AS.removeFnAttributes(Context);
253
FnAttrs.merge(B);
254
AS = AS.addFnAttributes(Context, FnAttrs);
255
CI->setAttributes(AS);
256
} else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
257
AttributeList AS = II->getAttributes();
258
AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
259
AS = AS.removeFnAttributes(Context);
260
FnAttrs.merge(B);
261
AS = AS.addFnAttributes(Context, FnAttrs);
262
II->setAttributes(AS);
263
} else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
264
AttributeList AS = CBI->getAttributes();
265
AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
266
AS = AS.removeFnAttributes(Context);
267
FnAttrs.merge(B);
268
AS = AS.addFnAttributes(Context, FnAttrs);
269
CBI->setAttributes(AS);
270
} else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
271
AttrBuilder Attrs(M->getContext(), GV->getAttributes());
272
Attrs.merge(B);
273
GV->setAttributes(AttributeSet::get(Context,Attrs));
274
} else {
275
llvm_unreachable("invalid object with forward attribute group reference");
276
}
277
}
278
279
// If there are entries in ForwardRefBlockAddresses at this point, the
280
// function was never defined.
281
if (!ForwardRefBlockAddresses.empty())
282
return error(ForwardRefBlockAddresses.begin()->first.Loc,
283
"expected function name in blockaddress");
284
285
auto ResolveForwardRefDSOLocalEquivalents = [&](const ValID &GVRef,
286
GlobalValue *FwdRef) {
287
GlobalValue *GV = nullptr;
288
if (GVRef.Kind == ValID::t_GlobalName) {
289
GV = M->getNamedValue(GVRef.StrVal);
290
} else {
291
GV = NumberedVals.get(GVRef.UIntVal);
292
}
293
294
if (!GV)
295
return error(GVRef.Loc, "unknown function '" + GVRef.StrVal +
296
"' referenced by dso_local_equivalent");
297
298
if (!GV->getValueType()->isFunctionTy())
299
return error(GVRef.Loc,
300
"expected a function, alias to function, or ifunc "
301
"in dso_local_equivalent");
302
303
auto *Equiv = DSOLocalEquivalent::get(GV);
304
FwdRef->replaceAllUsesWith(Equiv);
305
FwdRef->eraseFromParent();
306
return false;
307
};
308
309
// If there are entries in ForwardRefDSOLocalEquivalentIDs/Names at this
310
// point, they are references after the function was defined. Resolve those
311
// now.
312
for (auto &Iter : ForwardRefDSOLocalEquivalentIDs) {
313
if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second))
314
return true;
315
}
316
for (auto &Iter : ForwardRefDSOLocalEquivalentNames) {
317
if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second))
318
return true;
319
}
320
ForwardRefDSOLocalEquivalentIDs.clear();
321
ForwardRefDSOLocalEquivalentNames.clear();
322
323
for (const auto &NT : NumberedTypes)
324
if (NT.second.second.isValid())
325
return error(NT.second.second,
326
"use of undefined type '%" + Twine(NT.first) + "'");
327
328
for (StringMap<std::pair<Type*, LocTy> >::iterator I =
329
NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
330
if (I->second.second.isValid())
331
return error(I->second.second,
332
"use of undefined type named '" + I->getKey() + "'");
333
334
if (!ForwardRefComdats.empty())
335
return error(ForwardRefComdats.begin()->second,
336
"use of undefined comdat '$" +
337
ForwardRefComdats.begin()->first + "'");
338
339
for (const auto &[Name, Info] : make_early_inc_range(ForwardRefVals)) {
340
if (StringRef(Name).starts_with("llvm.")) {
341
Intrinsic::ID IID = Function::lookupIntrinsicID(Name);
342
if (IID == Intrinsic::not_intrinsic)
343
// Don't do anything for unknown intrinsics.
344
continue;
345
346
// Automatically create declarations for intrinsics. Intrinsics can only
347
// be called directly, so the call function type directly determines the
348
// declaration function type.
349
//
350
// Additionally, automatically add the required mangling suffix to the
351
// intrinsic name. This means that we may replace a single forward
352
// declaration with multiple functions here.
353
for (Use &U : make_early_inc_range(Info.first->uses())) {
354
auto *CB = dyn_cast<CallBase>(U.getUser());
355
if (!CB || !CB->isCallee(&U))
356
return error(Info.second, "intrinsic can only be used as callee");
357
358
SmallVector<Type *> OverloadTys;
359
if (!Intrinsic::getIntrinsicSignature(IID, CB->getFunctionType(),
360
OverloadTys))
361
return error(Info.second, "invalid intrinsic signature");
362
363
U.set(Intrinsic::getDeclaration(M, IID, OverloadTys));
364
}
365
366
Info.first->eraseFromParent();
367
ForwardRefVals.erase(Name);
368
continue;
369
}
370
371
// If incomplete IR is allowed, also add declarations for
372
// non-intrinsics.
373
if (!AllowIncompleteIR)
374
continue;
375
376
auto GetCommonFunctionType = [](Value *V) -> FunctionType * {
377
FunctionType *FTy = nullptr;
378
for (Use &U : V->uses()) {
379
auto *CB = dyn_cast<CallBase>(U.getUser());
380
if (!CB || !CB->isCallee(&U) || (FTy && FTy != CB->getFunctionType()))
381
return nullptr;
382
FTy = CB->getFunctionType();
383
}
384
return FTy;
385
};
386
387
// First check whether this global is only used in calls with the same
388
// type, in which case we'll insert a function. Otherwise, fall back to
389
// using a dummy i8 type.
390
Type *Ty = GetCommonFunctionType(Info.first);
391
if (!Ty)
392
Ty = Type::getInt8Ty(Context);
393
394
GlobalValue *GV;
395
if (auto *FTy = dyn_cast<FunctionType>(Ty))
396
GV = Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M);
397
else
398
GV = new GlobalVariable(*M, Ty, /*isConstant*/ false,
399
GlobalValue::ExternalLinkage,
400
/*Initializer*/ nullptr, Name);
401
Info.first->replaceAllUsesWith(GV);
402
Info.first->eraseFromParent();
403
ForwardRefVals.erase(Name);
404
}
405
406
if (!ForwardRefVals.empty())
407
return error(ForwardRefVals.begin()->second.second,
408
"use of undefined value '@" + ForwardRefVals.begin()->first +
409
"'");
410
411
if (!ForwardRefValIDs.empty())
412
return error(ForwardRefValIDs.begin()->second.second,
413
"use of undefined value '@" +
414
Twine(ForwardRefValIDs.begin()->first) + "'");
415
416
if (AllowIncompleteIR && !ForwardRefMDNodes.empty())
417
dropUnknownMetadataReferences();
418
419
if (!ForwardRefMDNodes.empty())
420
return error(ForwardRefMDNodes.begin()->second.second,
421
"use of undefined metadata '!" +
422
Twine(ForwardRefMDNodes.begin()->first) + "'");
423
424
// Resolve metadata cycles.
425
for (auto &N : NumberedMetadata) {
426
if (N.second && !N.second->isResolved())
427
N.second->resolveCycles();
428
}
429
430
for (auto *Inst : InstsWithTBAATag) {
431
MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
432
// With incomplete IR, the tbaa metadata may have been dropped.
433
if (!AllowIncompleteIR)
434
assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
435
if (MD) {
436
auto *UpgradedMD = UpgradeTBAANode(*MD);
437
if (MD != UpgradedMD)
438
Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
439
}
440
}
441
442
// Look for intrinsic functions and CallInst that need to be upgraded. We use
443
// make_early_inc_range here because we may remove some functions.
444
for (Function &F : llvm::make_early_inc_range(*M))
445
UpgradeCallsToIntrinsic(&F);
446
447
if (UpgradeDebugInfo)
448
llvm::UpgradeDebugInfo(*M);
449
450
UpgradeModuleFlags(*M);
451
UpgradeSectionAttributes(*M);
452
453
if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE)
454
M->setIsNewDbgInfoFormat(UseNewDbgInfoFormat);
455
456
if (!Slots)
457
return false;
458
// Initialize the slot mapping.
459
// Because by this point we've parsed and validated everything, we can "steal"
460
// the mapping from LLParser as it doesn't need it anymore.
461
Slots->GlobalValues = std::move(NumberedVals);
462
Slots->MetadataNodes = std::move(NumberedMetadata);
463
for (const auto &I : NamedTypes)
464
Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
465
for (const auto &I : NumberedTypes)
466
Slots->Types.insert(std::make_pair(I.first, I.second.first));
467
468
return false;
469
}
470
471
/// Do final validity and basic correctness checks at the end of the index.
472
bool LLParser::validateEndOfIndex() {
473
if (!Index)
474
return false;
475
476
if (!ForwardRefValueInfos.empty())
477
return error(ForwardRefValueInfos.begin()->second.front().second,
478
"use of undefined summary '^" +
479
Twine(ForwardRefValueInfos.begin()->first) + "'");
480
481
if (!ForwardRefAliasees.empty())
482
return error(ForwardRefAliasees.begin()->second.front().second,
483
"use of undefined summary '^" +
484
Twine(ForwardRefAliasees.begin()->first) + "'");
485
486
if (!ForwardRefTypeIds.empty())
487
return error(ForwardRefTypeIds.begin()->second.front().second,
488
"use of undefined type id summary '^" +
489
Twine(ForwardRefTypeIds.begin()->first) + "'");
490
491
return false;
492
}
493
494
//===----------------------------------------------------------------------===//
495
// Top-Level Entities
496
//===----------------------------------------------------------------------===//
497
498
bool LLParser::parseTargetDefinitions(DataLayoutCallbackTy DataLayoutCallback) {
499
// Delay parsing of the data layout string until the target triple is known.
500
// Then, pass both the the target triple and the tentative data layout string
501
// to DataLayoutCallback, allowing to override the DL string.
502
// This enables importing modules with invalid DL strings.
503
std::string TentativeDLStr = M->getDataLayoutStr();
504
LocTy DLStrLoc;
505
506
bool Done = false;
507
while (!Done) {
508
switch (Lex.getKind()) {
509
case lltok::kw_target:
510
if (parseTargetDefinition(TentativeDLStr, DLStrLoc))
511
return true;
512
break;
513
case lltok::kw_source_filename:
514
if (parseSourceFileName())
515
return true;
516
break;
517
default:
518
Done = true;
519
}
520
}
521
// Run the override callback to potentially change the data layout string, and
522
// parse the data layout string.
523
if (auto LayoutOverride =
524
DataLayoutCallback(M->getTargetTriple(), TentativeDLStr)) {
525
TentativeDLStr = *LayoutOverride;
526
DLStrLoc = {};
527
}
528
Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDLStr);
529
if (!MaybeDL)
530
return error(DLStrLoc, toString(MaybeDL.takeError()));
531
M->setDataLayout(MaybeDL.get());
532
return false;
533
}
534
535
bool LLParser::parseTopLevelEntities() {
536
// If there is no Module, then parse just the summary index entries.
537
if (!M) {
538
while (true) {
539
switch (Lex.getKind()) {
540
case lltok::Eof:
541
return false;
542
case lltok::SummaryID:
543
if (parseSummaryEntry())
544
return true;
545
break;
546
case lltok::kw_source_filename:
547
if (parseSourceFileName())
548
return true;
549
break;
550
default:
551
// Skip everything else
552
Lex.Lex();
553
}
554
}
555
}
556
while (true) {
557
switch (Lex.getKind()) {
558
default:
559
return tokError("expected top-level entity");
560
case lltok::Eof: return false;
561
case lltok::kw_declare:
562
if (parseDeclare())
563
return true;
564
break;
565
case lltok::kw_define:
566
if (parseDefine())
567
return true;
568
break;
569
case lltok::kw_module:
570
if (parseModuleAsm())
571
return true;
572
break;
573
case lltok::LocalVarID:
574
if (parseUnnamedType())
575
return true;
576
break;
577
case lltok::LocalVar:
578
if (parseNamedType())
579
return true;
580
break;
581
case lltok::GlobalID:
582
if (parseUnnamedGlobal())
583
return true;
584
break;
585
case lltok::GlobalVar:
586
if (parseNamedGlobal())
587
return true;
588
break;
589
case lltok::ComdatVar: if (parseComdat()) return true; break;
590
case lltok::exclaim:
591
if (parseStandaloneMetadata())
592
return true;
593
break;
594
case lltok::SummaryID:
595
if (parseSummaryEntry())
596
return true;
597
break;
598
case lltok::MetadataVar:
599
if (parseNamedMetadata())
600
return true;
601
break;
602
case lltok::kw_attributes:
603
if (parseUnnamedAttrGrp())
604
return true;
605
break;
606
case lltok::kw_uselistorder:
607
if (parseUseListOrder())
608
return true;
609
break;
610
case lltok::kw_uselistorder_bb:
611
if (parseUseListOrderBB())
612
return true;
613
break;
614
}
615
}
616
}
617
618
/// toplevelentity
619
/// ::= 'module' 'asm' STRINGCONSTANT
620
bool LLParser::parseModuleAsm() {
621
assert(Lex.getKind() == lltok::kw_module);
622
Lex.Lex();
623
624
std::string AsmStr;
625
if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
626
parseStringConstant(AsmStr))
627
return true;
628
629
M->appendModuleInlineAsm(AsmStr);
630
return false;
631
}
632
633
/// toplevelentity
634
/// ::= 'target' 'triple' '=' STRINGCONSTANT
635
/// ::= 'target' 'datalayout' '=' STRINGCONSTANT
636
bool LLParser::parseTargetDefinition(std::string &TentativeDLStr,
637
LocTy &DLStrLoc) {
638
assert(Lex.getKind() == lltok::kw_target);
639
std::string Str;
640
switch (Lex.Lex()) {
641
default:
642
return tokError("unknown target property");
643
case lltok::kw_triple:
644
Lex.Lex();
645
if (parseToken(lltok::equal, "expected '=' after target triple") ||
646
parseStringConstant(Str))
647
return true;
648
M->setTargetTriple(Str);
649
return false;
650
case lltok::kw_datalayout:
651
Lex.Lex();
652
if (parseToken(lltok::equal, "expected '=' after target datalayout"))
653
return true;
654
DLStrLoc = Lex.getLoc();
655
if (parseStringConstant(TentativeDLStr))
656
return true;
657
return false;
658
}
659
}
660
661
/// toplevelentity
662
/// ::= 'source_filename' '=' STRINGCONSTANT
663
bool LLParser::parseSourceFileName() {
664
assert(Lex.getKind() == lltok::kw_source_filename);
665
Lex.Lex();
666
if (parseToken(lltok::equal, "expected '=' after source_filename") ||
667
parseStringConstant(SourceFileName))
668
return true;
669
if (M)
670
M->setSourceFileName(SourceFileName);
671
return false;
672
}
673
674
/// parseUnnamedType:
675
/// ::= LocalVarID '=' 'type' type
676
bool LLParser::parseUnnamedType() {
677
LocTy TypeLoc = Lex.getLoc();
678
unsigned TypeID = Lex.getUIntVal();
679
Lex.Lex(); // eat LocalVarID;
680
681
if (parseToken(lltok::equal, "expected '=' after name") ||
682
parseToken(lltok::kw_type, "expected 'type' after '='"))
683
return true;
684
685
Type *Result = nullptr;
686
if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
687
return true;
688
689
if (!isa<StructType>(Result)) {
690
std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
691
if (Entry.first)
692
return error(TypeLoc, "non-struct types may not be recursive");
693
Entry.first = Result;
694
Entry.second = SMLoc();
695
}
696
697
return false;
698
}
699
700
/// toplevelentity
701
/// ::= LocalVar '=' 'type' type
702
bool LLParser::parseNamedType() {
703
std::string Name = Lex.getStrVal();
704
LocTy NameLoc = Lex.getLoc();
705
Lex.Lex(); // eat LocalVar.
706
707
if (parseToken(lltok::equal, "expected '=' after name") ||
708
parseToken(lltok::kw_type, "expected 'type' after name"))
709
return true;
710
711
Type *Result = nullptr;
712
if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
713
return true;
714
715
if (!isa<StructType>(Result)) {
716
std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
717
if (Entry.first)
718
return error(NameLoc, "non-struct types may not be recursive");
719
Entry.first = Result;
720
Entry.second = SMLoc();
721
}
722
723
return false;
724
}
725
726
/// toplevelentity
727
/// ::= 'declare' FunctionHeader
728
bool LLParser::parseDeclare() {
729
assert(Lex.getKind() == lltok::kw_declare);
730
Lex.Lex();
731
732
std::vector<std::pair<unsigned, MDNode *>> MDs;
733
while (Lex.getKind() == lltok::MetadataVar) {
734
unsigned MDK;
735
MDNode *N;
736
if (parseMetadataAttachment(MDK, N))
737
return true;
738
MDs.push_back({MDK, N});
739
}
740
741
Function *F;
742
unsigned FunctionNumber = -1;
743
SmallVector<unsigned> UnnamedArgNums;
744
if (parseFunctionHeader(F, false, FunctionNumber, UnnamedArgNums))
745
return true;
746
for (auto &MD : MDs)
747
F->addMetadata(MD.first, *MD.second);
748
return false;
749
}
750
751
/// toplevelentity
752
/// ::= 'define' FunctionHeader (!dbg !56)* '{' ...
753
bool LLParser::parseDefine() {
754
assert(Lex.getKind() == lltok::kw_define);
755
Lex.Lex();
756
757
Function *F;
758
unsigned FunctionNumber = -1;
759
SmallVector<unsigned> UnnamedArgNums;
760
return parseFunctionHeader(F, true, FunctionNumber, UnnamedArgNums) ||
761
parseOptionalFunctionMetadata(*F) ||
762
parseFunctionBody(*F, FunctionNumber, UnnamedArgNums);
763
}
764
765
/// parseGlobalType
766
/// ::= 'constant'
767
/// ::= 'global'
768
bool LLParser::parseGlobalType(bool &IsConstant) {
769
if (Lex.getKind() == lltok::kw_constant)
770
IsConstant = true;
771
else if (Lex.getKind() == lltok::kw_global)
772
IsConstant = false;
773
else {
774
IsConstant = false;
775
return tokError("expected 'global' or 'constant'");
776
}
777
Lex.Lex();
778
return false;
779
}
780
781
bool LLParser::parseOptionalUnnamedAddr(
782
GlobalVariable::UnnamedAddr &UnnamedAddr) {
783
if (EatIfPresent(lltok::kw_unnamed_addr))
784
UnnamedAddr = GlobalValue::UnnamedAddr::Global;
785
else if (EatIfPresent(lltok::kw_local_unnamed_addr))
786
UnnamedAddr = GlobalValue::UnnamedAddr::Local;
787
else
788
UnnamedAddr = GlobalValue::UnnamedAddr::None;
789
return false;
790
}
791
792
/// parseUnnamedGlobal:
793
/// OptionalVisibility (ALIAS | IFUNC) ...
794
/// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
795
/// OptionalDLLStorageClass
796
/// ... -> global variable
797
/// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
798
/// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
799
/// OptionalVisibility
800
/// OptionalDLLStorageClass
801
/// ... -> global variable
802
bool LLParser::parseUnnamedGlobal() {
803
unsigned VarID;
804
std::string Name;
805
LocTy NameLoc = Lex.getLoc();
806
807
// Handle the GlobalID form.
808
if (Lex.getKind() == lltok::GlobalID) {
809
VarID = Lex.getUIntVal();
810
if (checkValueID(NameLoc, "global", "@", NumberedVals.getNext(), VarID))
811
return true;
812
813
Lex.Lex(); // eat GlobalID;
814
if (parseToken(lltok::equal, "expected '=' after name"))
815
return true;
816
} else {
817
VarID = NumberedVals.getNext();
818
}
819
820
bool HasLinkage;
821
unsigned Linkage, Visibility, DLLStorageClass;
822
bool DSOLocal;
823
GlobalVariable::ThreadLocalMode TLM;
824
GlobalVariable::UnnamedAddr UnnamedAddr;
825
if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
826
DSOLocal) ||
827
parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
828
return true;
829
830
switch (Lex.getKind()) {
831
default:
832
return parseGlobal(Name, VarID, NameLoc, Linkage, HasLinkage, Visibility,
833
DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
834
case lltok::kw_alias:
835
case lltok::kw_ifunc:
836
return parseAliasOrIFunc(Name, VarID, NameLoc, Linkage, Visibility,
837
DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
838
}
839
}
840
841
/// parseNamedGlobal:
842
/// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
843
/// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
844
/// OptionalVisibility OptionalDLLStorageClass
845
/// ... -> global variable
846
bool LLParser::parseNamedGlobal() {
847
assert(Lex.getKind() == lltok::GlobalVar);
848
LocTy NameLoc = Lex.getLoc();
849
std::string Name = Lex.getStrVal();
850
Lex.Lex();
851
852
bool HasLinkage;
853
unsigned Linkage, Visibility, DLLStorageClass;
854
bool DSOLocal;
855
GlobalVariable::ThreadLocalMode TLM;
856
GlobalVariable::UnnamedAddr UnnamedAddr;
857
if (parseToken(lltok::equal, "expected '=' in global variable") ||
858
parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
859
DSOLocal) ||
860
parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
861
return true;
862
863
switch (Lex.getKind()) {
864
default:
865
return parseGlobal(Name, -1, NameLoc, Linkage, HasLinkage, Visibility,
866
DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
867
case lltok::kw_alias:
868
case lltok::kw_ifunc:
869
return parseAliasOrIFunc(Name, -1, NameLoc, Linkage, Visibility,
870
DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
871
}
872
}
873
874
bool LLParser::parseComdat() {
875
assert(Lex.getKind() == lltok::ComdatVar);
876
std::string Name = Lex.getStrVal();
877
LocTy NameLoc = Lex.getLoc();
878
Lex.Lex();
879
880
if (parseToken(lltok::equal, "expected '=' here"))
881
return true;
882
883
if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
884
return tokError("expected comdat type");
885
886
Comdat::SelectionKind SK;
887
switch (Lex.getKind()) {
888
default:
889
return tokError("unknown selection kind");
890
case lltok::kw_any:
891
SK = Comdat::Any;
892
break;
893
case lltok::kw_exactmatch:
894
SK = Comdat::ExactMatch;
895
break;
896
case lltok::kw_largest:
897
SK = Comdat::Largest;
898
break;
899
case lltok::kw_nodeduplicate:
900
SK = Comdat::NoDeduplicate;
901
break;
902
case lltok::kw_samesize:
903
SK = Comdat::SameSize;
904
break;
905
}
906
Lex.Lex();
907
908
// See if the comdat was forward referenced, if so, use the comdat.
909
Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
910
Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
911
if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
912
return error(NameLoc, "redefinition of comdat '$" + Name + "'");
913
914
Comdat *C;
915
if (I != ComdatSymTab.end())
916
C = &I->second;
917
else
918
C = M->getOrInsertComdat(Name);
919
C->setSelectionKind(SK);
920
921
return false;
922
}
923
924
// MDString:
925
// ::= '!' STRINGCONSTANT
926
bool LLParser::parseMDString(MDString *&Result) {
927
std::string Str;
928
if (parseStringConstant(Str))
929
return true;
930
Result = MDString::get(Context, Str);
931
return false;
932
}
933
934
// MDNode:
935
// ::= '!' MDNodeNumber
936
bool LLParser::parseMDNodeID(MDNode *&Result) {
937
// !{ ..., !42, ... }
938
LocTy IDLoc = Lex.getLoc();
939
unsigned MID = 0;
940
if (parseUInt32(MID))
941
return true;
942
943
// If not a forward reference, just return it now.
944
if (NumberedMetadata.count(MID)) {
945
Result = NumberedMetadata[MID];
946
return false;
947
}
948
949
// Otherwise, create MDNode forward reference.
950
auto &FwdRef = ForwardRefMDNodes[MID];
951
FwdRef = std::make_pair(MDTuple::getTemporary(Context, std::nullopt), IDLoc);
952
953
Result = FwdRef.first.get();
954
NumberedMetadata[MID].reset(Result);
955
return false;
956
}
957
958
/// parseNamedMetadata:
959
/// !foo = !{ !1, !2 }
960
bool LLParser::parseNamedMetadata() {
961
assert(Lex.getKind() == lltok::MetadataVar);
962
std::string Name = Lex.getStrVal();
963
Lex.Lex();
964
965
if (parseToken(lltok::equal, "expected '=' here") ||
966
parseToken(lltok::exclaim, "Expected '!' here") ||
967
parseToken(lltok::lbrace, "Expected '{' here"))
968
return true;
969
970
NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
971
if (Lex.getKind() != lltok::rbrace)
972
do {
973
MDNode *N = nullptr;
974
// parse DIExpressions inline as a special case. They are still MDNodes,
975
// so they can still appear in named metadata. Remove this logic if they
976
// become plain Metadata.
977
if (Lex.getKind() == lltok::MetadataVar &&
978
Lex.getStrVal() == "DIExpression") {
979
if (parseDIExpression(N, /*IsDistinct=*/false))
980
return true;
981
// DIArgLists should only appear inline in a function, as they may
982
// contain LocalAsMetadata arguments which require a function context.
983
} else if (Lex.getKind() == lltok::MetadataVar &&
984
Lex.getStrVal() == "DIArgList") {
985
return tokError("found DIArgList outside of function");
986
} else if (parseToken(lltok::exclaim, "Expected '!' here") ||
987
parseMDNodeID(N)) {
988
return true;
989
}
990
NMD->addOperand(N);
991
} while (EatIfPresent(lltok::comma));
992
993
return parseToken(lltok::rbrace, "expected end of metadata node");
994
}
995
996
/// parseStandaloneMetadata:
997
/// !42 = !{...}
998
bool LLParser::parseStandaloneMetadata() {
999
assert(Lex.getKind() == lltok::exclaim);
1000
Lex.Lex();
1001
unsigned MetadataID = 0;
1002
1003
MDNode *Init;
1004
if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
1005
return true;
1006
1007
// Detect common error, from old metadata syntax.
1008
if (Lex.getKind() == lltok::Type)
1009
return tokError("unexpected type in metadata definition");
1010
1011
bool IsDistinct = EatIfPresent(lltok::kw_distinct);
1012
if (Lex.getKind() == lltok::MetadataVar) {
1013
if (parseSpecializedMDNode(Init, IsDistinct))
1014
return true;
1015
} else if (parseToken(lltok::exclaim, "Expected '!' here") ||
1016
parseMDTuple(Init, IsDistinct))
1017
return true;
1018
1019
// See if this was forward referenced, if so, handle it.
1020
auto FI = ForwardRefMDNodes.find(MetadataID);
1021
if (FI != ForwardRefMDNodes.end()) {
1022
auto *ToReplace = FI->second.first.get();
1023
// DIAssignID has its own special forward-reference "replacement" for
1024
// attachments (the temporary attachments are never actually attached).
1025
if (isa<DIAssignID>(Init)) {
1026
for (auto *Inst : TempDIAssignIDAttachments[ToReplace]) {
1027
assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID) &&
1028
"Inst unexpectedly already has DIAssignID attachment");
1029
Inst->setMetadata(LLVMContext::MD_DIAssignID, Init);
1030
}
1031
}
1032
1033
ToReplace->replaceAllUsesWith(Init);
1034
ForwardRefMDNodes.erase(FI);
1035
1036
assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
1037
} else {
1038
if (NumberedMetadata.count(MetadataID))
1039
return tokError("Metadata id is already used");
1040
NumberedMetadata[MetadataID].reset(Init);
1041
}
1042
1043
return false;
1044
}
1045
1046
// Skips a single module summary entry.
1047
bool LLParser::skipModuleSummaryEntry() {
1048
// Each module summary entry consists of a tag for the entry
1049
// type, followed by a colon, then the fields which may be surrounded by
1050
// nested sets of parentheses. The "tag:" looks like a Label. Once parsing
1051
// support is in place we will look for the tokens corresponding to the
1052
// expected tags.
1053
if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
1054
Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
1055
Lex.getKind() != lltok::kw_blockcount)
1056
return tokError(
1057
"Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
1058
"start of summary entry");
1059
if (Lex.getKind() == lltok::kw_flags)
1060
return parseSummaryIndexFlags();
1061
if (Lex.getKind() == lltok::kw_blockcount)
1062
return parseBlockCount();
1063
Lex.Lex();
1064
if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
1065
parseToken(lltok::lparen, "expected '(' at start of summary entry"))
1066
return true;
1067
// Now walk through the parenthesized entry, until the number of open
1068
// parentheses goes back down to 0 (the first '(' was parsed above).
1069
unsigned NumOpenParen = 1;
1070
do {
1071
switch (Lex.getKind()) {
1072
case lltok::lparen:
1073
NumOpenParen++;
1074
break;
1075
case lltok::rparen:
1076
NumOpenParen--;
1077
break;
1078
case lltok::Eof:
1079
return tokError("found end of file while parsing summary entry");
1080
default:
1081
// Skip everything in between parentheses.
1082
break;
1083
}
1084
Lex.Lex();
1085
} while (NumOpenParen > 0);
1086
return false;
1087
}
1088
1089
/// SummaryEntry
1090
/// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
1091
bool LLParser::parseSummaryEntry() {
1092
assert(Lex.getKind() == lltok::SummaryID);
1093
unsigned SummaryID = Lex.getUIntVal();
1094
1095
// For summary entries, colons should be treated as distinct tokens,
1096
// not an indication of the end of a label token.
1097
Lex.setIgnoreColonInIdentifiers(true);
1098
1099
Lex.Lex();
1100
if (parseToken(lltok::equal, "expected '=' here"))
1101
return true;
1102
1103
// If we don't have an index object, skip the summary entry.
1104
if (!Index)
1105
return skipModuleSummaryEntry();
1106
1107
bool result = false;
1108
switch (Lex.getKind()) {
1109
case lltok::kw_gv:
1110
result = parseGVEntry(SummaryID);
1111
break;
1112
case lltok::kw_module:
1113
result = parseModuleEntry(SummaryID);
1114
break;
1115
case lltok::kw_typeid:
1116
result = parseTypeIdEntry(SummaryID);
1117
break;
1118
case lltok::kw_typeidCompatibleVTable:
1119
result = parseTypeIdCompatibleVtableEntry(SummaryID);
1120
break;
1121
case lltok::kw_flags:
1122
result = parseSummaryIndexFlags();
1123
break;
1124
case lltok::kw_blockcount:
1125
result = parseBlockCount();
1126
break;
1127
default:
1128
result = error(Lex.getLoc(), "unexpected summary kind");
1129
break;
1130
}
1131
Lex.setIgnoreColonInIdentifiers(false);
1132
return result;
1133
}
1134
1135
static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
1136
return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
1137
(GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
1138
}
1139
static bool isValidDLLStorageClassForLinkage(unsigned S, unsigned L) {
1140
return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
1141
(GlobalValue::DLLStorageClassTypes)S == GlobalValue::DefaultStorageClass;
1142
}
1143
1144
// If there was an explicit dso_local, update GV. In the absence of an explicit
1145
// dso_local we keep the default value.
1146
static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
1147
if (DSOLocal)
1148
GV.setDSOLocal(true);
1149
}
1150
1151
/// parseAliasOrIFunc:
1152
/// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1153
/// OptionalVisibility OptionalDLLStorageClass
1154
/// OptionalThreadLocal OptionalUnnamedAddr
1155
/// 'alias|ifunc' AliaseeOrResolver SymbolAttrs*
1156
///
1157
/// AliaseeOrResolver
1158
/// ::= TypeAndValue
1159
///
1160
/// SymbolAttrs
1161
/// ::= ',' 'partition' StringConstant
1162
///
1163
/// Everything through OptionalUnnamedAddr has already been parsed.
1164
///
1165
bool LLParser::parseAliasOrIFunc(const std::string &Name, unsigned NameID,
1166
LocTy NameLoc, unsigned L, unsigned Visibility,
1167
unsigned DLLStorageClass, bool DSOLocal,
1168
GlobalVariable::ThreadLocalMode TLM,
1169
GlobalVariable::UnnamedAddr UnnamedAddr) {
1170
bool IsAlias;
1171
if (Lex.getKind() == lltok::kw_alias)
1172
IsAlias = true;
1173
else if (Lex.getKind() == lltok::kw_ifunc)
1174
IsAlias = false;
1175
else
1176
llvm_unreachable("Not an alias or ifunc!");
1177
Lex.Lex();
1178
1179
GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
1180
1181
if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
1182
return error(NameLoc, "invalid linkage type for alias");
1183
1184
if (!isValidVisibilityForLinkage(Visibility, L))
1185
return error(NameLoc,
1186
"symbol with local linkage must have default visibility");
1187
1188
if (!isValidDLLStorageClassForLinkage(DLLStorageClass, L))
1189
return error(NameLoc,
1190
"symbol with local linkage cannot have a DLL storage class");
1191
1192
Type *Ty;
1193
LocTy ExplicitTypeLoc = Lex.getLoc();
1194
if (parseType(Ty) ||
1195
parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
1196
return true;
1197
1198
Constant *Aliasee;
1199
LocTy AliaseeLoc = Lex.getLoc();
1200
if (Lex.getKind() != lltok::kw_bitcast &&
1201
Lex.getKind() != lltok::kw_getelementptr &&
1202
Lex.getKind() != lltok::kw_addrspacecast &&
1203
Lex.getKind() != lltok::kw_inttoptr) {
1204
if (parseGlobalTypeAndValue(Aliasee))
1205
return true;
1206
} else {
1207
// The bitcast dest type is not present, it is implied by the dest type.
1208
ValID ID;
1209
if (parseValID(ID, /*PFS=*/nullptr))
1210
return true;
1211
if (ID.Kind != ValID::t_Constant)
1212
return error(AliaseeLoc, "invalid aliasee");
1213
Aliasee = ID.ConstantVal;
1214
}
1215
1216
Type *AliaseeType = Aliasee->getType();
1217
auto *PTy = dyn_cast<PointerType>(AliaseeType);
1218
if (!PTy)
1219
return error(AliaseeLoc, "An alias or ifunc must have pointer type");
1220
unsigned AddrSpace = PTy->getAddressSpace();
1221
1222
GlobalValue *GVal = nullptr;
1223
1224
// See if the alias was forward referenced, if so, prepare to replace the
1225
// forward reference.
1226
if (!Name.empty()) {
1227
auto I = ForwardRefVals.find(Name);
1228
if (I != ForwardRefVals.end()) {
1229
GVal = I->second.first;
1230
ForwardRefVals.erase(Name);
1231
} else if (M->getNamedValue(Name)) {
1232
return error(NameLoc, "redefinition of global '@" + Name + "'");
1233
}
1234
} else {
1235
auto I = ForwardRefValIDs.find(NameID);
1236
if (I != ForwardRefValIDs.end()) {
1237
GVal = I->second.first;
1238
ForwardRefValIDs.erase(I);
1239
}
1240
}
1241
1242
// Okay, create the alias/ifunc but do not insert it into the module yet.
1243
std::unique_ptr<GlobalAlias> GA;
1244
std::unique_ptr<GlobalIFunc> GI;
1245
GlobalValue *GV;
1246
if (IsAlias) {
1247
GA.reset(GlobalAlias::create(Ty, AddrSpace,
1248
(GlobalValue::LinkageTypes)Linkage, Name,
1249
Aliasee, /*Parent*/ nullptr));
1250
GV = GA.get();
1251
} else {
1252
GI.reset(GlobalIFunc::create(Ty, AddrSpace,
1253
(GlobalValue::LinkageTypes)Linkage, Name,
1254
Aliasee, /*Parent*/ nullptr));
1255
GV = GI.get();
1256
}
1257
GV->setThreadLocalMode(TLM);
1258
GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1259
GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1260
GV->setUnnamedAddr(UnnamedAddr);
1261
maybeSetDSOLocal(DSOLocal, *GV);
1262
1263
// At this point we've parsed everything except for the IndirectSymbolAttrs.
1264
// Now parse them if there are any.
1265
while (Lex.getKind() == lltok::comma) {
1266
Lex.Lex();
1267
1268
if (Lex.getKind() == lltok::kw_partition) {
1269
Lex.Lex();
1270
GV->setPartition(Lex.getStrVal());
1271
if (parseToken(lltok::StringConstant, "expected partition string"))
1272
return true;
1273
} else {
1274
return tokError("unknown alias or ifunc property!");
1275
}
1276
}
1277
1278
if (Name.empty())
1279
NumberedVals.add(NameID, GV);
1280
1281
if (GVal) {
1282
// Verify that types agree.
1283
if (GVal->getType() != GV->getType())
1284
return error(
1285
ExplicitTypeLoc,
1286
"forward reference and definition of alias have different types");
1287
1288
// If they agree, just RAUW the old value with the alias and remove the
1289
// forward ref info.
1290
GVal->replaceAllUsesWith(GV);
1291
GVal->eraseFromParent();
1292
}
1293
1294
// Insert into the module, we know its name won't collide now.
1295
if (IsAlias)
1296
M->insertAlias(GA.release());
1297
else
1298
M->insertIFunc(GI.release());
1299
assert(GV->getName() == Name && "Should not be a name conflict!");
1300
1301
return false;
1302
}
1303
1304
static bool isSanitizer(lltok::Kind Kind) {
1305
switch (Kind) {
1306
case lltok::kw_no_sanitize_address:
1307
case lltok::kw_no_sanitize_hwaddress:
1308
case lltok::kw_sanitize_memtag:
1309
case lltok::kw_sanitize_address_dyninit:
1310
return true;
1311
default:
1312
return false;
1313
}
1314
}
1315
1316
bool LLParser::parseSanitizer(GlobalVariable *GV) {
1317
using SanitizerMetadata = GlobalValue::SanitizerMetadata;
1318
SanitizerMetadata Meta;
1319
if (GV->hasSanitizerMetadata())
1320
Meta = GV->getSanitizerMetadata();
1321
1322
switch (Lex.getKind()) {
1323
case lltok::kw_no_sanitize_address:
1324
Meta.NoAddress = true;
1325
break;
1326
case lltok::kw_no_sanitize_hwaddress:
1327
Meta.NoHWAddress = true;
1328
break;
1329
case lltok::kw_sanitize_memtag:
1330
Meta.Memtag = true;
1331
break;
1332
case lltok::kw_sanitize_address_dyninit:
1333
Meta.IsDynInit = true;
1334
break;
1335
default:
1336
return tokError("non-sanitizer token passed to LLParser::parseSanitizer()");
1337
}
1338
GV->setSanitizerMetadata(Meta);
1339
Lex.Lex();
1340
return false;
1341
}
1342
1343
/// parseGlobal
1344
/// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1345
/// OptionalVisibility OptionalDLLStorageClass
1346
/// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1347
/// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1348
/// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1349
/// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1350
/// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1351
/// Const OptionalAttrs
1352
///
1353
/// Everything up to and including OptionalUnnamedAddr has been parsed
1354
/// already.
1355
///
1356
bool LLParser::parseGlobal(const std::string &Name, unsigned NameID,
1357
LocTy NameLoc, unsigned Linkage, bool HasLinkage,
1358
unsigned Visibility, unsigned DLLStorageClass,
1359
bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1360
GlobalVariable::UnnamedAddr UnnamedAddr) {
1361
if (!isValidVisibilityForLinkage(Visibility, Linkage))
1362
return error(NameLoc,
1363
"symbol with local linkage must have default visibility");
1364
1365
if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage))
1366
return error(NameLoc,
1367
"symbol with local linkage cannot have a DLL storage class");
1368
1369
unsigned AddrSpace;
1370
bool IsConstant, IsExternallyInitialized;
1371
LocTy IsExternallyInitializedLoc;
1372
LocTy TyLoc;
1373
1374
Type *Ty = nullptr;
1375
if (parseOptionalAddrSpace(AddrSpace) ||
1376
parseOptionalToken(lltok::kw_externally_initialized,
1377
IsExternallyInitialized,
1378
&IsExternallyInitializedLoc) ||
1379
parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1380
return true;
1381
1382
// If the linkage is specified and is external, then no initializer is
1383
// present.
1384
Constant *Init = nullptr;
1385
if (!HasLinkage ||
1386
!GlobalValue::isValidDeclarationLinkage(
1387
(GlobalValue::LinkageTypes)Linkage)) {
1388
if (parseGlobalValue(Ty, Init))
1389
return true;
1390
}
1391
1392
if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1393
return error(TyLoc, "invalid type for global variable");
1394
1395
GlobalValue *GVal = nullptr;
1396
1397
// See if the global was forward referenced, if so, use the global.
1398
if (!Name.empty()) {
1399
auto I = ForwardRefVals.find(Name);
1400
if (I != ForwardRefVals.end()) {
1401
GVal = I->second.first;
1402
ForwardRefVals.erase(I);
1403
} else if (M->getNamedValue(Name)) {
1404
return error(NameLoc, "redefinition of global '@" + Name + "'");
1405
}
1406
} else {
1407
// Handle @"", where a name is syntactically specified, but semantically
1408
// missing.
1409
if (NameID == (unsigned)-1)
1410
NameID = NumberedVals.getNext();
1411
1412
auto I = ForwardRefValIDs.find(NameID);
1413
if (I != ForwardRefValIDs.end()) {
1414
GVal = I->second.first;
1415
ForwardRefValIDs.erase(I);
1416
}
1417
}
1418
1419
GlobalVariable *GV = new GlobalVariable(
1420
*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1421
GlobalVariable::NotThreadLocal, AddrSpace);
1422
1423
if (Name.empty())
1424
NumberedVals.add(NameID, GV);
1425
1426
// Set the parsed properties on the global.
1427
if (Init)
1428
GV->setInitializer(Init);
1429
GV->setConstant(IsConstant);
1430
GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1431
maybeSetDSOLocal(DSOLocal, *GV);
1432
GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1433
GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1434
GV->setExternallyInitialized(IsExternallyInitialized);
1435
GV->setThreadLocalMode(TLM);
1436
GV->setUnnamedAddr(UnnamedAddr);
1437
1438
if (GVal) {
1439
if (GVal->getAddressSpace() != AddrSpace)
1440
return error(
1441
TyLoc,
1442
"forward reference and definition of global have different types");
1443
1444
GVal->replaceAllUsesWith(GV);
1445
GVal->eraseFromParent();
1446
}
1447
1448
// parse attributes on the global.
1449
while (Lex.getKind() == lltok::comma) {
1450
Lex.Lex();
1451
1452
if (Lex.getKind() == lltok::kw_section) {
1453
Lex.Lex();
1454
GV->setSection(Lex.getStrVal());
1455
if (parseToken(lltok::StringConstant, "expected global section string"))
1456
return true;
1457
} else if (Lex.getKind() == lltok::kw_partition) {
1458
Lex.Lex();
1459
GV->setPartition(Lex.getStrVal());
1460
if (parseToken(lltok::StringConstant, "expected partition string"))
1461
return true;
1462
} else if (Lex.getKind() == lltok::kw_align) {
1463
MaybeAlign Alignment;
1464
if (parseOptionalAlignment(Alignment))
1465
return true;
1466
if (Alignment)
1467
GV->setAlignment(*Alignment);
1468
} else if (Lex.getKind() == lltok::kw_code_model) {
1469
CodeModel::Model CodeModel;
1470
if (parseOptionalCodeModel(CodeModel))
1471
return true;
1472
GV->setCodeModel(CodeModel);
1473
} else if (Lex.getKind() == lltok::MetadataVar) {
1474
if (parseGlobalObjectMetadataAttachment(*GV))
1475
return true;
1476
} else if (isSanitizer(Lex.getKind())) {
1477
if (parseSanitizer(GV))
1478
return true;
1479
} else {
1480
Comdat *C;
1481
if (parseOptionalComdat(Name, C))
1482
return true;
1483
if (C)
1484
GV->setComdat(C);
1485
else
1486
return tokError("unknown global variable property!");
1487
}
1488
}
1489
1490
AttrBuilder Attrs(M->getContext());
1491
LocTy BuiltinLoc;
1492
std::vector<unsigned> FwdRefAttrGrps;
1493
if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1494
return true;
1495
if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1496
GV->setAttributes(AttributeSet::get(Context, Attrs));
1497
ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1498
}
1499
1500
return false;
1501
}
1502
1503
/// parseUnnamedAttrGrp
1504
/// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1505
bool LLParser::parseUnnamedAttrGrp() {
1506
assert(Lex.getKind() == lltok::kw_attributes);
1507
LocTy AttrGrpLoc = Lex.getLoc();
1508
Lex.Lex();
1509
1510
if (Lex.getKind() != lltok::AttrGrpID)
1511
return tokError("expected attribute group id");
1512
1513
unsigned VarID = Lex.getUIntVal();
1514
std::vector<unsigned> unused;
1515
LocTy BuiltinLoc;
1516
Lex.Lex();
1517
1518
if (parseToken(lltok::equal, "expected '=' here") ||
1519
parseToken(lltok::lbrace, "expected '{' here"))
1520
return true;
1521
1522
auto R = NumberedAttrBuilders.find(VarID);
1523
if (R == NumberedAttrBuilders.end())
1524
R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first;
1525
1526
if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) ||
1527
parseToken(lltok::rbrace, "expected end of attribute group"))
1528
return true;
1529
1530
if (!R->second.hasAttributes())
1531
return error(AttrGrpLoc, "attribute group has no attributes");
1532
1533
return false;
1534
}
1535
1536
static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1537
switch (Kind) {
1538
#define GET_ATTR_NAMES
1539
#define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1540
case lltok::kw_##DISPLAY_NAME: \
1541
return Attribute::ENUM_NAME;
1542
#include "llvm/IR/Attributes.inc"
1543
default:
1544
return Attribute::None;
1545
}
1546
}
1547
1548
bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1549
bool InAttrGroup) {
1550
if (Attribute::isTypeAttrKind(Attr))
1551
return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
1552
1553
switch (Attr) {
1554
case Attribute::Alignment: {
1555
MaybeAlign Alignment;
1556
if (InAttrGroup) {
1557
uint32_t Value = 0;
1558
Lex.Lex();
1559
if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1560
return true;
1561
Alignment = Align(Value);
1562
} else {
1563
if (parseOptionalAlignment(Alignment, true))
1564
return true;
1565
}
1566
B.addAlignmentAttr(Alignment);
1567
return false;
1568
}
1569
case Attribute::StackAlignment: {
1570
unsigned Alignment;
1571
if (InAttrGroup) {
1572
Lex.Lex();
1573
if (parseToken(lltok::equal, "expected '=' here") ||
1574
parseUInt32(Alignment))
1575
return true;
1576
} else {
1577
if (parseOptionalStackAlignment(Alignment))
1578
return true;
1579
}
1580
B.addStackAlignmentAttr(Alignment);
1581
return false;
1582
}
1583
case Attribute::AllocSize: {
1584
unsigned ElemSizeArg;
1585
std::optional<unsigned> NumElemsArg;
1586
if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1587
return true;
1588
B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1589
return false;
1590
}
1591
case Attribute::VScaleRange: {
1592
unsigned MinValue, MaxValue;
1593
if (parseVScaleRangeArguments(MinValue, MaxValue))
1594
return true;
1595
B.addVScaleRangeAttr(MinValue,
1596
MaxValue > 0 ? MaxValue : std::optional<unsigned>());
1597
return false;
1598
}
1599
case Attribute::Dereferenceable: {
1600
uint64_t Bytes;
1601
if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1602
return true;
1603
B.addDereferenceableAttr(Bytes);
1604
return false;
1605
}
1606
case Attribute::DereferenceableOrNull: {
1607
uint64_t Bytes;
1608
if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1609
return true;
1610
B.addDereferenceableOrNullAttr(Bytes);
1611
return false;
1612
}
1613
case Attribute::UWTable: {
1614
UWTableKind Kind;
1615
if (parseOptionalUWTableKind(Kind))
1616
return true;
1617
B.addUWTableAttr(Kind);
1618
return false;
1619
}
1620
case Attribute::AllocKind: {
1621
AllocFnKind Kind = AllocFnKind::Unknown;
1622
if (parseAllocKind(Kind))
1623
return true;
1624
B.addAllocKindAttr(Kind);
1625
return false;
1626
}
1627
case Attribute::Memory: {
1628
std::optional<MemoryEffects> ME = parseMemoryAttr();
1629
if (!ME)
1630
return true;
1631
B.addMemoryAttr(*ME);
1632
return false;
1633
}
1634
case Attribute::NoFPClass: {
1635
if (FPClassTest NoFPClass =
1636
static_cast<FPClassTest>(parseNoFPClassAttr())) {
1637
B.addNoFPClassAttr(NoFPClass);
1638
return false;
1639
}
1640
1641
return true;
1642
}
1643
case Attribute::Range:
1644
return parseRangeAttr(B);
1645
case Attribute::Initializes:
1646
return parseInitializesAttr(B);
1647
default:
1648
B.addAttribute(Attr);
1649
Lex.Lex();
1650
return false;
1651
}
1652
}
1653
1654
static bool upgradeMemoryAttr(MemoryEffects &ME, lltok::Kind Kind) {
1655
switch (Kind) {
1656
case lltok::kw_readnone:
1657
ME &= MemoryEffects::none();
1658
return true;
1659
case lltok::kw_readonly:
1660
ME &= MemoryEffects::readOnly();
1661
return true;
1662
case lltok::kw_writeonly:
1663
ME &= MemoryEffects::writeOnly();
1664
return true;
1665
case lltok::kw_argmemonly:
1666
ME &= MemoryEffects::argMemOnly();
1667
return true;
1668
case lltok::kw_inaccessiblememonly:
1669
ME &= MemoryEffects::inaccessibleMemOnly();
1670
return true;
1671
case lltok::kw_inaccessiblemem_or_argmemonly:
1672
ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1673
return true;
1674
default:
1675
return false;
1676
}
1677
}
1678
1679
/// parseFnAttributeValuePairs
1680
/// ::= <attr> | <attr> '=' <value>
1681
bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1682
std::vector<unsigned> &FwdRefAttrGrps,
1683
bool InAttrGrp, LocTy &BuiltinLoc) {
1684
bool HaveError = false;
1685
1686
B.clear();
1687
1688
MemoryEffects ME = MemoryEffects::unknown();
1689
while (true) {
1690
lltok::Kind Token = Lex.getKind();
1691
if (Token == lltok::rbrace)
1692
break; // Finished.
1693
1694
if (Token == lltok::StringConstant) {
1695
if (parseStringAttribute(B))
1696
return true;
1697
continue;
1698
}
1699
1700
if (Token == lltok::AttrGrpID) {
1701
// Allow a function to reference an attribute group:
1702
//
1703
// define void @foo() #1 { ... }
1704
if (InAttrGrp) {
1705
HaveError |= error(
1706
Lex.getLoc(),
1707
"cannot have an attribute group reference in an attribute group");
1708
} else {
1709
// Save the reference to the attribute group. We'll fill it in later.
1710
FwdRefAttrGrps.push_back(Lex.getUIntVal());
1711
}
1712
Lex.Lex();
1713
continue;
1714
}
1715
1716
SMLoc Loc = Lex.getLoc();
1717
if (Token == lltok::kw_builtin)
1718
BuiltinLoc = Loc;
1719
1720
if (upgradeMemoryAttr(ME, Token)) {
1721
Lex.Lex();
1722
continue;
1723
}
1724
1725
Attribute::AttrKind Attr = tokenToAttribute(Token);
1726
if (Attr == Attribute::None) {
1727
if (!InAttrGrp)
1728
break;
1729
return error(Lex.getLoc(), "unterminated attribute group");
1730
}
1731
1732
if (parseEnumAttribute(Attr, B, InAttrGrp))
1733
return true;
1734
1735
// As a hack, we allow function alignment to be initially parsed as an
1736
// attribute on a function declaration/definition or added to an attribute
1737
// group and later moved to the alignment field.
1738
if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
1739
HaveError |= error(Loc, "this attribute does not apply to functions");
1740
}
1741
1742
if (ME != MemoryEffects::unknown())
1743
B.addMemoryAttr(ME);
1744
return HaveError;
1745
}
1746
1747
//===----------------------------------------------------------------------===//
1748
// GlobalValue Reference/Resolution Routines.
1749
//===----------------------------------------------------------------------===//
1750
1751
static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1752
// The used global type does not matter. We will later RAUW it with a
1753
// global/function of the correct type.
1754
return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1755
GlobalValue::ExternalWeakLinkage, nullptr, "",
1756
nullptr, GlobalVariable::NotThreadLocal,
1757
PTy->getAddressSpace());
1758
}
1759
1760
Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1761
Value *Val) {
1762
Type *ValTy = Val->getType();
1763
if (ValTy == Ty)
1764
return Val;
1765
if (Ty->isLabelTy())
1766
error(Loc, "'" + Name + "' is not a basic block");
1767
else
1768
error(Loc, "'" + Name + "' defined with type '" +
1769
getTypeString(Val->getType()) + "' but expected '" +
1770
getTypeString(Ty) + "'");
1771
return nullptr;
1772
}
1773
1774
/// getGlobalVal - Get a value with the specified name or ID, creating a
1775
/// forward reference record if needed. This can return null if the value
1776
/// exists but does not have the right type.
1777
GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1778
LocTy Loc) {
1779
PointerType *PTy = dyn_cast<PointerType>(Ty);
1780
if (!PTy) {
1781
error(Loc, "global variable reference must have pointer type");
1782
return nullptr;
1783
}
1784
1785
// Look this name up in the normal function symbol table.
1786
GlobalValue *Val =
1787
cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1788
1789
// If this is a forward reference for the value, see if we already created a
1790
// forward ref record.
1791
if (!Val) {
1792
auto I = ForwardRefVals.find(Name);
1793
if (I != ForwardRefVals.end())
1794
Val = I->second.first;
1795
}
1796
1797
// If we have the value in the symbol table or fwd-ref table, return it.
1798
if (Val)
1799
return cast_or_null<GlobalValue>(
1800
checkValidVariableType(Loc, "@" + Name, Ty, Val));
1801
1802
// Otherwise, create a new forward reference for this value and remember it.
1803
GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1804
ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1805
return FwdVal;
1806
}
1807
1808
GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1809
PointerType *PTy = dyn_cast<PointerType>(Ty);
1810
if (!PTy) {
1811
error(Loc, "global variable reference must have pointer type");
1812
return nullptr;
1813
}
1814
1815
GlobalValue *Val = NumberedVals.get(ID);
1816
1817
// If this is a forward reference for the value, see if we already created a
1818
// forward ref record.
1819
if (!Val) {
1820
auto I = ForwardRefValIDs.find(ID);
1821
if (I != ForwardRefValIDs.end())
1822
Val = I->second.first;
1823
}
1824
1825
// If we have the value in the symbol table or fwd-ref table, return it.
1826
if (Val)
1827
return cast_or_null<GlobalValue>(
1828
checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val));
1829
1830
// Otherwise, create a new forward reference for this value and remember it.
1831
GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1832
ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1833
return FwdVal;
1834
}
1835
1836
//===----------------------------------------------------------------------===//
1837
// Comdat Reference/Resolution Routines.
1838
//===----------------------------------------------------------------------===//
1839
1840
Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1841
// Look this name up in the comdat symbol table.
1842
Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1843
Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1844
if (I != ComdatSymTab.end())
1845
return &I->second;
1846
1847
// Otherwise, create a new forward reference for this value and remember it.
1848
Comdat *C = M->getOrInsertComdat(Name);
1849
ForwardRefComdats[Name] = Loc;
1850
return C;
1851
}
1852
1853
//===----------------------------------------------------------------------===//
1854
// Helper Routines.
1855
//===----------------------------------------------------------------------===//
1856
1857
/// parseToken - If the current token has the specified kind, eat it and return
1858
/// success. Otherwise, emit the specified error and return failure.
1859
bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1860
if (Lex.getKind() != T)
1861
return tokError(ErrMsg);
1862
Lex.Lex();
1863
return false;
1864
}
1865
1866
/// parseStringConstant
1867
/// ::= StringConstant
1868
bool LLParser::parseStringConstant(std::string &Result) {
1869
if (Lex.getKind() != lltok::StringConstant)
1870
return tokError("expected string constant");
1871
Result = Lex.getStrVal();
1872
Lex.Lex();
1873
return false;
1874
}
1875
1876
/// parseUInt32
1877
/// ::= uint32
1878
bool LLParser::parseUInt32(uint32_t &Val) {
1879
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1880
return tokError("expected integer");
1881
uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1882
if (Val64 != unsigned(Val64))
1883
return tokError("expected 32-bit integer (too large)");
1884
Val = Val64;
1885
Lex.Lex();
1886
return false;
1887
}
1888
1889
/// parseUInt64
1890
/// ::= uint64
1891
bool LLParser::parseUInt64(uint64_t &Val) {
1892
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1893
return tokError("expected integer");
1894
Val = Lex.getAPSIntVal().getLimitedValue();
1895
Lex.Lex();
1896
return false;
1897
}
1898
1899
/// parseTLSModel
1900
/// := 'localdynamic'
1901
/// := 'initialexec'
1902
/// := 'localexec'
1903
bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1904
switch (Lex.getKind()) {
1905
default:
1906
return tokError("expected localdynamic, initialexec or localexec");
1907
case lltok::kw_localdynamic:
1908
TLM = GlobalVariable::LocalDynamicTLSModel;
1909
break;
1910
case lltok::kw_initialexec:
1911
TLM = GlobalVariable::InitialExecTLSModel;
1912
break;
1913
case lltok::kw_localexec:
1914
TLM = GlobalVariable::LocalExecTLSModel;
1915
break;
1916
}
1917
1918
Lex.Lex();
1919
return false;
1920
}
1921
1922
/// parseOptionalThreadLocal
1923
/// := /*empty*/
1924
/// := 'thread_local'
1925
/// := 'thread_local' '(' tlsmodel ')'
1926
bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1927
TLM = GlobalVariable::NotThreadLocal;
1928
if (!EatIfPresent(lltok::kw_thread_local))
1929
return false;
1930
1931
TLM = GlobalVariable::GeneralDynamicTLSModel;
1932
if (Lex.getKind() == lltok::lparen) {
1933
Lex.Lex();
1934
return parseTLSModel(TLM) ||
1935
parseToken(lltok::rparen, "expected ')' after thread local model");
1936
}
1937
return false;
1938
}
1939
1940
/// parseOptionalAddrSpace
1941
/// := /*empty*/
1942
/// := 'addrspace' '(' uint32 ')'
1943
bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1944
AddrSpace = DefaultAS;
1945
if (!EatIfPresent(lltok::kw_addrspace))
1946
return false;
1947
1948
auto ParseAddrspaceValue = [&](unsigned &AddrSpace) -> bool {
1949
if (Lex.getKind() == lltok::StringConstant) {
1950
auto AddrSpaceStr = Lex.getStrVal();
1951
if (AddrSpaceStr == "A") {
1952
AddrSpace = M->getDataLayout().getAllocaAddrSpace();
1953
} else if (AddrSpaceStr == "G") {
1954
AddrSpace = M->getDataLayout().getDefaultGlobalsAddressSpace();
1955
} else if (AddrSpaceStr == "P") {
1956
AddrSpace = M->getDataLayout().getProgramAddressSpace();
1957
} else {
1958
return tokError("invalid symbolic addrspace '" + AddrSpaceStr + "'");
1959
}
1960
Lex.Lex();
1961
return false;
1962
}
1963
if (Lex.getKind() != lltok::APSInt)
1964
return tokError("expected integer or string constant");
1965
SMLoc Loc = Lex.getLoc();
1966
if (parseUInt32(AddrSpace))
1967
return true;
1968
if (!isUInt<24>(AddrSpace))
1969
return error(Loc, "invalid address space, must be a 24-bit integer");
1970
return false;
1971
};
1972
1973
return parseToken(lltok::lparen, "expected '(' in address space") ||
1974
ParseAddrspaceValue(AddrSpace) ||
1975
parseToken(lltok::rparen, "expected ')' in address space");
1976
}
1977
1978
/// parseStringAttribute
1979
/// := StringConstant
1980
/// := StringConstant '=' StringConstant
1981
bool LLParser::parseStringAttribute(AttrBuilder &B) {
1982
std::string Attr = Lex.getStrVal();
1983
Lex.Lex();
1984
std::string Val;
1985
if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1986
return true;
1987
B.addAttribute(Attr, Val);
1988
return false;
1989
}
1990
1991
/// Parse a potentially empty list of parameter or return attributes.
1992
bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1993
bool HaveError = false;
1994
1995
B.clear();
1996
1997
while (true) {
1998
lltok::Kind Token = Lex.getKind();
1999
if (Token == lltok::StringConstant) {
2000
if (parseStringAttribute(B))
2001
return true;
2002
continue;
2003
}
2004
2005
SMLoc Loc = Lex.getLoc();
2006
Attribute::AttrKind Attr = tokenToAttribute(Token);
2007
if (Attr == Attribute::None)
2008
return HaveError;
2009
2010
if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
2011
return true;
2012
2013
if (IsParam && !Attribute::canUseAsParamAttr(Attr))
2014
HaveError |= error(Loc, "this attribute does not apply to parameters");
2015
if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
2016
HaveError |= error(Loc, "this attribute does not apply to return values");
2017
}
2018
}
2019
2020
static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
2021
HasLinkage = true;
2022
switch (Kind) {
2023
default:
2024
HasLinkage = false;
2025
return GlobalValue::ExternalLinkage;
2026
case lltok::kw_private:
2027
return GlobalValue::PrivateLinkage;
2028
case lltok::kw_internal:
2029
return GlobalValue::InternalLinkage;
2030
case lltok::kw_weak:
2031
return GlobalValue::WeakAnyLinkage;
2032
case lltok::kw_weak_odr:
2033
return GlobalValue::WeakODRLinkage;
2034
case lltok::kw_linkonce:
2035
return GlobalValue::LinkOnceAnyLinkage;
2036
case lltok::kw_linkonce_odr:
2037
return GlobalValue::LinkOnceODRLinkage;
2038
case lltok::kw_available_externally:
2039
return GlobalValue::AvailableExternallyLinkage;
2040
case lltok::kw_appending:
2041
return GlobalValue::AppendingLinkage;
2042
case lltok::kw_common:
2043
return GlobalValue::CommonLinkage;
2044
case lltok::kw_extern_weak:
2045
return GlobalValue::ExternalWeakLinkage;
2046
case lltok::kw_external:
2047
return GlobalValue::ExternalLinkage;
2048
}
2049
}
2050
2051
/// parseOptionalLinkage
2052
/// ::= /*empty*/
2053
/// ::= 'private'
2054
/// ::= 'internal'
2055
/// ::= 'weak'
2056
/// ::= 'weak_odr'
2057
/// ::= 'linkonce'
2058
/// ::= 'linkonce_odr'
2059
/// ::= 'available_externally'
2060
/// ::= 'appending'
2061
/// ::= 'common'
2062
/// ::= 'extern_weak'
2063
/// ::= 'external'
2064
bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
2065
unsigned &Visibility,
2066
unsigned &DLLStorageClass, bool &DSOLocal) {
2067
Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
2068
if (HasLinkage)
2069
Lex.Lex();
2070
parseOptionalDSOLocal(DSOLocal);
2071
parseOptionalVisibility(Visibility);
2072
parseOptionalDLLStorageClass(DLLStorageClass);
2073
2074
if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
2075
return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
2076
}
2077
2078
return false;
2079
}
2080
2081
void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
2082
switch (Lex.getKind()) {
2083
default:
2084
DSOLocal = false;
2085
break;
2086
case lltok::kw_dso_local:
2087
DSOLocal = true;
2088
Lex.Lex();
2089
break;
2090
case lltok::kw_dso_preemptable:
2091
DSOLocal = false;
2092
Lex.Lex();
2093
break;
2094
}
2095
}
2096
2097
/// parseOptionalVisibility
2098
/// ::= /*empty*/
2099
/// ::= 'default'
2100
/// ::= 'hidden'
2101
/// ::= 'protected'
2102
///
2103
void LLParser::parseOptionalVisibility(unsigned &Res) {
2104
switch (Lex.getKind()) {
2105
default:
2106
Res = GlobalValue::DefaultVisibility;
2107
return;
2108
case lltok::kw_default:
2109
Res = GlobalValue::DefaultVisibility;
2110
break;
2111
case lltok::kw_hidden:
2112
Res = GlobalValue::HiddenVisibility;
2113
break;
2114
case lltok::kw_protected:
2115
Res = GlobalValue::ProtectedVisibility;
2116
break;
2117
}
2118
Lex.Lex();
2119
}
2120
2121
bool LLParser::parseOptionalImportType(lltok::Kind Kind,
2122
GlobalValueSummary::ImportKind &Res) {
2123
switch (Kind) {
2124
default:
2125
return tokError("unknown import kind. Expect definition or declaration.");
2126
case lltok::kw_definition:
2127
Res = GlobalValueSummary::Definition;
2128
return false;
2129
case lltok::kw_declaration:
2130
Res = GlobalValueSummary::Declaration;
2131
return false;
2132
}
2133
}
2134
2135
/// parseOptionalDLLStorageClass
2136
/// ::= /*empty*/
2137
/// ::= 'dllimport'
2138
/// ::= 'dllexport'
2139
///
2140
void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
2141
switch (Lex.getKind()) {
2142
default:
2143
Res = GlobalValue::DefaultStorageClass;
2144
return;
2145
case lltok::kw_dllimport:
2146
Res = GlobalValue::DLLImportStorageClass;
2147
break;
2148
case lltok::kw_dllexport:
2149
Res = GlobalValue::DLLExportStorageClass;
2150
break;
2151
}
2152
Lex.Lex();
2153
}
2154
2155
/// parseOptionalCallingConv
2156
/// ::= /*empty*/
2157
/// ::= 'ccc'
2158
/// ::= 'fastcc'
2159
/// ::= 'intel_ocl_bicc'
2160
/// ::= 'coldcc'
2161
/// ::= 'cfguard_checkcc'
2162
/// ::= 'x86_stdcallcc'
2163
/// ::= 'x86_fastcallcc'
2164
/// ::= 'x86_thiscallcc'
2165
/// ::= 'x86_vectorcallcc'
2166
/// ::= 'arm_apcscc'
2167
/// ::= 'arm_aapcscc'
2168
/// ::= 'arm_aapcs_vfpcc'
2169
/// ::= 'aarch64_vector_pcs'
2170
/// ::= 'aarch64_sve_vector_pcs'
2171
/// ::= 'aarch64_sme_preservemost_from_x0'
2172
/// ::= 'aarch64_sme_preservemost_from_x1'
2173
/// ::= 'aarch64_sme_preservemost_from_x2'
2174
/// ::= 'msp430_intrcc'
2175
/// ::= 'avr_intrcc'
2176
/// ::= 'avr_signalcc'
2177
/// ::= 'ptx_kernel'
2178
/// ::= 'ptx_device'
2179
/// ::= 'spir_func'
2180
/// ::= 'spir_kernel'
2181
/// ::= 'x86_64_sysvcc'
2182
/// ::= 'win64cc'
2183
/// ::= 'anyregcc'
2184
/// ::= 'preserve_mostcc'
2185
/// ::= 'preserve_allcc'
2186
/// ::= 'preserve_nonecc'
2187
/// ::= 'ghccc'
2188
/// ::= 'swiftcc'
2189
/// ::= 'swifttailcc'
2190
/// ::= 'x86_intrcc'
2191
/// ::= 'hhvmcc'
2192
/// ::= 'hhvm_ccc'
2193
/// ::= 'cxx_fast_tlscc'
2194
/// ::= 'amdgpu_vs'
2195
/// ::= 'amdgpu_ls'
2196
/// ::= 'amdgpu_hs'
2197
/// ::= 'amdgpu_es'
2198
/// ::= 'amdgpu_gs'
2199
/// ::= 'amdgpu_ps'
2200
/// ::= 'amdgpu_cs'
2201
/// ::= 'amdgpu_cs_chain'
2202
/// ::= 'amdgpu_cs_chain_preserve'
2203
/// ::= 'amdgpu_kernel'
2204
/// ::= 'tailcc'
2205
/// ::= 'm68k_rtdcc'
2206
/// ::= 'graalcc'
2207
/// ::= 'riscv_vector_cc'
2208
/// ::= 'cc' UINT
2209
///
2210
bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2211
switch (Lex.getKind()) {
2212
default: CC = CallingConv::C; return false;
2213
case lltok::kw_ccc: CC = CallingConv::C; break;
2214
case lltok::kw_fastcc: CC = CallingConv::Fast; break;
2215
case lltok::kw_coldcc: CC = CallingConv::Cold; break;
2216
case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2217
case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break;
2218
case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2219
case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break;
2220
case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2221
case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2222
case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break;
2223
case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break;
2224
case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2225
case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2226
case lltok::kw_aarch64_sve_vector_pcs:
2227
CC = CallingConv::AArch64_SVE_VectorCall;
2228
break;
2229
case lltok::kw_aarch64_sme_preservemost_from_x0:
2230
CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0;
2231
break;
2232
case lltok::kw_aarch64_sme_preservemost_from_x1:
2233
CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1;
2234
break;
2235
case lltok::kw_aarch64_sme_preservemost_from_x2:
2236
CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2;
2237
break;
2238
case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break;
2239
case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break;
2240
case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break;
2241
case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break;
2242
case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break;
2243
case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break;
2244
case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break;
2245
case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2246
case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break;
2247
case lltok::kw_win64cc: CC = CallingConv::Win64; break;
2248
case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break;
2249
case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2250
case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2251
case lltok::kw_preserve_nonecc:CC = CallingConv::PreserveNone; break;
2252
case lltok::kw_ghccc: CC = CallingConv::GHC; break;
2253
case lltok::kw_swiftcc: CC = CallingConv::Swift; break;
2254
case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break;
2255
case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break;
2256
case lltok::kw_hhvmcc:
2257
CC = CallingConv::DUMMY_HHVM;
2258
break;
2259
case lltok::kw_hhvm_ccc:
2260
CC = CallingConv::DUMMY_HHVM_C;
2261
break;
2262
case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2263
case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break;
2264
case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break;
2265
case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break;
2266
case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break;
2267
case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break;
2268
case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break;
2269
case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break;
2270
case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break;
2271
case lltok::kw_amdgpu_cs_chain:
2272
CC = CallingConv::AMDGPU_CS_Chain;
2273
break;
2274
case lltok::kw_amdgpu_cs_chain_preserve:
2275
CC = CallingConv::AMDGPU_CS_ChainPreserve;
2276
break;
2277
case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break;
2278
case lltok::kw_tailcc: CC = CallingConv::Tail; break;
2279
case lltok::kw_m68k_rtdcc: CC = CallingConv::M68k_RTD; break;
2280
case lltok::kw_graalcc: CC = CallingConv::GRAAL; break;
2281
case lltok::kw_riscv_vector_cc:
2282
CC = CallingConv::RISCV_VectorCall;
2283
break;
2284
case lltok::kw_cc: {
2285
Lex.Lex();
2286
return parseUInt32(CC);
2287
}
2288
}
2289
2290
Lex.Lex();
2291
return false;
2292
}
2293
2294
/// parseMetadataAttachment
2295
/// ::= !dbg !42
2296
bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2297
assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2298
2299
std::string Name = Lex.getStrVal();
2300
Kind = M->getMDKindID(Name);
2301
Lex.Lex();
2302
2303
return parseMDNode(MD);
2304
}
2305
2306
/// parseInstructionMetadata
2307
/// ::= !dbg !42 (',' !dbg !57)*
2308
bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2309
do {
2310
if (Lex.getKind() != lltok::MetadataVar)
2311
return tokError("expected metadata after comma");
2312
2313
unsigned MDK;
2314
MDNode *N;
2315
if (parseMetadataAttachment(MDK, N))
2316
return true;
2317
2318
if (MDK == LLVMContext::MD_DIAssignID)
2319
TempDIAssignIDAttachments[N].push_back(&Inst);
2320
else
2321
Inst.setMetadata(MDK, N);
2322
2323
if (MDK == LLVMContext::MD_tbaa)
2324
InstsWithTBAATag.push_back(&Inst);
2325
2326
// If this is the end of the list, we're done.
2327
} while (EatIfPresent(lltok::comma));
2328
return false;
2329
}
2330
2331
/// parseGlobalObjectMetadataAttachment
2332
/// ::= !dbg !57
2333
bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2334
unsigned MDK;
2335
MDNode *N;
2336
if (parseMetadataAttachment(MDK, N))
2337
return true;
2338
2339
GO.addMetadata(MDK, *N);
2340
return false;
2341
}
2342
2343
/// parseOptionalFunctionMetadata
2344
/// ::= (!dbg !57)*
2345
bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2346
while (Lex.getKind() == lltok::MetadataVar)
2347
if (parseGlobalObjectMetadataAttachment(F))
2348
return true;
2349
return false;
2350
}
2351
2352
/// parseOptionalAlignment
2353
/// ::= /* empty */
2354
/// ::= 'align' 4
2355
bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2356
Alignment = std::nullopt;
2357
if (!EatIfPresent(lltok::kw_align))
2358
return false;
2359
LocTy AlignLoc = Lex.getLoc();
2360
uint64_t Value = 0;
2361
2362
LocTy ParenLoc = Lex.getLoc();
2363
bool HaveParens = false;
2364
if (AllowParens) {
2365
if (EatIfPresent(lltok::lparen))
2366
HaveParens = true;
2367
}
2368
2369
if (parseUInt64(Value))
2370
return true;
2371
2372
if (HaveParens && !EatIfPresent(lltok::rparen))
2373
return error(ParenLoc, "expected ')'");
2374
2375
if (!isPowerOf2_64(Value))
2376
return error(AlignLoc, "alignment is not a power of two");
2377
if (Value > Value::MaximumAlignment)
2378
return error(AlignLoc, "huge alignments are not supported yet");
2379
Alignment = Align(Value);
2380
return false;
2381
}
2382
2383
/// parseOptionalCodeModel
2384
/// ::= /* empty */
2385
/// ::= 'code_model' "large"
2386
bool LLParser::parseOptionalCodeModel(CodeModel::Model &model) {
2387
Lex.Lex();
2388
auto StrVal = Lex.getStrVal();
2389
auto ErrMsg = "expected global code model string";
2390
if (StrVal == "tiny")
2391
model = CodeModel::Tiny;
2392
else if (StrVal == "small")
2393
model = CodeModel::Small;
2394
else if (StrVal == "kernel")
2395
model = CodeModel::Kernel;
2396
else if (StrVal == "medium")
2397
model = CodeModel::Medium;
2398
else if (StrVal == "large")
2399
model = CodeModel::Large;
2400
else
2401
return tokError(ErrMsg);
2402
if (parseToken(lltok::StringConstant, ErrMsg))
2403
return true;
2404
return false;
2405
}
2406
2407
/// parseOptionalDerefAttrBytes
2408
/// ::= /* empty */
2409
/// ::= AttrKind '(' 4 ')'
2410
///
2411
/// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2412
bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2413
uint64_t &Bytes) {
2414
assert((AttrKind == lltok::kw_dereferenceable ||
2415
AttrKind == lltok::kw_dereferenceable_or_null) &&
2416
"contract!");
2417
2418
Bytes = 0;
2419
if (!EatIfPresent(AttrKind))
2420
return false;
2421
LocTy ParenLoc = Lex.getLoc();
2422
if (!EatIfPresent(lltok::lparen))
2423
return error(ParenLoc, "expected '('");
2424
LocTy DerefLoc = Lex.getLoc();
2425
if (parseUInt64(Bytes))
2426
return true;
2427
ParenLoc = Lex.getLoc();
2428
if (!EatIfPresent(lltok::rparen))
2429
return error(ParenLoc, "expected ')'");
2430
if (!Bytes)
2431
return error(DerefLoc, "dereferenceable bytes must be non-zero");
2432
return false;
2433
}
2434
2435
bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) {
2436
Lex.Lex();
2437
Kind = UWTableKind::Default;
2438
if (!EatIfPresent(lltok::lparen))
2439
return false;
2440
LocTy KindLoc = Lex.getLoc();
2441
if (Lex.getKind() == lltok::kw_sync)
2442
Kind = UWTableKind::Sync;
2443
else if (Lex.getKind() == lltok::kw_async)
2444
Kind = UWTableKind::Async;
2445
else
2446
return error(KindLoc, "expected unwind table kind");
2447
Lex.Lex();
2448
return parseToken(lltok::rparen, "expected ')'");
2449
}
2450
2451
bool LLParser::parseAllocKind(AllocFnKind &Kind) {
2452
Lex.Lex();
2453
LocTy ParenLoc = Lex.getLoc();
2454
if (!EatIfPresent(lltok::lparen))
2455
return error(ParenLoc, "expected '('");
2456
LocTy KindLoc = Lex.getLoc();
2457
std::string Arg;
2458
if (parseStringConstant(Arg))
2459
return error(KindLoc, "expected allockind value");
2460
for (StringRef A : llvm::split(Arg, ",")) {
2461
if (A == "alloc") {
2462
Kind |= AllocFnKind::Alloc;
2463
} else if (A == "realloc") {
2464
Kind |= AllocFnKind::Realloc;
2465
} else if (A == "free") {
2466
Kind |= AllocFnKind::Free;
2467
} else if (A == "uninitialized") {
2468
Kind |= AllocFnKind::Uninitialized;
2469
} else if (A == "zeroed") {
2470
Kind |= AllocFnKind::Zeroed;
2471
} else if (A == "aligned") {
2472
Kind |= AllocFnKind::Aligned;
2473
} else {
2474
return error(KindLoc, Twine("unknown allockind ") + A);
2475
}
2476
}
2477
ParenLoc = Lex.getLoc();
2478
if (!EatIfPresent(lltok::rparen))
2479
return error(ParenLoc, "expected ')'");
2480
if (Kind == AllocFnKind::Unknown)
2481
return error(KindLoc, "expected allockind value");
2482
return false;
2483
}
2484
2485
static std::optional<MemoryEffects::Location> keywordToLoc(lltok::Kind Tok) {
2486
switch (Tok) {
2487
case lltok::kw_argmem:
2488
return IRMemLocation::ArgMem;
2489
case lltok::kw_inaccessiblemem:
2490
return IRMemLocation::InaccessibleMem;
2491
default:
2492
return std::nullopt;
2493
}
2494
}
2495
2496
static std::optional<ModRefInfo> keywordToModRef(lltok::Kind Tok) {
2497
switch (Tok) {
2498
case lltok::kw_none:
2499
return ModRefInfo::NoModRef;
2500
case lltok::kw_read:
2501
return ModRefInfo::Ref;
2502
case lltok::kw_write:
2503
return ModRefInfo::Mod;
2504
case lltok::kw_readwrite:
2505
return ModRefInfo::ModRef;
2506
default:
2507
return std::nullopt;
2508
}
2509
}
2510
2511
std::optional<MemoryEffects> LLParser::parseMemoryAttr() {
2512
MemoryEffects ME = MemoryEffects::none();
2513
2514
// We use syntax like memory(argmem: read), so the colon should not be
2515
// interpreted as a label terminator.
2516
Lex.setIgnoreColonInIdentifiers(true);
2517
auto _ = make_scope_exit([&] { Lex.setIgnoreColonInIdentifiers(false); });
2518
2519
Lex.Lex();
2520
if (!EatIfPresent(lltok::lparen)) {
2521
tokError("expected '('");
2522
return std::nullopt;
2523
}
2524
2525
bool SeenLoc = false;
2526
do {
2527
std::optional<IRMemLocation> Loc = keywordToLoc(Lex.getKind());
2528
if (Loc) {
2529
Lex.Lex();
2530
if (!EatIfPresent(lltok::colon)) {
2531
tokError("expected ':' after location");
2532
return std::nullopt;
2533
}
2534
}
2535
2536
std::optional<ModRefInfo> MR = keywordToModRef(Lex.getKind());
2537
if (!MR) {
2538
if (!Loc)
2539
tokError("expected memory location (argmem, inaccessiblemem) "
2540
"or access kind (none, read, write, readwrite)");
2541
else
2542
tokError("expected access kind (none, read, write, readwrite)");
2543
return std::nullopt;
2544
}
2545
2546
Lex.Lex();
2547
if (Loc) {
2548
SeenLoc = true;
2549
ME = ME.getWithModRef(*Loc, *MR);
2550
} else {
2551
if (SeenLoc) {
2552
tokError("default access kind must be specified first");
2553
return std::nullopt;
2554
}
2555
ME = MemoryEffects(*MR);
2556
}
2557
2558
if (EatIfPresent(lltok::rparen))
2559
return ME;
2560
} while (EatIfPresent(lltok::comma));
2561
2562
tokError("unterminated memory attribute");
2563
return std::nullopt;
2564
}
2565
2566
static unsigned keywordToFPClassTest(lltok::Kind Tok) {
2567
switch (Tok) {
2568
case lltok::kw_all:
2569
return fcAllFlags;
2570
case lltok::kw_nan:
2571
return fcNan;
2572
case lltok::kw_snan:
2573
return fcSNan;
2574
case lltok::kw_qnan:
2575
return fcQNan;
2576
case lltok::kw_inf:
2577
return fcInf;
2578
case lltok::kw_ninf:
2579
return fcNegInf;
2580
case lltok::kw_pinf:
2581
return fcPosInf;
2582
case lltok::kw_norm:
2583
return fcNormal;
2584
case lltok::kw_nnorm:
2585
return fcNegNormal;
2586
case lltok::kw_pnorm:
2587
return fcPosNormal;
2588
case lltok::kw_sub:
2589
return fcSubnormal;
2590
case lltok::kw_nsub:
2591
return fcNegSubnormal;
2592
case lltok::kw_psub:
2593
return fcPosSubnormal;
2594
case lltok::kw_zero:
2595
return fcZero;
2596
case lltok::kw_nzero:
2597
return fcNegZero;
2598
case lltok::kw_pzero:
2599
return fcPosZero;
2600
default:
2601
return 0;
2602
}
2603
}
2604
2605
unsigned LLParser::parseNoFPClassAttr() {
2606
unsigned Mask = fcNone;
2607
2608
Lex.Lex();
2609
if (!EatIfPresent(lltok::lparen)) {
2610
tokError("expected '('");
2611
return 0;
2612
}
2613
2614
do {
2615
uint64_t Value = 0;
2616
unsigned TestMask = keywordToFPClassTest(Lex.getKind());
2617
if (TestMask != 0) {
2618
Mask |= TestMask;
2619
// TODO: Disallow overlapping masks to avoid copy paste errors
2620
} else if (Mask == 0 && Lex.getKind() == lltok::APSInt &&
2621
!parseUInt64(Value)) {
2622
if (Value == 0 || (Value & ~static_cast<unsigned>(fcAllFlags)) != 0) {
2623
error(Lex.getLoc(), "invalid mask value for 'nofpclass'");
2624
return 0;
2625
}
2626
2627
if (!EatIfPresent(lltok::rparen)) {
2628
error(Lex.getLoc(), "expected ')'");
2629
return 0;
2630
}
2631
2632
return Value;
2633
} else {
2634
error(Lex.getLoc(), "expected nofpclass test mask");
2635
return 0;
2636
}
2637
2638
Lex.Lex();
2639
if (EatIfPresent(lltok::rparen))
2640
return Mask;
2641
} while (1);
2642
2643
llvm_unreachable("unterminated nofpclass attribute");
2644
}
2645
2646
/// parseOptionalCommaAlign
2647
/// ::=
2648
/// ::= ',' align 4
2649
///
2650
/// This returns with AteExtraComma set to true if it ate an excess comma at the
2651
/// end.
2652
bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2653
bool &AteExtraComma) {
2654
AteExtraComma = false;
2655
while (EatIfPresent(lltok::comma)) {
2656
// Metadata at the end is an early exit.
2657
if (Lex.getKind() == lltok::MetadataVar) {
2658
AteExtraComma = true;
2659
return false;
2660
}
2661
2662
if (Lex.getKind() != lltok::kw_align)
2663
return error(Lex.getLoc(), "expected metadata or 'align'");
2664
2665
if (parseOptionalAlignment(Alignment))
2666
return true;
2667
}
2668
2669
return false;
2670
}
2671
2672
/// parseOptionalCommaAddrSpace
2673
/// ::=
2674
/// ::= ',' addrspace(1)
2675
///
2676
/// This returns with AteExtraComma set to true if it ate an excess comma at the
2677
/// end.
2678
bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2679
bool &AteExtraComma) {
2680
AteExtraComma = false;
2681
while (EatIfPresent(lltok::comma)) {
2682
// Metadata at the end is an early exit.
2683
if (Lex.getKind() == lltok::MetadataVar) {
2684
AteExtraComma = true;
2685
return false;
2686
}
2687
2688
Loc = Lex.getLoc();
2689
if (Lex.getKind() != lltok::kw_addrspace)
2690
return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2691
2692
if (parseOptionalAddrSpace(AddrSpace))
2693
return true;
2694
}
2695
2696
return false;
2697
}
2698
2699
bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2700
std::optional<unsigned> &HowManyArg) {
2701
Lex.Lex();
2702
2703
auto StartParen = Lex.getLoc();
2704
if (!EatIfPresent(lltok::lparen))
2705
return error(StartParen, "expected '('");
2706
2707
if (parseUInt32(BaseSizeArg))
2708
return true;
2709
2710
if (EatIfPresent(lltok::comma)) {
2711
auto HowManyAt = Lex.getLoc();
2712
unsigned HowMany;
2713
if (parseUInt32(HowMany))
2714
return true;
2715
if (HowMany == BaseSizeArg)
2716
return error(HowManyAt,
2717
"'allocsize' indices can't refer to the same parameter");
2718
HowManyArg = HowMany;
2719
} else
2720
HowManyArg = std::nullopt;
2721
2722
auto EndParen = Lex.getLoc();
2723
if (!EatIfPresent(lltok::rparen))
2724
return error(EndParen, "expected ')'");
2725
return false;
2726
}
2727
2728
bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2729
unsigned &MaxValue) {
2730
Lex.Lex();
2731
2732
auto StartParen = Lex.getLoc();
2733
if (!EatIfPresent(lltok::lparen))
2734
return error(StartParen, "expected '('");
2735
2736
if (parseUInt32(MinValue))
2737
return true;
2738
2739
if (EatIfPresent(lltok::comma)) {
2740
if (parseUInt32(MaxValue))
2741
return true;
2742
} else
2743
MaxValue = MinValue;
2744
2745
auto EndParen = Lex.getLoc();
2746
if (!EatIfPresent(lltok::rparen))
2747
return error(EndParen, "expected ')'");
2748
return false;
2749
}
2750
2751
/// parseScopeAndOrdering
2752
/// if isAtomic: ::= SyncScope? AtomicOrdering
2753
/// else: ::=
2754
///
2755
/// This sets Scope and Ordering to the parsed values.
2756
bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2757
AtomicOrdering &Ordering) {
2758
if (!IsAtomic)
2759
return false;
2760
2761
return parseScope(SSID) || parseOrdering(Ordering);
2762
}
2763
2764
/// parseScope
2765
/// ::= syncscope("singlethread" | "<target scope>")?
2766
///
2767
/// This sets synchronization scope ID to the ID of the parsed value.
2768
bool LLParser::parseScope(SyncScope::ID &SSID) {
2769
SSID = SyncScope::System;
2770
if (EatIfPresent(lltok::kw_syncscope)) {
2771
auto StartParenAt = Lex.getLoc();
2772
if (!EatIfPresent(lltok::lparen))
2773
return error(StartParenAt, "Expected '(' in syncscope");
2774
2775
std::string SSN;
2776
auto SSNAt = Lex.getLoc();
2777
if (parseStringConstant(SSN))
2778
return error(SSNAt, "Expected synchronization scope name");
2779
2780
auto EndParenAt = Lex.getLoc();
2781
if (!EatIfPresent(lltok::rparen))
2782
return error(EndParenAt, "Expected ')' in syncscope");
2783
2784
SSID = Context.getOrInsertSyncScopeID(SSN);
2785
}
2786
2787
return false;
2788
}
2789
2790
/// parseOrdering
2791
/// ::= AtomicOrdering
2792
///
2793
/// This sets Ordering to the parsed value.
2794
bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2795
switch (Lex.getKind()) {
2796
default:
2797
return tokError("Expected ordering on atomic instruction");
2798
case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2799
case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2800
// Not specified yet:
2801
// case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2802
case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2803
case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2804
case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2805
case lltok::kw_seq_cst:
2806
Ordering = AtomicOrdering::SequentiallyConsistent;
2807
break;
2808
}
2809
Lex.Lex();
2810
return false;
2811
}
2812
2813
/// parseOptionalStackAlignment
2814
/// ::= /* empty */
2815
/// ::= 'alignstack' '(' 4 ')'
2816
bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2817
Alignment = 0;
2818
if (!EatIfPresent(lltok::kw_alignstack))
2819
return false;
2820
LocTy ParenLoc = Lex.getLoc();
2821
if (!EatIfPresent(lltok::lparen))
2822
return error(ParenLoc, "expected '('");
2823
LocTy AlignLoc = Lex.getLoc();
2824
if (parseUInt32(Alignment))
2825
return true;
2826
ParenLoc = Lex.getLoc();
2827
if (!EatIfPresent(lltok::rparen))
2828
return error(ParenLoc, "expected ')'");
2829
if (!isPowerOf2_32(Alignment))
2830
return error(AlignLoc, "stack alignment is not a power of two");
2831
return false;
2832
}
2833
2834
/// parseIndexList - This parses the index list for an insert/extractvalue
2835
/// instruction. This sets AteExtraComma in the case where we eat an extra
2836
/// comma at the end of the line and find that it is followed by metadata.
2837
/// Clients that don't allow metadata can call the version of this function that
2838
/// only takes one argument.
2839
///
2840
/// parseIndexList
2841
/// ::= (',' uint32)+
2842
///
2843
bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2844
bool &AteExtraComma) {
2845
AteExtraComma = false;
2846
2847
if (Lex.getKind() != lltok::comma)
2848
return tokError("expected ',' as start of index list");
2849
2850
while (EatIfPresent(lltok::comma)) {
2851
if (Lex.getKind() == lltok::MetadataVar) {
2852
if (Indices.empty())
2853
return tokError("expected index");
2854
AteExtraComma = true;
2855
return false;
2856
}
2857
unsigned Idx = 0;
2858
if (parseUInt32(Idx))
2859
return true;
2860
Indices.push_back(Idx);
2861
}
2862
2863
return false;
2864
}
2865
2866
//===----------------------------------------------------------------------===//
2867
// Type Parsing.
2868
//===----------------------------------------------------------------------===//
2869
2870
/// parseType - parse a type.
2871
bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2872
SMLoc TypeLoc = Lex.getLoc();
2873
switch (Lex.getKind()) {
2874
default:
2875
return tokError(Msg);
2876
case lltok::Type:
2877
// Type ::= 'float' | 'void' (etc)
2878
Result = Lex.getTyVal();
2879
Lex.Lex();
2880
2881
// Handle "ptr" opaque pointer type.
2882
//
2883
// Type ::= ptr ('addrspace' '(' uint32 ')')?
2884
if (Result->isPointerTy()) {
2885
unsigned AddrSpace;
2886
if (parseOptionalAddrSpace(AddrSpace))
2887
return true;
2888
Result = PointerType::get(getContext(), AddrSpace);
2889
2890
// Give a nice error for 'ptr*'.
2891
if (Lex.getKind() == lltok::star)
2892
return tokError("ptr* is invalid - use ptr instead");
2893
2894
// Fall through to parsing the type suffixes only if this 'ptr' is a
2895
// function return. Otherwise, return success, implicitly rejecting other
2896
// suffixes.
2897
if (Lex.getKind() != lltok::lparen)
2898
return false;
2899
}
2900
break;
2901
case lltok::kw_target: {
2902
// Type ::= TargetExtType
2903
if (parseTargetExtType(Result))
2904
return true;
2905
break;
2906
}
2907
case lltok::lbrace:
2908
// Type ::= StructType
2909
if (parseAnonStructType(Result, false))
2910
return true;
2911
break;
2912
case lltok::lsquare:
2913
// Type ::= '[' ... ']'
2914
Lex.Lex(); // eat the lsquare.
2915
if (parseArrayVectorType(Result, false))
2916
return true;
2917
break;
2918
case lltok::less: // Either vector or packed struct.
2919
// Type ::= '<' ... '>'
2920
Lex.Lex();
2921
if (Lex.getKind() == lltok::lbrace) {
2922
if (parseAnonStructType(Result, true) ||
2923
parseToken(lltok::greater, "expected '>' at end of packed struct"))
2924
return true;
2925
} else if (parseArrayVectorType(Result, true))
2926
return true;
2927
break;
2928
case lltok::LocalVar: {
2929
// Type ::= %foo
2930
std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2931
2932
// If the type hasn't been defined yet, create a forward definition and
2933
// remember where that forward def'n was seen (in case it never is defined).
2934
if (!Entry.first) {
2935
Entry.first = StructType::create(Context, Lex.getStrVal());
2936
Entry.second = Lex.getLoc();
2937
}
2938
Result = Entry.first;
2939
Lex.Lex();
2940
break;
2941
}
2942
2943
case lltok::LocalVarID: {
2944
// Type ::= %4
2945
std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2946
2947
// If the type hasn't been defined yet, create a forward definition and
2948
// remember where that forward def'n was seen (in case it never is defined).
2949
if (!Entry.first) {
2950
Entry.first = StructType::create(Context);
2951
Entry.second = Lex.getLoc();
2952
}
2953
Result = Entry.first;
2954
Lex.Lex();
2955
break;
2956
}
2957
}
2958
2959
// parse the type suffixes.
2960
while (true) {
2961
switch (Lex.getKind()) {
2962
// End of type.
2963
default:
2964
if (!AllowVoid && Result->isVoidTy())
2965
return error(TypeLoc, "void type only allowed for function results");
2966
return false;
2967
2968
// Type ::= Type '*'
2969
case lltok::star:
2970
if (Result->isLabelTy())
2971
return tokError("basic block pointers are invalid");
2972
if (Result->isVoidTy())
2973
return tokError("pointers to void are invalid - use i8* instead");
2974
if (!PointerType::isValidElementType(Result))
2975
return tokError("pointer to this type is invalid");
2976
Result = PointerType::getUnqual(Result);
2977
Lex.Lex();
2978
break;
2979
2980
// Type ::= Type 'addrspace' '(' uint32 ')' '*'
2981
case lltok::kw_addrspace: {
2982
if (Result->isLabelTy())
2983
return tokError("basic block pointers are invalid");
2984
if (Result->isVoidTy())
2985
return tokError("pointers to void are invalid; use i8* instead");
2986
if (!PointerType::isValidElementType(Result))
2987
return tokError("pointer to this type is invalid");
2988
unsigned AddrSpace;
2989
if (parseOptionalAddrSpace(AddrSpace) ||
2990
parseToken(lltok::star, "expected '*' in address space"))
2991
return true;
2992
2993
Result = PointerType::get(Result, AddrSpace);
2994
break;
2995
}
2996
2997
/// Types '(' ArgTypeListI ')' OptFuncAttrs
2998
case lltok::lparen:
2999
if (parseFunctionType(Result))
3000
return true;
3001
break;
3002
}
3003
}
3004
}
3005
3006
/// parseParameterList
3007
/// ::= '(' ')'
3008
/// ::= '(' Arg (',' Arg)* ')'
3009
/// Arg
3010
/// ::= Type OptionalAttributes Value OptionalAttributes
3011
bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
3012
PerFunctionState &PFS, bool IsMustTailCall,
3013
bool InVarArgsFunc) {
3014
if (parseToken(lltok::lparen, "expected '(' in call"))
3015
return true;
3016
3017
while (Lex.getKind() != lltok::rparen) {
3018
// If this isn't the first argument, we need a comma.
3019
if (!ArgList.empty() &&
3020
parseToken(lltok::comma, "expected ',' in argument list"))
3021
return true;
3022
3023
// parse an ellipsis if this is a musttail call in a variadic function.
3024
if (Lex.getKind() == lltok::dotdotdot) {
3025
const char *Msg = "unexpected ellipsis in argument list for ";
3026
if (!IsMustTailCall)
3027
return tokError(Twine(Msg) + "non-musttail call");
3028
if (!InVarArgsFunc)
3029
return tokError(Twine(Msg) + "musttail call in non-varargs function");
3030
Lex.Lex(); // Lex the '...', it is purely for readability.
3031
return parseToken(lltok::rparen, "expected ')' at end of argument list");
3032
}
3033
3034
// parse the argument.
3035
LocTy ArgLoc;
3036
Type *ArgTy = nullptr;
3037
Value *V;
3038
if (parseType(ArgTy, ArgLoc))
3039
return true;
3040
3041
AttrBuilder ArgAttrs(M->getContext());
3042
3043
if (ArgTy->isMetadataTy()) {
3044
if (parseMetadataAsValue(V, PFS))
3045
return true;
3046
} else {
3047
// Otherwise, handle normal operands.
3048
if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
3049
return true;
3050
}
3051
ArgList.push_back(ParamInfo(
3052
ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
3053
}
3054
3055
if (IsMustTailCall && InVarArgsFunc)
3056
return tokError("expected '...' at end of argument list for musttail call "
3057
"in varargs function");
3058
3059
Lex.Lex(); // Lex the ')'.
3060
return false;
3061
}
3062
3063
/// parseRequiredTypeAttr
3064
/// ::= attrname(<ty>)
3065
bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
3066
Attribute::AttrKind AttrKind) {
3067
Type *Ty = nullptr;
3068
if (!EatIfPresent(AttrToken))
3069
return true;
3070
if (!EatIfPresent(lltok::lparen))
3071
return error(Lex.getLoc(), "expected '('");
3072
if (parseType(Ty))
3073
return true;
3074
if (!EatIfPresent(lltok::rparen))
3075
return error(Lex.getLoc(), "expected ')'");
3076
3077
B.addTypeAttr(AttrKind, Ty);
3078
return false;
3079
}
3080
3081
/// parseRangeAttr
3082
/// ::= range(<ty> <n>,<n>)
3083
bool LLParser::parseRangeAttr(AttrBuilder &B) {
3084
Lex.Lex();
3085
3086
APInt Lower;
3087
APInt Upper;
3088
Type *Ty = nullptr;
3089
LocTy TyLoc;
3090
3091
auto ParseAPSInt = [&](unsigned BitWidth, APInt &Val) {
3092
if (Lex.getKind() != lltok::APSInt)
3093
return tokError("expected integer");
3094
if (Lex.getAPSIntVal().getBitWidth() > BitWidth)
3095
return tokError(
3096
"integer is too large for the bit width of specified type");
3097
Val = Lex.getAPSIntVal().extend(BitWidth);
3098
Lex.Lex();
3099
return false;
3100
};
3101
3102
if (parseToken(lltok::lparen, "expected '('") || parseType(Ty, TyLoc))
3103
return true;
3104
if (!Ty->isIntegerTy())
3105
return error(TyLoc, "the range must have integer type!");
3106
3107
unsigned BitWidth = Ty->getPrimitiveSizeInBits();
3108
3109
if (ParseAPSInt(BitWidth, Lower) ||
3110
parseToken(lltok::comma, "expected ','") || ParseAPSInt(BitWidth, Upper))
3111
return true;
3112
if (Lower == Upper)
3113
return tokError("the range should not represent the full or empty set!");
3114
3115
if (parseToken(lltok::rparen, "expected ')'"))
3116
return true;
3117
3118
B.addRangeAttr(ConstantRange(Lower, Upper));
3119
return false;
3120
}
3121
3122
/// parseInitializesAttr
3123
/// ::= initializes((Lo1,Hi1),(Lo2,Hi2),...)
3124
bool LLParser::parseInitializesAttr(AttrBuilder &B) {
3125
Lex.Lex();
3126
3127
auto ParseAPSInt = [&](APInt &Val) {
3128
if (Lex.getKind() != lltok::APSInt)
3129
return tokError("expected integer");
3130
Val = Lex.getAPSIntVal().extend(64);
3131
Lex.Lex();
3132
return false;
3133
};
3134
3135
if (parseToken(lltok::lparen, "expected '('"))
3136
return true;
3137
3138
SmallVector<ConstantRange, 2> RangeList;
3139
// Parse each constant range.
3140
do {
3141
APInt Lower, Upper;
3142
if (parseToken(lltok::lparen, "expected '('"))
3143
return true;
3144
3145
if (ParseAPSInt(Lower) || parseToken(lltok::comma, "expected ','") ||
3146
ParseAPSInt(Upper))
3147
return true;
3148
3149
if (Lower == Upper)
3150
return tokError("the range should not represent the full or empty set!");
3151
3152
if (parseToken(lltok::rparen, "expected ')'"))
3153
return true;
3154
3155
RangeList.push_back(ConstantRange(Lower, Upper));
3156
} while (EatIfPresent(lltok::comma));
3157
3158
if (parseToken(lltok::rparen, "expected ')'"))
3159
return true;
3160
3161
auto CRLOrNull = ConstantRangeList::getConstantRangeList(RangeList);
3162
if (!CRLOrNull.has_value())
3163
return tokError("Invalid (unordered or overlapping) range list");
3164
B.addInitializesAttr(*CRLOrNull);
3165
return false;
3166
}
3167
3168
/// parseOptionalOperandBundles
3169
/// ::= /*empty*/
3170
/// ::= '[' OperandBundle [, OperandBundle ]* ']'
3171
///
3172
/// OperandBundle
3173
/// ::= bundle-tag '(' ')'
3174
/// ::= bundle-tag '(' Type Value [, Type Value ]* ')'
3175
///
3176
/// bundle-tag ::= String Constant
3177
bool LLParser::parseOptionalOperandBundles(
3178
SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
3179
LocTy BeginLoc = Lex.getLoc();
3180
if (!EatIfPresent(lltok::lsquare))
3181
return false;
3182
3183
while (Lex.getKind() != lltok::rsquare) {
3184
// If this isn't the first operand bundle, we need a comma.
3185
if (!BundleList.empty() &&
3186
parseToken(lltok::comma, "expected ',' in input list"))
3187
return true;
3188
3189
std::string Tag;
3190
if (parseStringConstant(Tag))
3191
return true;
3192
3193
if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
3194
return true;
3195
3196
std::vector<Value *> Inputs;
3197
while (Lex.getKind() != lltok::rparen) {
3198
// If this isn't the first input, we need a comma.
3199
if (!Inputs.empty() &&
3200
parseToken(lltok::comma, "expected ',' in input list"))
3201
return true;
3202
3203
Type *Ty = nullptr;
3204
Value *Input = nullptr;
3205
if (parseType(Ty) || parseValue(Ty, Input, PFS))
3206
return true;
3207
Inputs.push_back(Input);
3208
}
3209
3210
BundleList.emplace_back(std::move(Tag), std::move(Inputs));
3211
3212
Lex.Lex(); // Lex the ')'.
3213
}
3214
3215
if (BundleList.empty())
3216
return error(BeginLoc, "operand bundle set must not be empty");
3217
3218
Lex.Lex(); // Lex the ']'.
3219
return false;
3220
}
3221
3222
bool LLParser::checkValueID(LocTy Loc, StringRef Kind, StringRef Prefix,
3223
unsigned NextID, unsigned ID) const {
3224
if (ID < NextID)
3225
return error(Loc, Kind + " expected to be numbered '" + Prefix +
3226
Twine(NextID) + "' or greater");
3227
3228
return false;
3229
}
3230
3231
/// parseArgumentList - parse the argument list for a function type or function
3232
/// prototype.
3233
/// ::= '(' ArgTypeListI ')'
3234
/// ArgTypeListI
3235
/// ::= /*empty*/
3236
/// ::= '...'
3237
/// ::= ArgTypeList ',' '...'
3238
/// ::= ArgType (',' ArgType)*
3239
///
3240
bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
3241
SmallVectorImpl<unsigned> &UnnamedArgNums,
3242
bool &IsVarArg) {
3243
unsigned CurValID = 0;
3244
IsVarArg = false;
3245
assert(Lex.getKind() == lltok::lparen);
3246
Lex.Lex(); // eat the (.
3247
3248
if (Lex.getKind() != lltok::rparen) {
3249
do {
3250
// Handle ... at end of arg list.
3251
if (EatIfPresent(lltok::dotdotdot)) {
3252
IsVarArg = true;
3253
break;
3254
}
3255
3256
// Otherwise must be an argument type.
3257
LocTy TypeLoc = Lex.getLoc();
3258
Type *ArgTy = nullptr;
3259
AttrBuilder Attrs(M->getContext());
3260
if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
3261
return true;
3262
3263
if (ArgTy->isVoidTy())
3264
return error(TypeLoc, "argument can not have void type");
3265
3266
std::string Name;
3267
if (Lex.getKind() == lltok::LocalVar) {
3268
Name = Lex.getStrVal();
3269
Lex.Lex();
3270
} else {
3271
unsigned ArgID;
3272
if (Lex.getKind() == lltok::LocalVarID) {
3273
ArgID = Lex.getUIntVal();
3274
if (checkValueID(TypeLoc, "argument", "%", CurValID, ArgID))
3275
return true;
3276
Lex.Lex();
3277
} else {
3278
ArgID = CurValID;
3279
}
3280
UnnamedArgNums.push_back(ArgID);
3281
CurValID = ArgID + 1;
3282
}
3283
3284
if (!ArgTy->isFirstClassType())
3285
return error(TypeLoc, "invalid type for function argument");
3286
3287
ArgList.emplace_back(TypeLoc, ArgTy,
3288
AttributeSet::get(ArgTy->getContext(), Attrs),
3289
std::move(Name));
3290
} while (EatIfPresent(lltok::comma));
3291
}
3292
3293
return parseToken(lltok::rparen, "expected ')' at end of argument list");
3294
}
3295
3296
/// parseFunctionType
3297
/// ::= Type ArgumentList OptionalAttrs
3298
bool LLParser::parseFunctionType(Type *&Result) {
3299
assert(Lex.getKind() == lltok::lparen);
3300
3301
if (!FunctionType::isValidReturnType(Result))
3302
return tokError("invalid function return type");
3303
3304
SmallVector<ArgInfo, 8> ArgList;
3305
bool IsVarArg;
3306
SmallVector<unsigned> UnnamedArgNums;
3307
if (parseArgumentList(ArgList, UnnamedArgNums, IsVarArg))
3308
return true;
3309
3310
// Reject names on the arguments lists.
3311
for (const ArgInfo &Arg : ArgList) {
3312
if (!Arg.Name.empty())
3313
return error(Arg.Loc, "argument name invalid in function type");
3314
if (Arg.Attrs.hasAttributes())
3315
return error(Arg.Loc, "argument attributes invalid in function type");
3316
}
3317
3318
SmallVector<Type*, 16> ArgListTy;
3319
for (const ArgInfo &Arg : ArgList)
3320
ArgListTy.push_back(Arg.Ty);
3321
3322
Result = FunctionType::get(Result, ArgListTy, IsVarArg);
3323
return false;
3324
}
3325
3326
/// parseAnonStructType - parse an anonymous struct type, which is inlined into
3327
/// other structs.
3328
bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
3329
SmallVector<Type*, 8> Elts;
3330
if (parseStructBody(Elts))
3331
return true;
3332
3333
Result = StructType::get(Context, Elts, Packed);
3334
return false;
3335
}
3336
3337
/// parseStructDefinition - parse a struct in a 'type' definition.
3338
bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
3339
std::pair<Type *, LocTy> &Entry,
3340
Type *&ResultTy) {
3341
// If the type was already defined, diagnose the redefinition.
3342
if (Entry.first && !Entry.second.isValid())
3343
return error(TypeLoc, "redefinition of type");
3344
3345
// If we have opaque, just return without filling in the definition for the
3346
// struct. This counts as a definition as far as the .ll file goes.
3347
if (EatIfPresent(lltok::kw_opaque)) {
3348
// This type is being defined, so clear the location to indicate this.
3349
Entry.second = SMLoc();
3350
3351
// If this type number has never been uttered, create it.
3352
if (!Entry.first)
3353
Entry.first = StructType::create(Context, Name);
3354
ResultTy = Entry.first;
3355
return false;
3356
}
3357
3358
// If the type starts with '<', then it is either a packed struct or a vector.
3359
bool isPacked = EatIfPresent(lltok::less);
3360
3361
// If we don't have a struct, then we have a random type alias, which we
3362
// accept for compatibility with old files. These types are not allowed to be
3363
// forward referenced and not allowed to be recursive.
3364
if (Lex.getKind() != lltok::lbrace) {
3365
if (Entry.first)
3366
return error(TypeLoc, "forward references to non-struct type");
3367
3368
ResultTy = nullptr;
3369
if (isPacked)
3370
return parseArrayVectorType(ResultTy, true);
3371
return parseType(ResultTy);
3372
}
3373
3374
// This type is being defined, so clear the location to indicate this.
3375
Entry.second = SMLoc();
3376
3377
// If this type number has never been uttered, create it.
3378
if (!Entry.first)
3379
Entry.first = StructType::create(Context, Name);
3380
3381
StructType *STy = cast<StructType>(Entry.first);
3382
3383
SmallVector<Type*, 8> Body;
3384
if (parseStructBody(Body) ||
3385
(isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
3386
return true;
3387
3388
STy->setBody(Body, isPacked);
3389
ResultTy = STy;
3390
return false;
3391
}
3392
3393
/// parseStructType: Handles packed and unpacked types. </> parsed elsewhere.
3394
/// StructType
3395
/// ::= '{' '}'
3396
/// ::= '{' Type (',' Type)* '}'
3397
/// ::= '<' '{' '}' '>'
3398
/// ::= '<' '{' Type (',' Type)* '}' '>'
3399
bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
3400
assert(Lex.getKind() == lltok::lbrace);
3401
Lex.Lex(); // Consume the '{'
3402
3403
// Handle the empty struct.
3404
if (EatIfPresent(lltok::rbrace))
3405
return false;
3406
3407
LocTy EltTyLoc = Lex.getLoc();
3408
Type *Ty = nullptr;
3409
if (parseType(Ty))
3410
return true;
3411
Body.push_back(Ty);
3412
3413
if (!StructType::isValidElementType(Ty))
3414
return error(EltTyLoc, "invalid element type for struct");
3415
3416
while (EatIfPresent(lltok::comma)) {
3417
EltTyLoc = Lex.getLoc();
3418
if (parseType(Ty))
3419
return true;
3420
3421
if (!StructType::isValidElementType(Ty))
3422
return error(EltTyLoc, "invalid element type for struct");
3423
3424
Body.push_back(Ty);
3425
}
3426
3427
return parseToken(lltok::rbrace, "expected '}' at end of struct");
3428
}
3429
3430
/// parseArrayVectorType - parse an array or vector type, assuming the first
3431
/// token has already been consumed.
3432
/// Type
3433
/// ::= '[' APSINTVAL 'x' Types ']'
3434
/// ::= '<' APSINTVAL 'x' Types '>'
3435
/// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
3436
bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
3437
bool Scalable = false;
3438
3439
if (IsVector && Lex.getKind() == lltok::kw_vscale) {
3440
Lex.Lex(); // consume the 'vscale'
3441
if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
3442
return true;
3443
3444
Scalable = true;
3445
}
3446
3447
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
3448
Lex.getAPSIntVal().getBitWidth() > 64)
3449
return tokError("expected number in address space");
3450
3451
LocTy SizeLoc = Lex.getLoc();
3452
uint64_t Size = Lex.getAPSIntVal().getZExtValue();
3453
Lex.Lex();
3454
3455
if (parseToken(lltok::kw_x, "expected 'x' after element count"))
3456
return true;
3457
3458
LocTy TypeLoc = Lex.getLoc();
3459
Type *EltTy = nullptr;
3460
if (parseType(EltTy))
3461
return true;
3462
3463
if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
3464
"expected end of sequential type"))
3465
return true;
3466
3467
if (IsVector) {
3468
if (Size == 0)
3469
return error(SizeLoc, "zero element vector is illegal");
3470
if ((unsigned)Size != Size)
3471
return error(SizeLoc, "size too large for vector");
3472
if (!VectorType::isValidElementType(EltTy))
3473
return error(TypeLoc, "invalid vector element type");
3474
Result = VectorType::get(EltTy, unsigned(Size), Scalable);
3475
} else {
3476
if (!ArrayType::isValidElementType(EltTy))
3477
return error(TypeLoc, "invalid array element type");
3478
Result = ArrayType::get(EltTy, Size);
3479
}
3480
return false;
3481
}
3482
3483
/// parseTargetExtType - handle target extension type syntax
3484
/// TargetExtType
3485
/// ::= 'target' '(' STRINGCONSTANT TargetExtTypeParams TargetExtIntParams ')'
3486
///
3487
/// TargetExtTypeParams
3488
/// ::= /*empty*/
3489
/// ::= ',' Type TargetExtTypeParams
3490
///
3491
/// TargetExtIntParams
3492
/// ::= /*empty*/
3493
/// ::= ',' uint32 TargetExtIntParams
3494
bool LLParser::parseTargetExtType(Type *&Result) {
3495
Lex.Lex(); // Eat the 'target' keyword.
3496
3497
// Get the mandatory type name.
3498
std::string TypeName;
3499
if (parseToken(lltok::lparen, "expected '(' in target extension type") ||
3500
parseStringConstant(TypeName))
3501
return true;
3502
3503
// Parse all of the integer and type parameters at the same time; the use of
3504
// SeenInt will allow us to catch cases where type parameters follow integer
3505
// parameters.
3506
SmallVector<Type *> TypeParams;
3507
SmallVector<unsigned> IntParams;
3508
bool SeenInt = false;
3509
while (Lex.getKind() == lltok::comma) {
3510
Lex.Lex(); // Eat the comma.
3511
3512
if (Lex.getKind() == lltok::APSInt) {
3513
SeenInt = true;
3514
unsigned IntVal;
3515
if (parseUInt32(IntVal))
3516
return true;
3517
IntParams.push_back(IntVal);
3518
} else if (SeenInt) {
3519
// The only other kind of parameter we support is type parameters, which
3520
// must precede the integer parameters. This is therefore an error.
3521
return tokError("expected uint32 param");
3522
} else {
3523
Type *TypeParam;
3524
if (parseType(TypeParam, /*AllowVoid=*/true))
3525
return true;
3526
TypeParams.push_back(TypeParam);
3527
}
3528
}
3529
3530
if (parseToken(lltok::rparen, "expected ')' in target extension type"))
3531
return true;
3532
3533
Result = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
3534
return false;
3535
}
3536
3537
//===----------------------------------------------------------------------===//
3538
// Function Semantic Analysis.
3539
//===----------------------------------------------------------------------===//
3540
3541
LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
3542
int functionNumber,
3543
ArrayRef<unsigned> UnnamedArgNums)
3544
: P(p), F(f), FunctionNumber(functionNumber) {
3545
3546
// Insert unnamed arguments into the NumberedVals list.
3547
auto It = UnnamedArgNums.begin();
3548
for (Argument &A : F.args()) {
3549
if (!A.hasName()) {
3550
unsigned ArgNum = *It++;
3551
NumberedVals.add(ArgNum, &A);
3552
}
3553
}
3554
}
3555
3556
LLParser::PerFunctionState::~PerFunctionState() {
3557
// If there were any forward referenced non-basicblock values, delete them.
3558
3559
for (const auto &P : ForwardRefVals) {
3560
if (isa<BasicBlock>(P.second.first))
3561
continue;
3562
P.second.first->replaceAllUsesWith(
3563
PoisonValue::get(P.second.first->getType()));
3564
P.second.first->deleteValue();
3565
}
3566
3567
for (const auto &P : ForwardRefValIDs) {
3568
if (isa<BasicBlock>(P.second.first))
3569
continue;
3570
P.second.first->replaceAllUsesWith(
3571
PoisonValue::get(P.second.first->getType()));
3572
P.second.first->deleteValue();
3573
}
3574
}
3575
3576
bool LLParser::PerFunctionState::finishFunction() {
3577
if (!ForwardRefVals.empty())
3578
return P.error(ForwardRefVals.begin()->second.second,
3579
"use of undefined value '%" + ForwardRefVals.begin()->first +
3580
"'");
3581
if (!ForwardRefValIDs.empty())
3582
return P.error(ForwardRefValIDs.begin()->second.second,
3583
"use of undefined value '%" +
3584
Twine(ForwardRefValIDs.begin()->first) + "'");
3585
return false;
3586
}
3587
3588
/// getVal - Get a value with the specified name or ID, creating a
3589
/// forward reference record if needed. This can return null if the value
3590
/// exists but does not have the right type.
3591
Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3592
LocTy Loc) {
3593
// Look this name up in the normal function symbol table.
3594
Value *Val = F.getValueSymbolTable()->lookup(Name);
3595
3596
// If this is a forward reference for the value, see if we already created a
3597
// forward ref record.
3598
if (!Val) {
3599
auto I = ForwardRefVals.find(Name);
3600
if (I != ForwardRefVals.end())
3601
Val = I->second.first;
3602
}
3603
3604
// If we have the value in the symbol table or fwd-ref table, return it.
3605
if (Val)
3606
return P.checkValidVariableType(Loc, "%" + Name, Ty, Val);
3607
3608
// Don't make placeholders with invalid type.
3609
if (!Ty->isFirstClassType()) {
3610
P.error(Loc, "invalid use of a non-first-class type");
3611
return nullptr;
3612
}
3613
3614
// Otherwise, create a new forward reference for this value and remember it.
3615
Value *FwdVal;
3616
if (Ty->isLabelTy()) {
3617
FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3618
} else {
3619
FwdVal = new Argument(Ty, Name);
3620
}
3621
if (FwdVal->getName() != Name) {
3622
P.error(Loc, "name is too long which can result in name collisions, "
3623
"consider making the name shorter or "
3624
"increasing -non-global-value-max-name-size");
3625
return nullptr;
3626
}
3627
3628
ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3629
return FwdVal;
3630
}
3631
3632
Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) {
3633
// Look this name up in the normal function symbol table.
3634
Value *Val = NumberedVals.get(ID);
3635
3636
// If this is a forward reference for the value, see if we already created a
3637
// forward ref record.
3638
if (!Val) {
3639
auto I = ForwardRefValIDs.find(ID);
3640
if (I != ForwardRefValIDs.end())
3641
Val = I->second.first;
3642
}
3643
3644
// If we have the value in the symbol table or fwd-ref table, return it.
3645
if (Val)
3646
return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val);
3647
3648
if (!Ty->isFirstClassType()) {
3649
P.error(Loc, "invalid use of a non-first-class type");
3650
return nullptr;
3651
}
3652
3653
// Otherwise, create a new forward reference for this value and remember it.
3654
Value *FwdVal;
3655
if (Ty->isLabelTy()) {
3656
FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3657
} else {
3658
FwdVal = new Argument(Ty);
3659
}
3660
3661
ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3662
return FwdVal;
3663
}
3664
3665
/// setInstName - After an instruction is parsed and inserted into its
3666
/// basic block, this installs its name.
3667
bool LLParser::PerFunctionState::setInstName(int NameID,
3668
const std::string &NameStr,
3669
LocTy NameLoc, Instruction *Inst) {
3670
// If this instruction has void type, it cannot have a name or ID specified.
3671
if (Inst->getType()->isVoidTy()) {
3672
if (NameID != -1 || !NameStr.empty())
3673
return P.error(NameLoc, "instructions returning void cannot have a name");
3674
return false;
3675
}
3676
3677
// If this was a numbered instruction, verify that the instruction is the
3678
// expected value and resolve any forward references.
3679
if (NameStr.empty()) {
3680
// If neither a name nor an ID was specified, just use the next ID.
3681
if (NameID == -1)
3682
NameID = NumberedVals.getNext();
3683
3684
if (P.checkValueID(NameLoc, "instruction", "%", NumberedVals.getNext(),
3685
NameID))
3686
return true;
3687
3688
auto FI = ForwardRefValIDs.find(NameID);
3689
if (FI != ForwardRefValIDs.end()) {
3690
Value *Sentinel = FI->second.first;
3691
if (Sentinel->getType() != Inst->getType())
3692
return P.error(NameLoc, "instruction forward referenced with type '" +
3693
getTypeString(FI->second.first->getType()) +
3694
"'");
3695
3696
Sentinel->replaceAllUsesWith(Inst);
3697
Sentinel->deleteValue();
3698
ForwardRefValIDs.erase(FI);
3699
}
3700
3701
NumberedVals.add(NameID, Inst);
3702
return false;
3703
}
3704
3705
// Otherwise, the instruction had a name. Resolve forward refs and set it.
3706
auto FI = ForwardRefVals.find(NameStr);
3707
if (FI != ForwardRefVals.end()) {
3708
Value *Sentinel = FI->second.first;
3709
if (Sentinel->getType() != Inst->getType())
3710
return P.error(NameLoc, "instruction forward referenced with type '" +
3711
getTypeString(FI->second.first->getType()) +
3712
"'");
3713
3714
Sentinel->replaceAllUsesWith(Inst);
3715
Sentinel->deleteValue();
3716
ForwardRefVals.erase(FI);
3717
}
3718
3719
// Set the name on the instruction.
3720
Inst->setName(NameStr);
3721
3722
if (Inst->getName() != NameStr)
3723
return P.error(NameLoc, "multiple definition of local value named '" +
3724
NameStr + "'");
3725
return false;
3726
}
3727
3728
/// getBB - Get a basic block with the specified name or ID, creating a
3729
/// forward reference record if needed.
3730
BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3731
LocTy Loc) {
3732
return dyn_cast_or_null<BasicBlock>(
3733
getVal(Name, Type::getLabelTy(F.getContext()), Loc));
3734
}
3735
3736
BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3737
return dyn_cast_or_null<BasicBlock>(
3738
getVal(ID, Type::getLabelTy(F.getContext()), Loc));
3739
}
3740
3741
/// defineBB - Define the specified basic block, which is either named or
3742
/// unnamed. If there is an error, this returns null otherwise it returns
3743
/// the block being defined.
3744
BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3745
int NameID, LocTy Loc) {
3746
BasicBlock *BB;
3747
if (Name.empty()) {
3748
if (NameID != -1) {
3749
if (P.checkValueID(Loc, "label", "", NumberedVals.getNext(), NameID))
3750
return nullptr;
3751
} else {
3752
NameID = NumberedVals.getNext();
3753
}
3754
BB = getBB(NameID, Loc);
3755
if (!BB) {
3756
P.error(Loc, "unable to create block numbered '" + Twine(NameID) + "'");
3757
return nullptr;
3758
}
3759
} else {
3760
BB = getBB(Name, Loc);
3761
if (!BB) {
3762
P.error(Loc, "unable to create block named '" + Name + "'");
3763
return nullptr;
3764
}
3765
}
3766
3767
// Move the block to the end of the function. Forward ref'd blocks are
3768
// inserted wherever they happen to be referenced.
3769
F.splice(F.end(), &F, BB->getIterator());
3770
3771
// Remove the block from forward ref sets.
3772
if (Name.empty()) {
3773
ForwardRefValIDs.erase(NameID);
3774
NumberedVals.add(NameID, BB);
3775
} else {
3776
// BB forward references are already in the function symbol table.
3777
ForwardRefVals.erase(Name);
3778
}
3779
3780
return BB;
3781
}
3782
3783
//===----------------------------------------------------------------------===//
3784
// Constants.
3785
//===----------------------------------------------------------------------===//
3786
3787
/// parseValID - parse an abstract value that doesn't necessarily have a
3788
/// type implied. For example, if we parse "4" we don't know what integer type
3789
/// it has. The value will later be combined with its type and checked for
3790
/// basic correctness. PFS is used to convert function-local operands of
3791
/// metadata (since metadata operands are not just parsed here but also
3792
/// converted to values). PFS can be null when we are not parsing metadata
3793
/// values inside a function.
3794
bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
3795
ID.Loc = Lex.getLoc();
3796
switch (Lex.getKind()) {
3797
default:
3798
return tokError("expected value token");
3799
case lltok::GlobalID: // @42
3800
ID.UIntVal = Lex.getUIntVal();
3801
ID.Kind = ValID::t_GlobalID;
3802
break;
3803
case lltok::GlobalVar: // @foo
3804
ID.StrVal = Lex.getStrVal();
3805
ID.Kind = ValID::t_GlobalName;
3806
break;
3807
case lltok::LocalVarID: // %42
3808
ID.UIntVal = Lex.getUIntVal();
3809
ID.Kind = ValID::t_LocalID;
3810
break;
3811
case lltok::LocalVar: // %foo
3812
ID.StrVal = Lex.getStrVal();
3813
ID.Kind = ValID::t_LocalName;
3814
break;
3815
case lltok::APSInt:
3816
ID.APSIntVal = Lex.getAPSIntVal();
3817
ID.Kind = ValID::t_APSInt;
3818
break;
3819
case lltok::APFloat:
3820
ID.APFloatVal = Lex.getAPFloatVal();
3821
ID.Kind = ValID::t_APFloat;
3822
break;
3823
case lltok::kw_true:
3824
ID.ConstantVal = ConstantInt::getTrue(Context);
3825
ID.Kind = ValID::t_Constant;
3826
break;
3827
case lltok::kw_false:
3828
ID.ConstantVal = ConstantInt::getFalse(Context);
3829
ID.Kind = ValID::t_Constant;
3830
break;
3831
case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3832
case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3833
case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3834
case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3835
case lltok::kw_none: ID.Kind = ValID::t_None; break;
3836
3837
case lltok::lbrace: {
3838
// ValID ::= '{' ConstVector '}'
3839
Lex.Lex();
3840
SmallVector<Constant*, 16> Elts;
3841
if (parseGlobalValueVector(Elts) ||
3842
parseToken(lltok::rbrace, "expected end of struct constant"))
3843
return true;
3844
3845
ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3846
ID.UIntVal = Elts.size();
3847
memcpy(ID.ConstantStructElts.get(), Elts.data(),
3848
Elts.size() * sizeof(Elts[0]));
3849
ID.Kind = ValID::t_ConstantStruct;
3850
return false;
3851
}
3852
case lltok::less: {
3853
// ValID ::= '<' ConstVector '>' --> Vector.
3854
// ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3855
Lex.Lex();
3856
bool isPackedStruct = EatIfPresent(lltok::lbrace);
3857
3858
SmallVector<Constant*, 16> Elts;
3859
LocTy FirstEltLoc = Lex.getLoc();
3860
if (parseGlobalValueVector(Elts) ||
3861
(isPackedStruct &&
3862
parseToken(lltok::rbrace, "expected end of packed struct")) ||
3863
parseToken(lltok::greater, "expected end of constant"))
3864
return true;
3865
3866
if (isPackedStruct) {
3867
ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3868
memcpy(ID.ConstantStructElts.get(), Elts.data(),
3869
Elts.size() * sizeof(Elts[0]));
3870
ID.UIntVal = Elts.size();
3871
ID.Kind = ValID::t_PackedConstantStruct;
3872
return false;
3873
}
3874
3875
if (Elts.empty())
3876
return error(ID.Loc, "constant vector must not be empty");
3877
3878
if (!Elts[0]->getType()->isIntegerTy() &&
3879
!Elts[0]->getType()->isFloatingPointTy() &&
3880
!Elts[0]->getType()->isPointerTy())
3881
return error(
3882
FirstEltLoc,
3883
"vector elements must have integer, pointer or floating point type");
3884
3885
// Verify that all the vector elements have the same type.
3886
for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3887
if (Elts[i]->getType() != Elts[0]->getType())
3888
return error(FirstEltLoc, "vector element #" + Twine(i) +
3889
" is not of type '" +
3890
getTypeString(Elts[0]->getType()));
3891
3892
ID.ConstantVal = ConstantVector::get(Elts);
3893
ID.Kind = ValID::t_Constant;
3894
return false;
3895
}
3896
case lltok::lsquare: { // Array Constant
3897
Lex.Lex();
3898
SmallVector<Constant*, 16> Elts;
3899
LocTy FirstEltLoc = Lex.getLoc();
3900
if (parseGlobalValueVector(Elts) ||
3901
parseToken(lltok::rsquare, "expected end of array constant"))
3902
return true;
3903
3904
// Handle empty element.
3905
if (Elts.empty()) {
3906
// Use undef instead of an array because it's inconvenient to determine
3907
// the element type at this point, there being no elements to examine.
3908
ID.Kind = ValID::t_EmptyArray;
3909
return false;
3910
}
3911
3912
if (!Elts[0]->getType()->isFirstClassType())
3913
return error(FirstEltLoc, "invalid array element type: " +
3914
getTypeString(Elts[0]->getType()));
3915
3916
ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3917
3918
// Verify all elements are correct type!
3919
for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3920
if (Elts[i]->getType() != Elts[0]->getType())
3921
return error(FirstEltLoc, "array element #" + Twine(i) +
3922
" is not of type '" +
3923
getTypeString(Elts[0]->getType()));
3924
}
3925
3926
ID.ConstantVal = ConstantArray::get(ATy, Elts);
3927
ID.Kind = ValID::t_Constant;
3928
return false;
3929
}
3930
case lltok::kw_c: // c "foo"
3931
Lex.Lex();
3932
ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3933
false);
3934
if (parseToken(lltok::StringConstant, "expected string"))
3935
return true;
3936
ID.Kind = ValID::t_Constant;
3937
return false;
3938
3939
case lltok::kw_asm: {
3940
// ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3941
// STRINGCONSTANT
3942
bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3943
Lex.Lex();
3944
if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3945
parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3946
parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3947
parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3948
parseStringConstant(ID.StrVal) ||
3949
parseToken(lltok::comma, "expected comma in inline asm expression") ||
3950
parseToken(lltok::StringConstant, "expected constraint string"))
3951
return true;
3952
ID.StrVal2 = Lex.getStrVal();
3953
ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3954
(unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3955
ID.Kind = ValID::t_InlineAsm;
3956
return false;
3957
}
3958
3959
case lltok::kw_blockaddress: {
3960
// ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3961
Lex.Lex();
3962
3963
ValID Fn, Label;
3964
3965
if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3966
parseValID(Fn, PFS) ||
3967
parseToken(lltok::comma,
3968
"expected comma in block address expression") ||
3969
parseValID(Label, PFS) ||
3970
parseToken(lltok::rparen, "expected ')' in block address expression"))
3971
return true;
3972
3973
if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3974
return error(Fn.Loc, "expected function name in blockaddress");
3975
if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3976
return error(Label.Loc, "expected basic block name in blockaddress");
3977
3978
// Try to find the function (but skip it if it's forward-referenced).
3979
GlobalValue *GV = nullptr;
3980
if (Fn.Kind == ValID::t_GlobalID) {
3981
GV = NumberedVals.get(Fn.UIntVal);
3982
} else if (!ForwardRefVals.count(Fn.StrVal)) {
3983
GV = M->getNamedValue(Fn.StrVal);
3984
}
3985
Function *F = nullptr;
3986
if (GV) {
3987
// Confirm that it's actually a function with a definition.
3988
if (!isa<Function>(GV))
3989
return error(Fn.Loc, "expected function name in blockaddress");
3990
F = cast<Function>(GV);
3991
if (F->isDeclaration())
3992
return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3993
}
3994
3995
if (!F) {
3996
// Make a global variable as a placeholder for this reference.
3997
GlobalValue *&FwdRef =
3998
ForwardRefBlockAddresses.insert(std::make_pair(
3999
std::move(Fn),
4000
std::map<ValID, GlobalValue *>()))
4001
.first->second.insert(std::make_pair(std::move(Label), nullptr))
4002
.first->second;
4003
if (!FwdRef) {
4004
unsigned FwdDeclAS;
4005
if (ExpectedTy) {
4006
// If we know the type that the blockaddress is being assigned to,
4007
// we can use the address space of that type.
4008
if (!ExpectedTy->isPointerTy())
4009
return error(ID.Loc,
4010
"type of blockaddress must be a pointer and not '" +
4011
getTypeString(ExpectedTy) + "'");
4012
FwdDeclAS = ExpectedTy->getPointerAddressSpace();
4013
} else if (PFS) {
4014
// Otherwise, we default the address space of the current function.
4015
FwdDeclAS = PFS->getFunction().getAddressSpace();
4016
} else {
4017
llvm_unreachable("Unknown address space for blockaddress");
4018
}
4019
FwdRef = new GlobalVariable(
4020
*M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
4021
nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
4022
}
4023
4024
ID.ConstantVal = FwdRef;
4025
ID.Kind = ValID::t_Constant;
4026
return false;
4027
}
4028
4029
// We found the function; now find the basic block. Don't use PFS, since we
4030
// might be inside a constant expression.
4031
BasicBlock *BB;
4032
if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
4033
if (Label.Kind == ValID::t_LocalID)
4034
BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
4035
else
4036
BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
4037
if (!BB)
4038
return error(Label.Loc, "referenced value is not a basic block");
4039
} else {
4040
if (Label.Kind == ValID::t_LocalID)
4041
return error(Label.Loc, "cannot take address of numeric label after "
4042
"the function is defined");
4043
BB = dyn_cast_or_null<BasicBlock>(
4044
F->getValueSymbolTable()->lookup(Label.StrVal));
4045
if (!BB)
4046
return error(Label.Loc, "referenced value is not a basic block");
4047
}
4048
4049
ID.ConstantVal = BlockAddress::get(F, BB);
4050
ID.Kind = ValID::t_Constant;
4051
return false;
4052
}
4053
4054
case lltok::kw_dso_local_equivalent: {
4055
// ValID ::= 'dso_local_equivalent' @foo
4056
Lex.Lex();
4057
4058
ValID Fn;
4059
4060
if (parseValID(Fn, PFS))
4061
return true;
4062
4063
if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
4064
return error(Fn.Loc,
4065
"expected global value name in dso_local_equivalent");
4066
4067
// Try to find the function (but skip it if it's forward-referenced).
4068
GlobalValue *GV = nullptr;
4069
if (Fn.Kind == ValID::t_GlobalID) {
4070
GV = NumberedVals.get(Fn.UIntVal);
4071
} else if (!ForwardRefVals.count(Fn.StrVal)) {
4072
GV = M->getNamedValue(Fn.StrVal);
4073
}
4074
4075
if (!GV) {
4076
// Make a placeholder global variable as a placeholder for this reference.
4077
auto &FwdRefMap = (Fn.Kind == ValID::t_GlobalID)
4078
? ForwardRefDSOLocalEquivalentIDs
4079
: ForwardRefDSOLocalEquivalentNames;
4080
GlobalValue *&FwdRef = FwdRefMap.try_emplace(Fn, nullptr).first->second;
4081
if (!FwdRef) {
4082
FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
4083
GlobalValue::InternalLinkage, nullptr, "",
4084
nullptr, GlobalValue::NotThreadLocal);
4085
}
4086
4087
ID.ConstantVal = FwdRef;
4088
ID.Kind = ValID::t_Constant;
4089
return false;
4090
}
4091
4092
if (!GV->getValueType()->isFunctionTy())
4093
return error(Fn.Loc, "expected a function, alias to function, or ifunc "
4094
"in dso_local_equivalent");
4095
4096
ID.ConstantVal = DSOLocalEquivalent::get(GV);
4097
ID.Kind = ValID::t_Constant;
4098
return false;
4099
}
4100
4101
case lltok::kw_no_cfi: {
4102
// ValID ::= 'no_cfi' @foo
4103
Lex.Lex();
4104
4105
if (parseValID(ID, PFS))
4106
return true;
4107
4108
if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName)
4109
return error(ID.Loc, "expected global value name in no_cfi");
4110
4111
ID.NoCFI = true;
4112
return false;
4113
}
4114
case lltok::kw_ptrauth: {
4115
// ValID ::= 'ptrauth' '(' ptr @foo ',' i32 <key>
4116
// (',' i64 <disc> (',' ptr addrdisc)? )? ')'
4117
Lex.Lex();
4118
4119
Constant *Ptr, *Key;
4120
Constant *Disc = nullptr, *AddrDisc = nullptr;
4121
4122
if (parseToken(lltok::lparen,
4123
"expected '(' in constant ptrauth expression") ||
4124
parseGlobalTypeAndValue(Ptr) ||
4125
parseToken(lltok::comma,
4126
"expected comma in constant ptrauth expression") ||
4127
parseGlobalTypeAndValue(Key))
4128
return true;
4129
// If present, parse the optional disc/addrdisc.
4130
if (EatIfPresent(lltok::comma))
4131
if (parseGlobalTypeAndValue(Disc) ||
4132
(EatIfPresent(lltok::comma) && parseGlobalTypeAndValue(AddrDisc)))
4133
return true;
4134
if (parseToken(lltok::rparen,
4135
"expected ')' in constant ptrauth expression"))
4136
return true;
4137
4138
if (!Ptr->getType()->isPointerTy())
4139
return error(ID.Loc, "constant ptrauth base pointer must be a pointer");
4140
4141
auto *KeyC = dyn_cast<ConstantInt>(Key);
4142
if (!KeyC || KeyC->getBitWidth() != 32)
4143
return error(ID.Loc, "constant ptrauth key must be i32 constant");
4144
4145
ConstantInt *DiscC = nullptr;
4146
if (Disc) {
4147
DiscC = dyn_cast<ConstantInt>(Disc);
4148
if (!DiscC || DiscC->getBitWidth() != 64)
4149
return error(
4150
ID.Loc,
4151
"constant ptrauth integer discriminator must be i64 constant");
4152
} else {
4153
DiscC = ConstantInt::get(Type::getInt64Ty(Context), 0);
4154
}
4155
4156
if (AddrDisc) {
4157
if (!AddrDisc->getType()->isPointerTy())
4158
return error(
4159
ID.Loc, "constant ptrauth address discriminator must be a pointer");
4160
} else {
4161
AddrDisc = ConstantPointerNull::get(PointerType::get(Context, 0));
4162
}
4163
4164
ID.ConstantVal = ConstantPtrAuth::get(Ptr, KeyC, DiscC, AddrDisc);
4165
ID.Kind = ValID::t_Constant;
4166
return false;
4167
}
4168
4169
case lltok::kw_trunc:
4170
case lltok::kw_bitcast:
4171
case lltok::kw_addrspacecast:
4172
case lltok::kw_inttoptr:
4173
case lltok::kw_ptrtoint: {
4174
unsigned Opc = Lex.getUIntVal();
4175
Type *DestTy = nullptr;
4176
Constant *SrcVal;
4177
Lex.Lex();
4178
if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
4179
parseGlobalTypeAndValue(SrcVal) ||
4180
parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
4181
parseType(DestTy) ||
4182
parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
4183
return true;
4184
if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
4185
return error(ID.Loc, "invalid cast opcode for cast from '" +
4186
getTypeString(SrcVal->getType()) + "' to '" +
4187
getTypeString(DestTy) + "'");
4188
ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
4189
SrcVal, DestTy);
4190
ID.Kind = ValID::t_Constant;
4191
return false;
4192
}
4193
case lltok::kw_extractvalue:
4194
return error(ID.Loc, "extractvalue constexprs are no longer supported");
4195
case lltok::kw_insertvalue:
4196
return error(ID.Loc, "insertvalue constexprs are no longer supported");
4197
case lltok::kw_udiv:
4198
return error(ID.Loc, "udiv constexprs are no longer supported");
4199
case lltok::kw_sdiv:
4200
return error(ID.Loc, "sdiv constexprs are no longer supported");
4201
case lltok::kw_urem:
4202
return error(ID.Loc, "urem constexprs are no longer supported");
4203
case lltok::kw_srem:
4204
return error(ID.Loc, "srem constexprs are no longer supported");
4205
case lltok::kw_fadd:
4206
return error(ID.Loc, "fadd constexprs are no longer supported");
4207
case lltok::kw_fsub:
4208
return error(ID.Loc, "fsub constexprs are no longer supported");
4209
case lltok::kw_fmul:
4210
return error(ID.Loc, "fmul constexprs are no longer supported");
4211
case lltok::kw_fdiv:
4212
return error(ID.Loc, "fdiv constexprs are no longer supported");
4213
case lltok::kw_frem:
4214
return error(ID.Loc, "frem constexprs are no longer supported");
4215
case lltok::kw_and:
4216
return error(ID.Loc, "and constexprs are no longer supported");
4217
case lltok::kw_or:
4218
return error(ID.Loc, "or constexprs are no longer supported");
4219
case lltok::kw_lshr:
4220
return error(ID.Loc, "lshr constexprs are no longer supported");
4221
case lltok::kw_ashr:
4222
return error(ID.Loc, "ashr constexprs are no longer supported");
4223
case lltok::kw_shl:
4224
return error(ID.Loc, "shl constexprs are no longer supported");
4225
case lltok::kw_fneg:
4226
return error(ID.Loc, "fneg constexprs are no longer supported");
4227
case lltok::kw_select:
4228
return error(ID.Loc, "select constexprs are no longer supported");
4229
case lltok::kw_zext:
4230
return error(ID.Loc, "zext constexprs are no longer supported");
4231
case lltok::kw_sext:
4232
return error(ID.Loc, "sext constexprs are no longer supported");
4233
case lltok::kw_fptrunc:
4234
return error(ID.Loc, "fptrunc constexprs are no longer supported");
4235
case lltok::kw_fpext:
4236
return error(ID.Loc, "fpext constexprs are no longer supported");
4237
case lltok::kw_uitofp:
4238
return error(ID.Loc, "uitofp constexprs are no longer supported");
4239
case lltok::kw_sitofp:
4240
return error(ID.Loc, "sitofp constexprs are no longer supported");
4241
case lltok::kw_fptoui:
4242
return error(ID.Loc, "fptoui constexprs are no longer supported");
4243
case lltok::kw_fptosi:
4244
return error(ID.Loc, "fptosi constexprs are no longer supported");
4245
case lltok::kw_icmp:
4246
return error(ID.Loc, "icmp constexprs are no longer supported");
4247
case lltok::kw_fcmp:
4248
return error(ID.Loc, "fcmp constexprs are no longer supported");
4249
4250
// Binary Operators.
4251
case lltok::kw_add:
4252
case lltok::kw_sub:
4253
case lltok::kw_mul:
4254
case lltok::kw_xor: {
4255
bool NUW = false;
4256
bool NSW = false;
4257
unsigned Opc = Lex.getUIntVal();
4258
Constant *Val0, *Val1;
4259
Lex.Lex();
4260
if (Opc == Instruction::Add || Opc == Instruction::Sub ||
4261
Opc == Instruction::Mul) {
4262
if (EatIfPresent(lltok::kw_nuw))
4263
NUW = true;
4264
if (EatIfPresent(lltok::kw_nsw)) {
4265
NSW = true;
4266
if (EatIfPresent(lltok::kw_nuw))
4267
NUW = true;
4268
}
4269
}
4270
if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
4271
parseGlobalTypeAndValue(Val0) ||
4272
parseToken(lltok::comma, "expected comma in binary constantexpr") ||
4273
parseGlobalTypeAndValue(Val1) ||
4274
parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
4275
return true;
4276
if (Val0->getType() != Val1->getType())
4277
return error(ID.Loc, "operands of constexpr must have same type");
4278
// Check that the type is valid for the operator.
4279
if (!Val0->getType()->isIntOrIntVectorTy())
4280
return error(ID.Loc,
4281
"constexpr requires integer or integer vector operands");
4282
unsigned Flags = 0;
4283
if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
4284
if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap;
4285
ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1, Flags);
4286
ID.Kind = ValID::t_Constant;
4287
return false;
4288
}
4289
4290
case lltok::kw_splat: {
4291
Lex.Lex();
4292
if (parseToken(lltok::lparen, "expected '(' after vector splat"))
4293
return true;
4294
Constant *C;
4295
if (parseGlobalTypeAndValue(C))
4296
return true;
4297
if (parseToken(lltok::rparen, "expected ')' at end of vector splat"))
4298
return true;
4299
4300
ID.ConstantVal = C;
4301
ID.Kind = ValID::t_ConstantSplat;
4302
return false;
4303
}
4304
4305
case lltok::kw_getelementptr:
4306
case lltok::kw_shufflevector:
4307
case lltok::kw_insertelement:
4308
case lltok::kw_extractelement: {
4309
unsigned Opc = Lex.getUIntVal();
4310
SmallVector<Constant*, 16> Elts;
4311
GEPNoWrapFlags NW;
4312
bool HasInRange = false;
4313
APSInt InRangeStart;
4314
APSInt InRangeEnd;
4315
Type *Ty;
4316
Lex.Lex();
4317
4318
if (Opc == Instruction::GetElementPtr) {
4319
while (true) {
4320
if (EatIfPresent(lltok::kw_inbounds))
4321
NW |= GEPNoWrapFlags::inBounds();
4322
else if (EatIfPresent(lltok::kw_nusw))
4323
NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
4324
else if (EatIfPresent(lltok::kw_nuw))
4325
NW |= GEPNoWrapFlags::noUnsignedWrap();
4326
else
4327
break;
4328
}
4329
4330
if (EatIfPresent(lltok::kw_inrange)) {
4331
if (parseToken(lltok::lparen, "expected '('"))
4332
return true;
4333
if (Lex.getKind() != lltok::APSInt)
4334
return tokError("expected integer");
4335
InRangeStart = Lex.getAPSIntVal();
4336
Lex.Lex();
4337
if (parseToken(lltok::comma, "expected ','"))
4338
return true;
4339
if (Lex.getKind() != lltok::APSInt)
4340
return tokError("expected integer");
4341
InRangeEnd = Lex.getAPSIntVal();
4342
Lex.Lex();
4343
if (parseToken(lltok::rparen, "expected ')'"))
4344
return true;
4345
HasInRange = true;
4346
}
4347
}
4348
4349
if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
4350
return true;
4351
4352
if (Opc == Instruction::GetElementPtr) {
4353
if (parseType(Ty) ||
4354
parseToken(lltok::comma, "expected comma after getelementptr's type"))
4355
return true;
4356
}
4357
4358
if (parseGlobalValueVector(Elts) ||
4359
parseToken(lltok::rparen, "expected ')' in constantexpr"))
4360
return true;
4361
4362
if (Opc == Instruction::GetElementPtr) {
4363
if (Elts.size() == 0 ||
4364
!Elts[0]->getType()->isPtrOrPtrVectorTy())
4365
return error(ID.Loc, "base of getelementptr must be a pointer");
4366
4367
Type *BaseType = Elts[0]->getType();
4368
std::optional<ConstantRange> InRange;
4369
if (HasInRange) {
4370
unsigned IndexWidth =
4371
M->getDataLayout().getIndexTypeSizeInBits(BaseType);
4372
InRangeStart = InRangeStart.extOrTrunc(IndexWidth);
4373
InRangeEnd = InRangeEnd.extOrTrunc(IndexWidth);
4374
if (InRangeStart.sge(InRangeEnd))
4375
return error(ID.Loc, "expected end to be larger than start");
4376
InRange = ConstantRange::getNonEmpty(InRangeStart, InRangeEnd);
4377
}
4378
4379
unsigned GEPWidth =
4380
BaseType->isVectorTy()
4381
? cast<FixedVectorType>(BaseType)->getNumElements()
4382
: 0;
4383
4384
ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
4385
for (Constant *Val : Indices) {
4386
Type *ValTy = Val->getType();
4387
if (!ValTy->isIntOrIntVectorTy())
4388
return error(ID.Loc, "getelementptr index must be an integer");
4389
if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
4390
unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
4391
if (GEPWidth && (ValNumEl != GEPWidth))
4392
return error(
4393
ID.Loc,
4394
"getelementptr vector index has a wrong number of elements");
4395
// GEPWidth may have been unknown because the base is a scalar,
4396
// but it is known now.
4397
GEPWidth = ValNumEl;
4398
}
4399
}
4400
4401
SmallPtrSet<Type*, 4> Visited;
4402
if (!Indices.empty() && !Ty->isSized(&Visited))
4403
return error(ID.Loc, "base element of getelementptr must be sized");
4404
4405
if (!GetElementPtrInst::getIndexedType(Ty, Indices))
4406
return error(ID.Loc, "invalid getelementptr indices");
4407
4408
ID.ConstantVal =
4409
ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, NW, InRange);
4410
} else if (Opc == Instruction::ShuffleVector) {
4411
if (Elts.size() != 3)
4412
return error(ID.Loc, "expected three operands to shufflevector");
4413
if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
4414
return error(ID.Loc, "invalid operands to shufflevector");
4415
SmallVector<int, 16> Mask;
4416
ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
4417
ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
4418
} else if (Opc == Instruction::ExtractElement) {
4419
if (Elts.size() != 2)
4420
return error(ID.Loc, "expected two operands to extractelement");
4421
if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
4422
return error(ID.Loc, "invalid extractelement operands");
4423
ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
4424
} else {
4425
assert(Opc == Instruction::InsertElement && "Unknown opcode");
4426
if (Elts.size() != 3)
4427
return error(ID.Loc, "expected three operands to insertelement");
4428
if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
4429
return error(ID.Loc, "invalid insertelement operands");
4430
ID.ConstantVal =
4431
ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
4432
}
4433
4434
ID.Kind = ValID::t_Constant;
4435
return false;
4436
}
4437
}
4438
4439
Lex.Lex();
4440
return false;
4441
}
4442
4443
/// parseGlobalValue - parse a global value with the specified type.
4444
bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
4445
C = nullptr;
4446
ValID ID;
4447
Value *V = nullptr;
4448
bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
4449
convertValIDToValue(Ty, ID, V, nullptr);
4450
if (V && !(C = dyn_cast<Constant>(V)))
4451
return error(ID.Loc, "global values must be constants");
4452
return Parsed;
4453
}
4454
4455
bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
4456
Type *Ty = nullptr;
4457
return parseType(Ty) || parseGlobalValue(Ty, V);
4458
}
4459
4460
bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
4461
C = nullptr;
4462
4463
LocTy KwLoc = Lex.getLoc();
4464
if (!EatIfPresent(lltok::kw_comdat))
4465
return false;
4466
4467
if (EatIfPresent(lltok::lparen)) {
4468
if (Lex.getKind() != lltok::ComdatVar)
4469
return tokError("expected comdat variable");
4470
C = getComdat(Lex.getStrVal(), Lex.getLoc());
4471
Lex.Lex();
4472
if (parseToken(lltok::rparen, "expected ')' after comdat var"))
4473
return true;
4474
} else {
4475
if (GlobalName.empty())
4476
return tokError("comdat cannot be unnamed");
4477
C = getComdat(std::string(GlobalName), KwLoc);
4478
}
4479
4480
return false;
4481
}
4482
4483
/// parseGlobalValueVector
4484
/// ::= /*empty*/
4485
/// ::= TypeAndValue (',' TypeAndValue)*
4486
bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
4487
// Empty list.
4488
if (Lex.getKind() == lltok::rbrace ||
4489
Lex.getKind() == lltok::rsquare ||
4490
Lex.getKind() == lltok::greater ||
4491
Lex.getKind() == lltok::rparen)
4492
return false;
4493
4494
do {
4495
// Let the caller deal with inrange.
4496
if (Lex.getKind() == lltok::kw_inrange)
4497
return false;
4498
4499
Constant *C;
4500
if (parseGlobalTypeAndValue(C))
4501
return true;
4502
Elts.push_back(C);
4503
} while (EatIfPresent(lltok::comma));
4504
4505
return false;
4506
}
4507
4508
bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
4509
SmallVector<Metadata *, 16> Elts;
4510
if (parseMDNodeVector(Elts))
4511
return true;
4512
4513
MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
4514
return false;
4515
}
4516
4517
/// MDNode:
4518
/// ::= !{ ... }
4519
/// ::= !7
4520
/// ::= !DILocation(...)
4521
bool LLParser::parseMDNode(MDNode *&N) {
4522
if (Lex.getKind() == lltok::MetadataVar)
4523
return parseSpecializedMDNode(N);
4524
4525
return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
4526
}
4527
4528
bool LLParser::parseMDNodeTail(MDNode *&N) {
4529
// !{ ... }
4530
if (Lex.getKind() == lltok::lbrace)
4531
return parseMDTuple(N);
4532
4533
// !42
4534
return parseMDNodeID(N);
4535
}
4536
4537
namespace {
4538
4539
/// Structure to represent an optional metadata field.
4540
template <class FieldTy> struct MDFieldImpl {
4541
typedef MDFieldImpl ImplTy;
4542
FieldTy Val;
4543
bool Seen;
4544
4545
void assign(FieldTy Val) {
4546
Seen = true;
4547
this->Val = std::move(Val);
4548
}
4549
4550
explicit MDFieldImpl(FieldTy Default)
4551
: Val(std::move(Default)), Seen(false) {}
4552
};
4553
4554
/// Structure to represent an optional metadata field that
4555
/// can be of either type (A or B) and encapsulates the
4556
/// MD<typeofA>Field and MD<typeofB>Field structs, so not
4557
/// to reimplement the specifics for representing each Field.
4558
template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
4559
typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
4560
FieldTypeA A;
4561
FieldTypeB B;
4562
bool Seen;
4563
4564
enum {
4565
IsInvalid = 0,
4566
IsTypeA = 1,
4567
IsTypeB = 2
4568
} WhatIs;
4569
4570
void assign(FieldTypeA A) {
4571
Seen = true;
4572
this->A = std::move(A);
4573
WhatIs = IsTypeA;
4574
}
4575
4576
void assign(FieldTypeB B) {
4577
Seen = true;
4578
this->B = std::move(B);
4579
WhatIs = IsTypeB;
4580
}
4581
4582
explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
4583
: A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
4584
WhatIs(IsInvalid) {}
4585
};
4586
4587
struct MDUnsignedField : public MDFieldImpl<uint64_t> {
4588
uint64_t Max;
4589
4590
MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4591
: ImplTy(Default), Max(Max) {}
4592
};
4593
4594
struct LineField : public MDUnsignedField {
4595
LineField() : MDUnsignedField(0, UINT32_MAX) {}
4596
};
4597
4598
struct ColumnField : public MDUnsignedField {
4599
ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4600
};
4601
4602
struct DwarfTagField : public MDUnsignedField {
4603
DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
4604
DwarfTagField(dwarf::Tag DefaultTag)
4605
: MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4606
};
4607
4608
struct DwarfMacinfoTypeField : public MDUnsignedField {
4609
DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
4610
DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4611
: MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4612
};
4613
4614
struct DwarfAttEncodingField : public MDUnsignedField {
4615
DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4616
};
4617
4618
struct DwarfVirtualityField : public MDUnsignedField {
4619
DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4620
};
4621
4622
struct DwarfLangField : public MDUnsignedField {
4623
DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4624
};
4625
4626
struct DwarfCCField : public MDUnsignedField {
4627
DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4628
};
4629
4630
struct EmissionKindField : public MDUnsignedField {
4631
EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4632
};
4633
4634
struct NameTableKindField : public MDUnsignedField {
4635
NameTableKindField()
4636
: MDUnsignedField(
4637
0, (unsigned)
4638
DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4639
};
4640
4641
struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
4642
DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4643
};
4644
4645
struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
4646
DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4647
};
4648
4649
struct MDAPSIntField : public MDFieldImpl<APSInt> {
4650
MDAPSIntField() : ImplTy(APSInt()) {}
4651
};
4652
4653
struct MDSignedField : public MDFieldImpl<int64_t> {
4654
int64_t Min = INT64_MIN;
4655
int64_t Max = INT64_MAX;
4656
4657
MDSignedField(int64_t Default = 0)
4658
: ImplTy(Default) {}
4659
MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4660
: ImplTy(Default), Min(Min), Max(Max) {}
4661
};
4662
4663
struct MDBoolField : public MDFieldImpl<bool> {
4664
MDBoolField(bool Default = false) : ImplTy(Default) {}
4665
};
4666
4667
struct MDField : public MDFieldImpl<Metadata *> {
4668
bool AllowNull;
4669
4670
MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4671
};
4672
4673
struct MDStringField : public MDFieldImpl<MDString *> {
4674
bool AllowEmpty;
4675
MDStringField(bool AllowEmpty = true)
4676
: ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4677
};
4678
4679
struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4680
MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4681
};
4682
4683
struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4684
ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4685
};
4686
4687
struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4688
MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4689
: ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4690
4691
MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4692
bool AllowNull = true)
4693
: ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4694
4695
bool isMDSignedField() const { return WhatIs == IsTypeA; }
4696
bool isMDField() const { return WhatIs == IsTypeB; }
4697
int64_t getMDSignedValue() const {
4698
assert(isMDSignedField() && "Wrong field type");
4699
return A.Val;
4700
}
4701
Metadata *getMDFieldValue() const {
4702
assert(isMDField() && "Wrong field type");
4703
return B.Val;
4704
}
4705
};
4706
4707
} // end anonymous namespace
4708
4709
namespace llvm {
4710
4711
template <>
4712
bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4713
if (Lex.getKind() != lltok::APSInt)
4714
return tokError("expected integer");
4715
4716
Result.assign(Lex.getAPSIntVal());
4717
Lex.Lex();
4718
return false;
4719
}
4720
4721
template <>
4722
bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4723
MDUnsignedField &Result) {
4724
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4725
return tokError("expected unsigned integer");
4726
4727
auto &U = Lex.getAPSIntVal();
4728
if (U.ugt(Result.Max))
4729
return tokError("value for '" + Name + "' too large, limit is " +
4730
Twine(Result.Max));
4731
Result.assign(U.getZExtValue());
4732
assert(Result.Val <= Result.Max && "Expected value in range");
4733
Lex.Lex();
4734
return false;
4735
}
4736
4737
template <>
4738
bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4739
return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4740
}
4741
template <>
4742
bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4743
return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4744
}
4745
4746
template <>
4747
bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4748
if (Lex.getKind() == lltok::APSInt)
4749
return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4750
4751
if (Lex.getKind() != lltok::DwarfTag)
4752
return tokError("expected DWARF tag");
4753
4754
unsigned Tag = dwarf::getTag(Lex.getStrVal());
4755
if (Tag == dwarf::DW_TAG_invalid)
4756
return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4757
assert(Tag <= Result.Max && "Expected valid DWARF tag");
4758
4759
Result.assign(Tag);
4760
Lex.Lex();
4761
return false;
4762
}
4763
4764
template <>
4765
bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4766
DwarfMacinfoTypeField &Result) {
4767
if (Lex.getKind() == lltok::APSInt)
4768
return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4769
4770
if (Lex.getKind() != lltok::DwarfMacinfo)
4771
return tokError("expected DWARF macinfo type");
4772
4773
unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4774
if (Macinfo == dwarf::DW_MACINFO_invalid)
4775
return tokError("invalid DWARF macinfo type" + Twine(" '") +
4776
Lex.getStrVal() + "'");
4777
assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4778
4779
Result.assign(Macinfo);
4780
Lex.Lex();
4781
return false;
4782
}
4783
4784
template <>
4785
bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4786
DwarfVirtualityField &Result) {
4787
if (Lex.getKind() == lltok::APSInt)
4788
return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4789
4790
if (Lex.getKind() != lltok::DwarfVirtuality)
4791
return tokError("expected DWARF virtuality code");
4792
4793
unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4794
if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4795
return tokError("invalid DWARF virtuality code" + Twine(" '") +
4796
Lex.getStrVal() + "'");
4797
assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4798
Result.assign(Virtuality);
4799
Lex.Lex();
4800
return false;
4801
}
4802
4803
template <>
4804
bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4805
if (Lex.getKind() == lltok::APSInt)
4806
return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4807
4808
if (Lex.getKind() != lltok::DwarfLang)
4809
return tokError("expected DWARF language");
4810
4811
unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4812
if (!Lang)
4813
return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4814
"'");
4815
assert(Lang <= Result.Max && "Expected valid DWARF language");
4816
Result.assign(Lang);
4817
Lex.Lex();
4818
return false;
4819
}
4820
4821
template <>
4822
bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4823
if (Lex.getKind() == lltok::APSInt)
4824
return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4825
4826
if (Lex.getKind() != lltok::DwarfCC)
4827
return tokError("expected DWARF calling convention");
4828
4829
unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4830
if (!CC)
4831
return tokError("invalid DWARF calling convention" + Twine(" '") +
4832
Lex.getStrVal() + "'");
4833
assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4834
Result.assign(CC);
4835
Lex.Lex();
4836
return false;
4837
}
4838
4839
template <>
4840
bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4841
EmissionKindField &Result) {
4842
if (Lex.getKind() == lltok::APSInt)
4843
return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4844
4845
if (Lex.getKind() != lltok::EmissionKind)
4846
return tokError("expected emission kind");
4847
4848
auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4849
if (!Kind)
4850
return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4851
"'");
4852
assert(*Kind <= Result.Max && "Expected valid emission kind");
4853
Result.assign(*Kind);
4854
Lex.Lex();
4855
return false;
4856
}
4857
4858
template <>
4859
bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4860
NameTableKindField &Result) {
4861
if (Lex.getKind() == lltok::APSInt)
4862
return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4863
4864
if (Lex.getKind() != lltok::NameTableKind)
4865
return tokError("expected nameTable kind");
4866
4867
auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4868
if (!Kind)
4869
return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4870
"'");
4871
assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4872
Result.assign((unsigned)*Kind);
4873
Lex.Lex();
4874
return false;
4875
}
4876
4877
template <>
4878
bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4879
DwarfAttEncodingField &Result) {
4880
if (Lex.getKind() == lltok::APSInt)
4881
return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4882
4883
if (Lex.getKind() != lltok::DwarfAttEncoding)
4884
return tokError("expected DWARF type attribute encoding");
4885
4886
unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4887
if (!Encoding)
4888
return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4889
Lex.getStrVal() + "'");
4890
assert(Encoding <= Result.Max && "Expected valid DWARF language");
4891
Result.assign(Encoding);
4892
Lex.Lex();
4893
return false;
4894
}
4895
4896
/// DIFlagField
4897
/// ::= uint32
4898
/// ::= DIFlagVector
4899
/// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4900
template <>
4901
bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4902
4903
// parser for a single flag.
4904
auto parseFlag = [&](DINode::DIFlags &Val) {
4905
if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4906
uint32_t TempVal = static_cast<uint32_t>(Val);
4907
bool Res = parseUInt32(TempVal);
4908
Val = static_cast<DINode::DIFlags>(TempVal);
4909
return Res;
4910
}
4911
4912
if (Lex.getKind() != lltok::DIFlag)
4913
return tokError("expected debug info flag");
4914
4915
Val = DINode::getFlag(Lex.getStrVal());
4916
if (!Val)
4917
return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() +
4918
"'");
4919
Lex.Lex();
4920
return false;
4921
};
4922
4923
// parse the flags and combine them together.
4924
DINode::DIFlags Combined = DINode::FlagZero;
4925
do {
4926
DINode::DIFlags Val;
4927
if (parseFlag(Val))
4928
return true;
4929
Combined |= Val;
4930
} while (EatIfPresent(lltok::bar));
4931
4932
Result.assign(Combined);
4933
return false;
4934
}
4935
4936
/// DISPFlagField
4937
/// ::= uint32
4938
/// ::= DISPFlagVector
4939
/// ::= DISPFlagVector '|' DISPFlag* '|' uint32
4940
template <>
4941
bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4942
4943
// parser for a single flag.
4944
auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4945
if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4946
uint32_t TempVal = static_cast<uint32_t>(Val);
4947
bool Res = parseUInt32(TempVal);
4948
Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4949
return Res;
4950
}
4951
4952
if (Lex.getKind() != lltok::DISPFlag)
4953
return tokError("expected debug info flag");
4954
4955
Val = DISubprogram::getFlag(Lex.getStrVal());
4956
if (!Val)
4957
return tokError(Twine("invalid subprogram debug info flag '") +
4958
Lex.getStrVal() + "'");
4959
Lex.Lex();
4960
return false;
4961
};
4962
4963
// parse the flags and combine them together.
4964
DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4965
do {
4966
DISubprogram::DISPFlags Val;
4967
if (parseFlag(Val))
4968
return true;
4969
Combined |= Val;
4970
} while (EatIfPresent(lltok::bar));
4971
4972
Result.assign(Combined);
4973
return false;
4974
}
4975
4976
template <>
4977
bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4978
if (Lex.getKind() != lltok::APSInt)
4979
return tokError("expected signed integer");
4980
4981
auto &S = Lex.getAPSIntVal();
4982
if (S < Result.Min)
4983
return tokError("value for '" + Name + "' too small, limit is " +
4984
Twine(Result.Min));
4985
if (S > Result.Max)
4986
return tokError("value for '" + Name + "' too large, limit is " +
4987
Twine(Result.Max));
4988
Result.assign(S.getExtValue());
4989
assert(Result.Val >= Result.Min && "Expected value in range");
4990
assert(Result.Val <= Result.Max && "Expected value in range");
4991
Lex.Lex();
4992
return false;
4993
}
4994
4995
template <>
4996
bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4997
switch (Lex.getKind()) {
4998
default:
4999
return tokError("expected 'true' or 'false'");
5000
case lltok::kw_true:
5001
Result.assign(true);
5002
break;
5003
case lltok::kw_false:
5004
Result.assign(false);
5005
break;
5006
}
5007
Lex.Lex();
5008
return false;
5009
}
5010
5011
template <>
5012
bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
5013
if (Lex.getKind() == lltok::kw_null) {
5014
if (!Result.AllowNull)
5015
return tokError("'" + Name + "' cannot be null");
5016
Lex.Lex();
5017
Result.assign(nullptr);
5018
return false;
5019
}
5020
5021
Metadata *MD;
5022
if (parseMetadata(MD, nullptr))
5023
return true;
5024
5025
Result.assign(MD);
5026
return false;
5027
}
5028
5029
template <>
5030
bool LLParser::parseMDField(LocTy Loc, StringRef Name,
5031
MDSignedOrMDField &Result) {
5032
// Try to parse a signed int.
5033
if (Lex.getKind() == lltok::APSInt) {
5034
MDSignedField Res = Result.A;
5035
if (!parseMDField(Loc, Name, Res)) {
5036
Result.assign(Res);
5037
return false;
5038
}
5039
return true;
5040
}
5041
5042
// Otherwise, try to parse as an MDField.
5043
MDField Res = Result.B;
5044
if (!parseMDField(Loc, Name, Res)) {
5045
Result.assign(Res);
5046
return false;
5047
}
5048
5049
return true;
5050
}
5051
5052
template <>
5053
bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
5054
LocTy ValueLoc = Lex.getLoc();
5055
std::string S;
5056
if (parseStringConstant(S))
5057
return true;
5058
5059
if (!Result.AllowEmpty && S.empty())
5060
return error(ValueLoc, "'" + Name + "' cannot be empty");
5061
5062
Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
5063
return false;
5064
}
5065
5066
template <>
5067
bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
5068
SmallVector<Metadata *, 4> MDs;
5069
if (parseMDNodeVector(MDs))
5070
return true;
5071
5072
Result.assign(std::move(MDs));
5073
return false;
5074
}
5075
5076
template <>
5077
bool LLParser::parseMDField(LocTy Loc, StringRef Name,
5078
ChecksumKindField &Result) {
5079
std::optional<DIFile::ChecksumKind> CSKind =
5080
DIFile::getChecksumKind(Lex.getStrVal());
5081
5082
if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
5083
return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
5084
"'");
5085
5086
Result.assign(*CSKind);
5087
Lex.Lex();
5088
return false;
5089
}
5090
5091
} // end namespace llvm
5092
5093
template <class ParserTy>
5094
bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
5095
do {
5096
if (Lex.getKind() != lltok::LabelStr)
5097
return tokError("expected field label here");
5098
5099
if (ParseField())
5100
return true;
5101
} while (EatIfPresent(lltok::comma));
5102
5103
return false;
5104
}
5105
5106
template <class ParserTy>
5107
bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
5108
assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5109
Lex.Lex();
5110
5111
if (parseToken(lltok::lparen, "expected '(' here"))
5112
return true;
5113
if (Lex.getKind() != lltok::rparen)
5114
if (parseMDFieldsImplBody(ParseField))
5115
return true;
5116
5117
ClosingLoc = Lex.getLoc();
5118
return parseToken(lltok::rparen, "expected ')' here");
5119
}
5120
5121
template <class FieldTy>
5122
bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
5123
if (Result.Seen)
5124
return tokError("field '" + Name + "' cannot be specified more than once");
5125
5126
LocTy Loc = Lex.getLoc();
5127
Lex.Lex();
5128
return parseMDField(Loc, Name, Result);
5129
}
5130
5131
bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
5132
assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5133
5134
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
5135
if (Lex.getStrVal() == #CLASS) \
5136
return parse##CLASS(N, IsDistinct);
5137
#include "llvm/IR/Metadata.def"
5138
5139
return tokError("expected metadata type");
5140
}
5141
5142
#define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
5143
#define NOP_FIELD(NAME, TYPE, INIT)
5144
#define REQUIRE_FIELD(NAME, TYPE, INIT) \
5145
if (!NAME.Seen) \
5146
return error(ClosingLoc, "missing required field '" #NAME "'");
5147
#define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \
5148
if (Lex.getStrVal() == #NAME) \
5149
return parseMDField(#NAME, NAME);
5150
#define PARSE_MD_FIELDS() \
5151
VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \
5152
do { \
5153
LocTy ClosingLoc; \
5154
if (parseMDFieldsImpl( \
5155
[&]() -> bool { \
5156
VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \
5157
return tokError(Twine("invalid field '") + Lex.getStrVal() + \
5158
"'"); \
5159
}, \
5160
ClosingLoc)) \
5161
return true; \
5162
VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \
5163
} while (false)
5164
#define GET_OR_DISTINCT(CLASS, ARGS) \
5165
(IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
5166
5167
/// parseDILocationFields:
5168
/// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
5169
/// isImplicitCode: true)
5170
bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
5171
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5172
OPTIONAL(line, LineField, ); \
5173
OPTIONAL(column, ColumnField, ); \
5174
REQUIRED(scope, MDField, (/* AllowNull */ false)); \
5175
OPTIONAL(inlinedAt, MDField, ); \
5176
OPTIONAL(isImplicitCode, MDBoolField, (false));
5177
PARSE_MD_FIELDS();
5178
#undef VISIT_MD_FIELDS
5179
5180
Result =
5181
GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
5182
inlinedAt.Val, isImplicitCode.Val));
5183
return false;
5184
}
5185
5186
/// parseDIAssignID:
5187
/// ::= distinct !DIAssignID()
5188
bool LLParser::parseDIAssignID(MDNode *&Result, bool IsDistinct) {
5189
if (!IsDistinct)
5190
return Lex.Error("missing 'distinct', required for !DIAssignID()");
5191
5192
Lex.Lex();
5193
5194
// Now eat the parens.
5195
if (parseToken(lltok::lparen, "expected '(' here"))
5196
return true;
5197
if (parseToken(lltok::rparen, "expected ')' here"))
5198
return true;
5199
5200
Result = DIAssignID::getDistinct(Context);
5201
return false;
5202
}
5203
5204
/// parseGenericDINode:
5205
/// ::= !GenericDINode(tag: 15, header: "...", operands: {...})
5206
bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
5207
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5208
REQUIRED(tag, DwarfTagField, ); \
5209
OPTIONAL(header, MDStringField, ); \
5210
OPTIONAL(operands, MDFieldList, );
5211
PARSE_MD_FIELDS();
5212
#undef VISIT_MD_FIELDS
5213
5214
Result = GET_OR_DISTINCT(GenericDINode,
5215
(Context, tag.Val, header.Val, operands.Val));
5216
return false;
5217
}
5218
5219
/// parseDISubrange:
5220
/// ::= !DISubrange(count: 30, lowerBound: 2)
5221
/// ::= !DISubrange(count: !node, lowerBound: 2)
5222
/// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
5223
bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
5224
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5225
OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \
5226
OPTIONAL(lowerBound, MDSignedOrMDField, ); \
5227
OPTIONAL(upperBound, MDSignedOrMDField, ); \
5228
OPTIONAL(stride, MDSignedOrMDField, );
5229
PARSE_MD_FIELDS();
5230
#undef VISIT_MD_FIELDS
5231
5232
Metadata *Count = nullptr;
5233
Metadata *LowerBound = nullptr;
5234
Metadata *UpperBound = nullptr;
5235
Metadata *Stride = nullptr;
5236
5237
auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
5238
if (Bound.isMDSignedField())
5239
return ConstantAsMetadata::get(ConstantInt::getSigned(
5240
Type::getInt64Ty(Context), Bound.getMDSignedValue()));
5241
if (Bound.isMDField())
5242
return Bound.getMDFieldValue();
5243
return nullptr;
5244
};
5245
5246
Count = convToMetadata(count);
5247
LowerBound = convToMetadata(lowerBound);
5248
UpperBound = convToMetadata(upperBound);
5249
Stride = convToMetadata(stride);
5250
5251
Result = GET_OR_DISTINCT(DISubrange,
5252
(Context, Count, LowerBound, UpperBound, Stride));
5253
5254
return false;
5255
}
5256
5257
/// parseDIGenericSubrange:
5258
/// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
5259
/// !node3)
5260
bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
5261
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5262
OPTIONAL(count, MDSignedOrMDField, ); \
5263
OPTIONAL(lowerBound, MDSignedOrMDField, ); \
5264
OPTIONAL(upperBound, MDSignedOrMDField, ); \
5265
OPTIONAL(stride, MDSignedOrMDField, );
5266
PARSE_MD_FIELDS();
5267
#undef VISIT_MD_FIELDS
5268
5269
auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
5270
if (Bound.isMDSignedField())
5271
return DIExpression::get(
5272
Context, {dwarf::DW_OP_consts,
5273
static_cast<uint64_t>(Bound.getMDSignedValue())});
5274
if (Bound.isMDField())
5275
return Bound.getMDFieldValue();
5276
return nullptr;
5277
};
5278
5279
Metadata *Count = ConvToMetadata(count);
5280
Metadata *LowerBound = ConvToMetadata(lowerBound);
5281
Metadata *UpperBound = ConvToMetadata(upperBound);
5282
Metadata *Stride = ConvToMetadata(stride);
5283
5284
Result = GET_OR_DISTINCT(DIGenericSubrange,
5285
(Context, Count, LowerBound, UpperBound, Stride));
5286
5287
return false;
5288
}
5289
5290
/// parseDIEnumerator:
5291
/// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
5292
bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
5293
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5294
REQUIRED(name, MDStringField, ); \
5295
REQUIRED(value, MDAPSIntField, ); \
5296
OPTIONAL(isUnsigned, MDBoolField, (false));
5297
PARSE_MD_FIELDS();
5298
#undef VISIT_MD_FIELDS
5299
5300
if (isUnsigned.Val && value.Val.isNegative())
5301
return tokError("unsigned enumerator with negative value");
5302
5303
APSInt Value(value.Val);
5304
// Add a leading zero so that unsigned values with the msb set are not
5305
// mistaken for negative values when used for signed enumerators.
5306
if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
5307
Value = Value.zext(Value.getBitWidth() + 1);
5308
5309
Result =
5310
GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
5311
5312
return false;
5313
}
5314
5315
/// parseDIBasicType:
5316
/// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
5317
/// encoding: DW_ATE_encoding, flags: 0)
5318
bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
5319
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5320
OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \
5321
OPTIONAL(name, MDStringField, ); \
5322
OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
5323
OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5324
OPTIONAL(encoding, DwarfAttEncodingField, ); \
5325
OPTIONAL(flags, DIFlagField, );
5326
PARSE_MD_FIELDS();
5327
#undef VISIT_MD_FIELDS
5328
5329
Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
5330
align.Val, encoding.Val, flags.Val));
5331
return false;
5332
}
5333
5334
/// parseDIStringType:
5335
/// ::= !DIStringType(name: "character(4)", size: 32, align: 32)
5336
bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
5337
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5338
OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \
5339
OPTIONAL(name, MDStringField, ); \
5340
OPTIONAL(stringLength, MDField, ); \
5341
OPTIONAL(stringLengthExpression, MDField, ); \
5342
OPTIONAL(stringLocationExpression, MDField, ); \
5343
OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
5344
OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5345
OPTIONAL(encoding, DwarfAttEncodingField, );
5346
PARSE_MD_FIELDS();
5347
#undef VISIT_MD_FIELDS
5348
5349
Result = GET_OR_DISTINCT(
5350
DIStringType,
5351
(Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val,
5352
stringLocationExpression.Val, size.Val, align.Val, encoding.Val));
5353
return false;
5354
}
5355
5356
/// parseDIDerivedType:
5357
/// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
5358
/// line: 7, scope: !1, baseType: !2, size: 32,
5359
/// align: 32, offset: 0, flags: 0, extraData: !3,
5360
/// dwarfAddressSpace: 3, ptrAuthKey: 1,
5361
/// ptrAuthIsAddressDiscriminated: true,
5362
/// ptrAuthExtraDiscriminator: 0x1234,
5363
/// ptrAuthIsaPointer: 1, ptrAuthAuthenticatesNullValues:1
5364
/// )
5365
bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
5366
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5367
REQUIRED(tag, DwarfTagField, ); \
5368
OPTIONAL(name, MDStringField, ); \
5369
OPTIONAL(file, MDField, ); \
5370
OPTIONAL(line, LineField, ); \
5371
OPTIONAL(scope, MDField, ); \
5372
REQUIRED(baseType, MDField, ); \
5373
OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
5374
OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5375
OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
5376
OPTIONAL(flags, DIFlagField, ); \
5377
OPTIONAL(extraData, MDField, ); \
5378
OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); \
5379
OPTIONAL(annotations, MDField, ); \
5380
OPTIONAL(ptrAuthKey, MDUnsignedField, (0, 7)); \
5381
OPTIONAL(ptrAuthIsAddressDiscriminated, MDBoolField, ); \
5382
OPTIONAL(ptrAuthExtraDiscriminator, MDUnsignedField, (0, 0xffff)); \
5383
OPTIONAL(ptrAuthIsaPointer, MDBoolField, ); \
5384
OPTIONAL(ptrAuthAuthenticatesNullValues, MDBoolField, );
5385
PARSE_MD_FIELDS();
5386
#undef VISIT_MD_FIELDS
5387
5388
std::optional<unsigned> DWARFAddressSpace;
5389
if (dwarfAddressSpace.Val != UINT32_MAX)
5390
DWARFAddressSpace = dwarfAddressSpace.Val;
5391
std::optional<DIDerivedType::PtrAuthData> PtrAuthData;
5392
if (ptrAuthKey.Val)
5393
PtrAuthData.emplace(
5394
(unsigned)ptrAuthKey.Val, ptrAuthIsAddressDiscriminated.Val,
5395
(unsigned)ptrAuthExtraDiscriminator.Val, ptrAuthIsaPointer.Val,
5396
ptrAuthAuthenticatesNullValues.Val);
5397
5398
Result = GET_OR_DISTINCT(DIDerivedType,
5399
(Context, tag.Val, name.Val, file.Val, line.Val,
5400
scope.Val, baseType.Val, size.Val, align.Val,
5401
offset.Val, DWARFAddressSpace, PtrAuthData,
5402
flags.Val, extraData.Val, annotations.Val));
5403
return false;
5404
}
5405
5406
bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
5407
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5408
REQUIRED(tag, DwarfTagField, ); \
5409
OPTIONAL(name, MDStringField, ); \
5410
OPTIONAL(file, MDField, ); \
5411
OPTIONAL(line, LineField, ); \
5412
OPTIONAL(scope, MDField, ); \
5413
OPTIONAL(baseType, MDField, ); \
5414
OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \
5415
OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5416
OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \
5417
OPTIONAL(flags, DIFlagField, ); \
5418
OPTIONAL(elements, MDField, ); \
5419
OPTIONAL(runtimeLang, DwarfLangField, ); \
5420
OPTIONAL(vtableHolder, MDField, ); \
5421
OPTIONAL(templateParams, MDField, ); \
5422
OPTIONAL(identifier, MDStringField, ); \
5423
OPTIONAL(discriminator, MDField, ); \
5424
OPTIONAL(dataLocation, MDField, ); \
5425
OPTIONAL(associated, MDField, ); \
5426
OPTIONAL(allocated, MDField, ); \
5427
OPTIONAL(rank, MDSignedOrMDField, ); \
5428
OPTIONAL(annotations, MDField, );
5429
PARSE_MD_FIELDS();
5430
#undef VISIT_MD_FIELDS
5431
5432
Metadata *Rank = nullptr;
5433
if (rank.isMDSignedField())
5434
Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
5435
Type::getInt64Ty(Context), rank.getMDSignedValue()));
5436
else if (rank.isMDField())
5437
Rank = rank.getMDFieldValue();
5438
5439
// If this has an identifier try to build an ODR type.
5440
if (identifier.Val)
5441
if (auto *CT = DICompositeType::buildODRType(
5442
Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
5443
scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
5444
elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
5445
discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
5446
Rank, annotations.Val)) {
5447
Result = CT;
5448
return false;
5449
}
5450
5451
// Create a new node, and save it in the context if it belongs in the type
5452
// map.
5453
Result = GET_OR_DISTINCT(
5454
DICompositeType,
5455
(Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
5456
size.Val, align.Val, offset.Val, flags.Val, elements.Val,
5457
runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
5458
discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank,
5459
annotations.Val));
5460
return false;
5461
}
5462
5463
bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
5464
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5465
OPTIONAL(flags, DIFlagField, ); \
5466
OPTIONAL(cc, DwarfCCField, ); \
5467
REQUIRED(types, MDField, );
5468
PARSE_MD_FIELDS();
5469
#undef VISIT_MD_FIELDS
5470
5471
Result = GET_OR_DISTINCT(DISubroutineType,
5472
(Context, flags.Val, cc.Val, types.Val));
5473
return false;
5474
}
5475
5476
/// parseDIFileType:
5477
/// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
5478
/// checksumkind: CSK_MD5,
5479
/// checksum: "000102030405060708090a0b0c0d0e0f",
5480
/// source: "source file contents")
5481
bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
5482
// The default constructed value for checksumkind is required, but will never
5483
// be used, as the parser checks if the field was actually Seen before using
5484
// the Val.
5485
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5486
REQUIRED(filename, MDStringField, ); \
5487
REQUIRED(directory, MDStringField, ); \
5488
OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \
5489
OPTIONAL(checksum, MDStringField, ); \
5490
OPTIONAL(source, MDStringField, );
5491
PARSE_MD_FIELDS();
5492
#undef VISIT_MD_FIELDS
5493
5494
std::optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
5495
if (checksumkind.Seen && checksum.Seen)
5496
OptChecksum.emplace(checksumkind.Val, checksum.Val);
5497
else if (checksumkind.Seen || checksum.Seen)
5498
return Lex.Error("'checksumkind' and 'checksum' must be provided together");
5499
5500
MDString *Source = nullptr;
5501
if (source.Seen)
5502
Source = source.Val;
5503
Result = GET_OR_DISTINCT(
5504
DIFile, (Context, filename.Val, directory.Val, OptChecksum, Source));
5505
return false;
5506
}
5507
5508
/// parseDICompileUnit:
5509
/// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
5510
/// isOptimized: true, flags: "-O2", runtimeVersion: 1,
5511
/// splitDebugFilename: "abc.debug",
5512
/// emissionKind: FullDebug, enums: !1, retainedTypes: !2,
5513
/// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
5514
/// sysroot: "/", sdk: "MacOSX.sdk")
5515
bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
5516
if (!IsDistinct)
5517
return Lex.Error("missing 'distinct', required for !DICompileUnit");
5518
5519
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5520
REQUIRED(language, DwarfLangField, ); \
5521
REQUIRED(file, MDField, (/* AllowNull */ false)); \
5522
OPTIONAL(producer, MDStringField, ); \
5523
OPTIONAL(isOptimized, MDBoolField, ); \
5524
OPTIONAL(flags, MDStringField, ); \
5525
OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \
5526
OPTIONAL(splitDebugFilename, MDStringField, ); \
5527
OPTIONAL(emissionKind, EmissionKindField, ); \
5528
OPTIONAL(enums, MDField, ); \
5529
OPTIONAL(retainedTypes, MDField, ); \
5530
OPTIONAL(globals, MDField, ); \
5531
OPTIONAL(imports, MDField, ); \
5532
OPTIONAL(macros, MDField, ); \
5533
OPTIONAL(dwoId, MDUnsignedField, ); \
5534
OPTIONAL(splitDebugInlining, MDBoolField, = true); \
5535
OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \
5536
OPTIONAL(nameTableKind, NameTableKindField, ); \
5537
OPTIONAL(rangesBaseAddress, MDBoolField, = false); \
5538
OPTIONAL(sysroot, MDStringField, ); \
5539
OPTIONAL(sdk, MDStringField, );
5540
PARSE_MD_FIELDS();
5541
#undef VISIT_MD_FIELDS
5542
5543
Result = DICompileUnit::getDistinct(
5544
Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
5545
runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
5546
retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
5547
splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
5548
rangesBaseAddress.Val, sysroot.Val, sdk.Val);
5549
return false;
5550
}
5551
5552
/// parseDISubprogram:
5553
/// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
5554
/// file: !1, line: 7, type: !2, isLocal: false,
5555
/// isDefinition: true, scopeLine: 8, containingType: !3,
5556
/// virtuality: DW_VIRTUALTIY_pure_virtual,
5557
/// virtualIndex: 10, thisAdjustment: 4, flags: 11,
5558
/// spFlags: 10, isOptimized: false, templateParams: !4,
5559
/// declaration: !5, retainedNodes: !6, thrownTypes: !7,
5560
/// annotations: !8)
5561
bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
5562
auto Loc = Lex.getLoc();
5563
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5564
OPTIONAL(scope, MDField, ); \
5565
OPTIONAL(name, MDStringField, ); \
5566
OPTIONAL(linkageName, MDStringField, ); \
5567
OPTIONAL(file, MDField, ); \
5568
OPTIONAL(line, LineField, ); \
5569
OPTIONAL(type, MDField, ); \
5570
OPTIONAL(isLocal, MDBoolField, ); \
5571
OPTIONAL(isDefinition, MDBoolField, (true)); \
5572
OPTIONAL(scopeLine, LineField, ); \
5573
OPTIONAL(containingType, MDField, ); \
5574
OPTIONAL(virtuality, DwarfVirtualityField, ); \
5575
OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \
5576
OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \
5577
OPTIONAL(flags, DIFlagField, ); \
5578
OPTIONAL(spFlags, DISPFlagField, ); \
5579
OPTIONAL(isOptimized, MDBoolField, ); \
5580
OPTIONAL(unit, MDField, ); \
5581
OPTIONAL(templateParams, MDField, ); \
5582
OPTIONAL(declaration, MDField, ); \
5583
OPTIONAL(retainedNodes, MDField, ); \
5584
OPTIONAL(thrownTypes, MDField, ); \
5585
OPTIONAL(annotations, MDField, ); \
5586
OPTIONAL(targetFuncName, MDStringField, );
5587
PARSE_MD_FIELDS();
5588
#undef VISIT_MD_FIELDS
5589
5590
// An explicit spFlags field takes precedence over individual fields in
5591
// older IR versions.
5592
DISubprogram::DISPFlags SPFlags =
5593
spFlags.Seen ? spFlags.Val
5594
: DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
5595
isOptimized.Val, virtuality.Val);
5596
if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
5597
return Lex.Error(
5598
Loc,
5599
"missing 'distinct', required for !DISubprogram that is a Definition");
5600
Result = GET_OR_DISTINCT(
5601
DISubprogram,
5602
(Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
5603
type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
5604
thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5605
declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val,
5606
targetFuncName.Val));
5607
return false;
5608
}
5609
5610
/// parseDILexicalBlock:
5611
/// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
5612
bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5613
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5614
REQUIRED(scope, MDField, (/* AllowNull */ false)); \
5615
OPTIONAL(file, MDField, ); \
5616
OPTIONAL(line, LineField, ); \
5617
OPTIONAL(column, ColumnField, );
5618
PARSE_MD_FIELDS();
5619
#undef VISIT_MD_FIELDS
5620
5621
Result = GET_OR_DISTINCT(
5622
DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5623
return false;
5624
}
5625
5626
/// parseDILexicalBlockFile:
5627
/// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
5628
bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5629
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5630
REQUIRED(scope, MDField, (/* AllowNull */ false)); \
5631
OPTIONAL(file, MDField, ); \
5632
REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5633
PARSE_MD_FIELDS();
5634
#undef VISIT_MD_FIELDS
5635
5636
Result = GET_OR_DISTINCT(DILexicalBlockFile,
5637
(Context, scope.Val, file.Val, discriminator.Val));
5638
return false;
5639
}
5640
5641
/// parseDICommonBlock:
5642
/// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
5643
bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5644
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5645
REQUIRED(scope, MDField, ); \
5646
OPTIONAL(declaration, MDField, ); \
5647
OPTIONAL(name, MDStringField, ); \
5648
OPTIONAL(file, MDField, ); \
5649
OPTIONAL(line, LineField, );
5650
PARSE_MD_FIELDS();
5651
#undef VISIT_MD_FIELDS
5652
5653
Result = GET_OR_DISTINCT(DICommonBlock,
5654
(Context, scope.Val, declaration.Val, name.Val,
5655
file.Val, line.Val));
5656
return false;
5657
}
5658
5659
/// parseDINamespace:
5660
/// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
5661
bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5662
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5663
REQUIRED(scope, MDField, ); \
5664
OPTIONAL(name, MDStringField, ); \
5665
OPTIONAL(exportSymbols, MDBoolField, );
5666
PARSE_MD_FIELDS();
5667
#undef VISIT_MD_FIELDS
5668
5669
Result = GET_OR_DISTINCT(DINamespace,
5670
(Context, scope.Val, name.Val, exportSymbols.Val));
5671
return false;
5672
}
5673
5674
/// parseDIMacro:
5675
/// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5676
/// "SomeValue")
5677
bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5678
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5679
REQUIRED(type, DwarfMacinfoTypeField, ); \
5680
OPTIONAL(line, LineField, ); \
5681
REQUIRED(name, MDStringField, ); \
5682
OPTIONAL(value, MDStringField, );
5683
PARSE_MD_FIELDS();
5684
#undef VISIT_MD_FIELDS
5685
5686
Result = GET_OR_DISTINCT(DIMacro,
5687
(Context, type.Val, line.Val, name.Val, value.Val));
5688
return false;
5689
}
5690
5691
/// parseDIMacroFile:
5692
/// ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
5693
bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5694
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5695
OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \
5696
OPTIONAL(line, LineField, ); \
5697
REQUIRED(file, MDField, ); \
5698
OPTIONAL(nodes, MDField, );
5699
PARSE_MD_FIELDS();
5700
#undef VISIT_MD_FIELDS
5701
5702
Result = GET_OR_DISTINCT(DIMacroFile,
5703
(Context, type.Val, line.Val, file.Val, nodes.Val));
5704
return false;
5705
}
5706
5707
/// parseDIModule:
5708
/// ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5709
/// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5710
/// file: !1, line: 4, isDecl: false)
5711
bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5712
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5713
REQUIRED(scope, MDField, ); \
5714
REQUIRED(name, MDStringField, ); \
5715
OPTIONAL(configMacros, MDStringField, ); \
5716
OPTIONAL(includePath, MDStringField, ); \
5717
OPTIONAL(apinotes, MDStringField, ); \
5718
OPTIONAL(file, MDField, ); \
5719
OPTIONAL(line, LineField, ); \
5720
OPTIONAL(isDecl, MDBoolField, );
5721
PARSE_MD_FIELDS();
5722
#undef VISIT_MD_FIELDS
5723
5724
Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5725
configMacros.Val, includePath.Val,
5726
apinotes.Val, line.Val, isDecl.Val));
5727
return false;
5728
}
5729
5730
/// parseDITemplateTypeParameter:
5731
/// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5732
bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5733
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5734
OPTIONAL(name, MDStringField, ); \
5735
REQUIRED(type, MDField, ); \
5736
OPTIONAL(defaulted, MDBoolField, );
5737
PARSE_MD_FIELDS();
5738
#undef VISIT_MD_FIELDS
5739
5740
Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5741
(Context, name.Val, type.Val, defaulted.Val));
5742
return false;
5743
}
5744
5745
/// parseDITemplateValueParameter:
5746
/// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5747
/// name: "V", type: !1, defaulted: false,
5748
/// value: i32 7)
5749
bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5750
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5751
OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \
5752
OPTIONAL(name, MDStringField, ); \
5753
OPTIONAL(type, MDField, ); \
5754
OPTIONAL(defaulted, MDBoolField, ); \
5755
REQUIRED(value, MDField, );
5756
5757
PARSE_MD_FIELDS();
5758
#undef VISIT_MD_FIELDS
5759
5760
Result = GET_OR_DISTINCT(
5761
DITemplateValueParameter,
5762
(Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5763
return false;
5764
}
5765
5766
/// parseDIGlobalVariable:
5767
/// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5768
/// file: !1, line: 7, type: !2, isLocal: false,
5769
/// isDefinition: true, templateParams: !3,
5770
/// declaration: !4, align: 8)
5771
bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5772
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5773
OPTIONAL(name, MDStringField, (/* AllowEmpty */ false)); \
5774
OPTIONAL(scope, MDField, ); \
5775
OPTIONAL(linkageName, MDStringField, ); \
5776
OPTIONAL(file, MDField, ); \
5777
OPTIONAL(line, LineField, ); \
5778
OPTIONAL(type, MDField, ); \
5779
OPTIONAL(isLocal, MDBoolField, ); \
5780
OPTIONAL(isDefinition, MDBoolField, (true)); \
5781
OPTIONAL(templateParams, MDField, ); \
5782
OPTIONAL(declaration, MDField, ); \
5783
OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5784
OPTIONAL(annotations, MDField, );
5785
PARSE_MD_FIELDS();
5786
#undef VISIT_MD_FIELDS
5787
5788
Result =
5789
GET_OR_DISTINCT(DIGlobalVariable,
5790
(Context, scope.Val, name.Val, linkageName.Val, file.Val,
5791
line.Val, type.Val, isLocal.Val, isDefinition.Val,
5792
declaration.Val, templateParams.Val, align.Val,
5793
annotations.Val));
5794
return false;
5795
}
5796
5797
/// parseDILocalVariable:
5798
/// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5799
/// file: !1, line: 7, type: !2, arg: 2, flags: 7,
5800
/// align: 8)
5801
/// ::= !DILocalVariable(scope: !0, name: "foo",
5802
/// file: !1, line: 7, type: !2, arg: 2, flags: 7,
5803
/// align: 8)
5804
bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5805
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5806
REQUIRED(scope, MDField, (/* AllowNull */ false)); \
5807
OPTIONAL(name, MDStringField, ); \
5808
OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \
5809
OPTIONAL(file, MDField, ); \
5810
OPTIONAL(line, LineField, ); \
5811
OPTIONAL(type, MDField, ); \
5812
OPTIONAL(flags, DIFlagField, ); \
5813
OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \
5814
OPTIONAL(annotations, MDField, );
5815
PARSE_MD_FIELDS();
5816
#undef VISIT_MD_FIELDS
5817
5818
Result = GET_OR_DISTINCT(DILocalVariable,
5819
(Context, scope.Val, name.Val, file.Val, line.Val,
5820
type.Val, arg.Val, flags.Val, align.Val,
5821
annotations.Val));
5822
return false;
5823
}
5824
5825
/// parseDILabel:
5826
/// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5827
bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5828
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5829
REQUIRED(scope, MDField, (/* AllowNull */ false)); \
5830
REQUIRED(name, MDStringField, ); \
5831
REQUIRED(file, MDField, ); \
5832
REQUIRED(line, LineField, );
5833
PARSE_MD_FIELDS();
5834
#undef VISIT_MD_FIELDS
5835
5836
Result = GET_OR_DISTINCT(DILabel,
5837
(Context, scope.Val, name.Val, file.Val, line.Val));
5838
return false;
5839
}
5840
5841
/// parseDIExpressionBody:
5842
/// ::= (0, 7, -1)
5843
bool LLParser::parseDIExpressionBody(MDNode *&Result, bool IsDistinct) {
5844
if (parseToken(lltok::lparen, "expected '(' here"))
5845
return true;
5846
5847
SmallVector<uint64_t, 8> Elements;
5848
if (Lex.getKind() != lltok::rparen)
5849
do {
5850
if (Lex.getKind() == lltok::DwarfOp) {
5851
if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5852
Lex.Lex();
5853
Elements.push_back(Op);
5854
continue;
5855
}
5856
return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5857
}
5858
5859
if (Lex.getKind() == lltok::DwarfAttEncoding) {
5860
if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5861
Lex.Lex();
5862
Elements.push_back(Op);
5863
continue;
5864
}
5865
return tokError(Twine("invalid DWARF attribute encoding '") +
5866
Lex.getStrVal() + "'");
5867
}
5868
5869
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5870
return tokError("expected unsigned integer");
5871
5872
auto &U = Lex.getAPSIntVal();
5873
if (U.ugt(UINT64_MAX))
5874
return tokError("element too large, limit is " + Twine(UINT64_MAX));
5875
Elements.push_back(U.getZExtValue());
5876
Lex.Lex();
5877
} while (EatIfPresent(lltok::comma));
5878
5879
if (parseToken(lltok::rparen, "expected ')' here"))
5880
return true;
5881
5882
Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5883
return false;
5884
}
5885
5886
/// parseDIExpression:
5887
/// ::= !DIExpression(0, 7, -1)
5888
bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5889
assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5890
assert(Lex.getStrVal() == "DIExpression" && "Expected '!DIExpression'");
5891
Lex.Lex();
5892
5893
return parseDIExpressionBody(Result, IsDistinct);
5894
}
5895
5896
/// ParseDIArgList:
5897
/// ::= !DIArgList(i32 7, i64 %0)
5898
bool LLParser::parseDIArgList(Metadata *&MD, PerFunctionState *PFS) {
5899
assert(PFS && "Expected valid function state");
5900
assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5901
Lex.Lex();
5902
5903
if (parseToken(lltok::lparen, "expected '(' here"))
5904
return true;
5905
5906
SmallVector<ValueAsMetadata *, 4> Args;
5907
if (Lex.getKind() != lltok::rparen)
5908
do {
5909
Metadata *MD;
5910
if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5911
return true;
5912
Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5913
} while (EatIfPresent(lltok::comma));
5914
5915
if (parseToken(lltok::rparen, "expected ')' here"))
5916
return true;
5917
5918
MD = DIArgList::get(Context, Args);
5919
return false;
5920
}
5921
5922
/// parseDIGlobalVariableExpression:
5923
/// ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5924
bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5925
bool IsDistinct) {
5926
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5927
REQUIRED(var, MDField, ); \
5928
REQUIRED(expr, MDField, );
5929
PARSE_MD_FIELDS();
5930
#undef VISIT_MD_FIELDS
5931
5932
Result =
5933
GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5934
return false;
5935
}
5936
5937
/// parseDIObjCProperty:
5938
/// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5939
/// getter: "getFoo", attributes: 7, type: !2)
5940
bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5941
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5942
OPTIONAL(name, MDStringField, ); \
5943
OPTIONAL(file, MDField, ); \
5944
OPTIONAL(line, LineField, ); \
5945
OPTIONAL(setter, MDStringField, ); \
5946
OPTIONAL(getter, MDStringField, ); \
5947
OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \
5948
OPTIONAL(type, MDField, );
5949
PARSE_MD_FIELDS();
5950
#undef VISIT_MD_FIELDS
5951
5952
Result = GET_OR_DISTINCT(DIObjCProperty,
5953
(Context, name.Val, file.Val, line.Val, setter.Val,
5954
getter.Val, attributes.Val, type.Val));
5955
return false;
5956
}
5957
5958
/// parseDIImportedEntity:
5959
/// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5960
/// line: 7, name: "foo", elements: !2)
5961
bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5962
#define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \
5963
REQUIRED(tag, DwarfTagField, ); \
5964
REQUIRED(scope, MDField, ); \
5965
OPTIONAL(entity, MDField, ); \
5966
OPTIONAL(file, MDField, ); \
5967
OPTIONAL(line, LineField, ); \
5968
OPTIONAL(name, MDStringField, ); \
5969
OPTIONAL(elements, MDField, );
5970
PARSE_MD_FIELDS();
5971
#undef VISIT_MD_FIELDS
5972
5973
Result = GET_OR_DISTINCT(DIImportedEntity,
5974
(Context, tag.Val, scope.Val, entity.Val, file.Val,
5975
line.Val, name.Val, elements.Val));
5976
return false;
5977
}
5978
5979
#undef PARSE_MD_FIELD
5980
#undef NOP_FIELD
5981
#undef REQUIRE_FIELD
5982
#undef DECLARE_FIELD
5983
5984
/// parseMetadataAsValue
5985
/// ::= metadata i32 %local
5986
/// ::= metadata i32 @global
5987
/// ::= metadata i32 7
5988
/// ::= metadata !0
5989
/// ::= metadata !{...}
5990
/// ::= metadata !"string"
5991
bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5992
// Note: the type 'metadata' has already been parsed.
5993
Metadata *MD;
5994
if (parseMetadata(MD, &PFS))
5995
return true;
5996
5997
V = MetadataAsValue::get(Context, MD);
5998
return false;
5999
}
6000
6001
/// parseValueAsMetadata
6002
/// ::= i32 %local
6003
/// ::= i32 @global
6004
/// ::= i32 7
6005
bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
6006
PerFunctionState *PFS) {
6007
Type *Ty;
6008
LocTy Loc;
6009
if (parseType(Ty, TypeMsg, Loc))
6010
return true;
6011
if (Ty->isMetadataTy())
6012
return error(Loc, "invalid metadata-value-metadata roundtrip");
6013
6014
Value *V;
6015
if (parseValue(Ty, V, PFS))
6016
return true;
6017
6018
MD = ValueAsMetadata::get(V);
6019
return false;
6020
}
6021
6022
/// parseMetadata
6023
/// ::= i32 %local
6024
/// ::= i32 @global
6025
/// ::= i32 7
6026
/// ::= !42
6027
/// ::= !{...}
6028
/// ::= !"string"
6029
/// ::= !DILocation(...)
6030
bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
6031
if (Lex.getKind() == lltok::MetadataVar) {
6032
// DIArgLists are a special case, as they are a list of ValueAsMetadata and
6033
// so parsing this requires a Function State.
6034
if (Lex.getStrVal() == "DIArgList") {
6035
Metadata *AL;
6036
if (parseDIArgList(AL, PFS))
6037
return true;
6038
MD = AL;
6039
return false;
6040
}
6041
MDNode *N;
6042
if (parseSpecializedMDNode(N)) {
6043
return true;
6044
}
6045
MD = N;
6046
return false;
6047
}
6048
6049
// ValueAsMetadata:
6050
// <type> <value>
6051
if (Lex.getKind() != lltok::exclaim)
6052
return parseValueAsMetadata(MD, "expected metadata operand", PFS);
6053
6054
// '!'.
6055
assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
6056
Lex.Lex();
6057
6058
// MDString:
6059
// ::= '!' STRINGCONSTANT
6060
if (Lex.getKind() == lltok::StringConstant) {
6061
MDString *S;
6062
if (parseMDString(S))
6063
return true;
6064
MD = S;
6065
return false;
6066
}
6067
6068
// MDNode:
6069
// !{ ... }
6070
// !7
6071
MDNode *N;
6072
if (parseMDNodeTail(N))
6073
return true;
6074
MD = N;
6075
return false;
6076
}
6077
6078
//===----------------------------------------------------------------------===//
6079
// Function Parsing.
6080
//===----------------------------------------------------------------------===//
6081
6082
bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
6083
PerFunctionState *PFS) {
6084
if (Ty->isFunctionTy())
6085
return error(ID.Loc, "functions are not values, refer to them as pointers");
6086
6087
switch (ID.Kind) {
6088
case ValID::t_LocalID:
6089
if (!PFS)
6090
return error(ID.Loc, "invalid use of function-local name");
6091
V = PFS->getVal(ID.UIntVal, Ty, ID.Loc);
6092
return V == nullptr;
6093
case ValID::t_LocalName:
6094
if (!PFS)
6095
return error(ID.Loc, "invalid use of function-local name");
6096
V = PFS->getVal(ID.StrVal, Ty, ID.Loc);
6097
return V == nullptr;
6098
case ValID::t_InlineAsm: {
6099
if (!ID.FTy)
6100
return error(ID.Loc, "invalid type for inline asm constraint string");
6101
if (Error Err = InlineAsm::verify(ID.FTy, ID.StrVal2))
6102
return error(ID.Loc, toString(std::move(Err)));
6103
V = InlineAsm::get(
6104
ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
6105
InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
6106
return false;
6107
}
6108
case ValID::t_GlobalName:
6109
V = getGlobalVal(ID.StrVal, Ty, ID.Loc);
6110
if (V && ID.NoCFI)
6111
V = NoCFIValue::get(cast<GlobalValue>(V));
6112
return V == nullptr;
6113
case ValID::t_GlobalID:
6114
V = getGlobalVal(ID.UIntVal, Ty, ID.Loc);
6115
if (V && ID.NoCFI)
6116
V = NoCFIValue::get(cast<GlobalValue>(V));
6117
return V == nullptr;
6118
case ValID::t_APSInt:
6119
if (!Ty->isIntegerTy())
6120
return error(ID.Loc, "integer constant must have integer type");
6121
ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
6122
V = ConstantInt::get(Context, ID.APSIntVal);
6123
return false;
6124
case ValID::t_APFloat:
6125
if (!Ty->isFloatingPointTy() ||
6126
!ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
6127
return error(ID.Loc, "floating point constant invalid for type");
6128
6129
// The lexer has no type info, so builds all half, bfloat, float, and double
6130
// FP constants as double. Fix this here. Long double does not need this.
6131
if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
6132
// Check for signaling before potentially converting and losing that info.
6133
bool IsSNAN = ID.APFloatVal.isSignaling();
6134
bool Ignored;
6135
if (Ty->isHalfTy())
6136
ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
6137
&Ignored);
6138
else if (Ty->isBFloatTy())
6139
ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
6140
&Ignored);
6141
else if (Ty->isFloatTy())
6142
ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
6143
&Ignored);
6144
if (IsSNAN) {
6145
// The convert call above may quiet an SNaN, so manufacture another
6146
// SNaN. The bitcast works because the payload (significand) parameter
6147
// is truncated to fit.
6148
APInt Payload = ID.APFloatVal.bitcastToAPInt();
6149
ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
6150
ID.APFloatVal.isNegative(), &Payload);
6151
}
6152
}
6153
V = ConstantFP::get(Context, ID.APFloatVal);
6154
6155
if (V->getType() != Ty)
6156
return error(ID.Loc, "floating point constant does not have type '" +
6157
getTypeString(Ty) + "'");
6158
6159
return false;
6160
case ValID::t_Null:
6161
if (!Ty->isPointerTy())
6162
return error(ID.Loc, "null must be a pointer type");
6163
V = ConstantPointerNull::get(cast<PointerType>(Ty));
6164
return false;
6165
case ValID::t_Undef:
6166
// FIXME: LabelTy should not be a first-class type.
6167
if (!Ty->isFirstClassType() || Ty->isLabelTy())
6168
return error(ID.Loc, "invalid type for undef constant");
6169
V = UndefValue::get(Ty);
6170
return false;
6171
case ValID::t_EmptyArray:
6172
if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
6173
return error(ID.Loc, "invalid empty array initializer");
6174
V = UndefValue::get(Ty);
6175
return false;
6176
case ValID::t_Zero:
6177
// FIXME: LabelTy should not be a first-class type.
6178
if (!Ty->isFirstClassType() || Ty->isLabelTy())
6179
return error(ID.Loc, "invalid type for null constant");
6180
if (auto *TETy = dyn_cast<TargetExtType>(Ty))
6181
if (!TETy->hasProperty(TargetExtType::HasZeroInit))
6182
return error(ID.Loc, "invalid type for null constant");
6183
V = Constant::getNullValue(Ty);
6184
return false;
6185
case ValID::t_None:
6186
if (!Ty->isTokenTy())
6187
return error(ID.Loc, "invalid type for none constant");
6188
V = Constant::getNullValue(Ty);
6189
return false;
6190
case ValID::t_Poison:
6191
// FIXME: LabelTy should not be a first-class type.
6192
if (!Ty->isFirstClassType() || Ty->isLabelTy())
6193
return error(ID.Loc, "invalid type for poison constant");
6194
V = PoisonValue::get(Ty);
6195
return false;
6196
case ValID::t_Constant:
6197
if (ID.ConstantVal->getType() != Ty)
6198
return error(ID.Loc, "constant expression type mismatch: got type '" +
6199
getTypeString(ID.ConstantVal->getType()) +
6200
"' but expected '" + getTypeString(Ty) + "'");
6201
V = ID.ConstantVal;
6202
return false;
6203
case ValID::t_ConstantSplat:
6204
if (!Ty->isVectorTy())
6205
return error(ID.Loc, "vector constant must have vector type");
6206
if (ID.ConstantVal->getType() != Ty->getScalarType())
6207
return error(ID.Loc, "constant expression type mismatch: got type '" +
6208
getTypeString(ID.ConstantVal->getType()) +
6209
"' but expected '" +
6210
getTypeString(Ty->getScalarType()) + "'");
6211
V = ConstantVector::getSplat(cast<VectorType>(Ty)->getElementCount(),
6212
ID.ConstantVal);
6213
return false;
6214
case ValID::t_ConstantStruct:
6215
case ValID::t_PackedConstantStruct:
6216
if (StructType *ST = dyn_cast<StructType>(Ty)) {
6217
if (ST->getNumElements() != ID.UIntVal)
6218
return error(ID.Loc,
6219
"initializer with struct type has wrong # elements");
6220
if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
6221
return error(ID.Loc, "packed'ness of initializer and type don't match");
6222
6223
// Verify that the elements are compatible with the structtype.
6224
for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
6225
if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
6226
return error(
6227
ID.Loc,
6228
"element " + Twine(i) +
6229
" of struct initializer doesn't match struct element type");
6230
6231
V = ConstantStruct::get(
6232
ST, ArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
6233
} else
6234
return error(ID.Loc, "constant expression type mismatch");
6235
return false;
6236
}
6237
llvm_unreachable("Invalid ValID");
6238
}
6239
6240
bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
6241
C = nullptr;
6242
ValID ID;
6243
auto Loc = Lex.getLoc();
6244
if (parseValID(ID, /*PFS=*/nullptr))
6245
return true;
6246
switch (ID.Kind) {
6247
case ValID::t_APSInt:
6248
case ValID::t_APFloat:
6249
case ValID::t_Undef:
6250
case ValID::t_Constant:
6251
case ValID::t_ConstantSplat:
6252
case ValID::t_ConstantStruct:
6253
case ValID::t_PackedConstantStruct: {
6254
Value *V;
6255
if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
6256
return true;
6257
assert(isa<Constant>(V) && "Expected a constant value");
6258
C = cast<Constant>(V);
6259
return false;
6260
}
6261
case ValID::t_Null:
6262
C = Constant::getNullValue(Ty);
6263
return false;
6264
default:
6265
return error(Loc, "expected a constant value");
6266
}
6267
}
6268
6269
bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
6270
V = nullptr;
6271
ValID ID;
6272
return parseValID(ID, PFS, Ty) ||
6273
convertValIDToValue(Ty, ID, V, PFS);
6274
}
6275
6276
bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
6277
Type *Ty = nullptr;
6278
return parseType(Ty) || parseValue(Ty, V, PFS);
6279
}
6280
6281
bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
6282
PerFunctionState &PFS) {
6283
Value *V;
6284
Loc = Lex.getLoc();
6285
if (parseTypeAndValue(V, PFS))
6286
return true;
6287
if (!isa<BasicBlock>(V))
6288
return error(Loc, "expected a basic block");
6289
BB = cast<BasicBlock>(V);
6290
return false;
6291
}
6292
6293
bool isOldDbgFormatIntrinsic(StringRef Name) {
6294
// Exit early for the common (non-debug-intrinsic) case.
6295
// We can make this the only check when we begin supporting all "llvm.dbg"
6296
// intrinsics in the new debug info format.
6297
if (!Name.starts_with("llvm.dbg."))
6298
return false;
6299
Intrinsic::ID FnID = Function::lookupIntrinsicID(Name);
6300
return FnID == Intrinsic::dbg_declare || FnID == Intrinsic::dbg_value ||
6301
FnID == Intrinsic::dbg_assign;
6302
}
6303
6304
/// FunctionHeader
6305
/// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
6306
/// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
6307
/// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
6308
/// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
6309
bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine,
6310
unsigned &FunctionNumber,
6311
SmallVectorImpl<unsigned> &UnnamedArgNums) {
6312
// parse the linkage.
6313
LocTy LinkageLoc = Lex.getLoc();
6314
unsigned Linkage;
6315
unsigned Visibility;
6316
unsigned DLLStorageClass;
6317
bool DSOLocal;
6318
AttrBuilder RetAttrs(M->getContext());
6319
unsigned CC;
6320
bool HasLinkage;
6321
Type *RetType = nullptr;
6322
LocTy RetTypeLoc = Lex.getLoc();
6323
if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
6324
DSOLocal) ||
6325
parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6326
parseType(RetType, RetTypeLoc, true /*void allowed*/))
6327
return true;
6328
6329
// Verify that the linkage is ok.
6330
switch ((GlobalValue::LinkageTypes)Linkage) {
6331
case GlobalValue::ExternalLinkage:
6332
break; // always ok.
6333
case GlobalValue::ExternalWeakLinkage:
6334
if (IsDefine)
6335
return error(LinkageLoc, "invalid linkage for function definition");
6336
break;
6337
case GlobalValue::PrivateLinkage:
6338
case GlobalValue::InternalLinkage:
6339
case GlobalValue::AvailableExternallyLinkage:
6340
case GlobalValue::LinkOnceAnyLinkage:
6341
case GlobalValue::LinkOnceODRLinkage:
6342
case GlobalValue::WeakAnyLinkage:
6343
case GlobalValue::WeakODRLinkage:
6344
if (!IsDefine)
6345
return error(LinkageLoc, "invalid linkage for function declaration");
6346
break;
6347
case GlobalValue::AppendingLinkage:
6348
case GlobalValue::CommonLinkage:
6349
return error(LinkageLoc, "invalid function linkage type");
6350
}
6351
6352
if (!isValidVisibilityForLinkage(Visibility, Linkage))
6353
return error(LinkageLoc,
6354
"symbol with local linkage must have default visibility");
6355
6356
if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage))
6357
return error(LinkageLoc,
6358
"symbol with local linkage cannot have a DLL storage class");
6359
6360
if (!FunctionType::isValidReturnType(RetType))
6361
return error(RetTypeLoc, "invalid function return type");
6362
6363
LocTy NameLoc = Lex.getLoc();
6364
6365
std::string FunctionName;
6366
if (Lex.getKind() == lltok::GlobalVar) {
6367
FunctionName = Lex.getStrVal();
6368
} else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok.
6369
FunctionNumber = Lex.getUIntVal();
6370
if (checkValueID(NameLoc, "function", "@", NumberedVals.getNext(),
6371
FunctionNumber))
6372
return true;
6373
} else {
6374
return tokError("expected function name");
6375
}
6376
6377
Lex.Lex();
6378
6379
if (Lex.getKind() != lltok::lparen)
6380
return tokError("expected '(' in function argument list");
6381
6382
SmallVector<ArgInfo, 8> ArgList;
6383
bool IsVarArg;
6384
AttrBuilder FuncAttrs(M->getContext());
6385
std::vector<unsigned> FwdRefAttrGrps;
6386
LocTy BuiltinLoc;
6387
std::string Section;
6388
std::string Partition;
6389
MaybeAlign Alignment;
6390
std::string GC;
6391
GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
6392
unsigned AddrSpace = 0;
6393
Constant *Prefix = nullptr;
6394
Constant *Prologue = nullptr;
6395
Constant *PersonalityFn = nullptr;
6396
Comdat *C;
6397
6398
if (parseArgumentList(ArgList, UnnamedArgNums, IsVarArg) ||
6399
parseOptionalUnnamedAddr(UnnamedAddr) ||
6400
parseOptionalProgramAddrSpace(AddrSpace) ||
6401
parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
6402
BuiltinLoc) ||
6403
(EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
6404
(EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
6405
parseOptionalComdat(FunctionName, C) ||
6406
parseOptionalAlignment(Alignment) ||
6407
(EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
6408
(EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
6409
(EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
6410
(EatIfPresent(lltok::kw_personality) &&
6411
parseGlobalTypeAndValue(PersonalityFn)))
6412
return true;
6413
6414
if (FuncAttrs.contains(Attribute::Builtin))
6415
return error(BuiltinLoc, "'builtin' attribute not valid on function");
6416
6417
// If the alignment was parsed as an attribute, move to the alignment field.
6418
if (MaybeAlign A = FuncAttrs.getAlignment()) {
6419
Alignment = A;
6420
FuncAttrs.removeAttribute(Attribute::Alignment);
6421
}
6422
6423
// Okay, if we got here, the function is syntactically valid. Convert types
6424
// and do semantic checks.
6425
std::vector<Type*> ParamTypeList;
6426
SmallVector<AttributeSet, 8> Attrs;
6427
6428
for (const ArgInfo &Arg : ArgList) {
6429
ParamTypeList.push_back(Arg.Ty);
6430
Attrs.push_back(Arg.Attrs);
6431
}
6432
6433
AttributeList PAL =
6434
AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
6435
AttributeSet::get(Context, RetAttrs), Attrs);
6436
6437
if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy())
6438
return error(RetTypeLoc, "functions with 'sret' argument must return void");
6439
6440
FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
6441
PointerType *PFT = PointerType::get(FT, AddrSpace);
6442
6443
Fn = nullptr;
6444
GlobalValue *FwdFn = nullptr;
6445
if (!FunctionName.empty()) {
6446
// If this was a definition of a forward reference, remove the definition
6447
// from the forward reference table and fill in the forward ref.
6448
auto FRVI = ForwardRefVals.find(FunctionName);
6449
if (FRVI != ForwardRefVals.end()) {
6450
FwdFn = FRVI->second.first;
6451
if (FwdFn->getType() != PFT)
6452
return error(FRVI->second.second,
6453
"invalid forward reference to "
6454
"function '" +
6455
FunctionName +
6456
"' with wrong type: "
6457
"expected '" +
6458
getTypeString(PFT) + "' but was '" +
6459
getTypeString(FwdFn->getType()) + "'");
6460
ForwardRefVals.erase(FRVI);
6461
} else if ((Fn = M->getFunction(FunctionName))) {
6462
// Reject redefinitions.
6463
return error(NameLoc,
6464
"invalid redefinition of function '" + FunctionName + "'");
6465
} else if (M->getNamedValue(FunctionName)) {
6466
return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
6467
}
6468
6469
} else {
6470
// Handle @"", where a name is syntactically specified, but semantically
6471
// missing.
6472
if (FunctionNumber == (unsigned)-1)
6473
FunctionNumber = NumberedVals.getNext();
6474
6475
// If this is a definition of a forward referenced function, make sure the
6476
// types agree.
6477
auto I = ForwardRefValIDs.find(FunctionNumber);
6478
if (I != ForwardRefValIDs.end()) {
6479
FwdFn = I->second.first;
6480
if (FwdFn->getType() != PFT)
6481
return error(NameLoc, "type of definition and forward reference of '@" +
6482
Twine(FunctionNumber) +
6483
"' disagree: "
6484
"expected '" +
6485
getTypeString(PFT) + "' but was '" +
6486
getTypeString(FwdFn->getType()) + "'");
6487
ForwardRefValIDs.erase(I);
6488
}
6489
}
6490
6491
Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
6492
FunctionName, M);
6493
6494
assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
6495
6496
if (FunctionName.empty())
6497
NumberedVals.add(FunctionNumber, Fn);
6498
6499
Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
6500
maybeSetDSOLocal(DSOLocal, *Fn);
6501
Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
6502
Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
6503
Fn->setCallingConv(CC);
6504
Fn->setAttributes(PAL);
6505
Fn->setUnnamedAddr(UnnamedAddr);
6506
if (Alignment)
6507
Fn->setAlignment(*Alignment);
6508
Fn->setSection(Section);
6509
Fn->setPartition(Partition);
6510
Fn->setComdat(C);
6511
Fn->setPersonalityFn(PersonalityFn);
6512
if (!GC.empty()) Fn->setGC(GC);
6513
Fn->setPrefixData(Prefix);
6514
Fn->setPrologueData(Prologue);
6515
ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
6516
6517
// Add all of the arguments we parsed to the function.
6518
Function::arg_iterator ArgIt = Fn->arg_begin();
6519
for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
6520
// If the argument has a name, insert it into the argument symbol table.
6521
if (ArgList[i].Name.empty()) continue;
6522
6523
// Set the name, if it conflicted, it will be auto-renamed.
6524
ArgIt->setName(ArgList[i].Name);
6525
6526
if (ArgIt->getName() != ArgList[i].Name)
6527
return error(ArgList[i].Loc,
6528
"redefinition of argument '%" + ArgList[i].Name + "'");
6529
}
6530
6531
if (FwdFn) {
6532
FwdFn->replaceAllUsesWith(Fn);
6533
FwdFn->eraseFromParent();
6534
}
6535
6536
if (IsDefine)
6537
return false;
6538
6539
// Check the declaration has no block address forward references.
6540
ValID ID;
6541
if (FunctionName.empty()) {
6542
ID.Kind = ValID::t_GlobalID;
6543
ID.UIntVal = FunctionNumber;
6544
} else {
6545
ID.Kind = ValID::t_GlobalName;
6546
ID.StrVal = FunctionName;
6547
}
6548
auto Blocks = ForwardRefBlockAddresses.find(ID);
6549
if (Blocks != ForwardRefBlockAddresses.end())
6550
return error(Blocks->first.Loc,
6551
"cannot take blockaddress inside a declaration");
6552
return false;
6553
}
6554
6555
bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
6556
ValID ID;
6557
if (FunctionNumber == -1) {
6558
ID.Kind = ValID::t_GlobalName;
6559
ID.StrVal = std::string(F.getName());
6560
} else {
6561
ID.Kind = ValID::t_GlobalID;
6562
ID.UIntVal = FunctionNumber;
6563
}
6564
6565
auto Blocks = P.ForwardRefBlockAddresses.find(ID);
6566
if (Blocks == P.ForwardRefBlockAddresses.end())
6567
return false;
6568
6569
for (const auto &I : Blocks->second) {
6570
const ValID &BBID = I.first;
6571
GlobalValue *GV = I.second;
6572
6573
assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
6574
"Expected local id or name");
6575
BasicBlock *BB;
6576
if (BBID.Kind == ValID::t_LocalName)
6577
BB = getBB(BBID.StrVal, BBID.Loc);
6578
else
6579
BB = getBB(BBID.UIntVal, BBID.Loc);
6580
if (!BB)
6581
return P.error(BBID.Loc, "referenced value is not a basic block");
6582
6583
Value *ResolvedVal = BlockAddress::get(&F, BB);
6584
ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
6585
ResolvedVal);
6586
if (!ResolvedVal)
6587
return true;
6588
GV->replaceAllUsesWith(ResolvedVal);
6589
GV->eraseFromParent();
6590
}
6591
6592
P.ForwardRefBlockAddresses.erase(Blocks);
6593
return false;
6594
}
6595
6596
/// parseFunctionBody
6597
/// ::= '{' BasicBlock+ UseListOrderDirective* '}'
6598
bool LLParser::parseFunctionBody(Function &Fn, unsigned FunctionNumber,
6599
ArrayRef<unsigned> UnnamedArgNums) {
6600
if (Lex.getKind() != lltok::lbrace)
6601
return tokError("expected '{' in function body");
6602
Lex.Lex(); // eat the {.
6603
6604
PerFunctionState PFS(*this, Fn, FunctionNumber, UnnamedArgNums);
6605
6606
// Resolve block addresses and allow basic blocks to be forward-declared
6607
// within this function.
6608
if (PFS.resolveForwardRefBlockAddresses())
6609
return true;
6610
SaveAndRestore ScopeExit(BlockAddressPFS, &PFS);
6611
6612
// We need at least one basic block.
6613
if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
6614
return tokError("function body requires at least one basic block");
6615
6616
while (Lex.getKind() != lltok::rbrace &&
6617
Lex.getKind() != lltok::kw_uselistorder)
6618
if (parseBasicBlock(PFS))
6619
return true;
6620
6621
while (Lex.getKind() != lltok::rbrace)
6622
if (parseUseListOrder(&PFS))
6623
return true;
6624
6625
// Eat the }.
6626
Lex.Lex();
6627
6628
// Verify function is ok.
6629
return PFS.finishFunction();
6630
}
6631
6632
/// parseBasicBlock
6633
/// ::= (LabelStr|LabelID)? Instruction*
6634
bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
6635
// If this basic block starts out with a name, remember it.
6636
std::string Name;
6637
int NameID = -1;
6638
LocTy NameLoc = Lex.getLoc();
6639
if (Lex.getKind() == lltok::LabelStr) {
6640
Name = Lex.getStrVal();
6641
Lex.Lex();
6642
} else if (Lex.getKind() == lltok::LabelID) {
6643
NameID = Lex.getUIntVal();
6644
Lex.Lex();
6645
}
6646
6647
BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
6648
if (!BB)
6649
return true;
6650
6651
std::string NameStr;
6652
6653
// Parse the instructions and debug values in this block until we get a
6654
// terminator.
6655
Instruction *Inst;
6656
auto DeleteDbgRecord = [](DbgRecord *DR) { DR->deleteRecord(); };
6657
using DbgRecordPtr = std::unique_ptr<DbgRecord, decltype(DeleteDbgRecord)>;
6658
SmallVector<DbgRecordPtr> TrailingDbgRecord;
6659
do {
6660
// Handle debug records first - there should always be an instruction
6661
// following the debug records, i.e. they cannot appear after the block
6662
// terminator.
6663
while (Lex.getKind() == lltok::hash) {
6664
if (SeenOldDbgInfoFormat)
6665
return error(Lex.getLoc(), "debug record should not appear in a module "
6666
"containing debug info intrinsics");
6667
if (!SeenNewDbgInfoFormat)
6668
M->setNewDbgInfoFormatFlag(true);
6669
SeenNewDbgInfoFormat = true;
6670
Lex.Lex();
6671
6672
DbgRecord *DR;
6673
if (parseDebugRecord(DR, PFS))
6674
return true;
6675
TrailingDbgRecord.emplace_back(DR, DeleteDbgRecord);
6676
}
6677
6678
// This instruction may have three possibilities for a name: a) none
6679
// specified, b) name specified "%foo =", c) number specified: "%4 =".
6680
LocTy NameLoc = Lex.getLoc();
6681
int NameID = -1;
6682
NameStr = "";
6683
6684
if (Lex.getKind() == lltok::LocalVarID) {
6685
NameID = Lex.getUIntVal();
6686
Lex.Lex();
6687
if (parseToken(lltok::equal, "expected '=' after instruction id"))
6688
return true;
6689
} else if (Lex.getKind() == lltok::LocalVar) {
6690
NameStr = Lex.getStrVal();
6691
Lex.Lex();
6692
if (parseToken(lltok::equal, "expected '=' after instruction name"))
6693
return true;
6694
}
6695
6696
switch (parseInstruction(Inst, BB, PFS)) {
6697
default:
6698
llvm_unreachable("Unknown parseInstruction result!");
6699
case InstError: return true;
6700
case InstNormal:
6701
Inst->insertInto(BB, BB->end());
6702
6703
// With a normal result, we check to see if the instruction is followed by
6704
// a comma and metadata.
6705
if (EatIfPresent(lltok::comma))
6706
if (parseInstructionMetadata(*Inst))
6707
return true;
6708
break;
6709
case InstExtraComma:
6710
Inst->insertInto(BB, BB->end());
6711
6712
// If the instruction parser ate an extra comma at the end of it, it
6713
// *must* be followed by metadata.
6714
if (parseInstructionMetadata(*Inst))
6715
return true;
6716
break;
6717
}
6718
6719
// Set the name on the instruction.
6720
if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
6721
return true;
6722
6723
// Attach any preceding debug values to this instruction.
6724
for (DbgRecordPtr &DR : TrailingDbgRecord)
6725
BB->insertDbgRecordBefore(DR.release(), Inst->getIterator());
6726
TrailingDbgRecord.clear();
6727
} while (!Inst->isTerminator());
6728
6729
assert(TrailingDbgRecord.empty() &&
6730
"All debug values should have been attached to an instruction.");
6731
6732
return false;
6733
}
6734
6735
/// parseDebugRecord
6736
/// ::= #dbg_label '(' MDNode ')'
6737
/// ::= #dbg_type '(' Metadata ',' MDNode ',' Metadata ','
6738
/// (MDNode ',' Metadata ',' Metadata ',')? MDNode ')'
6739
bool LLParser::parseDebugRecord(DbgRecord *&DR, PerFunctionState &PFS) {
6740
using RecordKind = DbgRecord::Kind;
6741
using LocType = DbgVariableRecord::LocationType;
6742
LocTy DVRLoc = Lex.getLoc();
6743
if (Lex.getKind() != lltok::DbgRecordType)
6744
return error(DVRLoc, "expected debug record type here");
6745
RecordKind RecordType = StringSwitch<RecordKind>(Lex.getStrVal())
6746
.Case("declare", RecordKind::ValueKind)
6747
.Case("value", RecordKind::ValueKind)
6748
.Case("assign", RecordKind::ValueKind)
6749
.Case("label", RecordKind::LabelKind);
6750
6751
// Parsing labels is trivial; parse here and early exit, otherwise go into the
6752
// full DbgVariableRecord processing stage.
6753
if (RecordType == RecordKind::LabelKind) {
6754
Lex.Lex();
6755
if (parseToken(lltok::lparen, "Expected '(' here"))
6756
return true;
6757
MDNode *Label;
6758
if (parseMDNode(Label))
6759
return true;
6760
if (parseToken(lltok::comma, "Expected ',' here"))
6761
return true;
6762
MDNode *DbgLoc;
6763
if (parseMDNode(DbgLoc))
6764
return true;
6765
if (parseToken(lltok::rparen, "Expected ')' here"))
6766
return true;
6767
DR = DbgLabelRecord::createUnresolvedDbgLabelRecord(Label, DbgLoc);
6768
return false;
6769
}
6770
6771
LocType ValueType = StringSwitch<LocType>(Lex.getStrVal())
6772
.Case("declare", LocType::Declare)
6773
.Case("value", LocType::Value)
6774
.Case("assign", LocType::Assign);
6775
6776
Lex.Lex();
6777
if (parseToken(lltok::lparen, "Expected '(' here"))
6778
return true;
6779
6780
// Parse Value field.
6781
Metadata *ValLocMD;
6782
if (parseMetadata(ValLocMD, &PFS))
6783
return true;
6784
if (parseToken(lltok::comma, "Expected ',' here"))
6785
return true;
6786
6787
// Parse Variable field.
6788
MDNode *Variable;
6789
if (parseMDNode(Variable))
6790
return true;
6791
if (parseToken(lltok::comma, "Expected ',' here"))
6792
return true;
6793
6794
// Parse Expression field.
6795
MDNode *Expression;
6796
if (parseMDNode(Expression))
6797
return true;
6798
if (parseToken(lltok::comma, "Expected ',' here"))
6799
return true;
6800
6801
// Parse additional fields for #dbg_assign.
6802
MDNode *AssignID = nullptr;
6803
Metadata *AddressLocation = nullptr;
6804
MDNode *AddressExpression = nullptr;
6805
if (ValueType == LocType::Assign) {
6806
// Parse DIAssignID.
6807
if (parseMDNode(AssignID))
6808
return true;
6809
if (parseToken(lltok::comma, "Expected ',' here"))
6810
return true;
6811
6812
// Parse address ValueAsMetadata.
6813
if (parseMetadata(AddressLocation, &PFS))
6814
return true;
6815
if (parseToken(lltok::comma, "Expected ',' here"))
6816
return true;
6817
6818
// Parse address DIExpression.
6819
if (parseMDNode(AddressExpression))
6820
return true;
6821
if (parseToken(lltok::comma, "Expected ',' here"))
6822
return true;
6823
}
6824
6825
/// Parse DILocation.
6826
MDNode *DebugLoc;
6827
if (parseMDNode(DebugLoc))
6828
return true;
6829
6830
if (parseToken(lltok::rparen, "Expected ')' here"))
6831
return true;
6832
DR = DbgVariableRecord::createUnresolvedDbgVariableRecord(
6833
ValueType, ValLocMD, Variable, Expression, AssignID, AddressLocation,
6834
AddressExpression, DebugLoc);
6835
return false;
6836
}
6837
//===----------------------------------------------------------------------===//
6838
// Instruction Parsing.
6839
//===----------------------------------------------------------------------===//
6840
6841
/// parseInstruction - parse one of the many different instructions.
6842
///
6843
int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6844
PerFunctionState &PFS) {
6845
lltok::Kind Token = Lex.getKind();
6846
if (Token == lltok::Eof)
6847
return tokError("found end of file when expecting more instructions");
6848
LocTy Loc = Lex.getLoc();
6849
unsigned KeywordVal = Lex.getUIntVal();
6850
Lex.Lex(); // Eat the keyword.
6851
6852
switch (Token) {
6853
default:
6854
return error(Loc, "expected instruction opcode");
6855
// Terminator Instructions.
6856
case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6857
case lltok::kw_ret:
6858
return parseRet(Inst, BB, PFS);
6859
case lltok::kw_br:
6860
return parseBr(Inst, PFS);
6861
case lltok::kw_switch:
6862
return parseSwitch(Inst, PFS);
6863
case lltok::kw_indirectbr:
6864
return parseIndirectBr(Inst, PFS);
6865
case lltok::kw_invoke:
6866
return parseInvoke(Inst, PFS);
6867
case lltok::kw_resume:
6868
return parseResume(Inst, PFS);
6869
case lltok::kw_cleanupret:
6870
return parseCleanupRet(Inst, PFS);
6871
case lltok::kw_catchret:
6872
return parseCatchRet(Inst, PFS);
6873
case lltok::kw_catchswitch:
6874
return parseCatchSwitch(Inst, PFS);
6875
case lltok::kw_catchpad:
6876
return parseCatchPad(Inst, PFS);
6877
case lltok::kw_cleanuppad:
6878
return parseCleanupPad(Inst, PFS);
6879
case lltok::kw_callbr:
6880
return parseCallBr(Inst, PFS);
6881
// Unary Operators.
6882
case lltok::kw_fneg: {
6883
FastMathFlags FMF = EatFastMathFlagsIfPresent();
6884
int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6885
if (Res != 0)
6886
return Res;
6887
if (FMF.any())
6888
Inst->setFastMathFlags(FMF);
6889
return false;
6890
}
6891
// Binary Operators.
6892
case lltok::kw_add:
6893
case lltok::kw_sub:
6894
case lltok::kw_mul:
6895
case lltok::kw_shl: {
6896
bool NUW = EatIfPresent(lltok::kw_nuw);
6897
bool NSW = EatIfPresent(lltok::kw_nsw);
6898
if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6899
6900
if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6901
return true;
6902
6903
if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6904
if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6905
return false;
6906
}
6907
case lltok::kw_fadd:
6908
case lltok::kw_fsub:
6909
case lltok::kw_fmul:
6910
case lltok::kw_fdiv:
6911
case lltok::kw_frem: {
6912
FastMathFlags FMF = EatFastMathFlagsIfPresent();
6913
int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6914
if (Res != 0)
6915
return Res;
6916
if (FMF.any())
6917
Inst->setFastMathFlags(FMF);
6918
return 0;
6919
}
6920
6921
case lltok::kw_sdiv:
6922
case lltok::kw_udiv:
6923
case lltok::kw_lshr:
6924
case lltok::kw_ashr: {
6925
bool Exact = EatIfPresent(lltok::kw_exact);
6926
6927
if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6928
return true;
6929
if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6930
return false;
6931
}
6932
6933
case lltok::kw_urem:
6934
case lltok::kw_srem:
6935
return parseArithmetic(Inst, PFS, KeywordVal,
6936
/*IsFP*/ false);
6937
case lltok::kw_or: {
6938
bool Disjoint = EatIfPresent(lltok::kw_disjoint);
6939
if (parseLogical(Inst, PFS, KeywordVal))
6940
return true;
6941
if (Disjoint)
6942
cast<PossiblyDisjointInst>(Inst)->setIsDisjoint(true);
6943
return false;
6944
}
6945
case lltok::kw_and:
6946
case lltok::kw_xor:
6947
return parseLogical(Inst, PFS, KeywordVal);
6948
case lltok::kw_icmp:
6949
return parseCompare(Inst, PFS, KeywordVal);
6950
case lltok::kw_fcmp: {
6951
FastMathFlags FMF = EatFastMathFlagsIfPresent();
6952
int Res = parseCompare(Inst, PFS, KeywordVal);
6953
if (Res != 0)
6954
return Res;
6955
if (FMF.any())
6956
Inst->setFastMathFlags(FMF);
6957
return 0;
6958
}
6959
6960
// Casts.
6961
case lltok::kw_uitofp:
6962
case lltok::kw_zext: {
6963
bool NonNeg = EatIfPresent(lltok::kw_nneg);
6964
bool Res = parseCast(Inst, PFS, KeywordVal);
6965
if (Res != 0)
6966
return Res;
6967
if (NonNeg)
6968
Inst->setNonNeg();
6969
return 0;
6970
}
6971
case lltok::kw_trunc: {
6972
bool NUW = EatIfPresent(lltok::kw_nuw);
6973
bool NSW = EatIfPresent(lltok::kw_nsw);
6974
if (!NUW)
6975
NUW = EatIfPresent(lltok::kw_nuw);
6976
if (parseCast(Inst, PFS, KeywordVal))
6977
return true;
6978
if (NUW)
6979
cast<TruncInst>(Inst)->setHasNoUnsignedWrap(true);
6980
if (NSW)
6981
cast<TruncInst>(Inst)->setHasNoSignedWrap(true);
6982
return false;
6983
}
6984
case lltok::kw_sext:
6985
case lltok::kw_fptrunc:
6986
case lltok::kw_fpext:
6987
case lltok::kw_bitcast:
6988
case lltok::kw_addrspacecast:
6989
case lltok::kw_sitofp:
6990
case lltok::kw_fptoui:
6991
case lltok::kw_fptosi:
6992
case lltok::kw_inttoptr:
6993
case lltok::kw_ptrtoint:
6994
return parseCast(Inst, PFS, KeywordVal);
6995
// Other.
6996
case lltok::kw_select: {
6997
FastMathFlags FMF = EatFastMathFlagsIfPresent();
6998
int Res = parseSelect(Inst, PFS);
6999
if (Res != 0)
7000
return Res;
7001
if (FMF.any()) {
7002
if (!isa<FPMathOperator>(Inst))
7003
return error(Loc, "fast-math-flags specified for select without "
7004
"floating-point scalar or vector return type");
7005
Inst->setFastMathFlags(FMF);
7006
}
7007
return 0;
7008
}
7009
case lltok::kw_va_arg:
7010
return parseVAArg(Inst, PFS);
7011
case lltok::kw_extractelement:
7012
return parseExtractElement(Inst, PFS);
7013
case lltok::kw_insertelement:
7014
return parseInsertElement(Inst, PFS);
7015
case lltok::kw_shufflevector:
7016
return parseShuffleVector(Inst, PFS);
7017
case lltok::kw_phi: {
7018
FastMathFlags FMF = EatFastMathFlagsIfPresent();
7019
int Res = parsePHI(Inst, PFS);
7020
if (Res != 0)
7021
return Res;
7022
if (FMF.any()) {
7023
if (!isa<FPMathOperator>(Inst))
7024
return error(Loc, "fast-math-flags specified for phi without "
7025
"floating-point scalar or vector return type");
7026
Inst->setFastMathFlags(FMF);
7027
}
7028
return 0;
7029
}
7030
case lltok::kw_landingpad:
7031
return parseLandingPad(Inst, PFS);
7032
case lltok::kw_freeze:
7033
return parseFreeze(Inst, PFS);
7034
// Call.
7035
case lltok::kw_call:
7036
return parseCall(Inst, PFS, CallInst::TCK_None);
7037
case lltok::kw_tail:
7038
return parseCall(Inst, PFS, CallInst::TCK_Tail);
7039
case lltok::kw_musttail:
7040
return parseCall(Inst, PFS, CallInst::TCK_MustTail);
7041
case lltok::kw_notail:
7042
return parseCall(Inst, PFS, CallInst::TCK_NoTail);
7043
// Memory.
7044
case lltok::kw_alloca:
7045
return parseAlloc(Inst, PFS);
7046
case lltok::kw_load:
7047
return parseLoad(Inst, PFS);
7048
case lltok::kw_store:
7049
return parseStore(Inst, PFS);
7050
case lltok::kw_cmpxchg:
7051
return parseCmpXchg(Inst, PFS);
7052
case lltok::kw_atomicrmw:
7053
return parseAtomicRMW(Inst, PFS);
7054
case lltok::kw_fence:
7055
return parseFence(Inst, PFS);
7056
case lltok::kw_getelementptr:
7057
return parseGetElementPtr(Inst, PFS);
7058
case lltok::kw_extractvalue:
7059
return parseExtractValue(Inst, PFS);
7060
case lltok::kw_insertvalue:
7061
return parseInsertValue(Inst, PFS);
7062
}
7063
}
7064
7065
/// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
7066
bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
7067
if (Opc == Instruction::FCmp) {
7068
switch (Lex.getKind()) {
7069
default:
7070
return tokError("expected fcmp predicate (e.g. 'oeq')");
7071
case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
7072
case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
7073
case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
7074
case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
7075
case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
7076
case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
7077
case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
7078
case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
7079
case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
7080
case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
7081
case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
7082
case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
7083
case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
7084
case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
7085
case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
7086
case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
7087
}
7088
} else {
7089
switch (Lex.getKind()) {
7090
default:
7091
return tokError("expected icmp predicate (e.g. 'eq')");
7092
case lltok::kw_eq: P = CmpInst::ICMP_EQ; break;
7093
case lltok::kw_ne: P = CmpInst::ICMP_NE; break;
7094
case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
7095
case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
7096
case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
7097
case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
7098
case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
7099
case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
7100
case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
7101
case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
7102
}
7103
}
7104
Lex.Lex();
7105
return false;
7106
}
7107
7108
//===----------------------------------------------------------------------===//
7109
// Terminator Instructions.
7110
//===----------------------------------------------------------------------===//
7111
7112
/// parseRet - parse a return instruction.
7113
/// ::= 'ret' void (',' !dbg, !1)*
7114
/// ::= 'ret' TypeAndValue (',' !dbg, !1)*
7115
bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
7116
PerFunctionState &PFS) {
7117
SMLoc TypeLoc = Lex.getLoc();
7118
Type *Ty = nullptr;
7119
if (parseType(Ty, true /*void allowed*/))
7120
return true;
7121
7122
Type *ResType = PFS.getFunction().getReturnType();
7123
7124
if (Ty->isVoidTy()) {
7125
if (!ResType->isVoidTy())
7126
return error(TypeLoc, "value doesn't match function result type '" +
7127
getTypeString(ResType) + "'");
7128
7129
Inst = ReturnInst::Create(Context);
7130
return false;
7131
}
7132
7133
Value *RV;
7134
if (parseValue(Ty, RV, PFS))
7135
return true;
7136
7137
if (ResType != RV->getType())
7138
return error(TypeLoc, "value doesn't match function result type '" +
7139
getTypeString(ResType) + "'");
7140
7141
Inst = ReturnInst::Create(Context, RV);
7142
return false;
7143
}
7144
7145
/// parseBr
7146
/// ::= 'br' TypeAndValue
7147
/// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7148
bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
7149
LocTy Loc, Loc2;
7150
Value *Op0;
7151
BasicBlock *Op1, *Op2;
7152
if (parseTypeAndValue(Op0, Loc, PFS))
7153
return true;
7154
7155
if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
7156
Inst = BranchInst::Create(BB);
7157
return false;
7158
}
7159
7160
if (Op0->getType() != Type::getInt1Ty(Context))
7161
return error(Loc, "branch condition must have 'i1' type");
7162
7163
if (parseToken(lltok::comma, "expected ',' after branch condition") ||
7164
parseTypeAndBasicBlock(Op1, Loc, PFS) ||
7165
parseToken(lltok::comma, "expected ',' after true destination") ||
7166
parseTypeAndBasicBlock(Op2, Loc2, PFS))
7167
return true;
7168
7169
Inst = BranchInst::Create(Op1, Op2, Op0);
7170
return false;
7171
}
7172
7173
/// parseSwitch
7174
/// Instruction
7175
/// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
7176
/// JumpTable
7177
/// ::= (TypeAndValue ',' TypeAndValue)*
7178
bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
7179
LocTy CondLoc, BBLoc;
7180
Value *Cond;
7181
BasicBlock *DefaultBB;
7182
if (parseTypeAndValue(Cond, CondLoc, PFS) ||
7183
parseToken(lltok::comma, "expected ',' after switch condition") ||
7184
parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
7185
parseToken(lltok::lsquare, "expected '[' with switch table"))
7186
return true;
7187
7188
if (!Cond->getType()->isIntegerTy())
7189
return error(CondLoc, "switch condition must have integer type");
7190
7191
// parse the jump table pairs.
7192
SmallPtrSet<Value*, 32> SeenCases;
7193
SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
7194
while (Lex.getKind() != lltok::rsquare) {
7195
Value *Constant;
7196
BasicBlock *DestBB;
7197
7198
if (parseTypeAndValue(Constant, CondLoc, PFS) ||
7199
parseToken(lltok::comma, "expected ',' after case value") ||
7200
parseTypeAndBasicBlock(DestBB, PFS))
7201
return true;
7202
7203
if (!SeenCases.insert(Constant).second)
7204
return error(CondLoc, "duplicate case value in switch");
7205
if (!isa<ConstantInt>(Constant))
7206
return error(CondLoc, "case value is not a constant integer");
7207
7208
Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
7209
}
7210
7211
Lex.Lex(); // Eat the ']'.
7212
7213
SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
7214
for (unsigned i = 0, e = Table.size(); i != e; ++i)
7215
SI->addCase(Table[i].first, Table[i].second);
7216
Inst = SI;
7217
return false;
7218
}
7219
7220
/// parseIndirectBr
7221
/// Instruction
7222
/// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
7223
bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
7224
LocTy AddrLoc;
7225
Value *Address;
7226
if (parseTypeAndValue(Address, AddrLoc, PFS) ||
7227
parseToken(lltok::comma, "expected ',' after indirectbr address") ||
7228
parseToken(lltok::lsquare, "expected '[' with indirectbr"))
7229
return true;
7230
7231
if (!Address->getType()->isPointerTy())
7232
return error(AddrLoc, "indirectbr address must have pointer type");
7233
7234
// parse the destination list.
7235
SmallVector<BasicBlock*, 16> DestList;
7236
7237
if (Lex.getKind() != lltok::rsquare) {
7238
BasicBlock *DestBB;
7239
if (parseTypeAndBasicBlock(DestBB, PFS))
7240
return true;
7241
DestList.push_back(DestBB);
7242
7243
while (EatIfPresent(lltok::comma)) {
7244
if (parseTypeAndBasicBlock(DestBB, PFS))
7245
return true;
7246
DestList.push_back(DestBB);
7247
}
7248
}
7249
7250
if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
7251
return true;
7252
7253
IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
7254
for (BasicBlock *Dest : DestList)
7255
IBI->addDestination(Dest);
7256
Inst = IBI;
7257
return false;
7258
}
7259
7260
// If RetType is a non-function pointer type, then this is the short syntax
7261
// for the call, which means that RetType is just the return type. Infer the
7262
// rest of the function argument types from the arguments that are present.
7263
bool LLParser::resolveFunctionType(Type *RetType,
7264
const SmallVector<ParamInfo, 16> &ArgList,
7265
FunctionType *&FuncTy) {
7266
FuncTy = dyn_cast<FunctionType>(RetType);
7267
if (!FuncTy) {
7268
// Pull out the types of all of the arguments...
7269
std::vector<Type*> ParamTypes;
7270
for (const ParamInfo &Arg : ArgList)
7271
ParamTypes.push_back(Arg.V->getType());
7272
7273
if (!FunctionType::isValidReturnType(RetType))
7274
return true;
7275
7276
FuncTy = FunctionType::get(RetType, ParamTypes, false);
7277
}
7278
return false;
7279
}
7280
7281
/// parseInvoke
7282
/// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
7283
/// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
7284
bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
7285
LocTy CallLoc = Lex.getLoc();
7286
AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7287
std::vector<unsigned> FwdRefAttrGrps;
7288
LocTy NoBuiltinLoc;
7289
unsigned CC;
7290
unsigned InvokeAddrSpace;
7291
Type *RetType = nullptr;
7292
LocTy RetTypeLoc;
7293
ValID CalleeID;
7294
SmallVector<ParamInfo, 16> ArgList;
7295
SmallVector<OperandBundleDef, 2> BundleList;
7296
7297
BasicBlock *NormalBB, *UnwindBB;
7298
if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7299
parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
7300
parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7301
parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
7302
parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
7303
NoBuiltinLoc) ||
7304
parseOptionalOperandBundles(BundleList, PFS) ||
7305
parseToken(lltok::kw_to, "expected 'to' in invoke") ||
7306
parseTypeAndBasicBlock(NormalBB, PFS) ||
7307
parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
7308
parseTypeAndBasicBlock(UnwindBB, PFS))
7309
return true;
7310
7311
// If RetType is a non-function pointer type, then this is the short syntax
7312
// for the call, which means that RetType is just the return type. Infer the
7313
// rest of the function argument types from the arguments that are present.
7314
FunctionType *Ty;
7315
if (resolveFunctionType(RetType, ArgList, Ty))
7316
return error(RetTypeLoc, "Invalid result type for LLVM function");
7317
7318
CalleeID.FTy = Ty;
7319
7320
// Look up the callee.
7321
Value *Callee;
7322
if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
7323
Callee, &PFS))
7324
return true;
7325
7326
// Set up the Attribute for the function.
7327
SmallVector<Value *, 8> Args;
7328
SmallVector<AttributeSet, 8> ArgAttrs;
7329
7330
// Loop through FunctionType's arguments and ensure they are specified
7331
// correctly. Also, gather any parameter attributes.
7332
FunctionType::param_iterator I = Ty->param_begin();
7333
FunctionType::param_iterator E = Ty->param_end();
7334
for (const ParamInfo &Arg : ArgList) {
7335
Type *ExpectedTy = nullptr;
7336
if (I != E) {
7337
ExpectedTy = *I++;
7338
} else if (!Ty->isVarArg()) {
7339
return error(Arg.Loc, "too many arguments specified");
7340
}
7341
7342
if (ExpectedTy && ExpectedTy != Arg.V->getType())
7343
return error(Arg.Loc, "argument is not of expected type '" +
7344
getTypeString(ExpectedTy) + "'");
7345
Args.push_back(Arg.V);
7346
ArgAttrs.push_back(Arg.Attrs);
7347
}
7348
7349
if (I != E)
7350
return error(CallLoc, "not enough parameters specified for call");
7351
7352
// Finish off the Attribute and check them
7353
AttributeList PAL =
7354
AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7355
AttributeSet::get(Context, RetAttrs), ArgAttrs);
7356
7357
InvokeInst *II =
7358
InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
7359
II->setCallingConv(CC);
7360
II->setAttributes(PAL);
7361
ForwardRefAttrGroups[II] = FwdRefAttrGrps;
7362
Inst = II;
7363
return false;
7364
}
7365
7366
/// parseResume
7367
/// ::= 'resume' TypeAndValue
7368
bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
7369
Value *Exn; LocTy ExnLoc;
7370
if (parseTypeAndValue(Exn, ExnLoc, PFS))
7371
return true;
7372
7373
ResumeInst *RI = ResumeInst::Create(Exn);
7374
Inst = RI;
7375
return false;
7376
}
7377
7378
bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
7379
PerFunctionState &PFS) {
7380
if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
7381
return true;
7382
7383
while (Lex.getKind() != lltok::rsquare) {
7384
// If this isn't the first argument, we need a comma.
7385
if (!Args.empty() &&
7386
parseToken(lltok::comma, "expected ',' in argument list"))
7387
return true;
7388
7389
// parse the argument.
7390
LocTy ArgLoc;
7391
Type *ArgTy = nullptr;
7392
if (parseType(ArgTy, ArgLoc))
7393
return true;
7394
7395
Value *V;
7396
if (ArgTy->isMetadataTy()) {
7397
if (parseMetadataAsValue(V, PFS))
7398
return true;
7399
} else {
7400
if (parseValue(ArgTy, V, PFS))
7401
return true;
7402
}
7403
Args.push_back(V);
7404
}
7405
7406
Lex.Lex(); // Lex the ']'.
7407
return false;
7408
}
7409
7410
/// parseCleanupRet
7411
/// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
7412
bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
7413
Value *CleanupPad = nullptr;
7414
7415
if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
7416
return true;
7417
7418
if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
7419
return true;
7420
7421
if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
7422
return true;
7423
7424
BasicBlock *UnwindBB = nullptr;
7425
if (Lex.getKind() == lltok::kw_to) {
7426
Lex.Lex();
7427
if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
7428
return true;
7429
} else {
7430
if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
7431
return true;
7432
}
7433
}
7434
7435
Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
7436
return false;
7437
}
7438
7439
/// parseCatchRet
7440
/// ::= 'catchret' from Parent Value 'to' TypeAndValue
7441
bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
7442
Value *CatchPad = nullptr;
7443
7444
if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
7445
return true;
7446
7447
if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
7448
return true;
7449
7450
BasicBlock *BB;
7451
if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
7452
parseTypeAndBasicBlock(BB, PFS))
7453
return true;
7454
7455
Inst = CatchReturnInst::Create(CatchPad, BB);
7456
return false;
7457
}
7458
7459
/// parseCatchSwitch
7460
/// ::= 'catchswitch' within Parent
7461
bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
7462
Value *ParentPad;
7463
7464
if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
7465
return true;
7466
7467
if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
7468
Lex.getKind() != lltok::LocalVarID)
7469
return tokError("expected scope value for catchswitch");
7470
7471
if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
7472
return true;
7473
7474
if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
7475
return true;
7476
7477
SmallVector<BasicBlock *, 32> Table;
7478
do {
7479
BasicBlock *DestBB;
7480
if (parseTypeAndBasicBlock(DestBB, PFS))
7481
return true;
7482
Table.push_back(DestBB);
7483
} while (EatIfPresent(lltok::comma));
7484
7485
if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
7486
return true;
7487
7488
if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
7489
return true;
7490
7491
BasicBlock *UnwindBB = nullptr;
7492
if (EatIfPresent(lltok::kw_to)) {
7493
if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
7494
return true;
7495
} else {
7496
if (parseTypeAndBasicBlock(UnwindBB, PFS))
7497
return true;
7498
}
7499
7500
auto *CatchSwitch =
7501
CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
7502
for (BasicBlock *DestBB : Table)
7503
CatchSwitch->addHandler(DestBB);
7504
Inst = CatchSwitch;
7505
return false;
7506
}
7507
7508
/// parseCatchPad
7509
/// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
7510
bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
7511
Value *CatchSwitch = nullptr;
7512
7513
if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
7514
return true;
7515
7516
if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
7517
return tokError("expected scope value for catchpad");
7518
7519
if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
7520
return true;
7521
7522
SmallVector<Value *, 8> Args;
7523
if (parseExceptionArgs(Args, PFS))
7524
return true;
7525
7526
Inst = CatchPadInst::Create(CatchSwitch, Args);
7527
return false;
7528
}
7529
7530
/// parseCleanupPad
7531
/// ::= 'cleanuppad' within Parent ParamList
7532
bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
7533
Value *ParentPad = nullptr;
7534
7535
if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
7536
return true;
7537
7538
if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
7539
Lex.getKind() != lltok::LocalVarID)
7540
return tokError("expected scope value for cleanuppad");
7541
7542
if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
7543
return true;
7544
7545
SmallVector<Value *, 8> Args;
7546
if (parseExceptionArgs(Args, PFS))
7547
return true;
7548
7549
Inst = CleanupPadInst::Create(ParentPad, Args);
7550
return false;
7551
}
7552
7553
//===----------------------------------------------------------------------===//
7554
// Unary Operators.
7555
//===----------------------------------------------------------------------===//
7556
7557
/// parseUnaryOp
7558
/// ::= UnaryOp TypeAndValue ',' Value
7559
///
7560
/// If IsFP is false, then any integer operand is allowed, if it is true, any fp
7561
/// operand is allowed.
7562
bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
7563
unsigned Opc, bool IsFP) {
7564
LocTy Loc; Value *LHS;
7565
if (parseTypeAndValue(LHS, Loc, PFS))
7566
return true;
7567
7568
bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
7569
: LHS->getType()->isIntOrIntVectorTy();
7570
7571
if (!Valid)
7572
return error(Loc, "invalid operand type for instruction");
7573
7574
Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
7575
return false;
7576
}
7577
7578
/// parseCallBr
7579
/// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
7580
/// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
7581
/// '[' LabelList ']'
7582
bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
7583
LocTy CallLoc = Lex.getLoc();
7584
AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7585
std::vector<unsigned> FwdRefAttrGrps;
7586
LocTy NoBuiltinLoc;
7587
unsigned CC;
7588
Type *RetType = nullptr;
7589
LocTy RetTypeLoc;
7590
ValID CalleeID;
7591
SmallVector<ParamInfo, 16> ArgList;
7592
SmallVector<OperandBundleDef, 2> BundleList;
7593
7594
BasicBlock *DefaultDest;
7595
if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7596
parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7597
parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
7598
parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
7599
NoBuiltinLoc) ||
7600
parseOptionalOperandBundles(BundleList, PFS) ||
7601
parseToken(lltok::kw_to, "expected 'to' in callbr") ||
7602
parseTypeAndBasicBlock(DefaultDest, PFS) ||
7603
parseToken(lltok::lsquare, "expected '[' in callbr"))
7604
return true;
7605
7606
// parse the destination list.
7607
SmallVector<BasicBlock *, 16> IndirectDests;
7608
7609
if (Lex.getKind() != lltok::rsquare) {
7610
BasicBlock *DestBB;
7611
if (parseTypeAndBasicBlock(DestBB, PFS))
7612
return true;
7613
IndirectDests.push_back(DestBB);
7614
7615
while (EatIfPresent(lltok::comma)) {
7616
if (parseTypeAndBasicBlock(DestBB, PFS))
7617
return true;
7618
IndirectDests.push_back(DestBB);
7619
}
7620
}
7621
7622
if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
7623
return true;
7624
7625
// If RetType is a non-function pointer type, then this is the short syntax
7626
// for the call, which means that RetType is just the return type. Infer the
7627
// rest of the function argument types from the arguments that are present.
7628
FunctionType *Ty;
7629
if (resolveFunctionType(RetType, ArgList, Ty))
7630
return error(RetTypeLoc, "Invalid result type for LLVM function");
7631
7632
CalleeID.FTy = Ty;
7633
7634
// Look up the callee.
7635
Value *Callee;
7636
if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
7637
return true;
7638
7639
// Set up the Attribute for the function.
7640
SmallVector<Value *, 8> Args;
7641
SmallVector<AttributeSet, 8> ArgAttrs;
7642
7643
// Loop through FunctionType's arguments and ensure they are specified
7644
// correctly. Also, gather any parameter attributes.
7645
FunctionType::param_iterator I = Ty->param_begin();
7646
FunctionType::param_iterator E = Ty->param_end();
7647
for (const ParamInfo &Arg : ArgList) {
7648
Type *ExpectedTy = nullptr;
7649
if (I != E) {
7650
ExpectedTy = *I++;
7651
} else if (!Ty->isVarArg()) {
7652
return error(Arg.Loc, "too many arguments specified");
7653
}
7654
7655
if (ExpectedTy && ExpectedTy != Arg.V->getType())
7656
return error(Arg.Loc, "argument is not of expected type '" +
7657
getTypeString(ExpectedTy) + "'");
7658
Args.push_back(Arg.V);
7659
ArgAttrs.push_back(Arg.Attrs);
7660
}
7661
7662
if (I != E)
7663
return error(CallLoc, "not enough parameters specified for call");
7664
7665
// Finish off the Attribute and check them
7666
AttributeList PAL =
7667
AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7668
AttributeSet::get(Context, RetAttrs), ArgAttrs);
7669
7670
CallBrInst *CBI =
7671
CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
7672
BundleList);
7673
CBI->setCallingConv(CC);
7674
CBI->setAttributes(PAL);
7675
ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
7676
Inst = CBI;
7677
return false;
7678
}
7679
7680
//===----------------------------------------------------------------------===//
7681
// Binary Operators.
7682
//===----------------------------------------------------------------------===//
7683
7684
/// parseArithmetic
7685
/// ::= ArithmeticOps TypeAndValue ',' Value
7686
///
7687
/// If IsFP is false, then any integer operand is allowed, if it is true, any fp
7688
/// operand is allowed.
7689
bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
7690
unsigned Opc, bool IsFP) {
7691
LocTy Loc; Value *LHS, *RHS;
7692
if (parseTypeAndValue(LHS, Loc, PFS) ||
7693
parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
7694
parseValue(LHS->getType(), RHS, PFS))
7695
return true;
7696
7697
bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
7698
: LHS->getType()->isIntOrIntVectorTy();
7699
7700
if (!Valid)
7701
return error(Loc, "invalid operand type for instruction");
7702
7703
Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
7704
return false;
7705
}
7706
7707
/// parseLogical
7708
/// ::= ArithmeticOps TypeAndValue ',' Value {
7709
bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
7710
unsigned Opc) {
7711
LocTy Loc; Value *LHS, *RHS;
7712
if (parseTypeAndValue(LHS, Loc, PFS) ||
7713
parseToken(lltok::comma, "expected ',' in logical operation") ||
7714
parseValue(LHS->getType(), RHS, PFS))
7715
return true;
7716
7717
if (!LHS->getType()->isIntOrIntVectorTy())
7718
return error(Loc,
7719
"instruction requires integer or integer vector operands");
7720
7721
Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
7722
return false;
7723
}
7724
7725
/// parseCompare
7726
/// ::= 'icmp' IPredicates TypeAndValue ',' Value
7727
/// ::= 'fcmp' FPredicates TypeAndValue ',' Value
7728
bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
7729
unsigned Opc) {
7730
// parse the integer/fp comparison predicate.
7731
LocTy Loc;
7732
unsigned Pred;
7733
Value *LHS, *RHS;
7734
if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
7735
parseToken(lltok::comma, "expected ',' after compare value") ||
7736
parseValue(LHS->getType(), RHS, PFS))
7737
return true;
7738
7739
if (Opc == Instruction::FCmp) {
7740
if (!LHS->getType()->isFPOrFPVectorTy())
7741
return error(Loc, "fcmp requires floating point operands");
7742
Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7743
} else {
7744
assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
7745
if (!LHS->getType()->isIntOrIntVectorTy() &&
7746
!LHS->getType()->isPtrOrPtrVectorTy())
7747
return error(Loc, "icmp requires integer operands");
7748
Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7749
}
7750
return false;
7751
}
7752
7753
//===----------------------------------------------------------------------===//
7754
// Other Instructions.
7755
//===----------------------------------------------------------------------===//
7756
7757
/// parseCast
7758
/// ::= CastOpc TypeAndValue 'to' Type
7759
bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
7760
unsigned Opc) {
7761
LocTy Loc;
7762
Value *Op;
7763
Type *DestTy = nullptr;
7764
if (parseTypeAndValue(Op, Loc, PFS) ||
7765
parseToken(lltok::kw_to, "expected 'to' after cast value") ||
7766
parseType(DestTy))
7767
return true;
7768
7769
if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
7770
CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
7771
return error(Loc, "invalid cast opcode for cast from '" +
7772
getTypeString(Op->getType()) + "' to '" +
7773
getTypeString(DestTy) + "'");
7774
}
7775
Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
7776
return false;
7777
}
7778
7779
/// parseSelect
7780
/// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7781
bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
7782
LocTy Loc;
7783
Value *Op0, *Op1, *Op2;
7784
if (parseTypeAndValue(Op0, Loc, PFS) ||
7785
parseToken(lltok::comma, "expected ',' after select condition") ||
7786
parseTypeAndValue(Op1, PFS) ||
7787
parseToken(lltok::comma, "expected ',' after select value") ||
7788
parseTypeAndValue(Op2, PFS))
7789
return true;
7790
7791
if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
7792
return error(Loc, Reason);
7793
7794
Inst = SelectInst::Create(Op0, Op1, Op2);
7795
return false;
7796
}
7797
7798
/// parseVAArg
7799
/// ::= 'va_arg' TypeAndValue ',' Type
7800
bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
7801
Value *Op;
7802
Type *EltTy = nullptr;
7803
LocTy TypeLoc;
7804
if (parseTypeAndValue(Op, PFS) ||
7805
parseToken(lltok::comma, "expected ',' after vaarg operand") ||
7806
parseType(EltTy, TypeLoc))
7807
return true;
7808
7809
if (!EltTy->isFirstClassType())
7810
return error(TypeLoc, "va_arg requires operand with first class type");
7811
7812
Inst = new VAArgInst(Op, EltTy);
7813
return false;
7814
}
7815
7816
/// parseExtractElement
7817
/// ::= 'extractelement' TypeAndValue ',' TypeAndValue
7818
bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
7819
LocTy Loc;
7820
Value *Op0, *Op1;
7821
if (parseTypeAndValue(Op0, Loc, PFS) ||
7822
parseToken(lltok::comma, "expected ',' after extract value") ||
7823
parseTypeAndValue(Op1, PFS))
7824
return true;
7825
7826
if (!ExtractElementInst::isValidOperands(Op0, Op1))
7827
return error(Loc, "invalid extractelement operands");
7828
7829
Inst = ExtractElementInst::Create(Op0, Op1);
7830
return false;
7831
}
7832
7833
/// parseInsertElement
7834
/// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7835
bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
7836
LocTy Loc;
7837
Value *Op0, *Op1, *Op2;
7838
if (parseTypeAndValue(Op0, Loc, PFS) ||
7839
parseToken(lltok::comma, "expected ',' after insertelement value") ||
7840
parseTypeAndValue(Op1, PFS) ||
7841
parseToken(lltok::comma, "expected ',' after insertelement value") ||
7842
parseTypeAndValue(Op2, PFS))
7843
return true;
7844
7845
if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
7846
return error(Loc, "invalid insertelement operands");
7847
7848
Inst = InsertElementInst::Create(Op0, Op1, Op2);
7849
return false;
7850
}
7851
7852
/// parseShuffleVector
7853
/// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7854
bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
7855
LocTy Loc;
7856
Value *Op0, *Op1, *Op2;
7857
if (parseTypeAndValue(Op0, Loc, PFS) ||
7858
parseToken(lltok::comma, "expected ',' after shuffle mask") ||
7859
parseTypeAndValue(Op1, PFS) ||
7860
parseToken(lltok::comma, "expected ',' after shuffle value") ||
7861
parseTypeAndValue(Op2, PFS))
7862
return true;
7863
7864
if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
7865
return error(Loc, "invalid shufflevector operands");
7866
7867
Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7868
return false;
7869
}
7870
7871
/// parsePHI
7872
/// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
7873
int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7874
Type *Ty = nullptr; LocTy TypeLoc;
7875
Value *Op0, *Op1;
7876
7877
if (parseType(Ty, TypeLoc))
7878
return true;
7879
7880
if (!Ty->isFirstClassType())
7881
return error(TypeLoc, "phi node must have first class type");
7882
7883
bool First = true;
7884
bool AteExtraComma = false;
7885
SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7886
7887
while (true) {
7888
if (First) {
7889
if (Lex.getKind() != lltok::lsquare)
7890
break;
7891
First = false;
7892
} else if (!EatIfPresent(lltok::comma))
7893
break;
7894
7895
if (Lex.getKind() == lltok::MetadataVar) {
7896
AteExtraComma = true;
7897
break;
7898
}
7899
7900
if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7901
parseValue(Ty, Op0, PFS) ||
7902
parseToken(lltok::comma, "expected ',' after insertelement value") ||
7903
parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7904
parseToken(lltok::rsquare, "expected ']' in phi value list"))
7905
return true;
7906
7907
PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7908
}
7909
7910
PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7911
for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7912
PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7913
Inst = PN;
7914
return AteExtraComma ? InstExtraComma : InstNormal;
7915
}
7916
7917
/// parseLandingPad
7918
/// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7919
/// Clause
7920
/// ::= 'catch' TypeAndValue
7921
/// ::= 'filter'
7922
/// ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7923
bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7924
Type *Ty = nullptr; LocTy TyLoc;
7925
7926
if (parseType(Ty, TyLoc))
7927
return true;
7928
7929
std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7930
LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7931
7932
while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7933
LandingPadInst::ClauseType CT;
7934
if (EatIfPresent(lltok::kw_catch))
7935
CT = LandingPadInst::Catch;
7936
else if (EatIfPresent(lltok::kw_filter))
7937
CT = LandingPadInst::Filter;
7938
else
7939
return tokError("expected 'catch' or 'filter' clause type");
7940
7941
Value *V;
7942
LocTy VLoc;
7943
if (parseTypeAndValue(V, VLoc, PFS))
7944
return true;
7945
7946
// A 'catch' type expects a non-array constant. A filter clause expects an
7947
// array constant.
7948
if (CT == LandingPadInst::Catch) {
7949
if (isa<ArrayType>(V->getType()))
7950
error(VLoc, "'catch' clause has an invalid type");
7951
} else {
7952
if (!isa<ArrayType>(V->getType()))
7953
error(VLoc, "'filter' clause has an invalid type");
7954
}
7955
7956
Constant *CV = dyn_cast<Constant>(V);
7957
if (!CV)
7958
return error(VLoc, "clause argument must be a constant");
7959
LP->addClause(CV);
7960
}
7961
7962
Inst = LP.release();
7963
return false;
7964
}
7965
7966
/// parseFreeze
7967
/// ::= 'freeze' Type Value
7968
bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7969
LocTy Loc;
7970
Value *Op;
7971
if (parseTypeAndValue(Op, Loc, PFS))
7972
return true;
7973
7974
Inst = new FreezeInst(Op);
7975
return false;
7976
}
7977
7978
/// parseCall
7979
/// ::= 'call' OptionalFastMathFlags OptionalCallingConv
7980
/// OptionalAttrs Type Value ParameterList OptionalAttrs
7981
/// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7982
/// OptionalAttrs Type Value ParameterList OptionalAttrs
7983
/// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7984
/// OptionalAttrs Type Value ParameterList OptionalAttrs
7985
/// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv
7986
/// OptionalAttrs Type Value ParameterList OptionalAttrs
7987
bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7988
CallInst::TailCallKind TCK) {
7989
AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7990
std::vector<unsigned> FwdRefAttrGrps;
7991
LocTy BuiltinLoc;
7992
unsigned CallAddrSpace;
7993
unsigned CC;
7994
Type *RetType = nullptr;
7995
LocTy RetTypeLoc;
7996
ValID CalleeID;
7997
SmallVector<ParamInfo, 16> ArgList;
7998
SmallVector<OperandBundleDef, 2> BundleList;
7999
LocTy CallLoc = Lex.getLoc();
8000
8001
if (TCK != CallInst::TCK_None &&
8002
parseToken(lltok::kw_call,
8003
"expected 'tail call', 'musttail call', or 'notail call'"))
8004
return true;
8005
8006
FastMathFlags FMF = EatFastMathFlagsIfPresent();
8007
8008
if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
8009
parseOptionalProgramAddrSpace(CallAddrSpace) ||
8010
parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
8011
parseValID(CalleeID, &PFS) ||
8012
parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
8013
PFS.getFunction().isVarArg()) ||
8014
parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
8015
parseOptionalOperandBundles(BundleList, PFS))
8016
return true;
8017
8018
// If RetType is a non-function pointer type, then this is the short syntax
8019
// for the call, which means that RetType is just the return type. Infer the
8020
// rest of the function argument types from the arguments that are present.
8021
FunctionType *Ty;
8022
if (resolveFunctionType(RetType, ArgList, Ty))
8023
return error(RetTypeLoc, "Invalid result type for LLVM function");
8024
8025
CalleeID.FTy = Ty;
8026
8027
// Look up the callee.
8028
Value *Callee;
8029
if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
8030
&PFS))
8031
return true;
8032
8033
// Set up the Attribute for the function.
8034
SmallVector<AttributeSet, 8> Attrs;
8035
8036
SmallVector<Value*, 8> Args;
8037
8038
// Loop through FunctionType's arguments and ensure they are specified
8039
// correctly. Also, gather any parameter attributes.
8040
FunctionType::param_iterator I = Ty->param_begin();
8041
FunctionType::param_iterator E = Ty->param_end();
8042
for (const ParamInfo &Arg : ArgList) {
8043
Type *ExpectedTy = nullptr;
8044
if (I != E) {
8045
ExpectedTy = *I++;
8046
} else if (!Ty->isVarArg()) {
8047
return error(Arg.Loc, "too many arguments specified");
8048
}
8049
8050
if (ExpectedTy && ExpectedTy != Arg.V->getType())
8051
return error(Arg.Loc, "argument is not of expected type '" +
8052
getTypeString(ExpectedTy) + "'");
8053
Args.push_back(Arg.V);
8054
Attrs.push_back(Arg.Attrs);
8055
}
8056
8057
if (I != E)
8058
return error(CallLoc, "not enough parameters specified for call");
8059
8060
// Finish off the Attribute and check them
8061
AttributeList PAL =
8062
AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
8063
AttributeSet::get(Context, RetAttrs), Attrs);
8064
8065
CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
8066
CI->setTailCallKind(TCK);
8067
CI->setCallingConv(CC);
8068
if (FMF.any()) {
8069
if (!isa<FPMathOperator>(CI)) {
8070
CI->deleteValue();
8071
return error(CallLoc, "fast-math-flags specified for call without "
8072
"floating-point scalar or vector return type");
8073
}
8074
CI->setFastMathFlags(FMF);
8075
}
8076
8077
if (CalleeID.Kind == ValID::t_GlobalName &&
8078
isOldDbgFormatIntrinsic(CalleeID.StrVal)) {
8079
if (SeenNewDbgInfoFormat) {
8080
CI->deleteValue();
8081
return error(CallLoc, "llvm.dbg intrinsic should not appear in a module "
8082
"using non-intrinsic debug info");
8083
}
8084
if (!SeenOldDbgInfoFormat)
8085
M->setNewDbgInfoFormatFlag(false);
8086
SeenOldDbgInfoFormat = true;
8087
}
8088
CI->setAttributes(PAL);
8089
ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
8090
Inst = CI;
8091
return false;
8092
}
8093
8094
//===----------------------------------------------------------------------===//
8095
// Memory Instructions.
8096
//===----------------------------------------------------------------------===//
8097
8098
/// parseAlloc
8099
/// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
8100
/// (',' 'align' i32)? (',', 'addrspace(n))?
8101
int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
8102
Value *Size = nullptr;
8103
LocTy SizeLoc, TyLoc, ASLoc;
8104
MaybeAlign Alignment;
8105
unsigned AddrSpace = 0;
8106
Type *Ty = nullptr;
8107
8108
bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
8109
bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
8110
8111
if (parseType(Ty, TyLoc))
8112
return true;
8113
8114
if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
8115
return error(TyLoc, "invalid type for alloca");
8116
8117
bool AteExtraComma = false;
8118
if (EatIfPresent(lltok::comma)) {
8119
if (Lex.getKind() == lltok::kw_align) {
8120
if (parseOptionalAlignment(Alignment))
8121
return true;
8122
if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
8123
return true;
8124
} else if (Lex.getKind() == lltok::kw_addrspace) {
8125
ASLoc = Lex.getLoc();
8126
if (parseOptionalAddrSpace(AddrSpace))
8127
return true;
8128
} else if (Lex.getKind() == lltok::MetadataVar) {
8129
AteExtraComma = true;
8130
} else {
8131
if (parseTypeAndValue(Size, SizeLoc, PFS))
8132
return true;
8133
if (EatIfPresent(lltok::comma)) {
8134
if (Lex.getKind() == lltok::kw_align) {
8135
if (parseOptionalAlignment(Alignment))
8136
return true;
8137
if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
8138
return true;
8139
} else if (Lex.getKind() == lltok::kw_addrspace) {
8140
ASLoc = Lex.getLoc();
8141
if (parseOptionalAddrSpace(AddrSpace))
8142
return true;
8143
} else if (Lex.getKind() == lltok::MetadataVar) {
8144
AteExtraComma = true;
8145
}
8146
}
8147
}
8148
}
8149
8150
if (Size && !Size->getType()->isIntegerTy())
8151
return error(SizeLoc, "element count must have integer type");
8152
8153
SmallPtrSet<Type *, 4> Visited;
8154
if (!Alignment && !Ty->isSized(&Visited))
8155
return error(TyLoc, "Cannot allocate unsized type");
8156
if (!Alignment)
8157
Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
8158
AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
8159
AI->setUsedWithInAlloca(IsInAlloca);
8160
AI->setSwiftError(IsSwiftError);
8161
Inst = AI;
8162
return AteExtraComma ? InstExtraComma : InstNormal;
8163
}
8164
8165
/// parseLoad
8166
/// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
8167
/// ::= 'load' 'atomic' 'volatile'? TypeAndValue
8168
/// 'singlethread'? AtomicOrdering (',' 'align' i32)?
8169
int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
8170
Value *Val; LocTy Loc;
8171
MaybeAlign Alignment;
8172
bool AteExtraComma = false;
8173
bool isAtomic = false;
8174
AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
8175
SyncScope::ID SSID = SyncScope::System;
8176
8177
if (Lex.getKind() == lltok::kw_atomic) {
8178
isAtomic = true;
8179
Lex.Lex();
8180
}
8181
8182
bool isVolatile = false;
8183
if (Lex.getKind() == lltok::kw_volatile) {
8184
isVolatile = true;
8185
Lex.Lex();
8186
}
8187
8188
Type *Ty;
8189
LocTy ExplicitTypeLoc = Lex.getLoc();
8190
if (parseType(Ty) ||
8191
parseToken(lltok::comma, "expected comma after load's type") ||
8192
parseTypeAndValue(Val, Loc, PFS) ||
8193
parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
8194
parseOptionalCommaAlign(Alignment, AteExtraComma))
8195
return true;
8196
8197
if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
8198
return error(Loc, "load operand must be a pointer to a first class type");
8199
if (isAtomic && !Alignment)
8200
return error(Loc, "atomic load must have explicit non-zero alignment");
8201
if (Ordering == AtomicOrdering::Release ||
8202
Ordering == AtomicOrdering::AcquireRelease)
8203
return error(Loc, "atomic load cannot use Release ordering");
8204
8205
SmallPtrSet<Type *, 4> Visited;
8206
if (!Alignment && !Ty->isSized(&Visited))
8207
return error(ExplicitTypeLoc, "loading unsized types is not allowed");
8208
if (!Alignment)
8209
Alignment = M->getDataLayout().getABITypeAlign(Ty);
8210
Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
8211
return AteExtraComma ? InstExtraComma : InstNormal;
8212
}
8213
8214
/// parseStore
8215
8216
/// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
8217
/// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
8218
/// 'singlethread'? AtomicOrdering (',' 'align' i32)?
8219
int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
8220
Value *Val, *Ptr; LocTy Loc, PtrLoc;
8221
MaybeAlign Alignment;
8222
bool AteExtraComma = false;
8223
bool isAtomic = false;
8224
AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
8225
SyncScope::ID SSID = SyncScope::System;
8226
8227
if (Lex.getKind() == lltok::kw_atomic) {
8228
isAtomic = true;
8229
Lex.Lex();
8230
}
8231
8232
bool isVolatile = false;
8233
if (Lex.getKind() == lltok::kw_volatile) {
8234
isVolatile = true;
8235
Lex.Lex();
8236
}
8237
8238
if (parseTypeAndValue(Val, Loc, PFS) ||
8239
parseToken(lltok::comma, "expected ',' after store operand") ||
8240
parseTypeAndValue(Ptr, PtrLoc, PFS) ||
8241
parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
8242
parseOptionalCommaAlign(Alignment, AteExtraComma))
8243
return true;
8244
8245
if (!Ptr->getType()->isPointerTy())
8246
return error(PtrLoc, "store operand must be a pointer");
8247
if (!Val->getType()->isFirstClassType())
8248
return error(Loc, "store operand must be a first class value");
8249
if (isAtomic && !Alignment)
8250
return error(Loc, "atomic store must have explicit non-zero alignment");
8251
if (Ordering == AtomicOrdering::Acquire ||
8252
Ordering == AtomicOrdering::AcquireRelease)
8253
return error(Loc, "atomic store cannot use Acquire ordering");
8254
SmallPtrSet<Type *, 4> Visited;
8255
if (!Alignment && !Val->getType()->isSized(&Visited))
8256
return error(Loc, "storing unsized types is not allowed");
8257
if (!Alignment)
8258
Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
8259
8260
Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
8261
return AteExtraComma ? InstExtraComma : InstNormal;
8262
}
8263
8264
/// parseCmpXchg
8265
/// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
8266
/// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
8267
/// 'Align'?
8268
int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
8269
Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
8270
bool AteExtraComma = false;
8271
AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
8272
AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
8273
SyncScope::ID SSID = SyncScope::System;
8274
bool isVolatile = false;
8275
bool isWeak = false;
8276
MaybeAlign Alignment;
8277
8278
if (EatIfPresent(lltok::kw_weak))
8279
isWeak = true;
8280
8281
if (EatIfPresent(lltok::kw_volatile))
8282
isVolatile = true;
8283
8284
if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
8285
parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
8286
parseTypeAndValue(Cmp, CmpLoc, PFS) ||
8287
parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
8288
parseTypeAndValue(New, NewLoc, PFS) ||
8289
parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
8290
parseOrdering(FailureOrdering) ||
8291
parseOptionalCommaAlign(Alignment, AteExtraComma))
8292
return true;
8293
8294
if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
8295
return tokError("invalid cmpxchg success ordering");
8296
if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
8297
return tokError("invalid cmpxchg failure ordering");
8298
if (!Ptr->getType()->isPointerTy())
8299
return error(PtrLoc, "cmpxchg operand must be a pointer");
8300
if (Cmp->getType() != New->getType())
8301
return error(NewLoc, "compare value and new value type do not match");
8302
if (!New->getType()->isFirstClassType())
8303
return error(NewLoc, "cmpxchg operand must be a first class value");
8304
8305
const Align DefaultAlignment(
8306
PFS.getFunction().getDataLayout().getTypeStoreSize(
8307
Cmp->getType()));
8308
8309
AtomicCmpXchgInst *CXI =
8310
new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment.value_or(DefaultAlignment),
8311
SuccessOrdering, FailureOrdering, SSID);
8312
CXI->setVolatile(isVolatile);
8313
CXI->setWeak(isWeak);
8314
8315
Inst = CXI;
8316
return AteExtraComma ? InstExtraComma : InstNormal;
8317
}
8318
8319
/// parseAtomicRMW
8320
/// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
8321
/// 'singlethread'? AtomicOrdering
8322
int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
8323
Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
8324
bool AteExtraComma = false;
8325
AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
8326
SyncScope::ID SSID = SyncScope::System;
8327
bool isVolatile = false;
8328
bool IsFP = false;
8329
AtomicRMWInst::BinOp Operation;
8330
MaybeAlign Alignment;
8331
8332
if (EatIfPresent(lltok::kw_volatile))
8333
isVolatile = true;
8334
8335
switch (Lex.getKind()) {
8336
default:
8337
return tokError("expected binary operation in atomicrmw");
8338
case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
8339
case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
8340
case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
8341
case lltok::kw_and: Operation = AtomicRMWInst::And; break;
8342
case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
8343
case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
8344
case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
8345
case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
8346
case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
8347
case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
8348
case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
8349
case lltok::kw_uinc_wrap:
8350
Operation = AtomicRMWInst::UIncWrap;
8351
break;
8352
case lltok::kw_udec_wrap:
8353
Operation = AtomicRMWInst::UDecWrap;
8354
break;
8355
case lltok::kw_fadd:
8356
Operation = AtomicRMWInst::FAdd;
8357
IsFP = true;
8358
break;
8359
case lltok::kw_fsub:
8360
Operation = AtomicRMWInst::FSub;
8361
IsFP = true;
8362
break;
8363
case lltok::kw_fmax:
8364
Operation = AtomicRMWInst::FMax;
8365
IsFP = true;
8366
break;
8367
case lltok::kw_fmin:
8368
Operation = AtomicRMWInst::FMin;
8369
IsFP = true;
8370
break;
8371
}
8372
Lex.Lex(); // Eat the operation.
8373
8374
if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
8375
parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
8376
parseTypeAndValue(Val, ValLoc, PFS) ||
8377
parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
8378
parseOptionalCommaAlign(Alignment, AteExtraComma))
8379
return true;
8380
8381
if (Ordering == AtomicOrdering::Unordered)
8382
return tokError("atomicrmw cannot be unordered");
8383
if (!Ptr->getType()->isPointerTy())
8384
return error(PtrLoc, "atomicrmw operand must be a pointer");
8385
if (Val->getType()->isScalableTy())
8386
return error(ValLoc, "atomicrmw operand may not be scalable");
8387
8388
if (Operation == AtomicRMWInst::Xchg) {
8389
if (!Val->getType()->isIntegerTy() &&
8390
!Val->getType()->isFloatingPointTy() &&
8391
!Val->getType()->isPointerTy()) {
8392
return error(
8393
ValLoc,
8394
"atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
8395
" operand must be an integer, floating point, or pointer type");
8396
}
8397
} else if (IsFP) {
8398
if (!Val->getType()->isFPOrFPVectorTy()) {
8399
return error(ValLoc, "atomicrmw " +
8400
AtomicRMWInst::getOperationName(Operation) +
8401
" operand must be a floating point type");
8402
}
8403
} else {
8404
if (!Val->getType()->isIntegerTy()) {
8405
return error(ValLoc, "atomicrmw " +
8406
AtomicRMWInst::getOperationName(Operation) +
8407
" operand must be an integer");
8408
}
8409
}
8410
8411
unsigned Size =
8412
PFS.getFunction().getDataLayout().getTypeStoreSizeInBits(
8413
Val->getType());
8414
if (Size < 8 || (Size & (Size - 1)))
8415
return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
8416
" integer");
8417
const Align DefaultAlignment(
8418
PFS.getFunction().getDataLayout().getTypeStoreSize(
8419
Val->getType()));
8420
AtomicRMWInst *RMWI =
8421
new AtomicRMWInst(Operation, Ptr, Val,
8422
Alignment.value_or(DefaultAlignment), Ordering, SSID);
8423
RMWI->setVolatile(isVolatile);
8424
Inst = RMWI;
8425
return AteExtraComma ? InstExtraComma : InstNormal;
8426
}
8427
8428
/// parseFence
8429
/// ::= 'fence' 'singlethread'? AtomicOrdering
8430
int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
8431
AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
8432
SyncScope::ID SSID = SyncScope::System;
8433
if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
8434
return true;
8435
8436
if (Ordering == AtomicOrdering::Unordered)
8437
return tokError("fence cannot be unordered");
8438
if (Ordering == AtomicOrdering::Monotonic)
8439
return tokError("fence cannot be monotonic");
8440
8441
Inst = new FenceInst(Context, Ordering, SSID);
8442
return InstNormal;
8443
}
8444
8445
/// parseGetElementPtr
8446
/// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
8447
int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
8448
Value *Ptr = nullptr;
8449
Value *Val = nullptr;
8450
LocTy Loc, EltLoc;
8451
GEPNoWrapFlags NW;
8452
8453
while (true) {
8454
if (EatIfPresent(lltok::kw_inbounds))
8455
NW |= GEPNoWrapFlags::inBounds();
8456
else if (EatIfPresent(lltok::kw_nusw))
8457
NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
8458
else if (EatIfPresent(lltok::kw_nuw))
8459
NW |= GEPNoWrapFlags::noUnsignedWrap();
8460
else
8461
break;
8462
}
8463
8464
Type *Ty = nullptr;
8465
if (parseType(Ty) ||
8466
parseToken(lltok::comma, "expected comma after getelementptr's type") ||
8467
parseTypeAndValue(Ptr, Loc, PFS))
8468
return true;
8469
8470
Type *BaseType = Ptr->getType();
8471
PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
8472
if (!BasePointerType)
8473
return error(Loc, "base of getelementptr must be a pointer");
8474
8475
SmallVector<Value*, 16> Indices;
8476
bool AteExtraComma = false;
8477
// GEP returns a vector of pointers if at least one of parameters is a vector.
8478
// All vector parameters should have the same vector width.
8479
ElementCount GEPWidth = BaseType->isVectorTy()
8480
? cast<VectorType>(BaseType)->getElementCount()
8481
: ElementCount::getFixed(0);
8482
8483
while (EatIfPresent(lltok::comma)) {
8484
if (Lex.getKind() == lltok::MetadataVar) {
8485
AteExtraComma = true;
8486
break;
8487
}
8488
if (parseTypeAndValue(Val, EltLoc, PFS))
8489
return true;
8490
if (!Val->getType()->isIntOrIntVectorTy())
8491
return error(EltLoc, "getelementptr index must be an integer");
8492
8493
if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
8494
ElementCount ValNumEl = ValVTy->getElementCount();
8495
if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
8496
return error(
8497
EltLoc,
8498
"getelementptr vector index has a wrong number of elements");
8499
GEPWidth = ValNumEl;
8500
}
8501
Indices.push_back(Val);
8502
}
8503
8504
SmallPtrSet<Type*, 4> Visited;
8505
if (!Indices.empty() && !Ty->isSized(&Visited))
8506
return error(Loc, "base element of getelementptr must be sized");
8507
8508
auto *STy = dyn_cast<StructType>(Ty);
8509
if (STy && STy->containsScalableVectorType())
8510
return error(Loc, "getelementptr cannot target structure that contains "
8511
"scalable vector type");
8512
8513
if (!GetElementPtrInst::getIndexedType(Ty, Indices))
8514
return error(Loc, "invalid getelementptr indices");
8515
GetElementPtrInst *GEP = GetElementPtrInst::Create(Ty, Ptr, Indices);
8516
Inst = GEP;
8517
GEP->setNoWrapFlags(NW);
8518
return AteExtraComma ? InstExtraComma : InstNormal;
8519
}
8520
8521
/// parseExtractValue
8522
/// ::= 'extractvalue' TypeAndValue (',' uint32)+
8523
int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
8524
Value *Val; LocTy Loc;
8525
SmallVector<unsigned, 4> Indices;
8526
bool AteExtraComma;
8527
if (parseTypeAndValue(Val, Loc, PFS) ||
8528
parseIndexList(Indices, AteExtraComma))
8529
return true;
8530
8531
if (!Val->getType()->isAggregateType())
8532
return error(Loc, "extractvalue operand must be aggregate type");
8533
8534
if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
8535
return error(Loc, "invalid indices for extractvalue");
8536
Inst = ExtractValueInst::Create(Val, Indices);
8537
return AteExtraComma ? InstExtraComma : InstNormal;
8538
}
8539
8540
/// parseInsertValue
8541
/// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
8542
int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
8543
Value *Val0, *Val1; LocTy Loc0, Loc1;
8544
SmallVector<unsigned, 4> Indices;
8545
bool AteExtraComma;
8546
if (parseTypeAndValue(Val0, Loc0, PFS) ||
8547
parseToken(lltok::comma, "expected comma after insertvalue operand") ||
8548
parseTypeAndValue(Val1, Loc1, PFS) ||
8549
parseIndexList(Indices, AteExtraComma))
8550
return true;
8551
8552
if (!Val0->getType()->isAggregateType())
8553
return error(Loc0, "insertvalue operand must be aggregate type");
8554
8555
Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
8556
if (!IndexedType)
8557
return error(Loc0, "invalid indices for insertvalue");
8558
if (IndexedType != Val1->getType())
8559
return error(Loc1, "insertvalue operand and field disagree in type: '" +
8560
getTypeString(Val1->getType()) + "' instead of '" +
8561
getTypeString(IndexedType) + "'");
8562
Inst = InsertValueInst::Create(Val0, Val1, Indices);
8563
return AteExtraComma ? InstExtraComma : InstNormal;
8564
}
8565
8566
//===----------------------------------------------------------------------===//
8567
// Embedded metadata.
8568
//===----------------------------------------------------------------------===//
8569
8570
/// parseMDNodeVector
8571
/// ::= { Element (',' Element)* }
8572
/// Element
8573
/// ::= 'null' | Metadata
8574
bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
8575
if (parseToken(lltok::lbrace, "expected '{' here"))
8576
return true;
8577
8578
// Check for an empty list.
8579
if (EatIfPresent(lltok::rbrace))
8580
return false;
8581
8582
do {
8583
if (EatIfPresent(lltok::kw_null)) {
8584
Elts.push_back(nullptr);
8585
continue;
8586
}
8587
8588
Metadata *MD;
8589
if (parseMetadata(MD, nullptr))
8590
return true;
8591
Elts.push_back(MD);
8592
} while (EatIfPresent(lltok::comma));
8593
8594
return parseToken(lltok::rbrace, "expected end of metadata node");
8595
}
8596
8597
//===----------------------------------------------------------------------===//
8598
// Use-list order directives.
8599
//===----------------------------------------------------------------------===//
8600
bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
8601
SMLoc Loc) {
8602
if (V->use_empty())
8603
return error(Loc, "value has no uses");
8604
8605
unsigned NumUses = 0;
8606
SmallDenseMap<const Use *, unsigned, 16> Order;
8607
for (const Use &U : V->uses()) {
8608
if (++NumUses > Indexes.size())
8609
break;
8610
Order[&U] = Indexes[NumUses - 1];
8611
}
8612
if (NumUses < 2)
8613
return error(Loc, "value only has one use");
8614
if (Order.size() != Indexes.size() || NumUses > Indexes.size())
8615
return error(Loc,
8616
"wrong number of indexes, expected " + Twine(V->getNumUses()));
8617
8618
V->sortUseList([&](const Use &L, const Use &R) {
8619
return Order.lookup(&L) < Order.lookup(&R);
8620
});
8621
return false;
8622
}
8623
8624
/// parseUseListOrderIndexes
8625
/// ::= '{' uint32 (',' uint32)+ '}'
8626
bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
8627
SMLoc Loc = Lex.getLoc();
8628
if (parseToken(lltok::lbrace, "expected '{' here"))
8629
return true;
8630
if (Lex.getKind() == lltok::rbrace)
8631
return Lex.Error("expected non-empty list of uselistorder indexes");
8632
8633
// Use Offset, Max, and IsOrdered to check consistency of indexes. The
8634
// indexes should be distinct numbers in the range [0, size-1], and should
8635
// not be in order.
8636
unsigned Offset = 0;
8637
unsigned Max = 0;
8638
bool IsOrdered = true;
8639
assert(Indexes.empty() && "Expected empty order vector");
8640
do {
8641
unsigned Index;
8642
if (parseUInt32(Index))
8643
return true;
8644
8645
// Update consistency checks.
8646
Offset += Index - Indexes.size();
8647
Max = std::max(Max, Index);
8648
IsOrdered &= Index == Indexes.size();
8649
8650
Indexes.push_back(Index);
8651
} while (EatIfPresent(lltok::comma));
8652
8653
if (parseToken(lltok::rbrace, "expected '}' here"))
8654
return true;
8655
8656
if (Indexes.size() < 2)
8657
return error(Loc, "expected >= 2 uselistorder indexes");
8658
if (Offset != 0 || Max >= Indexes.size())
8659
return error(Loc,
8660
"expected distinct uselistorder indexes in range [0, size)");
8661
if (IsOrdered)
8662
return error(Loc, "expected uselistorder indexes to change the order");
8663
8664
return false;
8665
}
8666
8667
/// parseUseListOrder
8668
/// ::= 'uselistorder' Type Value ',' UseListOrderIndexes
8669
bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
8670
SMLoc Loc = Lex.getLoc();
8671
if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
8672
return true;
8673
8674
Value *V;
8675
SmallVector<unsigned, 16> Indexes;
8676
if (parseTypeAndValue(V, PFS) ||
8677
parseToken(lltok::comma, "expected comma in uselistorder directive") ||
8678
parseUseListOrderIndexes(Indexes))
8679
return true;
8680
8681
return sortUseListOrder(V, Indexes, Loc);
8682
}
8683
8684
/// parseUseListOrderBB
8685
/// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
8686
bool LLParser::parseUseListOrderBB() {
8687
assert(Lex.getKind() == lltok::kw_uselistorder_bb);
8688
SMLoc Loc = Lex.getLoc();
8689
Lex.Lex();
8690
8691
ValID Fn, Label;
8692
SmallVector<unsigned, 16> Indexes;
8693
if (parseValID(Fn, /*PFS=*/nullptr) ||
8694
parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
8695
parseValID(Label, /*PFS=*/nullptr) ||
8696
parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
8697
parseUseListOrderIndexes(Indexes))
8698
return true;
8699
8700
// Check the function.
8701
GlobalValue *GV;
8702
if (Fn.Kind == ValID::t_GlobalName)
8703
GV = M->getNamedValue(Fn.StrVal);
8704
else if (Fn.Kind == ValID::t_GlobalID)
8705
GV = NumberedVals.get(Fn.UIntVal);
8706
else
8707
return error(Fn.Loc, "expected function name in uselistorder_bb");
8708
if (!GV)
8709
return error(Fn.Loc,
8710
"invalid function forward reference in uselistorder_bb");
8711
auto *F = dyn_cast<Function>(GV);
8712
if (!F)
8713
return error(Fn.Loc, "expected function name in uselistorder_bb");
8714
if (F->isDeclaration())
8715
return error(Fn.Loc, "invalid declaration in uselistorder_bb");
8716
8717
// Check the basic block.
8718
if (Label.Kind == ValID::t_LocalID)
8719
return error(Label.Loc, "invalid numeric label in uselistorder_bb");
8720
if (Label.Kind != ValID::t_LocalName)
8721
return error(Label.Loc, "expected basic block name in uselistorder_bb");
8722
Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
8723
if (!V)
8724
return error(Label.Loc, "invalid basic block in uselistorder_bb");
8725
if (!isa<BasicBlock>(V))
8726
return error(Label.Loc, "expected basic block in uselistorder_bb");
8727
8728
return sortUseListOrder(V, Indexes, Loc);
8729
}
8730
8731
/// ModuleEntry
8732
/// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
8733
/// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
8734
bool LLParser::parseModuleEntry(unsigned ID) {
8735
assert(Lex.getKind() == lltok::kw_module);
8736
Lex.Lex();
8737
8738
std::string Path;
8739
if (parseToken(lltok::colon, "expected ':' here") ||
8740
parseToken(lltok::lparen, "expected '(' here") ||
8741
parseToken(lltok::kw_path, "expected 'path' here") ||
8742
parseToken(lltok::colon, "expected ':' here") ||
8743
parseStringConstant(Path) ||
8744
parseToken(lltok::comma, "expected ',' here") ||
8745
parseToken(lltok::kw_hash, "expected 'hash' here") ||
8746
parseToken(lltok::colon, "expected ':' here") ||
8747
parseToken(lltok::lparen, "expected '(' here"))
8748
return true;
8749
8750
ModuleHash Hash;
8751
if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
8752
parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
8753
parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
8754
parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
8755
parseUInt32(Hash[4]))
8756
return true;
8757
8758
if (parseToken(lltok::rparen, "expected ')' here") ||
8759
parseToken(lltok::rparen, "expected ')' here"))
8760
return true;
8761
8762
auto ModuleEntry = Index->addModule(Path, Hash);
8763
ModuleIdMap[ID] = ModuleEntry->first();
8764
8765
return false;
8766
}
8767
8768
/// TypeIdEntry
8769
/// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
8770
bool LLParser::parseTypeIdEntry(unsigned ID) {
8771
assert(Lex.getKind() == lltok::kw_typeid);
8772
Lex.Lex();
8773
8774
std::string Name;
8775
if (parseToken(lltok::colon, "expected ':' here") ||
8776
parseToken(lltok::lparen, "expected '(' here") ||
8777
parseToken(lltok::kw_name, "expected 'name' here") ||
8778
parseToken(lltok::colon, "expected ':' here") ||
8779
parseStringConstant(Name))
8780
return true;
8781
8782
TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
8783
if (parseToken(lltok::comma, "expected ',' here") ||
8784
parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
8785
return true;
8786
8787
// Check if this ID was forward referenced, and if so, update the
8788
// corresponding GUIDs.
8789
auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8790
if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8791
for (auto TIDRef : FwdRefTIDs->second) {
8792
assert(!*TIDRef.first &&
8793
"Forward referenced type id GUID expected to be 0");
8794
*TIDRef.first = GlobalValue::getGUID(Name);
8795
}
8796
ForwardRefTypeIds.erase(FwdRefTIDs);
8797
}
8798
8799
return false;
8800
}
8801
8802
/// TypeIdSummary
8803
/// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
8804
bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
8805
if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
8806
parseToken(lltok::colon, "expected ':' here") ||
8807
parseToken(lltok::lparen, "expected '(' here") ||
8808
parseTypeTestResolution(TIS.TTRes))
8809
return true;
8810
8811
if (EatIfPresent(lltok::comma)) {
8812
// Expect optional wpdResolutions field
8813
if (parseOptionalWpdResolutions(TIS.WPDRes))
8814
return true;
8815
}
8816
8817
if (parseToken(lltok::rparen, "expected ')' here"))
8818
return true;
8819
8820
return false;
8821
}
8822
8823
static ValueInfo EmptyVI =
8824
ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
8825
8826
/// TypeIdCompatibleVtableEntry
8827
/// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
8828
/// TypeIdCompatibleVtableInfo
8829
/// ')'
8830
bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
8831
assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
8832
Lex.Lex();
8833
8834
std::string Name;
8835
if (parseToken(lltok::colon, "expected ':' here") ||
8836
parseToken(lltok::lparen, "expected '(' here") ||
8837
parseToken(lltok::kw_name, "expected 'name' here") ||
8838
parseToken(lltok::colon, "expected ':' here") ||
8839
parseStringConstant(Name))
8840
return true;
8841
8842
TypeIdCompatibleVtableInfo &TI =
8843
Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
8844
if (parseToken(lltok::comma, "expected ',' here") ||
8845
parseToken(lltok::kw_summary, "expected 'summary' here") ||
8846
parseToken(lltok::colon, "expected ':' here") ||
8847
parseToken(lltok::lparen, "expected '(' here"))
8848
return true;
8849
8850
IdToIndexMapType IdToIndexMap;
8851
// parse each call edge
8852
do {
8853
uint64_t Offset;
8854
if (parseToken(lltok::lparen, "expected '(' here") ||
8855
parseToken(lltok::kw_offset, "expected 'offset' here") ||
8856
parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8857
parseToken(lltok::comma, "expected ',' here"))
8858
return true;
8859
8860
LocTy Loc = Lex.getLoc();
8861
unsigned GVId;
8862
ValueInfo VI;
8863
if (parseGVReference(VI, GVId))
8864
return true;
8865
8866
// Keep track of the TypeIdCompatibleVtableInfo array index needing a
8867
// forward reference. We will save the location of the ValueInfo needing an
8868
// update, but can only do so once the std::vector is finalized.
8869
if (VI == EmptyVI)
8870
IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
8871
TI.push_back({Offset, VI});
8872
8873
if (parseToken(lltok::rparen, "expected ')' in call"))
8874
return true;
8875
} while (EatIfPresent(lltok::comma));
8876
8877
// Now that the TI vector is finalized, it is safe to save the locations
8878
// of any forward GV references that need updating later.
8879
for (auto I : IdToIndexMap) {
8880
auto &Infos = ForwardRefValueInfos[I.first];
8881
for (auto P : I.second) {
8882
assert(TI[P.first].VTableVI == EmptyVI &&
8883
"Forward referenced ValueInfo expected to be empty");
8884
Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8885
}
8886
}
8887
8888
if (parseToken(lltok::rparen, "expected ')' here") ||
8889
parseToken(lltok::rparen, "expected ')' here"))
8890
return true;
8891
8892
// Check if this ID was forward referenced, and if so, update the
8893
// corresponding GUIDs.
8894
auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8895
if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8896
for (auto TIDRef : FwdRefTIDs->second) {
8897
assert(!*TIDRef.first &&
8898
"Forward referenced type id GUID expected to be 0");
8899
*TIDRef.first = GlobalValue::getGUID(Name);
8900
}
8901
ForwardRefTypeIds.erase(FwdRefTIDs);
8902
}
8903
8904
return false;
8905
}
8906
8907
/// TypeTestResolution
8908
/// ::= 'typeTestRes' ':' '(' 'kind' ':'
8909
/// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8910
/// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8911
/// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8912
/// [',' 'inlinesBits' ':' UInt64]? ')'
8913
bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8914
if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8915
parseToken(lltok::colon, "expected ':' here") ||
8916
parseToken(lltok::lparen, "expected '(' here") ||
8917
parseToken(lltok::kw_kind, "expected 'kind' here") ||
8918
parseToken(lltok::colon, "expected ':' here"))
8919
return true;
8920
8921
switch (Lex.getKind()) {
8922
case lltok::kw_unknown:
8923
TTRes.TheKind = TypeTestResolution::Unknown;
8924
break;
8925
case lltok::kw_unsat:
8926
TTRes.TheKind = TypeTestResolution::Unsat;
8927
break;
8928
case lltok::kw_byteArray:
8929
TTRes.TheKind = TypeTestResolution::ByteArray;
8930
break;
8931
case lltok::kw_inline:
8932
TTRes.TheKind = TypeTestResolution::Inline;
8933
break;
8934
case lltok::kw_single:
8935
TTRes.TheKind = TypeTestResolution::Single;
8936
break;
8937
case lltok::kw_allOnes:
8938
TTRes.TheKind = TypeTestResolution::AllOnes;
8939
break;
8940
default:
8941
return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8942
}
8943
Lex.Lex();
8944
8945
if (parseToken(lltok::comma, "expected ',' here") ||
8946
parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8947
parseToken(lltok::colon, "expected ':' here") ||
8948
parseUInt32(TTRes.SizeM1BitWidth))
8949
return true;
8950
8951
// parse optional fields
8952
while (EatIfPresent(lltok::comma)) {
8953
switch (Lex.getKind()) {
8954
case lltok::kw_alignLog2:
8955
Lex.Lex();
8956
if (parseToken(lltok::colon, "expected ':'") ||
8957
parseUInt64(TTRes.AlignLog2))
8958
return true;
8959
break;
8960
case lltok::kw_sizeM1:
8961
Lex.Lex();
8962
if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8963
return true;
8964
break;
8965
case lltok::kw_bitMask: {
8966
unsigned Val;
8967
Lex.Lex();
8968
if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8969
return true;
8970
assert(Val <= 0xff);
8971
TTRes.BitMask = (uint8_t)Val;
8972
break;
8973
}
8974
case lltok::kw_inlineBits:
8975
Lex.Lex();
8976
if (parseToken(lltok::colon, "expected ':'") ||
8977
parseUInt64(TTRes.InlineBits))
8978
return true;
8979
break;
8980
default:
8981
return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8982
}
8983
}
8984
8985
if (parseToken(lltok::rparen, "expected ')' here"))
8986
return true;
8987
8988
return false;
8989
}
8990
8991
/// OptionalWpdResolutions
8992
/// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8993
/// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8994
bool LLParser::parseOptionalWpdResolutions(
8995
std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8996
if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8997
parseToken(lltok::colon, "expected ':' here") ||
8998
parseToken(lltok::lparen, "expected '(' here"))
8999
return true;
9000
9001
do {
9002
uint64_t Offset;
9003
WholeProgramDevirtResolution WPDRes;
9004
if (parseToken(lltok::lparen, "expected '(' here") ||
9005
parseToken(lltok::kw_offset, "expected 'offset' here") ||
9006
parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
9007
parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
9008
parseToken(lltok::rparen, "expected ')' here"))
9009
return true;
9010
WPDResMap[Offset] = WPDRes;
9011
} while (EatIfPresent(lltok::comma));
9012
9013
if (parseToken(lltok::rparen, "expected ')' here"))
9014
return true;
9015
9016
return false;
9017
}
9018
9019
/// WpdRes
9020
/// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
9021
/// [',' OptionalResByArg]? ')'
9022
/// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
9023
/// ',' 'singleImplName' ':' STRINGCONSTANT ','
9024
/// [',' OptionalResByArg]? ')'
9025
/// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
9026
/// [',' OptionalResByArg]? ')'
9027
bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
9028
if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
9029
parseToken(lltok::colon, "expected ':' here") ||
9030
parseToken(lltok::lparen, "expected '(' here") ||
9031
parseToken(lltok::kw_kind, "expected 'kind' here") ||
9032
parseToken(lltok::colon, "expected ':' here"))
9033
return true;
9034
9035
switch (Lex.getKind()) {
9036
case lltok::kw_indir:
9037
WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
9038
break;
9039
case lltok::kw_singleImpl:
9040
WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
9041
break;
9042
case lltok::kw_branchFunnel:
9043
WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
9044
break;
9045
default:
9046
return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
9047
}
9048
Lex.Lex();
9049
9050
// parse optional fields
9051
while (EatIfPresent(lltok::comma)) {
9052
switch (Lex.getKind()) {
9053
case lltok::kw_singleImplName:
9054
Lex.Lex();
9055
if (parseToken(lltok::colon, "expected ':' here") ||
9056
parseStringConstant(WPDRes.SingleImplName))
9057
return true;
9058
break;
9059
case lltok::kw_resByArg:
9060
if (parseOptionalResByArg(WPDRes.ResByArg))
9061
return true;
9062
break;
9063
default:
9064
return error(Lex.getLoc(),
9065
"expected optional WholeProgramDevirtResolution field");
9066
}
9067
}
9068
9069
if (parseToken(lltok::rparen, "expected ')' here"))
9070
return true;
9071
9072
return false;
9073
}
9074
9075
/// OptionalResByArg
9076
/// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
9077
/// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
9078
/// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
9079
/// 'virtualConstProp' )
9080
/// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
9081
/// [',' 'bit' ':' UInt32]? ')'
9082
bool LLParser::parseOptionalResByArg(
9083
std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
9084
&ResByArg) {
9085
if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
9086
parseToken(lltok::colon, "expected ':' here") ||
9087
parseToken(lltok::lparen, "expected '(' here"))
9088
return true;
9089
9090
do {
9091
std::vector<uint64_t> Args;
9092
if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
9093
parseToken(lltok::kw_byArg, "expected 'byArg here") ||
9094
parseToken(lltok::colon, "expected ':' here") ||
9095
parseToken(lltok::lparen, "expected '(' here") ||
9096
parseToken(lltok::kw_kind, "expected 'kind' here") ||
9097
parseToken(lltok::colon, "expected ':' here"))
9098
return true;
9099
9100
WholeProgramDevirtResolution::ByArg ByArg;
9101
switch (Lex.getKind()) {
9102
case lltok::kw_indir:
9103
ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
9104
break;
9105
case lltok::kw_uniformRetVal:
9106
ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
9107
break;
9108
case lltok::kw_uniqueRetVal:
9109
ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
9110
break;
9111
case lltok::kw_virtualConstProp:
9112
ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
9113
break;
9114
default:
9115
return error(Lex.getLoc(),
9116
"unexpected WholeProgramDevirtResolution::ByArg kind");
9117
}
9118
Lex.Lex();
9119
9120
// parse optional fields
9121
while (EatIfPresent(lltok::comma)) {
9122
switch (Lex.getKind()) {
9123
case lltok::kw_info:
9124
Lex.Lex();
9125
if (parseToken(lltok::colon, "expected ':' here") ||
9126
parseUInt64(ByArg.Info))
9127
return true;
9128
break;
9129
case lltok::kw_byte:
9130
Lex.Lex();
9131
if (parseToken(lltok::colon, "expected ':' here") ||
9132
parseUInt32(ByArg.Byte))
9133
return true;
9134
break;
9135
case lltok::kw_bit:
9136
Lex.Lex();
9137
if (parseToken(lltok::colon, "expected ':' here") ||
9138
parseUInt32(ByArg.Bit))
9139
return true;
9140
break;
9141
default:
9142
return error(Lex.getLoc(),
9143
"expected optional whole program devirt field");
9144
}
9145
}
9146
9147
if (parseToken(lltok::rparen, "expected ')' here"))
9148
return true;
9149
9150
ResByArg[Args] = ByArg;
9151
} while (EatIfPresent(lltok::comma));
9152
9153
if (parseToken(lltok::rparen, "expected ')' here"))
9154
return true;
9155
9156
return false;
9157
}
9158
9159
/// OptionalResByArg
9160
/// ::= 'args' ':' '(' UInt64[, UInt64]* ')'
9161
bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
9162
if (parseToken(lltok::kw_args, "expected 'args' here") ||
9163
parseToken(lltok::colon, "expected ':' here") ||
9164
parseToken(lltok::lparen, "expected '(' here"))
9165
return true;
9166
9167
do {
9168
uint64_t Val;
9169
if (parseUInt64(Val))
9170
return true;
9171
Args.push_back(Val);
9172
} while (EatIfPresent(lltok::comma));
9173
9174
if (parseToken(lltok::rparen, "expected ')' here"))
9175
return true;
9176
9177
return false;
9178
}
9179
9180
static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
9181
9182
static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
9183
bool ReadOnly = Fwd->isReadOnly();
9184
bool WriteOnly = Fwd->isWriteOnly();
9185
assert(!(ReadOnly && WriteOnly));
9186
*Fwd = Resolved;
9187
if (ReadOnly)
9188
Fwd->setReadOnly();
9189
if (WriteOnly)
9190
Fwd->setWriteOnly();
9191
}
9192
9193
/// Stores the given Name/GUID and associated summary into the Index.
9194
/// Also updates any forward references to the associated entry ID.
9195
bool LLParser::addGlobalValueToIndex(
9196
std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
9197
unsigned ID, std::unique_ptr<GlobalValueSummary> Summary, LocTy Loc) {
9198
// First create the ValueInfo utilizing the Name or GUID.
9199
ValueInfo VI;
9200
if (GUID != 0) {
9201
assert(Name.empty());
9202
VI = Index->getOrInsertValueInfo(GUID);
9203
} else {
9204
assert(!Name.empty());
9205
if (M) {
9206
auto *GV = M->getNamedValue(Name);
9207
if (!GV)
9208
return error(Loc, "Reference to undefined global \"" + Name + "\"");
9209
9210
VI = Index->getOrInsertValueInfo(GV);
9211
} else {
9212
assert(
9213
(!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
9214
"Need a source_filename to compute GUID for local");
9215
GUID = GlobalValue::getGUID(
9216
GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
9217
VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
9218
}
9219
}
9220
9221
// Resolve forward references from calls/refs
9222
auto FwdRefVIs = ForwardRefValueInfos.find(ID);
9223
if (FwdRefVIs != ForwardRefValueInfos.end()) {
9224
for (auto VIRef : FwdRefVIs->second) {
9225
assert(VIRef.first->getRef() == FwdVIRef &&
9226
"Forward referenced ValueInfo expected to be empty");
9227
resolveFwdRef(VIRef.first, VI);
9228
}
9229
ForwardRefValueInfos.erase(FwdRefVIs);
9230
}
9231
9232
// Resolve forward references from aliases
9233
auto FwdRefAliasees = ForwardRefAliasees.find(ID);
9234
if (FwdRefAliasees != ForwardRefAliasees.end()) {
9235
for (auto AliaseeRef : FwdRefAliasees->second) {
9236
assert(!AliaseeRef.first->hasAliasee() &&
9237
"Forward referencing alias already has aliasee");
9238
assert(Summary && "Aliasee must be a definition");
9239
AliaseeRef.first->setAliasee(VI, Summary.get());
9240
}
9241
ForwardRefAliasees.erase(FwdRefAliasees);
9242
}
9243
9244
// Add the summary if one was provided.
9245
if (Summary)
9246
Index->addGlobalValueSummary(VI, std::move(Summary));
9247
9248
// Save the associated ValueInfo for use in later references by ID.
9249
if (ID == NumberedValueInfos.size())
9250
NumberedValueInfos.push_back(VI);
9251
else {
9252
// Handle non-continuous numbers (to make test simplification easier).
9253
if (ID > NumberedValueInfos.size())
9254
NumberedValueInfos.resize(ID + 1);
9255
NumberedValueInfos[ID] = VI;
9256
}
9257
9258
return false;
9259
}
9260
9261
/// parseSummaryIndexFlags
9262
/// ::= 'flags' ':' UInt64
9263
bool LLParser::parseSummaryIndexFlags() {
9264
assert(Lex.getKind() == lltok::kw_flags);
9265
Lex.Lex();
9266
9267
if (parseToken(lltok::colon, "expected ':' here"))
9268
return true;
9269
uint64_t Flags;
9270
if (parseUInt64(Flags))
9271
return true;
9272
if (Index)
9273
Index->setFlags(Flags);
9274
return false;
9275
}
9276
9277
/// parseBlockCount
9278
/// ::= 'blockcount' ':' UInt64
9279
bool LLParser::parseBlockCount() {
9280
assert(Lex.getKind() == lltok::kw_blockcount);
9281
Lex.Lex();
9282
9283
if (parseToken(lltok::colon, "expected ':' here"))
9284
return true;
9285
uint64_t BlockCount;
9286
if (parseUInt64(BlockCount))
9287
return true;
9288
if (Index)
9289
Index->setBlockCount(BlockCount);
9290
return false;
9291
}
9292
9293
/// parseGVEntry
9294
/// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
9295
/// [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
9296
/// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
9297
bool LLParser::parseGVEntry(unsigned ID) {
9298
assert(Lex.getKind() == lltok::kw_gv);
9299
Lex.Lex();
9300
9301
if (parseToken(lltok::colon, "expected ':' here") ||
9302
parseToken(lltok::lparen, "expected '(' here"))
9303
return true;
9304
9305
LocTy Loc = Lex.getLoc();
9306
std::string Name;
9307
GlobalValue::GUID GUID = 0;
9308
switch (Lex.getKind()) {
9309
case lltok::kw_name:
9310
Lex.Lex();
9311
if (parseToken(lltok::colon, "expected ':' here") ||
9312
parseStringConstant(Name))
9313
return true;
9314
// Can't create GUID/ValueInfo until we have the linkage.
9315
break;
9316
case lltok::kw_guid:
9317
Lex.Lex();
9318
if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
9319
return true;
9320
break;
9321
default:
9322
return error(Lex.getLoc(), "expected name or guid tag");
9323
}
9324
9325
if (!EatIfPresent(lltok::comma)) {
9326
// No summaries. Wrap up.
9327
if (parseToken(lltok::rparen, "expected ')' here"))
9328
return true;
9329
// This was created for a call to an external or indirect target.
9330
// A GUID with no summary came from a VALUE_GUID record, dummy GUID
9331
// created for indirect calls with VP. A Name with no GUID came from
9332
// an external definition. We pass ExternalLinkage since that is only
9333
// used when the GUID must be computed from Name, and in that case
9334
// the symbol must have external linkage.
9335
return addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
9336
nullptr, Loc);
9337
}
9338
9339
// Have a list of summaries
9340
if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
9341
parseToken(lltok::colon, "expected ':' here") ||
9342
parseToken(lltok::lparen, "expected '(' here"))
9343
return true;
9344
do {
9345
switch (Lex.getKind()) {
9346
case lltok::kw_function:
9347
if (parseFunctionSummary(Name, GUID, ID))
9348
return true;
9349
break;
9350
case lltok::kw_variable:
9351
if (parseVariableSummary(Name, GUID, ID))
9352
return true;
9353
break;
9354
case lltok::kw_alias:
9355
if (parseAliasSummary(Name, GUID, ID))
9356
return true;
9357
break;
9358
default:
9359
return error(Lex.getLoc(), "expected summary type");
9360
}
9361
} while (EatIfPresent(lltok::comma));
9362
9363
if (parseToken(lltok::rparen, "expected ')' here") ||
9364
parseToken(lltok::rparen, "expected ')' here"))
9365
return true;
9366
9367
return false;
9368
}
9369
9370
/// FunctionSummary
9371
/// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
9372
/// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
9373
/// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
9374
/// [',' OptionalRefs]? ')'
9375
bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
9376
unsigned ID) {
9377
LocTy Loc = Lex.getLoc();
9378
assert(Lex.getKind() == lltok::kw_function);
9379
Lex.Lex();
9380
9381
StringRef ModulePath;
9382
GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
9383
GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
9384
/*NotEligibleToImport=*/false,
9385
/*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false,
9386
GlobalValueSummary::Definition);
9387
unsigned InstCount;
9388
std::vector<FunctionSummary::EdgeTy> Calls;
9389
FunctionSummary::TypeIdInfo TypeIdInfo;
9390
std::vector<FunctionSummary::ParamAccess> ParamAccesses;
9391
std::vector<ValueInfo> Refs;
9392
std::vector<CallsiteInfo> Callsites;
9393
std::vector<AllocInfo> Allocs;
9394
// Default is all-zeros (conservative values).
9395
FunctionSummary::FFlags FFlags = {};
9396
if (parseToken(lltok::colon, "expected ':' here") ||
9397
parseToken(lltok::lparen, "expected '(' here") ||
9398
parseModuleReference(ModulePath) ||
9399
parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
9400
parseToken(lltok::comma, "expected ',' here") ||
9401
parseToken(lltok::kw_insts, "expected 'insts' here") ||
9402
parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
9403
return true;
9404
9405
// parse optional fields
9406
while (EatIfPresent(lltok::comma)) {
9407
switch (Lex.getKind()) {
9408
case lltok::kw_funcFlags:
9409
if (parseOptionalFFlags(FFlags))
9410
return true;
9411
break;
9412
case lltok::kw_calls:
9413
if (parseOptionalCalls(Calls))
9414
return true;
9415
break;
9416
case lltok::kw_typeIdInfo:
9417
if (parseOptionalTypeIdInfo(TypeIdInfo))
9418
return true;
9419
break;
9420
case lltok::kw_refs:
9421
if (parseOptionalRefs(Refs))
9422
return true;
9423
break;
9424
case lltok::kw_params:
9425
if (parseOptionalParamAccesses(ParamAccesses))
9426
return true;
9427
break;
9428
case lltok::kw_allocs:
9429
if (parseOptionalAllocs(Allocs))
9430
return true;
9431
break;
9432
case lltok::kw_callsites:
9433
if (parseOptionalCallsites(Callsites))
9434
return true;
9435
break;
9436
default:
9437
return error(Lex.getLoc(), "expected optional function summary field");
9438
}
9439
}
9440
9441
if (parseToken(lltok::rparen, "expected ')' here"))
9442
return true;
9443
9444
auto FS = std::make_unique<FunctionSummary>(
9445
GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
9446
std::move(Calls), std::move(TypeIdInfo.TypeTests),
9447
std::move(TypeIdInfo.TypeTestAssumeVCalls),
9448
std::move(TypeIdInfo.TypeCheckedLoadVCalls),
9449
std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
9450
std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
9451
std::move(ParamAccesses), std::move(Callsites), std::move(Allocs));
9452
9453
FS->setModulePath(ModulePath);
9454
9455
return addGlobalValueToIndex(Name, GUID,
9456
(GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
9457
std::move(FS), Loc);
9458
}
9459
9460
/// VariableSummary
9461
/// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
9462
/// [',' OptionalRefs]? ')'
9463
bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
9464
unsigned ID) {
9465
LocTy Loc = Lex.getLoc();
9466
assert(Lex.getKind() == lltok::kw_variable);
9467
Lex.Lex();
9468
9469
StringRef ModulePath;
9470
GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
9471
GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
9472
/*NotEligibleToImport=*/false,
9473
/*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false,
9474
GlobalValueSummary::Definition);
9475
GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
9476
/* WriteOnly */ false,
9477
/* Constant */ false,
9478
GlobalObject::VCallVisibilityPublic);
9479
std::vector<ValueInfo> Refs;
9480
VTableFuncList VTableFuncs;
9481
if (parseToken(lltok::colon, "expected ':' here") ||
9482
parseToken(lltok::lparen, "expected '(' here") ||
9483
parseModuleReference(ModulePath) ||
9484
parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
9485
parseToken(lltok::comma, "expected ',' here") ||
9486
parseGVarFlags(GVarFlags))
9487
return true;
9488
9489
// parse optional fields
9490
while (EatIfPresent(lltok::comma)) {
9491
switch (Lex.getKind()) {
9492
case lltok::kw_vTableFuncs:
9493
if (parseOptionalVTableFuncs(VTableFuncs))
9494
return true;
9495
break;
9496
case lltok::kw_refs:
9497
if (parseOptionalRefs(Refs))
9498
return true;
9499
break;
9500
default:
9501
return error(Lex.getLoc(), "expected optional variable summary field");
9502
}
9503
}
9504
9505
if (parseToken(lltok::rparen, "expected ')' here"))
9506
return true;
9507
9508
auto GS =
9509
std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
9510
9511
GS->setModulePath(ModulePath);
9512
GS->setVTableFuncs(std::move(VTableFuncs));
9513
9514
return addGlobalValueToIndex(Name, GUID,
9515
(GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
9516
std::move(GS), Loc);
9517
}
9518
9519
/// AliasSummary
9520
/// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
9521
/// 'aliasee' ':' GVReference ')'
9522
bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
9523
unsigned ID) {
9524
assert(Lex.getKind() == lltok::kw_alias);
9525
LocTy Loc = Lex.getLoc();
9526
Lex.Lex();
9527
9528
StringRef ModulePath;
9529
GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
9530
GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
9531
/*NotEligibleToImport=*/false,
9532
/*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false,
9533
GlobalValueSummary::Definition);
9534
if (parseToken(lltok::colon, "expected ':' here") ||
9535
parseToken(lltok::lparen, "expected '(' here") ||
9536
parseModuleReference(ModulePath) ||
9537
parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
9538
parseToken(lltok::comma, "expected ',' here") ||
9539
parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
9540
parseToken(lltok::colon, "expected ':' here"))
9541
return true;
9542
9543
ValueInfo AliaseeVI;
9544
unsigned GVId;
9545
if (parseGVReference(AliaseeVI, GVId))
9546
return true;
9547
9548
if (parseToken(lltok::rparen, "expected ')' here"))
9549
return true;
9550
9551
auto AS = std::make_unique<AliasSummary>(GVFlags);
9552
9553
AS->setModulePath(ModulePath);
9554
9555
// Record forward reference if the aliasee is not parsed yet.
9556
if (AliaseeVI.getRef() == FwdVIRef) {
9557
ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
9558
} else {
9559
auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
9560
assert(Summary && "Aliasee must be a definition");
9561
AS->setAliasee(AliaseeVI, Summary);
9562
}
9563
9564
return addGlobalValueToIndex(Name, GUID,
9565
(GlobalValue::LinkageTypes)GVFlags.Linkage, ID,
9566
std::move(AS), Loc);
9567
}
9568
9569
/// Flag
9570
/// ::= [0|1]
9571
bool LLParser::parseFlag(unsigned &Val) {
9572
if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
9573
return tokError("expected integer");
9574
Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
9575
Lex.Lex();
9576
return false;
9577
}
9578
9579
/// OptionalFFlags
9580
/// := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
9581
/// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
9582
/// [',' 'returnDoesNotAlias' ':' Flag]? ')'
9583
/// [',' 'noInline' ':' Flag]? ')'
9584
/// [',' 'alwaysInline' ':' Flag]? ')'
9585
/// [',' 'noUnwind' ':' Flag]? ')'
9586
/// [',' 'mayThrow' ':' Flag]? ')'
9587
/// [',' 'hasUnknownCall' ':' Flag]? ')'
9588
/// [',' 'mustBeUnreachable' ':' Flag]? ')'
9589
9590
bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
9591
assert(Lex.getKind() == lltok::kw_funcFlags);
9592
Lex.Lex();
9593
9594
if (parseToken(lltok::colon, "expected ':' in funcFlags") ||
9595
parseToken(lltok::lparen, "expected '(' in funcFlags"))
9596
return true;
9597
9598
do {
9599
unsigned Val = 0;
9600
switch (Lex.getKind()) {
9601
case lltok::kw_readNone:
9602
Lex.Lex();
9603
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9604
return true;
9605
FFlags.ReadNone = Val;
9606
break;
9607
case lltok::kw_readOnly:
9608
Lex.Lex();
9609
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9610
return true;
9611
FFlags.ReadOnly = Val;
9612
break;
9613
case lltok::kw_noRecurse:
9614
Lex.Lex();
9615
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9616
return true;
9617
FFlags.NoRecurse = Val;
9618
break;
9619
case lltok::kw_returnDoesNotAlias:
9620
Lex.Lex();
9621
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9622
return true;
9623
FFlags.ReturnDoesNotAlias = Val;
9624
break;
9625
case lltok::kw_noInline:
9626
Lex.Lex();
9627
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9628
return true;
9629
FFlags.NoInline = Val;
9630
break;
9631
case lltok::kw_alwaysInline:
9632
Lex.Lex();
9633
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9634
return true;
9635
FFlags.AlwaysInline = Val;
9636
break;
9637
case lltok::kw_noUnwind:
9638
Lex.Lex();
9639
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9640
return true;
9641
FFlags.NoUnwind = Val;
9642
break;
9643
case lltok::kw_mayThrow:
9644
Lex.Lex();
9645
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9646
return true;
9647
FFlags.MayThrow = Val;
9648
break;
9649
case lltok::kw_hasUnknownCall:
9650
Lex.Lex();
9651
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9652
return true;
9653
FFlags.HasUnknownCall = Val;
9654
break;
9655
case lltok::kw_mustBeUnreachable:
9656
Lex.Lex();
9657
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
9658
return true;
9659
FFlags.MustBeUnreachable = Val;
9660
break;
9661
default:
9662
return error(Lex.getLoc(), "expected function flag type");
9663
}
9664
} while (EatIfPresent(lltok::comma));
9665
9666
if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
9667
return true;
9668
9669
return false;
9670
}
9671
9672
/// OptionalCalls
9673
/// := 'calls' ':' '(' Call [',' Call]* ')'
9674
/// Call ::= '(' 'callee' ':' GVReference
9675
/// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]?
9676
/// [ ',' 'tail' ]? ')'
9677
bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
9678
assert(Lex.getKind() == lltok::kw_calls);
9679
Lex.Lex();
9680
9681
if (parseToken(lltok::colon, "expected ':' in calls") ||
9682
parseToken(lltok::lparen, "expected '(' in calls"))
9683
return true;
9684
9685
IdToIndexMapType IdToIndexMap;
9686
// parse each call edge
9687
do {
9688
ValueInfo VI;
9689
if (parseToken(lltok::lparen, "expected '(' in call") ||
9690
parseToken(lltok::kw_callee, "expected 'callee' in call") ||
9691
parseToken(lltok::colon, "expected ':'"))
9692
return true;
9693
9694
LocTy Loc = Lex.getLoc();
9695
unsigned GVId;
9696
if (parseGVReference(VI, GVId))
9697
return true;
9698
9699
CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
9700
unsigned RelBF = 0;
9701
unsigned HasTailCall = false;
9702
9703
// parse optional fields
9704
while (EatIfPresent(lltok::comma)) {
9705
switch (Lex.getKind()) {
9706
case lltok::kw_hotness:
9707
Lex.Lex();
9708
if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
9709
return true;
9710
break;
9711
case lltok::kw_relbf:
9712
Lex.Lex();
9713
if (parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
9714
return true;
9715
break;
9716
case lltok::kw_tail:
9717
Lex.Lex();
9718
if (parseToken(lltok::colon, "expected ':'") || parseFlag(HasTailCall))
9719
return true;
9720
break;
9721
default:
9722
return error(Lex.getLoc(), "expected hotness, relbf, or tail");
9723
}
9724
}
9725
if (Hotness != CalleeInfo::HotnessType::Unknown && RelBF > 0)
9726
return tokError("Expected only one of hotness or relbf");
9727
// Keep track of the Call array index needing a forward reference.
9728
// We will save the location of the ValueInfo needing an update, but
9729
// can only do so once the std::vector is finalized.
9730
if (VI.getRef() == FwdVIRef)
9731
IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
9732
Calls.push_back(
9733
FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, HasTailCall, RelBF)});
9734
9735
if (parseToken(lltok::rparen, "expected ')' in call"))
9736
return true;
9737
} while (EatIfPresent(lltok::comma));
9738
9739
// Now that the Calls vector is finalized, it is safe to save the locations
9740
// of any forward GV references that need updating later.
9741
for (auto I : IdToIndexMap) {
9742
auto &Infos = ForwardRefValueInfos[I.first];
9743
for (auto P : I.second) {
9744
assert(Calls[P.first].first.getRef() == FwdVIRef &&
9745
"Forward referenced ValueInfo expected to be empty");
9746
Infos.emplace_back(&Calls[P.first].first, P.second);
9747
}
9748
}
9749
9750
if (parseToken(lltok::rparen, "expected ')' in calls"))
9751
return true;
9752
9753
return false;
9754
}
9755
9756
/// Hotness
9757
/// := ('unknown'|'cold'|'none'|'hot'|'critical')
9758
bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
9759
switch (Lex.getKind()) {
9760
case lltok::kw_unknown:
9761
Hotness = CalleeInfo::HotnessType::Unknown;
9762
break;
9763
case lltok::kw_cold:
9764
Hotness = CalleeInfo::HotnessType::Cold;
9765
break;
9766
case lltok::kw_none:
9767
Hotness = CalleeInfo::HotnessType::None;
9768
break;
9769
case lltok::kw_hot:
9770
Hotness = CalleeInfo::HotnessType::Hot;
9771
break;
9772
case lltok::kw_critical:
9773
Hotness = CalleeInfo::HotnessType::Critical;
9774
break;
9775
default:
9776
return error(Lex.getLoc(), "invalid call edge hotness");
9777
}
9778
Lex.Lex();
9779
return false;
9780
}
9781
9782
/// OptionalVTableFuncs
9783
/// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
9784
/// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
9785
bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
9786
assert(Lex.getKind() == lltok::kw_vTableFuncs);
9787
Lex.Lex();
9788
9789
if (parseToken(lltok::colon, "expected ':' in vTableFuncs") ||
9790
parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
9791
return true;
9792
9793
IdToIndexMapType IdToIndexMap;
9794
// parse each virtual function pair
9795
do {
9796
ValueInfo VI;
9797
if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
9798
parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
9799
parseToken(lltok::colon, "expected ':'"))
9800
return true;
9801
9802
LocTy Loc = Lex.getLoc();
9803
unsigned GVId;
9804
if (parseGVReference(VI, GVId))
9805
return true;
9806
9807
uint64_t Offset;
9808
if (parseToken(lltok::comma, "expected comma") ||
9809
parseToken(lltok::kw_offset, "expected offset") ||
9810
parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
9811
return true;
9812
9813
// Keep track of the VTableFuncs array index needing a forward reference.
9814
// We will save the location of the ValueInfo needing an update, but
9815
// can only do so once the std::vector is finalized.
9816
if (VI == EmptyVI)
9817
IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
9818
VTableFuncs.push_back({VI, Offset});
9819
9820
if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
9821
return true;
9822
} while (EatIfPresent(lltok::comma));
9823
9824
// Now that the VTableFuncs vector is finalized, it is safe to save the
9825
// locations of any forward GV references that need updating later.
9826
for (auto I : IdToIndexMap) {
9827
auto &Infos = ForwardRefValueInfos[I.first];
9828
for (auto P : I.second) {
9829
assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
9830
"Forward referenced ValueInfo expected to be empty");
9831
Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
9832
}
9833
}
9834
9835
if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
9836
return true;
9837
9838
return false;
9839
}
9840
9841
/// ParamNo := 'param' ':' UInt64
9842
bool LLParser::parseParamNo(uint64_t &ParamNo) {
9843
if (parseToken(lltok::kw_param, "expected 'param' here") ||
9844
parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
9845
return true;
9846
return false;
9847
}
9848
9849
/// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
9850
bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
9851
APSInt Lower;
9852
APSInt Upper;
9853
auto ParseAPSInt = [&](APSInt &Val) {
9854
if (Lex.getKind() != lltok::APSInt)
9855
return tokError("expected integer");
9856
Val = Lex.getAPSIntVal();
9857
Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
9858
Val.setIsSigned(true);
9859
Lex.Lex();
9860
return false;
9861
};
9862
if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
9863
parseToken(lltok::colon, "expected ':' here") ||
9864
parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
9865
parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
9866
parseToken(lltok::rsquare, "expected ']' here"))
9867
return true;
9868
9869
++Upper;
9870
Range =
9871
(Lower == Upper && !Lower.isMaxValue())
9872
? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
9873
: ConstantRange(Lower, Upper);
9874
9875
return false;
9876
}
9877
9878
/// ParamAccessCall
9879
/// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
9880
bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
9881
IdLocListType &IdLocList) {
9882
if (parseToken(lltok::lparen, "expected '(' here") ||
9883
parseToken(lltok::kw_callee, "expected 'callee' here") ||
9884
parseToken(lltok::colon, "expected ':' here"))
9885
return true;
9886
9887
unsigned GVId;
9888
ValueInfo VI;
9889
LocTy Loc = Lex.getLoc();
9890
if (parseGVReference(VI, GVId))
9891
return true;
9892
9893
Call.Callee = VI;
9894
IdLocList.emplace_back(GVId, Loc);
9895
9896
if (parseToken(lltok::comma, "expected ',' here") ||
9897
parseParamNo(Call.ParamNo) ||
9898
parseToken(lltok::comma, "expected ',' here") ||
9899
parseParamAccessOffset(Call.Offsets))
9900
return true;
9901
9902
if (parseToken(lltok::rparen, "expected ')' here"))
9903
return true;
9904
9905
return false;
9906
}
9907
9908
/// ParamAccess
9909
/// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
9910
/// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
9911
bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
9912
IdLocListType &IdLocList) {
9913
if (parseToken(lltok::lparen, "expected '(' here") ||
9914
parseParamNo(Param.ParamNo) ||
9915
parseToken(lltok::comma, "expected ',' here") ||
9916
parseParamAccessOffset(Param.Use))
9917
return true;
9918
9919
if (EatIfPresent(lltok::comma)) {
9920
if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
9921
parseToken(lltok::colon, "expected ':' here") ||
9922
parseToken(lltok::lparen, "expected '(' here"))
9923
return true;
9924
do {
9925
FunctionSummary::ParamAccess::Call Call;
9926
if (parseParamAccessCall(Call, IdLocList))
9927
return true;
9928
Param.Calls.push_back(Call);
9929
} while (EatIfPresent(lltok::comma));
9930
9931
if (parseToken(lltok::rparen, "expected ')' here"))
9932
return true;
9933
}
9934
9935
if (parseToken(lltok::rparen, "expected ')' here"))
9936
return true;
9937
9938
return false;
9939
}
9940
9941
/// OptionalParamAccesses
9942
/// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
9943
bool LLParser::parseOptionalParamAccesses(
9944
std::vector<FunctionSummary::ParamAccess> &Params) {
9945
assert(Lex.getKind() == lltok::kw_params);
9946
Lex.Lex();
9947
9948
if (parseToken(lltok::colon, "expected ':' here") ||
9949
parseToken(lltok::lparen, "expected '(' here"))
9950
return true;
9951
9952
IdLocListType VContexts;
9953
size_t CallsNum = 0;
9954
do {
9955
FunctionSummary::ParamAccess ParamAccess;
9956
if (parseParamAccess(ParamAccess, VContexts))
9957
return true;
9958
CallsNum += ParamAccess.Calls.size();
9959
assert(VContexts.size() == CallsNum);
9960
(void)CallsNum;
9961
Params.emplace_back(std::move(ParamAccess));
9962
} while (EatIfPresent(lltok::comma));
9963
9964
if (parseToken(lltok::rparen, "expected ')' here"))
9965
return true;
9966
9967
// Now that the Params is finalized, it is safe to save the locations
9968
// of any forward GV references that need updating later.
9969
IdLocListType::const_iterator ItContext = VContexts.begin();
9970
for (auto &PA : Params) {
9971
for (auto &C : PA.Calls) {
9972
if (C.Callee.getRef() == FwdVIRef)
9973
ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9974
ItContext->second);
9975
++ItContext;
9976
}
9977
}
9978
assert(ItContext == VContexts.end());
9979
9980
return false;
9981
}
9982
9983
/// OptionalRefs
9984
/// := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9985
bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9986
assert(Lex.getKind() == lltok::kw_refs);
9987
Lex.Lex();
9988
9989
if (parseToken(lltok::colon, "expected ':' in refs") ||
9990
parseToken(lltok::lparen, "expected '(' in refs"))
9991
return true;
9992
9993
struct ValueContext {
9994
ValueInfo VI;
9995
unsigned GVId;
9996
LocTy Loc;
9997
};
9998
std::vector<ValueContext> VContexts;
9999
// parse each ref edge
10000
do {
10001
ValueContext VC;
10002
VC.Loc = Lex.getLoc();
10003
if (parseGVReference(VC.VI, VC.GVId))
10004
return true;
10005
VContexts.push_back(VC);
10006
} while (EatIfPresent(lltok::comma));
10007
10008
// Sort value contexts so that ones with writeonly
10009
// and readonly ValueInfo are at the end of VContexts vector.
10010
// See FunctionSummary::specialRefCounts()
10011
llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
10012
return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
10013
});
10014
10015
IdToIndexMapType IdToIndexMap;
10016
for (auto &VC : VContexts) {
10017
// Keep track of the Refs array index needing a forward reference.
10018
// We will save the location of the ValueInfo needing an update, but
10019
// can only do so once the std::vector is finalized.
10020
if (VC.VI.getRef() == FwdVIRef)
10021
IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
10022
Refs.push_back(VC.VI);
10023
}
10024
10025
// Now that the Refs vector is finalized, it is safe to save the locations
10026
// of any forward GV references that need updating later.
10027
for (auto I : IdToIndexMap) {
10028
auto &Infos = ForwardRefValueInfos[I.first];
10029
for (auto P : I.second) {
10030
assert(Refs[P.first].getRef() == FwdVIRef &&
10031
"Forward referenced ValueInfo expected to be empty");
10032
Infos.emplace_back(&Refs[P.first], P.second);
10033
}
10034
}
10035
10036
if (parseToken(lltok::rparen, "expected ')' in refs"))
10037
return true;
10038
10039
return false;
10040
}
10041
10042
/// OptionalTypeIdInfo
10043
/// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
10044
/// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]?
10045
/// [',' TypeCheckedLoadConstVCalls]? ')'
10046
bool LLParser::parseOptionalTypeIdInfo(
10047
FunctionSummary::TypeIdInfo &TypeIdInfo) {
10048
assert(Lex.getKind() == lltok::kw_typeIdInfo);
10049
Lex.Lex();
10050
10051
if (parseToken(lltok::colon, "expected ':' here") ||
10052
parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
10053
return true;
10054
10055
do {
10056
switch (Lex.getKind()) {
10057
case lltok::kw_typeTests:
10058
if (parseTypeTests(TypeIdInfo.TypeTests))
10059
return true;
10060
break;
10061
case lltok::kw_typeTestAssumeVCalls:
10062
if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
10063
TypeIdInfo.TypeTestAssumeVCalls))
10064
return true;
10065
break;
10066
case lltok::kw_typeCheckedLoadVCalls:
10067
if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
10068
TypeIdInfo.TypeCheckedLoadVCalls))
10069
return true;
10070
break;
10071
case lltok::kw_typeTestAssumeConstVCalls:
10072
if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
10073
TypeIdInfo.TypeTestAssumeConstVCalls))
10074
return true;
10075
break;
10076
case lltok::kw_typeCheckedLoadConstVCalls:
10077
if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
10078
TypeIdInfo.TypeCheckedLoadConstVCalls))
10079
return true;
10080
break;
10081
default:
10082
return error(Lex.getLoc(), "invalid typeIdInfo list type");
10083
}
10084
} while (EatIfPresent(lltok::comma));
10085
10086
if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
10087
return true;
10088
10089
return false;
10090
}
10091
10092
/// TypeTests
10093
/// ::= 'typeTests' ':' '(' (SummaryID | UInt64)
10094
/// [',' (SummaryID | UInt64)]* ')'
10095
bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
10096
assert(Lex.getKind() == lltok::kw_typeTests);
10097
Lex.Lex();
10098
10099
if (parseToken(lltok::colon, "expected ':' here") ||
10100
parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
10101
return true;
10102
10103
IdToIndexMapType IdToIndexMap;
10104
do {
10105
GlobalValue::GUID GUID = 0;
10106
if (Lex.getKind() == lltok::SummaryID) {
10107
unsigned ID = Lex.getUIntVal();
10108
LocTy Loc = Lex.getLoc();
10109
// Keep track of the TypeTests array index needing a forward reference.
10110
// We will save the location of the GUID needing an update, but
10111
// can only do so once the std::vector is finalized.
10112
IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
10113
Lex.Lex();
10114
} else if (parseUInt64(GUID))
10115
return true;
10116
TypeTests.push_back(GUID);
10117
} while (EatIfPresent(lltok::comma));
10118
10119
// Now that the TypeTests vector is finalized, it is safe to save the
10120
// locations of any forward GV references that need updating later.
10121
for (auto I : IdToIndexMap) {
10122
auto &Ids = ForwardRefTypeIds[I.first];
10123
for (auto P : I.second) {
10124
assert(TypeTests[P.first] == 0 &&
10125
"Forward referenced type id GUID expected to be 0");
10126
Ids.emplace_back(&TypeTests[P.first], P.second);
10127
}
10128
}
10129
10130
if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
10131
return true;
10132
10133
return false;
10134
}
10135
10136
/// VFuncIdList
10137
/// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
10138
bool LLParser::parseVFuncIdList(
10139
lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
10140
assert(Lex.getKind() == Kind);
10141
Lex.Lex();
10142
10143
if (parseToken(lltok::colon, "expected ':' here") ||
10144
parseToken(lltok::lparen, "expected '(' here"))
10145
return true;
10146
10147
IdToIndexMapType IdToIndexMap;
10148
do {
10149
FunctionSummary::VFuncId VFuncId;
10150
if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
10151
return true;
10152
VFuncIdList.push_back(VFuncId);
10153
} while (EatIfPresent(lltok::comma));
10154
10155
if (parseToken(lltok::rparen, "expected ')' here"))
10156
return true;
10157
10158
// Now that the VFuncIdList vector is finalized, it is safe to save the
10159
// locations of any forward GV references that need updating later.
10160
for (auto I : IdToIndexMap) {
10161
auto &Ids = ForwardRefTypeIds[I.first];
10162
for (auto P : I.second) {
10163
assert(VFuncIdList[P.first].GUID == 0 &&
10164
"Forward referenced type id GUID expected to be 0");
10165
Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
10166
}
10167
}
10168
10169
return false;
10170
}
10171
10172
/// ConstVCallList
10173
/// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
10174
bool LLParser::parseConstVCallList(
10175
lltok::Kind Kind,
10176
std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
10177
assert(Lex.getKind() == Kind);
10178
Lex.Lex();
10179
10180
if (parseToken(lltok::colon, "expected ':' here") ||
10181
parseToken(lltok::lparen, "expected '(' here"))
10182
return true;
10183
10184
IdToIndexMapType IdToIndexMap;
10185
do {
10186
FunctionSummary::ConstVCall ConstVCall;
10187
if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
10188
return true;
10189
ConstVCallList.push_back(ConstVCall);
10190
} while (EatIfPresent(lltok::comma));
10191
10192
if (parseToken(lltok::rparen, "expected ')' here"))
10193
return true;
10194
10195
// Now that the ConstVCallList vector is finalized, it is safe to save the
10196
// locations of any forward GV references that need updating later.
10197
for (auto I : IdToIndexMap) {
10198
auto &Ids = ForwardRefTypeIds[I.first];
10199
for (auto P : I.second) {
10200
assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
10201
"Forward referenced type id GUID expected to be 0");
10202
Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
10203
}
10204
}
10205
10206
return false;
10207
}
10208
10209
/// ConstVCall
10210
/// ::= '(' VFuncId ',' Args ')'
10211
bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
10212
IdToIndexMapType &IdToIndexMap, unsigned Index) {
10213
if (parseToken(lltok::lparen, "expected '(' here") ||
10214
parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
10215
return true;
10216
10217
if (EatIfPresent(lltok::comma))
10218
if (parseArgs(ConstVCall.Args))
10219
return true;
10220
10221
if (parseToken(lltok::rparen, "expected ')' here"))
10222
return true;
10223
10224
return false;
10225
}
10226
10227
/// VFuncId
10228
/// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
10229
/// 'offset' ':' UInt64 ')'
10230
bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
10231
IdToIndexMapType &IdToIndexMap, unsigned Index) {
10232
assert(Lex.getKind() == lltok::kw_vFuncId);
10233
Lex.Lex();
10234
10235
if (parseToken(lltok::colon, "expected ':' here") ||
10236
parseToken(lltok::lparen, "expected '(' here"))
10237
return true;
10238
10239
if (Lex.getKind() == lltok::SummaryID) {
10240
VFuncId.GUID = 0;
10241
unsigned ID = Lex.getUIntVal();
10242
LocTy Loc = Lex.getLoc();
10243
// Keep track of the array index needing a forward reference.
10244
// We will save the location of the GUID needing an update, but
10245
// can only do so once the caller's std::vector is finalized.
10246
IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
10247
Lex.Lex();
10248
} else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
10249
parseToken(lltok::colon, "expected ':' here") ||
10250
parseUInt64(VFuncId.GUID))
10251
return true;
10252
10253
if (parseToken(lltok::comma, "expected ',' here") ||
10254
parseToken(lltok::kw_offset, "expected 'offset' here") ||
10255
parseToken(lltok::colon, "expected ':' here") ||
10256
parseUInt64(VFuncId.Offset) ||
10257
parseToken(lltok::rparen, "expected ')' here"))
10258
return true;
10259
10260
return false;
10261
}
10262
10263
/// GVFlags
10264
/// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
10265
/// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
10266
/// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
10267
/// 'canAutoHide' ':' Flag ',' ')'
10268
bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
10269
assert(Lex.getKind() == lltok::kw_flags);
10270
Lex.Lex();
10271
10272
if (parseToken(lltok::colon, "expected ':' here") ||
10273
parseToken(lltok::lparen, "expected '(' here"))
10274
return true;
10275
10276
do {
10277
unsigned Flag = 0;
10278
switch (Lex.getKind()) {
10279
case lltok::kw_linkage:
10280
Lex.Lex();
10281
if (parseToken(lltok::colon, "expected ':'"))
10282
return true;
10283
bool HasLinkage;
10284
GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
10285
assert(HasLinkage && "Linkage not optional in summary entry");
10286
Lex.Lex();
10287
break;
10288
case lltok::kw_visibility:
10289
Lex.Lex();
10290
if (parseToken(lltok::colon, "expected ':'"))
10291
return true;
10292
parseOptionalVisibility(Flag);
10293
GVFlags.Visibility = Flag;
10294
break;
10295
case lltok::kw_notEligibleToImport:
10296
Lex.Lex();
10297
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
10298
return true;
10299
GVFlags.NotEligibleToImport = Flag;
10300
break;
10301
case lltok::kw_live:
10302
Lex.Lex();
10303
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
10304
return true;
10305
GVFlags.Live = Flag;
10306
break;
10307
case lltok::kw_dsoLocal:
10308
Lex.Lex();
10309
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
10310
return true;
10311
GVFlags.DSOLocal = Flag;
10312
break;
10313
case lltok::kw_canAutoHide:
10314
Lex.Lex();
10315
if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
10316
return true;
10317
GVFlags.CanAutoHide = Flag;
10318
break;
10319
case lltok::kw_importType:
10320
Lex.Lex();
10321
if (parseToken(lltok::colon, "expected ':'"))
10322
return true;
10323
GlobalValueSummary::ImportKind IK;
10324
if (parseOptionalImportType(Lex.getKind(), IK))
10325
return true;
10326
GVFlags.ImportType = static_cast<unsigned>(IK);
10327
Lex.Lex();
10328
break;
10329
default:
10330
return error(Lex.getLoc(), "expected gv flag type");
10331
}
10332
} while (EatIfPresent(lltok::comma));
10333
10334
if (parseToken(lltok::rparen, "expected ')' here"))
10335
return true;
10336
10337
return false;
10338
}
10339
10340
/// GVarFlags
10341
/// ::= 'varFlags' ':' '(' 'readonly' ':' Flag
10342
/// ',' 'writeonly' ':' Flag
10343
/// ',' 'constant' ':' Flag ')'
10344
bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
10345
assert(Lex.getKind() == lltok::kw_varFlags);
10346
Lex.Lex();
10347
10348
if (parseToken(lltok::colon, "expected ':' here") ||
10349
parseToken(lltok::lparen, "expected '(' here"))
10350
return true;
10351
10352
auto ParseRest = [this](unsigned int &Val) {
10353
Lex.Lex();
10354
if (parseToken(lltok::colon, "expected ':'"))
10355
return true;
10356
return parseFlag(Val);
10357
};
10358
10359
do {
10360
unsigned Flag = 0;
10361
switch (Lex.getKind()) {
10362
case lltok::kw_readonly:
10363
if (ParseRest(Flag))
10364
return true;
10365
GVarFlags.MaybeReadOnly = Flag;
10366
break;
10367
case lltok::kw_writeonly:
10368
if (ParseRest(Flag))
10369
return true;
10370
GVarFlags.MaybeWriteOnly = Flag;
10371
break;
10372
case lltok::kw_constant:
10373
if (ParseRest(Flag))
10374
return true;
10375
GVarFlags.Constant = Flag;
10376
break;
10377
case lltok::kw_vcall_visibility:
10378
if (ParseRest(Flag))
10379
return true;
10380
GVarFlags.VCallVisibility = Flag;
10381
break;
10382
default:
10383
return error(Lex.getLoc(), "expected gvar flag type");
10384
}
10385
} while (EatIfPresent(lltok::comma));
10386
return parseToken(lltok::rparen, "expected ')' here");
10387
}
10388
10389
/// ModuleReference
10390
/// ::= 'module' ':' UInt
10391
bool LLParser::parseModuleReference(StringRef &ModulePath) {
10392
// parse module id.
10393
if (parseToken(lltok::kw_module, "expected 'module' here") ||
10394
parseToken(lltok::colon, "expected ':' here") ||
10395
parseToken(lltok::SummaryID, "expected module ID"))
10396
return true;
10397
10398
unsigned ModuleID = Lex.getUIntVal();
10399
auto I = ModuleIdMap.find(ModuleID);
10400
// We should have already parsed all module IDs
10401
assert(I != ModuleIdMap.end());
10402
ModulePath = I->second;
10403
return false;
10404
}
10405
10406
/// GVReference
10407
/// ::= SummaryID
10408
bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
10409
bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
10410
if (!ReadOnly)
10411
WriteOnly = EatIfPresent(lltok::kw_writeonly);
10412
if (parseToken(lltok::SummaryID, "expected GV ID"))
10413
return true;
10414
10415
GVId = Lex.getUIntVal();
10416
// Check if we already have a VI for this GV
10417
if (GVId < NumberedValueInfos.size() && NumberedValueInfos[GVId]) {
10418
assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
10419
VI = NumberedValueInfos[GVId];
10420
} else
10421
// We will create a forward reference to the stored location.
10422
VI = ValueInfo(false, FwdVIRef);
10423
10424
if (ReadOnly)
10425
VI.setReadOnly();
10426
if (WriteOnly)
10427
VI.setWriteOnly();
10428
return false;
10429
}
10430
10431
/// OptionalAllocs
10432
/// := 'allocs' ':' '(' Alloc [',' Alloc]* ')'
10433
/// Alloc ::= '(' 'versions' ':' '(' Version [',' Version]* ')'
10434
/// ',' MemProfs ')'
10435
/// Version ::= UInt32
10436
bool LLParser::parseOptionalAllocs(std::vector<AllocInfo> &Allocs) {
10437
assert(Lex.getKind() == lltok::kw_allocs);
10438
Lex.Lex();
10439
10440
if (parseToken(lltok::colon, "expected ':' in allocs") ||
10441
parseToken(lltok::lparen, "expected '(' in allocs"))
10442
return true;
10443
10444
// parse each alloc
10445
do {
10446
if (parseToken(lltok::lparen, "expected '(' in alloc") ||
10447
parseToken(lltok::kw_versions, "expected 'versions' in alloc") ||
10448
parseToken(lltok::colon, "expected ':'") ||
10449
parseToken(lltok::lparen, "expected '(' in versions"))
10450
return true;
10451
10452
SmallVector<uint8_t> Versions;
10453
do {
10454
uint8_t V = 0;
10455
if (parseAllocType(V))
10456
return true;
10457
Versions.push_back(V);
10458
} while (EatIfPresent(lltok::comma));
10459
10460
if (parseToken(lltok::rparen, "expected ')' in versions") ||
10461
parseToken(lltok::comma, "expected ',' in alloc"))
10462
return true;
10463
10464
std::vector<MIBInfo> MIBs;
10465
if (parseMemProfs(MIBs))
10466
return true;
10467
10468
Allocs.push_back({Versions, MIBs});
10469
10470
if (parseToken(lltok::rparen, "expected ')' in alloc"))
10471
return true;
10472
} while (EatIfPresent(lltok::comma));
10473
10474
if (parseToken(lltok::rparen, "expected ')' in allocs"))
10475
return true;
10476
10477
return false;
10478
}
10479
10480
/// MemProfs
10481
/// := 'memProf' ':' '(' MemProf [',' MemProf]* ')'
10482
/// MemProf ::= '(' 'type' ':' AllocType
10483
/// ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')'
10484
/// StackId ::= UInt64
10485
bool LLParser::parseMemProfs(std::vector<MIBInfo> &MIBs) {
10486
assert(Lex.getKind() == lltok::kw_memProf);
10487
Lex.Lex();
10488
10489
if (parseToken(lltok::colon, "expected ':' in memprof") ||
10490
parseToken(lltok::lparen, "expected '(' in memprof"))
10491
return true;
10492
10493
// parse each MIB
10494
do {
10495
if (parseToken(lltok::lparen, "expected '(' in memprof") ||
10496
parseToken(lltok::kw_type, "expected 'type' in memprof") ||
10497
parseToken(lltok::colon, "expected ':'"))
10498
return true;
10499
10500
uint8_t AllocType;
10501
if (parseAllocType(AllocType))
10502
return true;
10503
10504
if (parseToken(lltok::comma, "expected ',' in memprof") ||
10505
parseToken(lltok::kw_stackIds, "expected 'stackIds' in memprof") ||
10506
parseToken(lltok::colon, "expected ':'") ||
10507
parseToken(lltok::lparen, "expected '(' in stackIds"))
10508
return true;
10509
10510
SmallVector<unsigned> StackIdIndices;
10511
do {
10512
uint64_t StackId = 0;
10513
if (parseUInt64(StackId))
10514
return true;
10515
StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId));
10516
} while (EatIfPresent(lltok::comma));
10517
10518
if (parseToken(lltok::rparen, "expected ')' in stackIds"))
10519
return true;
10520
10521
MIBs.push_back({(AllocationType)AllocType, StackIdIndices});
10522
10523
if (parseToken(lltok::rparen, "expected ')' in memprof"))
10524
return true;
10525
} while (EatIfPresent(lltok::comma));
10526
10527
if (parseToken(lltok::rparen, "expected ')' in memprof"))
10528
return true;
10529
10530
return false;
10531
}
10532
10533
/// AllocType
10534
/// := ('none'|'notcold'|'cold'|'hot')
10535
bool LLParser::parseAllocType(uint8_t &AllocType) {
10536
switch (Lex.getKind()) {
10537
case lltok::kw_none:
10538
AllocType = (uint8_t)AllocationType::None;
10539
break;
10540
case lltok::kw_notcold:
10541
AllocType = (uint8_t)AllocationType::NotCold;
10542
break;
10543
case lltok::kw_cold:
10544
AllocType = (uint8_t)AllocationType::Cold;
10545
break;
10546
case lltok::kw_hot:
10547
AllocType = (uint8_t)AllocationType::Hot;
10548
break;
10549
default:
10550
return error(Lex.getLoc(), "invalid alloc type");
10551
}
10552
Lex.Lex();
10553
return false;
10554
}
10555
10556
/// OptionalCallsites
10557
/// := 'callsites' ':' '(' Callsite [',' Callsite]* ')'
10558
/// Callsite ::= '(' 'callee' ':' GVReference
10559
/// ',' 'clones' ':' '(' Version [',' Version]* ')'
10560
/// ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')'
10561
/// Version ::= UInt32
10562
/// StackId ::= UInt64
10563
bool LLParser::parseOptionalCallsites(std::vector<CallsiteInfo> &Callsites) {
10564
assert(Lex.getKind() == lltok::kw_callsites);
10565
Lex.Lex();
10566
10567
if (parseToken(lltok::colon, "expected ':' in callsites") ||
10568
parseToken(lltok::lparen, "expected '(' in callsites"))
10569
return true;
10570
10571
IdToIndexMapType IdToIndexMap;
10572
// parse each callsite
10573
do {
10574
if (parseToken(lltok::lparen, "expected '(' in callsite") ||
10575
parseToken(lltok::kw_callee, "expected 'callee' in callsite") ||
10576
parseToken(lltok::colon, "expected ':'"))
10577
return true;
10578
10579
ValueInfo VI;
10580
unsigned GVId = 0;
10581
LocTy Loc = Lex.getLoc();
10582
if (!EatIfPresent(lltok::kw_null)) {
10583
if (parseGVReference(VI, GVId))
10584
return true;
10585
}
10586
10587
if (parseToken(lltok::comma, "expected ',' in callsite") ||
10588
parseToken(lltok::kw_clones, "expected 'clones' in callsite") ||
10589
parseToken(lltok::colon, "expected ':'") ||
10590
parseToken(lltok::lparen, "expected '(' in clones"))
10591
return true;
10592
10593
SmallVector<unsigned> Clones;
10594
do {
10595
unsigned V = 0;
10596
if (parseUInt32(V))
10597
return true;
10598
Clones.push_back(V);
10599
} while (EatIfPresent(lltok::comma));
10600
10601
if (parseToken(lltok::rparen, "expected ')' in clones") ||
10602
parseToken(lltok::comma, "expected ',' in callsite") ||
10603
parseToken(lltok::kw_stackIds, "expected 'stackIds' in callsite") ||
10604
parseToken(lltok::colon, "expected ':'") ||
10605
parseToken(lltok::lparen, "expected '(' in stackIds"))
10606
return true;
10607
10608
SmallVector<unsigned> StackIdIndices;
10609
do {
10610
uint64_t StackId = 0;
10611
if (parseUInt64(StackId))
10612
return true;
10613
StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId));
10614
} while (EatIfPresent(lltok::comma));
10615
10616
if (parseToken(lltok::rparen, "expected ')' in stackIds"))
10617
return true;
10618
10619
// Keep track of the Callsites array index needing a forward reference.
10620
// We will save the location of the ValueInfo needing an update, but
10621
// can only do so once the SmallVector is finalized.
10622
if (VI.getRef() == FwdVIRef)
10623
IdToIndexMap[GVId].push_back(std::make_pair(Callsites.size(), Loc));
10624
Callsites.push_back({VI, Clones, StackIdIndices});
10625
10626
if (parseToken(lltok::rparen, "expected ')' in callsite"))
10627
return true;
10628
} while (EatIfPresent(lltok::comma));
10629
10630
// Now that the Callsites vector is finalized, it is safe to save the
10631
// locations of any forward GV references that need updating later.
10632
for (auto I : IdToIndexMap) {
10633
auto &Infos = ForwardRefValueInfos[I.first];
10634
for (auto P : I.second) {
10635
assert(Callsites[P.first].Callee.getRef() == FwdVIRef &&
10636
"Forward referenced ValueInfo expected to be empty");
10637
Infos.emplace_back(&Callsites[P.first].Callee, P.second);
10638
}
10639
}
10640
10641
if (parseToken(lltok::rparen, "expected ')' in callsites"))
10642
return true;
10643
10644
return false;
10645
}
10646
10647