Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp
35291 views
1
//===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Bitcode writer implementation.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "llvm/Bitcode/BitcodeWriter.h"
14
#include "ValueEnumerator.h"
15
#include "llvm/ADT/APFloat.h"
16
#include "llvm/ADT/APInt.h"
17
#include "llvm/ADT/ArrayRef.h"
18
#include "llvm/ADT/DenseMap.h"
19
#include "llvm/ADT/STLExtras.h"
20
#include "llvm/ADT/SetVector.h"
21
#include "llvm/ADT/SmallPtrSet.h"
22
#include "llvm/ADT/SmallString.h"
23
#include "llvm/ADT/SmallVector.h"
24
#include "llvm/ADT/StringMap.h"
25
#include "llvm/ADT/StringRef.h"
26
#include "llvm/Bitcode/BitcodeCommon.h"
27
#include "llvm/Bitcode/BitcodeReader.h"
28
#include "llvm/Bitcode/LLVMBitCodes.h"
29
#include "llvm/Bitstream/BitCodes.h"
30
#include "llvm/Bitstream/BitstreamWriter.h"
31
#include "llvm/Config/llvm-config.h"
32
#include "llvm/IR/Attributes.h"
33
#include "llvm/IR/BasicBlock.h"
34
#include "llvm/IR/Comdat.h"
35
#include "llvm/IR/Constant.h"
36
#include "llvm/IR/ConstantRangeList.h"
37
#include "llvm/IR/Constants.h"
38
#include "llvm/IR/DebugInfoMetadata.h"
39
#include "llvm/IR/DebugLoc.h"
40
#include "llvm/IR/DerivedTypes.h"
41
#include "llvm/IR/Function.h"
42
#include "llvm/IR/GlobalAlias.h"
43
#include "llvm/IR/GlobalIFunc.h"
44
#include "llvm/IR/GlobalObject.h"
45
#include "llvm/IR/GlobalValue.h"
46
#include "llvm/IR/GlobalVariable.h"
47
#include "llvm/IR/InlineAsm.h"
48
#include "llvm/IR/InstrTypes.h"
49
#include "llvm/IR/Instruction.h"
50
#include "llvm/IR/Instructions.h"
51
#include "llvm/IR/LLVMContext.h"
52
#include "llvm/IR/Metadata.h"
53
#include "llvm/IR/Module.h"
54
#include "llvm/IR/ModuleSummaryIndex.h"
55
#include "llvm/IR/Operator.h"
56
#include "llvm/IR/Type.h"
57
#include "llvm/IR/UseListOrder.h"
58
#include "llvm/IR/Value.h"
59
#include "llvm/IR/ValueSymbolTable.h"
60
#include "llvm/MC/StringTableBuilder.h"
61
#include "llvm/MC/TargetRegistry.h"
62
#include "llvm/Object/IRSymtab.h"
63
#include "llvm/Support/AtomicOrdering.h"
64
#include "llvm/Support/Casting.h"
65
#include "llvm/Support/CommandLine.h"
66
#include "llvm/Support/Endian.h"
67
#include "llvm/Support/Error.h"
68
#include "llvm/Support/ErrorHandling.h"
69
#include "llvm/Support/MathExtras.h"
70
#include "llvm/Support/SHA1.h"
71
#include "llvm/Support/raw_ostream.h"
72
#include "llvm/TargetParser/Triple.h"
73
#include <algorithm>
74
#include <cassert>
75
#include <cstddef>
76
#include <cstdint>
77
#include <iterator>
78
#include <map>
79
#include <memory>
80
#include <optional>
81
#include <string>
82
#include <utility>
83
#include <vector>
84
85
using namespace llvm;
86
87
static cl::opt<unsigned>
88
IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
89
cl::desc("Number of metadatas above which we emit an index "
90
"to enable lazy-loading"));
91
static cl::opt<uint32_t> FlushThreshold(
92
"bitcode-flush-threshold", cl::Hidden, cl::init(512),
93
cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
94
95
static cl::opt<bool> WriteRelBFToSummary(
96
"write-relbf-to-summary", cl::Hidden, cl::init(false),
97
cl::desc("Write relative block frequency to function summary "));
98
99
namespace llvm {
100
extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
101
}
102
103
extern bool WriteNewDbgInfoFormatToBitcode;
104
extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
105
106
namespace {
107
108
/// These are manifest constants used by the bitcode writer. They do not need to
109
/// be kept in sync with the reader, but need to be consistent within this file.
110
enum {
111
// VALUE_SYMTAB_BLOCK abbrev id's.
112
VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
113
VST_ENTRY_7_ABBREV,
114
VST_ENTRY_6_ABBREV,
115
VST_BBENTRY_6_ABBREV,
116
117
// CONSTANTS_BLOCK abbrev id's.
118
CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
119
CONSTANTS_INTEGER_ABBREV,
120
CONSTANTS_CE_CAST_Abbrev,
121
CONSTANTS_NULL_Abbrev,
122
123
// FUNCTION_BLOCK abbrev id's.
124
FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
125
FUNCTION_INST_UNOP_ABBREV,
126
FUNCTION_INST_UNOP_FLAGS_ABBREV,
127
FUNCTION_INST_BINOP_ABBREV,
128
FUNCTION_INST_BINOP_FLAGS_ABBREV,
129
FUNCTION_INST_CAST_ABBREV,
130
FUNCTION_INST_CAST_FLAGS_ABBREV,
131
FUNCTION_INST_RET_VOID_ABBREV,
132
FUNCTION_INST_RET_VAL_ABBREV,
133
FUNCTION_INST_UNREACHABLE_ABBREV,
134
FUNCTION_INST_GEP_ABBREV,
135
FUNCTION_DEBUG_RECORD_VALUE_ABBREV,
136
};
137
138
/// Abstract class to manage the bitcode writing, subclassed for each bitcode
139
/// file type.
140
class BitcodeWriterBase {
141
protected:
142
/// The stream created and owned by the client.
143
BitstreamWriter &Stream;
144
145
StringTableBuilder &StrtabBuilder;
146
147
public:
148
/// Constructs a BitcodeWriterBase object that writes to the provided
149
/// \p Stream.
150
BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
151
: Stream(Stream), StrtabBuilder(StrtabBuilder) {}
152
153
protected:
154
void writeModuleVersion();
155
};
156
157
void BitcodeWriterBase::writeModuleVersion() {
158
// VERSION: [version#]
159
Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
160
}
161
162
/// Base class to manage the module bitcode writing, currently subclassed for
163
/// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
164
class ModuleBitcodeWriterBase : public BitcodeWriterBase {
165
protected:
166
/// The Module to write to bitcode.
167
const Module &M;
168
169
/// Enumerates ids for all values in the module.
170
ValueEnumerator VE;
171
172
/// Optional per-module index to write for ThinLTO.
173
const ModuleSummaryIndex *Index;
174
175
/// Map that holds the correspondence between GUIDs in the summary index,
176
/// that came from indirect call profiles, and a value id generated by this
177
/// class to use in the VST and summary block records.
178
std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
179
180
/// Tracks the last value id recorded in the GUIDToValueMap.
181
unsigned GlobalValueId;
182
183
/// Saves the offset of the VSTOffset record that must eventually be
184
/// backpatched with the offset of the actual VST.
185
uint64_t VSTOffsetPlaceholder = 0;
186
187
public:
188
/// Constructs a ModuleBitcodeWriterBase object for the given Module,
189
/// writing to the provided \p Buffer.
190
ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
191
BitstreamWriter &Stream,
192
bool ShouldPreserveUseListOrder,
193
const ModuleSummaryIndex *Index)
194
: BitcodeWriterBase(Stream, StrtabBuilder), M(M),
195
VE(M, ShouldPreserveUseListOrder), Index(Index) {
196
// Assign ValueIds to any callee values in the index that came from
197
// indirect call profiles and were recorded as a GUID not a Value*
198
// (which would have been assigned an ID by the ValueEnumerator).
199
// The starting ValueId is just after the number of values in the
200
// ValueEnumerator, so that they can be emitted in the VST.
201
GlobalValueId = VE.getValues().size();
202
if (!Index)
203
return;
204
for (const auto &GUIDSummaryLists : *Index)
205
// Examine all summaries for this GUID.
206
for (auto &Summary : GUIDSummaryLists.second.SummaryList)
207
if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) {
208
// For each call in the function summary, see if the call
209
// is to a GUID (which means it is for an indirect call,
210
// otherwise we would have a Value for it). If so, synthesize
211
// a value id.
212
for (auto &CallEdge : FS->calls())
213
if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
214
assignValueId(CallEdge.first.getGUID());
215
216
// For each referenced variables in the function summary, see if the
217
// variable is represented by a GUID (as opposed to a symbol to
218
// declarations or definitions in the module). If so, synthesize a
219
// value id.
220
for (auto &RefEdge : FS->refs())
221
if (!RefEdge.haveGVs() || !RefEdge.getValue())
222
assignValueId(RefEdge.getGUID());
223
}
224
}
225
226
protected:
227
void writePerModuleGlobalValueSummary();
228
229
private:
230
void writePerModuleFunctionSummaryRecord(
231
SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
232
unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
233
unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F);
234
void writeModuleLevelReferences(const GlobalVariable &V,
235
SmallVector<uint64_t, 64> &NameVals,
236
unsigned FSModRefsAbbrev,
237
unsigned FSModVTableRefsAbbrev);
238
239
void assignValueId(GlobalValue::GUID ValGUID) {
240
GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
241
}
242
243
unsigned getValueId(GlobalValue::GUID ValGUID) {
244
const auto &VMI = GUIDToValueIdMap.find(ValGUID);
245
// Expect that any GUID value had a value Id assigned by an
246
// earlier call to assignValueId.
247
assert(VMI != GUIDToValueIdMap.end() &&
248
"GUID does not have assigned value Id");
249
return VMI->second;
250
}
251
252
// Helper to get the valueId for the type of value recorded in VI.
253
unsigned getValueId(ValueInfo VI) {
254
if (!VI.haveGVs() || !VI.getValue())
255
return getValueId(VI.getGUID());
256
return VE.getValueID(VI.getValue());
257
}
258
259
std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
260
};
261
262
/// Class to manage the bitcode writing for a module.
263
class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
264
/// True if a module hash record should be written.
265
bool GenerateHash;
266
267
/// If non-null, when GenerateHash is true, the resulting hash is written
268
/// into ModHash.
269
ModuleHash *ModHash;
270
271
SHA1 Hasher;
272
273
/// The start bit of the identification block.
274
uint64_t BitcodeStartBit;
275
276
public:
277
/// Constructs a ModuleBitcodeWriter object for the given Module,
278
/// writing to the provided \p Buffer.
279
ModuleBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
280
BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
281
const ModuleSummaryIndex *Index, bool GenerateHash,
282
ModuleHash *ModHash = nullptr)
283
: ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
284
ShouldPreserveUseListOrder, Index),
285
GenerateHash(GenerateHash), ModHash(ModHash),
286
BitcodeStartBit(Stream.GetCurrentBitNo()) {}
287
288
/// Emit the current module to the bitstream.
289
void write();
290
291
private:
292
uint64_t bitcodeStartBit() { return BitcodeStartBit; }
293
294
size_t addToStrtab(StringRef Str);
295
296
void writeAttributeGroupTable();
297
void writeAttributeTable();
298
void writeTypeTable();
299
void writeComdats();
300
void writeValueSymbolTableForwardDecl();
301
void writeModuleInfo();
302
void writeValueAsMetadata(const ValueAsMetadata *MD,
303
SmallVectorImpl<uint64_t> &Record);
304
void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
305
unsigned Abbrev);
306
unsigned createDILocationAbbrev();
307
void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
308
unsigned &Abbrev);
309
unsigned createGenericDINodeAbbrev();
310
void writeGenericDINode(const GenericDINode *N,
311
SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
312
void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
313
unsigned Abbrev);
314
void writeDIGenericSubrange(const DIGenericSubrange *N,
315
SmallVectorImpl<uint64_t> &Record,
316
unsigned Abbrev);
317
void writeDIEnumerator(const DIEnumerator *N,
318
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
319
void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
320
unsigned Abbrev);
321
void writeDIStringType(const DIStringType *N,
322
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
323
void writeDIDerivedType(const DIDerivedType *N,
324
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
325
void writeDICompositeType(const DICompositeType *N,
326
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
327
void writeDISubroutineType(const DISubroutineType *N,
328
SmallVectorImpl<uint64_t> &Record,
329
unsigned Abbrev);
330
void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
331
unsigned Abbrev);
332
void writeDICompileUnit(const DICompileUnit *N,
333
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
334
void writeDISubprogram(const DISubprogram *N,
335
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
336
void writeDILexicalBlock(const DILexicalBlock *N,
337
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
338
void writeDILexicalBlockFile(const DILexicalBlockFile *N,
339
SmallVectorImpl<uint64_t> &Record,
340
unsigned Abbrev);
341
void writeDICommonBlock(const DICommonBlock *N,
342
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
343
void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
344
unsigned Abbrev);
345
void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
346
unsigned Abbrev);
347
void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
348
unsigned Abbrev);
349
void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record);
350
void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
351
unsigned Abbrev);
352
void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record,
353
unsigned Abbrev);
354
void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
355
SmallVectorImpl<uint64_t> &Record,
356
unsigned Abbrev);
357
void writeDITemplateValueParameter(const DITemplateValueParameter *N,
358
SmallVectorImpl<uint64_t> &Record,
359
unsigned Abbrev);
360
void writeDIGlobalVariable(const DIGlobalVariable *N,
361
SmallVectorImpl<uint64_t> &Record,
362
unsigned Abbrev);
363
void writeDILocalVariable(const DILocalVariable *N,
364
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
365
void writeDILabel(const DILabel *N,
366
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
367
void writeDIExpression(const DIExpression *N,
368
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
369
void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
370
SmallVectorImpl<uint64_t> &Record,
371
unsigned Abbrev);
372
void writeDIObjCProperty(const DIObjCProperty *N,
373
SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
374
void writeDIImportedEntity(const DIImportedEntity *N,
375
SmallVectorImpl<uint64_t> &Record,
376
unsigned Abbrev);
377
unsigned createNamedMetadataAbbrev();
378
void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
379
unsigned createMetadataStringsAbbrev();
380
void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
381
SmallVectorImpl<uint64_t> &Record);
382
void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
383
SmallVectorImpl<uint64_t> &Record,
384
std::vector<unsigned> *MDAbbrevs = nullptr,
385
std::vector<uint64_t> *IndexPos = nullptr);
386
void writeModuleMetadata();
387
void writeFunctionMetadata(const Function &F);
388
void writeFunctionMetadataAttachment(const Function &F);
389
void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
390
const GlobalObject &GO);
391
void writeModuleMetadataKinds();
392
void writeOperandBundleTags();
393
void writeSyncScopeNames();
394
void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
395
void writeModuleConstants();
396
bool pushValueAndType(const Value *V, unsigned InstID,
397
SmallVectorImpl<unsigned> &Vals);
398
void writeOperandBundles(const CallBase &CB, unsigned InstID);
399
void pushValue(const Value *V, unsigned InstID,
400
SmallVectorImpl<unsigned> &Vals);
401
void pushValueSigned(const Value *V, unsigned InstID,
402
SmallVectorImpl<uint64_t> &Vals);
403
void writeInstruction(const Instruction &I, unsigned InstID,
404
SmallVectorImpl<unsigned> &Vals);
405
void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
406
void writeGlobalValueSymbolTable(
407
DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
408
void writeUseList(UseListOrder &&Order);
409
void writeUseListBlock(const Function *F);
410
void
411
writeFunction(const Function &F,
412
DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
413
void writeBlockInfo();
414
void writeModuleHash(StringRef View);
415
416
unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
417
return unsigned(SSID);
418
}
419
420
unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
421
};
422
423
/// Class to manage the bitcode writing for a combined index.
424
class IndexBitcodeWriter : public BitcodeWriterBase {
425
/// The combined index to write to bitcode.
426
const ModuleSummaryIndex &Index;
427
428
/// When writing combined summaries, provides the set of global value
429
/// summaries for which the value (function, function alias, etc) should be
430
/// imported as a declaration.
431
const GVSummaryPtrSet *DecSummaries = nullptr;
432
433
/// When writing a subset of the index for distributed backends, client
434
/// provides a map of modules to the corresponding GUIDs/summaries to write.
435
const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
436
437
/// Map that holds the correspondence between the GUID used in the combined
438
/// index and a value id generated by this class to use in references.
439
std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
440
441
// The stack ids used by this index, which will be a subset of those in
442
// the full index in the case of distributed indexes.
443
std::vector<uint64_t> StackIds;
444
445
// Keep a map of the stack id indices used by records being written for this
446
// index to the index of the corresponding stack id in the above StackIds
447
// vector. Ensures we write each referenced stack id once.
448
DenseMap<unsigned, unsigned> StackIdIndicesToIndex;
449
450
/// Tracks the last value id recorded in the GUIDToValueMap.
451
unsigned GlobalValueId = 0;
452
453
/// Tracks the assignment of module paths in the module path string table to
454
/// an id assigned for use in summary references to the module path.
455
DenseMap<StringRef, uint64_t> ModuleIdMap;
456
457
public:
458
/// Constructs a IndexBitcodeWriter object for the given combined index,
459
/// writing to the provided \p Buffer. When writing a subset of the index
460
/// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
461
/// If provided, \p DecSummaries specifies the set of summaries for which
462
/// the corresponding functions or aliased functions should be imported as a
463
/// declaration (but not definition) for each module.
464
IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
465
const ModuleSummaryIndex &Index,
466
const GVSummaryPtrSet *DecSummaries = nullptr,
467
const std::map<std::string, GVSummaryMapTy>
468
*ModuleToSummariesForIndex = nullptr)
469
: BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
470
DecSummaries(DecSummaries),
471
ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
472
473
// See if the StackIdIndex was already added to the StackId map and
474
// vector. If not, record it.
475
auto RecordStackIdReference = [&](unsigned StackIdIndex) {
476
// If the StackIdIndex is not yet in the map, the below insert ensures
477
// that it will point to the new StackIds vector entry we push to just
478
// below.
479
auto Inserted =
480
StackIdIndicesToIndex.insert({StackIdIndex, StackIds.size()});
481
if (Inserted.second)
482
StackIds.push_back(Index.getStackIdAtIndex(StackIdIndex));
483
};
484
485
// Assign unique value ids to all summaries to be written, for use
486
// in writing out the call graph edges. Save the mapping from GUID
487
// to the new global value id to use when writing those edges, which
488
// are currently saved in the index in terms of GUID.
489
forEachSummary([&](GVInfo I, bool IsAliasee) {
490
GUIDToValueIdMap[I.first] = ++GlobalValueId;
491
if (IsAliasee)
492
return;
493
auto *FS = dyn_cast<FunctionSummary>(I.second);
494
if (!FS)
495
return;
496
// Record all stack id indices actually used in the summary entries being
497
// written, so that we can compact them in the case of distributed ThinLTO
498
// indexes.
499
for (auto &CI : FS->callsites()) {
500
// If the stack id list is empty, this callsite info was synthesized for
501
// a missing tail call frame. Ensure that the callee's GUID gets a value
502
// id. Normally we only generate these for defined summaries, which in
503
// the case of distributed ThinLTO is only the functions already defined
504
// in the module or that we want to import. We don't bother to include
505
// all the callee symbols as they aren't normally needed in the backend.
506
// However, for the synthesized callsite infos we do need the callee
507
// GUID in the backend so that we can correlate the identified callee
508
// with this callsite info (which for non-tail calls is done by the
509
// ordering of the callsite infos and verified via stack ids).
510
if (CI.StackIdIndices.empty()) {
511
GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId;
512
continue;
513
}
514
for (auto Idx : CI.StackIdIndices)
515
RecordStackIdReference(Idx);
516
}
517
for (auto &AI : FS->allocs())
518
for (auto &MIB : AI.MIBs)
519
for (auto Idx : MIB.StackIdIndices)
520
RecordStackIdReference(Idx);
521
});
522
}
523
524
/// The below iterator returns the GUID and associated summary.
525
using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
526
527
/// Calls the callback for each value GUID and summary to be written to
528
/// bitcode. This hides the details of whether they are being pulled from the
529
/// entire index or just those in a provided ModuleToSummariesForIndex map.
530
template<typename Functor>
531
void forEachSummary(Functor Callback) {
532
if (ModuleToSummariesForIndex) {
533
for (auto &M : *ModuleToSummariesForIndex)
534
for (auto &Summary : M.second) {
535
Callback(Summary, false);
536
// Ensure aliasee is handled, e.g. for assigning a valueId,
537
// even if we are not importing the aliasee directly (the
538
// imported alias will contain a copy of aliasee).
539
if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
540
Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
541
}
542
} else {
543
for (auto &Summaries : Index)
544
for (auto &Summary : Summaries.second.SummaryList)
545
Callback({Summaries.first, Summary.get()}, false);
546
}
547
}
548
549
/// Calls the callback for each entry in the modulePaths StringMap that
550
/// should be written to the module path string table. This hides the details
551
/// of whether they are being pulled from the entire index or just those in a
552
/// provided ModuleToSummariesForIndex map.
553
template <typename Functor> void forEachModule(Functor Callback) {
554
if (ModuleToSummariesForIndex) {
555
for (const auto &M : *ModuleToSummariesForIndex) {
556
const auto &MPI = Index.modulePaths().find(M.first);
557
if (MPI == Index.modulePaths().end()) {
558
// This should only happen if the bitcode file was empty, in which
559
// case we shouldn't be importing (the ModuleToSummariesForIndex
560
// would only include the module we are writing and index for).
561
assert(ModuleToSummariesForIndex->size() == 1);
562
continue;
563
}
564
Callback(*MPI);
565
}
566
} else {
567
// Since StringMap iteration order isn't guaranteed, order by path string
568
// first.
569
// FIXME: Make this a vector of StringMapEntry instead to avoid the later
570
// map lookup.
571
std::vector<StringRef> ModulePaths;
572
for (auto &[ModPath, _] : Index.modulePaths())
573
ModulePaths.push_back(ModPath);
574
llvm::sort(ModulePaths.begin(), ModulePaths.end());
575
for (auto &ModPath : ModulePaths)
576
Callback(*Index.modulePaths().find(ModPath));
577
}
578
}
579
580
/// Main entry point for writing a combined index to bitcode.
581
void write();
582
583
private:
584
void writeModStrings();
585
void writeCombinedGlobalValueSummary();
586
587
std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
588
auto VMI = GUIDToValueIdMap.find(ValGUID);
589
if (VMI == GUIDToValueIdMap.end())
590
return std::nullopt;
591
return VMI->second;
592
}
593
594
std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
595
};
596
597
} // end anonymous namespace
598
599
static unsigned getEncodedCastOpcode(unsigned Opcode) {
600
switch (Opcode) {
601
default: llvm_unreachable("Unknown cast instruction!");
602
case Instruction::Trunc : return bitc::CAST_TRUNC;
603
case Instruction::ZExt : return bitc::CAST_ZEXT;
604
case Instruction::SExt : return bitc::CAST_SEXT;
605
case Instruction::FPToUI : return bitc::CAST_FPTOUI;
606
case Instruction::FPToSI : return bitc::CAST_FPTOSI;
607
case Instruction::UIToFP : return bitc::CAST_UITOFP;
608
case Instruction::SIToFP : return bitc::CAST_SITOFP;
609
case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
610
case Instruction::FPExt : return bitc::CAST_FPEXT;
611
case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
612
case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
613
case Instruction::BitCast : return bitc::CAST_BITCAST;
614
case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
615
}
616
}
617
618
static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
619
switch (Opcode) {
620
default: llvm_unreachable("Unknown binary instruction!");
621
case Instruction::FNeg: return bitc::UNOP_FNEG;
622
}
623
}
624
625
static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
626
switch (Opcode) {
627
default: llvm_unreachable("Unknown binary instruction!");
628
case Instruction::Add:
629
case Instruction::FAdd: return bitc::BINOP_ADD;
630
case Instruction::Sub:
631
case Instruction::FSub: return bitc::BINOP_SUB;
632
case Instruction::Mul:
633
case Instruction::FMul: return bitc::BINOP_MUL;
634
case Instruction::UDiv: return bitc::BINOP_UDIV;
635
case Instruction::FDiv:
636
case Instruction::SDiv: return bitc::BINOP_SDIV;
637
case Instruction::URem: return bitc::BINOP_UREM;
638
case Instruction::FRem:
639
case Instruction::SRem: return bitc::BINOP_SREM;
640
case Instruction::Shl: return bitc::BINOP_SHL;
641
case Instruction::LShr: return bitc::BINOP_LSHR;
642
case Instruction::AShr: return bitc::BINOP_ASHR;
643
case Instruction::And: return bitc::BINOP_AND;
644
case Instruction::Or: return bitc::BINOP_OR;
645
case Instruction::Xor: return bitc::BINOP_XOR;
646
}
647
}
648
649
static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
650
switch (Op) {
651
default: llvm_unreachable("Unknown RMW operation!");
652
case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
653
case AtomicRMWInst::Add: return bitc::RMW_ADD;
654
case AtomicRMWInst::Sub: return bitc::RMW_SUB;
655
case AtomicRMWInst::And: return bitc::RMW_AND;
656
case AtomicRMWInst::Nand: return bitc::RMW_NAND;
657
case AtomicRMWInst::Or: return bitc::RMW_OR;
658
case AtomicRMWInst::Xor: return bitc::RMW_XOR;
659
case AtomicRMWInst::Max: return bitc::RMW_MAX;
660
case AtomicRMWInst::Min: return bitc::RMW_MIN;
661
case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
662
case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
663
case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
664
case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
665
case AtomicRMWInst::FMax: return bitc::RMW_FMAX;
666
case AtomicRMWInst::FMin: return bitc::RMW_FMIN;
667
case AtomicRMWInst::UIncWrap:
668
return bitc::RMW_UINC_WRAP;
669
case AtomicRMWInst::UDecWrap:
670
return bitc::RMW_UDEC_WRAP;
671
}
672
}
673
674
static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
675
switch (Ordering) {
676
case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
677
case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
678
case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
679
case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
680
case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
681
case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
682
case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
683
}
684
llvm_unreachable("Invalid ordering");
685
}
686
687
static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
688
StringRef Str, unsigned AbbrevToUse) {
689
SmallVector<unsigned, 64> Vals;
690
691
// Code: [strchar x N]
692
for (char C : Str) {
693
if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
694
AbbrevToUse = 0;
695
Vals.push_back(C);
696
}
697
698
// Emit the finished record.
699
Stream.EmitRecord(Code, Vals, AbbrevToUse);
700
}
701
702
static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
703
switch (Kind) {
704
case Attribute::Alignment:
705
return bitc::ATTR_KIND_ALIGNMENT;
706
case Attribute::AllocAlign:
707
return bitc::ATTR_KIND_ALLOC_ALIGN;
708
case Attribute::AllocSize:
709
return bitc::ATTR_KIND_ALLOC_SIZE;
710
case Attribute::AlwaysInline:
711
return bitc::ATTR_KIND_ALWAYS_INLINE;
712
case Attribute::Builtin:
713
return bitc::ATTR_KIND_BUILTIN;
714
case Attribute::ByVal:
715
return bitc::ATTR_KIND_BY_VAL;
716
case Attribute::Convergent:
717
return bitc::ATTR_KIND_CONVERGENT;
718
case Attribute::InAlloca:
719
return bitc::ATTR_KIND_IN_ALLOCA;
720
case Attribute::Cold:
721
return bitc::ATTR_KIND_COLD;
722
case Attribute::DisableSanitizerInstrumentation:
723
return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION;
724
case Attribute::FnRetThunkExtern:
725
return bitc::ATTR_KIND_FNRETTHUNK_EXTERN;
726
case Attribute::Hot:
727
return bitc::ATTR_KIND_HOT;
728
case Attribute::ElementType:
729
return bitc::ATTR_KIND_ELEMENTTYPE;
730
case Attribute::HybridPatchable:
731
return bitc::ATTR_KIND_HYBRID_PATCHABLE;
732
case Attribute::InlineHint:
733
return bitc::ATTR_KIND_INLINE_HINT;
734
case Attribute::InReg:
735
return bitc::ATTR_KIND_IN_REG;
736
case Attribute::JumpTable:
737
return bitc::ATTR_KIND_JUMP_TABLE;
738
case Attribute::MinSize:
739
return bitc::ATTR_KIND_MIN_SIZE;
740
case Attribute::AllocatedPointer:
741
return bitc::ATTR_KIND_ALLOCATED_POINTER;
742
case Attribute::AllocKind:
743
return bitc::ATTR_KIND_ALLOC_KIND;
744
case Attribute::Memory:
745
return bitc::ATTR_KIND_MEMORY;
746
case Attribute::NoFPClass:
747
return bitc::ATTR_KIND_NOFPCLASS;
748
case Attribute::Naked:
749
return bitc::ATTR_KIND_NAKED;
750
case Attribute::Nest:
751
return bitc::ATTR_KIND_NEST;
752
case Attribute::NoAlias:
753
return bitc::ATTR_KIND_NO_ALIAS;
754
case Attribute::NoBuiltin:
755
return bitc::ATTR_KIND_NO_BUILTIN;
756
case Attribute::NoCallback:
757
return bitc::ATTR_KIND_NO_CALLBACK;
758
case Attribute::NoCapture:
759
return bitc::ATTR_KIND_NO_CAPTURE;
760
case Attribute::NoDuplicate:
761
return bitc::ATTR_KIND_NO_DUPLICATE;
762
case Attribute::NoFree:
763
return bitc::ATTR_KIND_NOFREE;
764
case Attribute::NoImplicitFloat:
765
return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
766
case Attribute::NoInline:
767
return bitc::ATTR_KIND_NO_INLINE;
768
case Attribute::NoRecurse:
769
return bitc::ATTR_KIND_NO_RECURSE;
770
case Attribute::NoMerge:
771
return bitc::ATTR_KIND_NO_MERGE;
772
case Attribute::NonLazyBind:
773
return bitc::ATTR_KIND_NON_LAZY_BIND;
774
case Attribute::NonNull:
775
return bitc::ATTR_KIND_NON_NULL;
776
case Attribute::Dereferenceable:
777
return bitc::ATTR_KIND_DEREFERENCEABLE;
778
case Attribute::DereferenceableOrNull:
779
return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
780
case Attribute::NoRedZone:
781
return bitc::ATTR_KIND_NO_RED_ZONE;
782
case Attribute::NoReturn:
783
return bitc::ATTR_KIND_NO_RETURN;
784
case Attribute::NoSync:
785
return bitc::ATTR_KIND_NOSYNC;
786
case Attribute::NoCfCheck:
787
return bitc::ATTR_KIND_NOCF_CHECK;
788
case Attribute::NoProfile:
789
return bitc::ATTR_KIND_NO_PROFILE;
790
case Attribute::SkipProfile:
791
return bitc::ATTR_KIND_SKIP_PROFILE;
792
case Attribute::NoUnwind:
793
return bitc::ATTR_KIND_NO_UNWIND;
794
case Attribute::NoSanitizeBounds:
795
return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS;
796
case Attribute::NoSanitizeCoverage:
797
return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE;
798
case Attribute::NullPointerIsValid:
799
return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
800
case Attribute::OptimizeForDebugging:
801
return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING;
802
case Attribute::OptForFuzzing:
803
return bitc::ATTR_KIND_OPT_FOR_FUZZING;
804
case Attribute::OptimizeForSize:
805
return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
806
case Attribute::OptimizeNone:
807
return bitc::ATTR_KIND_OPTIMIZE_NONE;
808
case Attribute::ReadNone:
809
return bitc::ATTR_KIND_READ_NONE;
810
case Attribute::ReadOnly:
811
return bitc::ATTR_KIND_READ_ONLY;
812
case Attribute::Returned:
813
return bitc::ATTR_KIND_RETURNED;
814
case Attribute::ReturnsTwice:
815
return bitc::ATTR_KIND_RETURNS_TWICE;
816
case Attribute::SExt:
817
return bitc::ATTR_KIND_S_EXT;
818
case Attribute::Speculatable:
819
return bitc::ATTR_KIND_SPECULATABLE;
820
case Attribute::StackAlignment:
821
return bitc::ATTR_KIND_STACK_ALIGNMENT;
822
case Attribute::StackProtect:
823
return bitc::ATTR_KIND_STACK_PROTECT;
824
case Attribute::StackProtectReq:
825
return bitc::ATTR_KIND_STACK_PROTECT_REQ;
826
case Attribute::StackProtectStrong:
827
return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
828
case Attribute::SafeStack:
829
return bitc::ATTR_KIND_SAFESTACK;
830
case Attribute::ShadowCallStack:
831
return bitc::ATTR_KIND_SHADOWCALLSTACK;
832
case Attribute::StrictFP:
833
return bitc::ATTR_KIND_STRICT_FP;
834
case Attribute::StructRet:
835
return bitc::ATTR_KIND_STRUCT_RET;
836
case Attribute::SanitizeAddress:
837
return bitc::ATTR_KIND_SANITIZE_ADDRESS;
838
case Attribute::SanitizeHWAddress:
839
return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
840
case Attribute::SanitizeThread:
841
return bitc::ATTR_KIND_SANITIZE_THREAD;
842
case Attribute::SanitizeMemory:
843
return bitc::ATTR_KIND_SANITIZE_MEMORY;
844
case Attribute::SanitizeNumericalStability:
845
return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY;
846
case Attribute::SpeculativeLoadHardening:
847
return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
848
case Attribute::SwiftError:
849
return bitc::ATTR_KIND_SWIFT_ERROR;
850
case Attribute::SwiftSelf:
851
return bitc::ATTR_KIND_SWIFT_SELF;
852
case Attribute::SwiftAsync:
853
return bitc::ATTR_KIND_SWIFT_ASYNC;
854
case Attribute::UWTable:
855
return bitc::ATTR_KIND_UW_TABLE;
856
case Attribute::VScaleRange:
857
return bitc::ATTR_KIND_VSCALE_RANGE;
858
case Attribute::WillReturn:
859
return bitc::ATTR_KIND_WILLRETURN;
860
case Attribute::WriteOnly:
861
return bitc::ATTR_KIND_WRITEONLY;
862
case Attribute::ZExt:
863
return bitc::ATTR_KIND_Z_EXT;
864
case Attribute::ImmArg:
865
return bitc::ATTR_KIND_IMMARG;
866
case Attribute::SanitizeMemTag:
867
return bitc::ATTR_KIND_SANITIZE_MEMTAG;
868
case Attribute::Preallocated:
869
return bitc::ATTR_KIND_PREALLOCATED;
870
case Attribute::NoUndef:
871
return bitc::ATTR_KIND_NOUNDEF;
872
case Attribute::ByRef:
873
return bitc::ATTR_KIND_BYREF;
874
case Attribute::MustProgress:
875
return bitc::ATTR_KIND_MUSTPROGRESS;
876
case Attribute::PresplitCoroutine:
877
return bitc::ATTR_KIND_PRESPLIT_COROUTINE;
878
case Attribute::Writable:
879
return bitc::ATTR_KIND_WRITABLE;
880
case Attribute::CoroDestroyOnlyWhenComplete:
881
return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE;
882
case Attribute::DeadOnUnwind:
883
return bitc::ATTR_KIND_DEAD_ON_UNWIND;
884
case Attribute::Range:
885
return bitc::ATTR_KIND_RANGE;
886
case Attribute::Initializes:
887
return bitc::ATTR_KIND_INITIALIZES;
888
case Attribute::EndAttrKinds:
889
llvm_unreachable("Can not encode end-attribute kinds marker.");
890
case Attribute::None:
891
llvm_unreachable("Can not encode none-attribute.");
892
case Attribute::EmptyKey:
893
case Attribute::TombstoneKey:
894
llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
895
}
896
897
llvm_unreachable("Trying to encode unknown attribute");
898
}
899
900
static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
901
if ((int64_t)V >= 0)
902
Vals.push_back(V << 1);
903
else
904
Vals.push_back((-V << 1) | 1);
905
}
906
907
static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
908
// We have an arbitrary precision integer value to write whose
909
// bit width is > 64. However, in canonical unsigned integer
910
// format it is likely that the high bits are going to be zero.
911
// So, we only write the number of active words.
912
unsigned NumWords = A.getActiveWords();
913
const uint64_t *RawData = A.getRawData();
914
for (unsigned i = 0; i < NumWords; i++)
915
emitSignedInt64(Vals, RawData[i]);
916
}
917
918
static void emitConstantRange(SmallVectorImpl<uint64_t> &Record,
919
const ConstantRange &CR, bool EmitBitWidth) {
920
unsigned BitWidth = CR.getBitWidth();
921
if (EmitBitWidth)
922
Record.push_back(BitWidth);
923
if (BitWidth > 64) {
924
Record.push_back(CR.getLower().getActiveWords() |
925
(uint64_t(CR.getUpper().getActiveWords()) << 32));
926
emitWideAPInt(Record, CR.getLower());
927
emitWideAPInt(Record, CR.getUpper());
928
} else {
929
emitSignedInt64(Record, CR.getLower().getSExtValue());
930
emitSignedInt64(Record, CR.getUpper().getSExtValue());
931
}
932
}
933
934
void ModuleBitcodeWriter::writeAttributeGroupTable() {
935
const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
936
VE.getAttributeGroups();
937
if (AttrGrps.empty()) return;
938
939
Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
940
941
SmallVector<uint64_t, 64> Record;
942
for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
943
unsigned AttrListIndex = Pair.first;
944
AttributeSet AS = Pair.second;
945
Record.push_back(VE.getAttributeGroupID(Pair));
946
Record.push_back(AttrListIndex);
947
948
for (Attribute Attr : AS) {
949
if (Attr.isEnumAttribute()) {
950
Record.push_back(0);
951
Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
952
} else if (Attr.isIntAttribute()) {
953
Record.push_back(1);
954
Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
955
Record.push_back(Attr.getValueAsInt());
956
} else if (Attr.isStringAttribute()) {
957
StringRef Kind = Attr.getKindAsString();
958
StringRef Val = Attr.getValueAsString();
959
960
Record.push_back(Val.empty() ? 3 : 4);
961
Record.append(Kind.begin(), Kind.end());
962
Record.push_back(0);
963
if (!Val.empty()) {
964
Record.append(Val.begin(), Val.end());
965
Record.push_back(0);
966
}
967
} else if (Attr.isTypeAttribute()) {
968
Type *Ty = Attr.getValueAsType();
969
Record.push_back(Ty ? 6 : 5);
970
Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
971
if (Ty)
972
Record.push_back(VE.getTypeID(Attr.getValueAsType()));
973
} else if (Attr.isConstantRangeAttribute()) {
974
Record.push_back(7);
975
Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
976
emitConstantRange(Record, Attr.getValueAsConstantRange(),
977
/*EmitBitWidth=*/true);
978
} else {
979
assert(Attr.isConstantRangeListAttribute());
980
Record.push_back(8);
981
Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
982
ArrayRef<ConstantRange> Val = Attr.getValueAsConstantRangeList();
983
Record.push_back(Val.size());
984
Record.push_back(Val[0].getBitWidth());
985
for (auto &CR : Val)
986
emitConstantRange(Record, CR, /*EmitBitWidth=*/false);
987
}
988
}
989
990
Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
991
Record.clear();
992
}
993
994
Stream.ExitBlock();
995
}
996
997
void ModuleBitcodeWriter::writeAttributeTable() {
998
const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
999
if (Attrs.empty()) return;
1000
1001
Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
1002
1003
SmallVector<uint64_t, 64> Record;
1004
for (const AttributeList &AL : Attrs) {
1005
for (unsigned i : AL.indexes()) {
1006
AttributeSet AS = AL.getAttributes(i);
1007
if (AS.hasAttributes())
1008
Record.push_back(VE.getAttributeGroupID({i, AS}));
1009
}
1010
1011
Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
1012
Record.clear();
1013
}
1014
1015
Stream.ExitBlock();
1016
}
1017
1018
/// WriteTypeTable - Write out the type table for a module.
1019
void ModuleBitcodeWriter::writeTypeTable() {
1020
const ValueEnumerator::TypeList &TypeList = VE.getTypes();
1021
1022
Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
1023
SmallVector<uint64_t, 64> TypeVals;
1024
1025
uint64_t NumBits = VE.computeBitsRequiredForTypeIndices();
1026
1027
// Abbrev for TYPE_CODE_OPAQUE_POINTER.
1028
auto Abbv = std::make_shared<BitCodeAbbrev>();
1029
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER));
1030
Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
1031
unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1032
1033
// Abbrev for TYPE_CODE_FUNCTION.
1034
Abbv = std::make_shared<BitCodeAbbrev>();
1035
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
1036
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
1037
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1038
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1039
unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1040
1041
// Abbrev for TYPE_CODE_STRUCT_ANON.
1042
Abbv = std::make_shared<BitCodeAbbrev>();
1043
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
1044
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
1045
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1046
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1047
unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1048
1049
// Abbrev for TYPE_CODE_STRUCT_NAME.
1050
Abbv = std::make_shared<BitCodeAbbrev>();
1051
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
1052
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1053
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1054
unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1055
1056
// Abbrev for TYPE_CODE_STRUCT_NAMED.
1057
Abbv = std::make_shared<BitCodeAbbrev>();
1058
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
1059
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
1060
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1061
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1062
unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1063
1064
// Abbrev for TYPE_CODE_ARRAY.
1065
Abbv = std::make_shared<BitCodeAbbrev>();
1066
Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
1067
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
1068
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
1069
unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1070
1071
// Emit an entry count so the reader can reserve space.
1072
TypeVals.push_back(TypeList.size());
1073
Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
1074
TypeVals.clear();
1075
1076
// Loop over all of the types, emitting each in turn.
1077
for (Type *T : TypeList) {
1078
int AbbrevToUse = 0;
1079
unsigned Code = 0;
1080
1081
switch (T->getTypeID()) {
1082
case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
1083
case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
1084
case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break;
1085
case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
1086
case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
1087
case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
1088
case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
1089
case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
1090
case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
1091
case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
1092
case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
1093
case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break;
1094
case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break;
1095
case Type::IntegerTyID:
1096
// INTEGER: [width]
1097
Code = bitc::TYPE_CODE_INTEGER;
1098
TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
1099
break;
1100
case Type::PointerTyID: {
1101
PointerType *PTy = cast<PointerType>(T);
1102
unsigned AddressSpace = PTy->getAddressSpace();
1103
// OPAQUE_POINTER: [address space]
1104
Code = bitc::TYPE_CODE_OPAQUE_POINTER;
1105
TypeVals.push_back(AddressSpace);
1106
if (AddressSpace == 0)
1107
AbbrevToUse = OpaquePtrAbbrev;
1108
break;
1109
}
1110
case Type::FunctionTyID: {
1111
FunctionType *FT = cast<FunctionType>(T);
1112
// FUNCTION: [isvararg, retty, paramty x N]
1113
Code = bitc::TYPE_CODE_FUNCTION;
1114
TypeVals.push_back(FT->isVarArg());
1115
TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
1116
for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
1117
TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
1118
AbbrevToUse = FunctionAbbrev;
1119
break;
1120
}
1121
case Type::StructTyID: {
1122
StructType *ST = cast<StructType>(T);
1123
// STRUCT: [ispacked, eltty x N]
1124
TypeVals.push_back(ST->isPacked());
1125
// Output all of the element types.
1126
for (Type *ET : ST->elements())
1127
TypeVals.push_back(VE.getTypeID(ET));
1128
1129
if (ST->isLiteral()) {
1130
Code = bitc::TYPE_CODE_STRUCT_ANON;
1131
AbbrevToUse = StructAnonAbbrev;
1132
} else {
1133
if (ST->isOpaque()) {
1134
Code = bitc::TYPE_CODE_OPAQUE;
1135
} else {
1136
Code = bitc::TYPE_CODE_STRUCT_NAMED;
1137
AbbrevToUse = StructNamedAbbrev;
1138
}
1139
1140
// Emit the name if it is present.
1141
if (!ST->getName().empty())
1142
writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1143
StructNameAbbrev);
1144
}
1145
break;
1146
}
1147
case Type::ArrayTyID: {
1148
ArrayType *AT = cast<ArrayType>(T);
1149
// ARRAY: [numelts, eltty]
1150
Code = bitc::TYPE_CODE_ARRAY;
1151
TypeVals.push_back(AT->getNumElements());
1152
TypeVals.push_back(VE.getTypeID(AT->getElementType()));
1153
AbbrevToUse = ArrayAbbrev;
1154
break;
1155
}
1156
case Type::FixedVectorTyID:
1157
case Type::ScalableVectorTyID: {
1158
VectorType *VT = cast<VectorType>(T);
1159
// VECTOR [numelts, eltty] or
1160
// [numelts, eltty, scalable]
1161
Code = bitc::TYPE_CODE_VECTOR;
1162
TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1163
TypeVals.push_back(VE.getTypeID(VT->getElementType()));
1164
if (isa<ScalableVectorType>(VT))
1165
TypeVals.push_back(true);
1166
break;
1167
}
1168
case Type::TargetExtTyID: {
1169
TargetExtType *TET = cast<TargetExtType>(T);
1170
Code = bitc::TYPE_CODE_TARGET_TYPE;
1171
writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(),
1172
StructNameAbbrev);
1173
TypeVals.push_back(TET->getNumTypeParameters());
1174
for (Type *InnerTy : TET->type_params())
1175
TypeVals.push_back(VE.getTypeID(InnerTy));
1176
for (unsigned IntParam : TET->int_params())
1177
TypeVals.push_back(IntParam);
1178
break;
1179
}
1180
case Type::TypedPointerTyID:
1181
llvm_unreachable("Typed pointers cannot be added to IR modules");
1182
}
1183
1184
// Emit the finished record.
1185
Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1186
TypeVals.clear();
1187
}
1188
1189
Stream.ExitBlock();
1190
}
1191
1192
static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
1193
switch (Linkage) {
1194
case GlobalValue::ExternalLinkage:
1195
return 0;
1196
case GlobalValue::WeakAnyLinkage:
1197
return 16;
1198
case GlobalValue::AppendingLinkage:
1199
return 2;
1200
case GlobalValue::InternalLinkage:
1201
return 3;
1202
case GlobalValue::LinkOnceAnyLinkage:
1203
return 18;
1204
case GlobalValue::ExternalWeakLinkage:
1205
return 7;
1206
case GlobalValue::CommonLinkage:
1207
return 8;
1208
case GlobalValue::PrivateLinkage:
1209
return 9;
1210
case GlobalValue::WeakODRLinkage:
1211
return 17;
1212
case GlobalValue::LinkOnceODRLinkage:
1213
return 19;
1214
case GlobalValue::AvailableExternallyLinkage:
1215
return 12;
1216
}
1217
llvm_unreachable("Invalid linkage");
1218
}
1219
1220
static unsigned getEncodedLinkage(const GlobalValue &GV) {
1221
return getEncodedLinkage(GV.getLinkage());
1222
}
1223
1224
static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1225
uint64_t RawFlags = 0;
1226
RawFlags |= Flags.ReadNone;
1227
RawFlags |= (Flags.ReadOnly << 1);
1228
RawFlags |= (Flags.NoRecurse << 2);
1229
RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1230
RawFlags |= (Flags.NoInline << 4);
1231
RawFlags |= (Flags.AlwaysInline << 5);
1232
RawFlags |= (Flags.NoUnwind << 6);
1233
RawFlags |= (Flags.MayThrow << 7);
1234
RawFlags |= (Flags.HasUnknownCall << 8);
1235
RawFlags |= (Flags.MustBeUnreachable << 9);
1236
return RawFlags;
1237
}
1238
1239
// Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags
1240
// in BitcodeReader.cpp.
1241
static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags,
1242
bool ImportAsDecl = false) {
1243
uint64_t RawFlags = 0;
1244
1245
RawFlags |= Flags.NotEligibleToImport; // bool
1246
RawFlags |= (Flags.Live << 1);
1247
RawFlags |= (Flags.DSOLocal << 2);
1248
RawFlags |= (Flags.CanAutoHide << 3);
1249
1250
// Linkage don't need to be remapped at that time for the summary. Any future
1251
// change to the getEncodedLinkage() function will need to be taken into
1252
// account here as well.
1253
RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1254
1255
RawFlags |= (Flags.Visibility << 8); // 2 bits
1256
1257
unsigned ImportType = Flags.ImportType | ImportAsDecl;
1258
RawFlags |= (ImportType << 10); // 1 bit
1259
1260
return RawFlags;
1261
}
1262
1263
static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1264
uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1265
(Flags.Constant << 2) | Flags.VCallVisibility << 3;
1266
return RawFlags;
1267
}
1268
1269
static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) {
1270
uint64_t RawFlags = 0;
1271
1272
RawFlags |= CI.Hotness; // 3 bits
1273
RawFlags |= (CI.HasTailCall << 3); // 1 bit
1274
1275
return RawFlags;
1276
}
1277
1278
static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) {
1279
uint64_t RawFlags = 0;
1280
1281
RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits
1282
RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit
1283
1284
return RawFlags;
1285
}
1286
1287
static unsigned getEncodedVisibility(const GlobalValue &GV) {
1288
switch (GV.getVisibility()) {
1289
case GlobalValue::DefaultVisibility: return 0;
1290
case GlobalValue::HiddenVisibility: return 1;
1291
case GlobalValue::ProtectedVisibility: return 2;
1292
}
1293
llvm_unreachable("Invalid visibility");
1294
}
1295
1296
static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1297
switch (GV.getDLLStorageClass()) {
1298
case GlobalValue::DefaultStorageClass: return 0;
1299
case GlobalValue::DLLImportStorageClass: return 1;
1300
case GlobalValue::DLLExportStorageClass: return 2;
1301
}
1302
llvm_unreachable("Invalid DLL storage class");
1303
}
1304
1305
static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1306
switch (GV.getThreadLocalMode()) {
1307
case GlobalVariable::NotThreadLocal: return 0;
1308
case GlobalVariable::GeneralDynamicTLSModel: return 1;
1309
case GlobalVariable::LocalDynamicTLSModel: return 2;
1310
case GlobalVariable::InitialExecTLSModel: return 3;
1311
case GlobalVariable::LocalExecTLSModel: return 4;
1312
}
1313
llvm_unreachable("Invalid TLS model");
1314
}
1315
1316
static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1317
switch (C.getSelectionKind()) {
1318
case Comdat::Any:
1319
return bitc::COMDAT_SELECTION_KIND_ANY;
1320
case Comdat::ExactMatch:
1321
return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1322
case Comdat::Largest:
1323
return bitc::COMDAT_SELECTION_KIND_LARGEST;
1324
case Comdat::NoDeduplicate:
1325
return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1326
case Comdat::SameSize:
1327
return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1328
}
1329
llvm_unreachable("Invalid selection kind");
1330
}
1331
1332
static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1333
switch (GV.getUnnamedAddr()) {
1334
case GlobalValue::UnnamedAddr::None: return 0;
1335
case GlobalValue::UnnamedAddr::Local: return 2;
1336
case GlobalValue::UnnamedAddr::Global: return 1;
1337
}
1338
llvm_unreachable("Invalid unnamed_addr");
1339
}
1340
1341
size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1342
if (GenerateHash)
1343
Hasher.update(Str);
1344
return StrtabBuilder.add(Str);
1345
}
1346
1347
void ModuleBitcodeWriter::writeComdats() {
1348
SmallVector<unsigned, 64> Vals;
1349
for (const Comdat *C : VE.getComdats()) {
1350
// COMDAT: [strtab offset, strtab size, selection_kind]
1351
Vals.push_back(addToStrtab(C->getName()));
1352
Vals.push_back(C->getName().size());
1353
Vals.push_back(getEncodedComdatSelectionKind(*C));
1354
Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1355
Vals.clear();
1356
}
1357
}
1358
1359
/// Write a record that will eventually hold the word offset of the
1360
/// module-level VST. For now the offset is 0, which will be backpatched
1361
/// after the real VST is written. Saves the bit offset to backpatch.
1362
void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1363
// Write a placeholder value in for the offset of the real VST,
1364
// which is written after the function blocks so that it can include
1365
// the offset of each function. The placeholder offset will be
1366
// updated when the real VST is written.
1367
auto Abbv = std::make_shared<BitCodeAbbrev>();
1368
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1369
// Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1370
// hold the real VST offset. Must use fixed instead of VBR as we don't
1371
// know how many VBR chunks to reserve ahead of time.
1372
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1373
unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1374
1375
// Emit the placeholder
1376
uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1377
Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1378
1379
// Compute and save the bit offset to the placeholder, which will be
1380
// patched when the real VST is written. We can simply subtract the 32-bit
1381
// fixed size from the current bit number to get the location to backpatch.
1382
VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1383
}
1384
1385
enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1386
1387
/// Determine the encoding to use for the given string name and length.
1388
static StringEncoding getStringEncoding(StringRef Str) {
1389
bool isChar6 = true;
1390
for (char C : Str) {
1391
if (isChar6)
1392
isChar6 = BitCodeAbbrevOp::isChar6(C);
1393
if ((unsigned char)C & 128)
1394
// don't bother scanning the rest.
1395
return SE_Fixed8;
1396
}
1397
if (isChar6)
1398
return SE_Char6;
1399
return SE_Fixed7;
1400
}
1401
1402
static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned),
1403
"Sanitizer Metadata is too large for naive serialization.");
1404
static unsigned
1405
serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) {
1406
return Meta.NoAddress | (Meta.NoHWAddress << 1) |
1407
(Meta.Memtag << 2) | (Meta.IsDynInit << 3);
1408
}
1409
1410
/// Emit top-level description of module, including target triple, inline asm,
1411
/// descriptors for global variables, and function prototype info.
1412
/// Returns the bit offset to backpatch with the location of the real VST.
1413
void ModuleBitcodeWriter::writeModuleInfo() {
1414
// Emit various pieces of data attached to a module.
1415
if (!M.getTargetTriple().empty())
1416
writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1417
0 /*TODO*/);
1418
const std::string &DL = M.getDataLayoutStr();
1419
if (!DL.empty())
1420
writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1421
if (!M.getModuleInlineAsm().empty())
1422
writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1423
0 /*TODO*/);
1424
1425
// Emit information about sections and GC, computing how many there are. Also
1426
// compute the maximum alignment value.
1427
std::map<std::string, unsigned> SectionMap;
1428
std::map<std::string, unsigned> GCMap;
1429
MaybeAlign MaxAlignment;
1430
unsigned MaxGlobalType = 0;
1431
const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1432
if (A)
1433
MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1434
};
1435
for (const GlobalVariable &GV : M.globals()) {
1436
UpdateMaxAlignment(GV.getAlign());
1437
MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1438
if (GV.hasSection()) {
1439
// Give section names unique ID's.
1440
unsigned &Entry = SectionMap[std::string(GV.getSection())];
1441
if (!Entry) {
1442
writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1443
0 /*TODO*/);
1444
Entry = SectionMap.size();
1445
}
1446
}
1447
}
1448
for (const Function &F : M) {
1449
UpdateMaxAlignment(F.getAlign());
1450
if (F.hasSection()) {
1451
// Give section names unique ID's.
1452
unsigned &Entry = SectionMap[std::string(F.getSection())];
1453
if (!Entry) {
1454
writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1455
0 /*TODO*/);
1456
Entry = SectionMap.size();
1457
}
1458
}
1459
if (F.hasGC()) {
1460
// Same for GC names.
1461
unsigned &Entry = GCMap[F.getGC()];
1462
if (!Entry) {
1463
writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1464
0 /*TODO*/);
1465
Entry = GCMap.size();
1466
}
1467
}
1468
}
1469
1470
// Emit abbrev for globals, now that we know # sections and max alignment.
1471
unsigned SimpleGVarAbbrev = 0;
1472
if (!M.global_empty()) {
1473
// Add an abbrev for common globals with no visibility or thread localness.
1474
auto Abbv = std::make_shared<BitCodeAbbrev>();
1475
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1476
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1477
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1478
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1479
Log2_32_Ceil(MaxGlobalType+1)));
1480
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
1481
//| explicitType << 1
1482
//| constant
1483
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
1484
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1485
if (!MaxAlignment) // Alignment.
1486
Abbv->Add(BitCodeAbbrevOp(0));
1487
else {
1488
unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1489
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1490
Log2_32_Ceil(MaxEncAlignment+1)));
1491
}
1492
if (SectionMap.empty()) // Section.
1493
Abbv->Add(BitCodeAbbrevOp(0));
1494
else
1495
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1496
Log2_32_Ceil(SectionMap.size()+1)));
1497
// Don't bother emitting vis + thread local.
1498
SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1499
}
1500
1501
SmallVector<unsigned, 64> Vals;
1502
// Emit the module's source file name.
1503
{
1504
StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1505
BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1506
if (Bits == SE_Char6)
1507
AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1508
else if (Bits == SE_Fixed7)
1509
AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1510
1511
// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1512
auto Abbv = std::make_shared<BitCodeAbbrev>();
1513
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1514
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1515
Abbv->Add(AbbrevOpToUse);
1516
unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1517
1518
for (const auto P : M.getSourceFileName())
1519
Vals.push_back((unsigned char)P);
1520
1521
// Emit the finished record.
1522
Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1523
Vals.clear();
1524
}
1525
1526
// Emit the global variable information.
1527
for (const GlobalVariable &GV : M.globals()) {
1528
unsigned AbbrevToUse = 0;
1529
1530
// GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1531
// linkage, alignment, section, visibility, threadlocal,
1532
// unnamed_addr, externally_initialized, dllstorageclass,
1533
// comdat, attributes, DSO_Local, GlobalSanitizer, code_model]
1534
Vals.push_back(addToStrtab(GV.getName()));
1535
Vals.push_back(GV.getName().size());
1536
Vals.push_back(VE.getTypeID(GV.getValueType()));
1537
Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1538
Vals.push_back(GV.isDeclaration() ? 0 :
1539
(VE.getValueID(GV.getInitializer()) + 1));
1540
Vals.push_back(getEncodedLinkage(GV));
1541
Vals.push_back(getEncodedAlign(GV.getAlign()));
1542
Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1543
: 0);
1544
if (GV.isThreadLocal() ||
1545
GV.getVisibility() != GlobalValue::DefaultVisibility ||
1546
GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1547
GV.isExternallyInitialized() ||
1548
GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1549
GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() ||
1550
GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) {
1551
Vals.push_back(getEncodedVisibility(GV));
1552
Vals.push_back(getEncodedThreadLocalMode(GV));
1553
Vals.push_back(getEncodedUnnamedAddr(GV));
1554
Vals.push_back(GV.isExternallyInitialized());
1555
Vals.push_back(getEncodedDLLStorageClass(GV));
1556
Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1557
1558
auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1559
Vals.push_back(VE.getAttributeListID(AL));
1560
1561
Vals.push_back(GV.isDSOLocal());
1562
Vals.push_back(addToStrtab(GV.getPartition()));
1563
Vals.push_back(GV.getPartition().size());
1564
1565
Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata(
1566
GV.getSanitizerMetadata())
1567
: 0));
1568
Vals.push_back(GV.getCodeModelRaw());
1569
} else {
1570
AbbrevToUse = SimpleGVarAbbrev;
1571
}
1572
1573
Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1574
Vals.clear();
1575
}
1576
1577
// Emit the function proto information.
1578
for (const Function &F : M) {
1579
// FUNCTION: [strtab offset, strtab size, type, callingconv, isproto,
1580
// linkage, paramattrs, alignment, section, visibility, gc,
1581
// unnamed_addr, prologuedata, dllstorageclass, comdat,
1582
// prefixdata, personalityfn, DSO_Local, addrspace]
1583
Vals.push_back(addToStrtab(F.getName()));
1584
Vals.push_back(F.getName().size());
1585
Vals.push_back(VE.getTypeID(F.getFunctionType()));
1586
Vals.push_back(F.getCallingConv());
1587
Vals.push_back(F.isDeclaration());
1588
Vals.push_back(getEncodedLinkage(F));
1589
Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1590
Vals.push_back(getEncodedAlign(F.getAlign()));
1591
Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1592
: 0);
1593
Vals.push_back(getEncodedVisibility(F));
1594
Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1595
Vals.push_back(getEncodedUnnamedAddr(F));
1596
Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1597
: 0);
1598
Vals.push_back(getEncodedDLLStorageClass(F));
1599
Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1600
Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1601
: 0);
1602
Vals.push_back(
1603
F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1604
1605
Vals.push_back(F.isDSOLocal());
1606
Vals.push_back(F.getAddressSpace());
1607
Vals.push_back(addToStrtab(F.getPartition()));
1608
Vals.push_back(F.getPartition().size());
1609
1610
unsigned AbbrevToUse = 0;
1611
Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1612
Vals.clear();
1613
}
1614
1615
// Emit the alias information.
1616
for (const GlobalAlias &A : M.aliases()) {
1617
// ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1618
// visibility, dllstorageclass, threadlocal, unnamed_addr,
1619
// DSO_Local]
1620
Vals.push_back(addToStrtab(A.getName()));
1621
Vals.push_back(A.getName().size());
1622
Vals.push_back(VE.getTypeID(A.getValueType()));
1623
Vals.push_back(A.getType()->getAddressSpace());
1624
Vals.push_back(VE.getValueID(A.getAliasee()));
1625
Vals.push_back(getEncodedLinkage(A));
1626
Vals.push_back(getEncodedVisibility(A));
1627
Vals.push_back(getEncodedDLLStorageClass(A));
1628
Vals.push_back(getEncodedThreadLocalMode(A));
1629
Vals.push_back(getEncodedUnnamedAddr(A));
1630
Vals.push_back(A.isDSOLocal());
1631
Vals.push_back(addToStrtab(A.getPartition()));
1632
Vals.push_back(A.getPartition().size());
1633
1634
unsigned AbbrevToUse = 0;
1635
Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1636
Vals.clear();
1637
}
1638
1639
// Emit the ifunc information.
1640
for (const GlobalIFunc &I : M.ifuncs()) {
1641
// IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1642
// val#, linkage, visibility, DSO_Local]
1643
Vals.push_back(addToStrtab(I.getName()));
1644
Vals.push_back(I.getName().size());
1645
Vals.push_back(VE.getTypeID(I.getValueType()));
1646
Vals.push_back(I.getType()->getAddressSpace());
1647
Vals.push_back(VE.getValueID(I.getResolver()));
1648
Vals.push_back(getEncodedLinkage(I));
1649
Vals.push_back(getEncodedVisibility(I));
1650
Vals.push_back(I.isDSOLocal());
1651
Vals.push_back(addToStrtab(I.getPartition()));
1652
Vals.push_back(I.getPartition().size());
1653
Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1654
Vals.clear();
1655
}
1656
1657
writeValueSymbolTableForwardDecl();
1658
}
1659
1660
static uint64_t getOptimizationFlags(const Value *V) {
1661
uint64_t Flags = 0;
1662
1663
if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1664
if (OBO->hasNoSignedWrap())
1665
Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1666
if (OBO->hasNoUnsignedWrap())
1667
Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1668
} else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1669
if (PEO->isExact())
1670
Flags |= 1 << bitc::PEO_EXACT;
1671
} else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) {
1672
if (PDI->isDisjoint())
1673
Flags |= 1 << bitc::PDI_DISJOINT;
1674
} else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1675
if (FPMO->hasAllowReassoc())
1676
Flags |= bitc::AllowReassoc;
1677
if (FPMO->hasNoNaNs())
1678
Flags |= bitc::NoNaNs;
1679
if (FPMO->hasNoInfs())
1680
Flags |= bitc::NoInfs;
1681
if (FPMO->hasNoSignedZeros())
1682
Flags |= bitc::NoSignedZeros;
1683
if (FPMO->hasAllowReciprocal())
1684
Flags |= bitc::AllowReciprocal;
1685
if (FPMO->hasAllowContract())
1686
Flags |= bitc::AllowContract;
1687
if (FPMO->hasApproxFunc())
1688
Flags |= bitc::ApproxFunc;
1689
} else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) {
1690
if (NNI->hasNonNeg())
1691
Flags |= 1 << bitc::PNNI_NON_NEG;
1692
} else if (const auto *TI = dyn_cast<TruncInst>(V)) {
1693
if (TI->hasNoSignedWrap())
1694
Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP;
1695
if (TI->hasNoUnsignedWrap())
1696
Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP;
1697
} else if (const auto *GEP = dyn_cast<GEPOperator>(V)) {
1698
if (GEP->isInBounds())
1699
Flags |= 1 << bitc::GEP_INBOUNDS;
1700
if (GEP->hasNoUnsignedSignedWrap())
1701
Flags |= 1 << bitc::GEP_NUSW;
1702
if (GEP->hasNoUnsignedWrap())
1703
Flags |= 1 << bitc::GEP_NUW;
1704
}
1705
1706
return Flags;
1707
}
1708
1709
void ModuleBitcodeWriter::writeValueAsMetadata(
1710
const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1711
// Mimic an MDNode with a value as one operand.
1712
Value *V = MD->getValue();
1713
Record.push_back(VE.getTypeID(V->getType()));
1714
Record.push_back(VE.getValueID(V));
1715
Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1716
Record.clear();
1717
}
1718
1719
void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1720
SmallVectorImpl<uint64_t> &Record,
1721
unsigned Abbrev) {
1722
for (const MDOperand &MDO : N->operands()) {
1723
Metadata *MD = MDO;
1724
assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1725
"Unexpected function-local metadata");
1726
Record.push_back(VE.getMetadataOrNullID(MD));
1727
}
1728
Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1729
: bitc::METADATA_NODE,
1730
Record, Abbrev);
1731
Record.clear();
1732
}
1733
1734
unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1735
// Assume the column is usually under 128, and always output the inlined-at
1736
// location (it's never more expensive than building an array size 1).
1737
auto Abbv = std::make_shared<BitCodeAbbrev>();
1738
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1739
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1740
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1741
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1742
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1743
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1744
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1745
return Stream.EmitAbbrev(std::move(Abbv));
1746
}
1747
1748
void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1749
SmallVectorImpl<uint64_t> &Record,
1750
unsigned &Abbrev) {
1751
if (!Abbrev)
1752
Abbrev = createDILocationAbbrev();
1753
1754
Record.push_back(N->isDistinct());
1755
Record.push_back(N->getLine());
1756
Record.push_back(N->getColumn());
1757
Record.push_back(VE.getMetadataID(N->getScope()));
1758
Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1759
Record.push_back(N->isImplicitCode());
1760
1761
Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1762
Record.clear();
1763
}
1764
1765
unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1766
// Assume the column is usually under 128, and always output the inlined-at
1767
// location (it's never more expensive than building an array size 1).
1768
auto Abbv = std::make_shared<BitCodeAbbrev>();
1769
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1770
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1771
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1772
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1773
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1774
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1775
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1776
return Stream.EmitAbbrev(std::move(Abbv));
1777
}
1778
1779
void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1780
SmallVectorImpl<uint64_t> &Record,
1781
unsigned &Abbrev) {
1782
if (!Abbrev)
1783
Abbrev = createGenericDINodeAbbrev();
1784
1785
Record.push_back(N->isDistinct());
1786
Record.push_back(N->getTag());
1787
Record.push_back(0); // Per-tag version field; unused for now.
1788
1789
for (auto &I : N->operands())
1790
Record.push_back(VE.getMetadataOrNullID(I));
1791
1792
Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1793
Record.clear();
1794
}
1795
1796
void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1797
SmallVectorImpl<uint64_t> &Record,
1798
unsigned Abbrev) {
1799
const uint64_t Version = 2 << 1;
1800
Record.push_back((uint64_t)N->isDistinct() | Version);
1801
Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1802
Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1803
Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1804
Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1805
1806
Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1807
Record.clear();
1808
}
1809
1810
void ModuleBitcodeWriter::writeDIGenericSubrange(
1811
const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record,
1812
unsigned Abbrev) {
1813
Record.push_back((uint64_t)N->isDistinct());
1814
Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1815
Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1816
Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1817
Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1818
1819
Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev);
1820
Record.clear();
1821
}
1822
1823
void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1824
SmallVectorImpl<uint64_t> &Record,
1825
unsigned Abbrev) {
1826
const uint64_t IsBigInt = 1 << 2;
1827
Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
1828
Record.push_back(N->getValue().getBitWidth());
1829
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1830
emitWideAPInt(Record, N->getValue());
1831
1832
Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1833
Record.clear();
1834
}
1835
1836
void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1837
SmallVectorImpl<uint64_t> &Record,
1838
unsigned Abbrev) {
1839
Record.push_back(N->isDistinct());
1840
Record.push_back(N->getTag());
1841
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1842
Record.push_back(N->getSizeInBits());
1843
Record.push_back(N->getAlignInBits());
1844
Record.push_back(N->getEncoding());
1845
Record.push_back(N->getFlags());
1846
1847
Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1848
Record.clear();
1849
}
1850
1851
void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N,
1852
SmallVectorImpl<uint64_t> &Record,
1853
unsigned Abbrev) {
1854
Record.push_back(N->isDistinct());
1855
Record.push_back(N->getTag());
1856
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1857
Record.push_back(VE.getMetadataOrNullID(N->getStringLength()));
1858
Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp()));
1859
Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp()));
1860
Record.push_back(N->getSizeInBits());
1861
Record.push_back(N->getAlignInBits());
1862
Record.push_back(N->getEncoding());
1863
1864
Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev);
1865
Record.clear();
1866
}
1867
1868
void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1869
SmallVectorImpl<uint64_t> &Record,
1870
unsigned Abbrev) {
1871
Record.push_back(N->isDistinct());
1872
Record.push_back(N->getTag());
1873
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1874
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1875
Record.push_back(N->getLine());
1876
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1877
Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1878
Record.push_back(N->getSizeInBits());
1879
Record.push_back(N->getAlignInBits());
1880
Record.push_back(N->getOffsetInBits());
1881
Record.push_back(N->getFlags());
1882
Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1883
1884
// DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1885
// that there is no DWARF address space associated with DIDerivedType.
1886
if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1887
Record.push_back(*DWARFAddressSpace + 1);
1888
else
1889
Record.push_back(0);
1890
1891
Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1892
1893
if (auto PtrAuthData = N->getPtrAuthData())
1894
Record.push_back(PtrAuthData->RawData);
1895
else
1896
Record.push_back(0);
1897
1898
Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1899
Record.clear();
1900
}
1901
1902
void ModuleBitcodeWriter::writeDICompositeType(
1903
const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1904
unsigned Abbrev) {
1905
const unsigned IsNotUsedInOldTypeRef = 0x2;
1906
Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1907
Record.push_back(N->getTag());
1908
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1909
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1910
Record.push_back(N->getLine());
1911
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1912
Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1913
Record.push_back(N->getSizeInBits());
1914
Record.push_back(N->getAlignInBits());
1915
Record.push_back(N->getOffsetInBits());
1916
Record.push_back(N->getFlags());
1917
Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1918
Record.push_back(N->getRuntimeLang());
1919
Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1920
Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1921
Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1922
Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1923
Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));
1924
Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated()));
1925
Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated()));
1926
Record.push_back(VE.getMetadataOrNullID(N->getRawRank()));
1927
Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1928
1929
Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1930
Record.clear();
1931
}
1932
1933
void ModuleBitcodeWriter::writeDISubroutineType(
1934
const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1935
unsigned Abbrev) {
1936
const unsigned HasNoOldTypeRefs = 0x2;
1937
Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1938
Record.push_back(N->getFlags());
1939
Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1940
Record.push_back(N->getCC());
1941
1942
Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1943
Record.clear();
1944
}
1945
1946
void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1947
SmallVectorImpl<uint64_t> &Record,
1948
unsigned Abbrev) {
1949
Record.push_back(N->isDistinct());
1950
Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1951
Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1952
if (N->getRawChecksum()) {
1953
Record.push_back(N->getRawChecksum()->Kind);
1954
Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1955
} else {
1956
// Maintain backwards compatibility with the old internal representation of
1957
// CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1958
Record.push_back(0);
1959
Record.push_back(VE.getMetadataOrNullID(nullptr));
1960
}
1961
auto Source = N->getRawSource();
1962
if (Source)
1963
Record.push_back(VE.getMetadataOrNullID(Source));
1964
1965
Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1966
Record.clear();
1967
}
1968
1969
void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1970
SmallVectorImpl<uint64_t> &Record,
1971
unsigned Abbrev) {
1972
assert(N->isDistinct() && "Expected distinct compile units");
1973
Record.push_back(/* IsDistinct */ true);
1974
Record.push_back(N->getSourceLanguage());
1975
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1976
Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1977
Record.push_back(N->isOptimized());
1978
Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1979
Record.push_back(N->getRuntimeVersion());
1980
Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1981
Record.push_back(N->getEmissionKind());
1982
Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1983
Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1984
Record.push_back(/* subprograms */ 0);
1985
Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1986
Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1987
Record.push_back(N->getDWOId());
1988
Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1989
Record.push_back(N->getSplitDebugInlining());
1990
Record.push_back(N->getDebugInfoForProfiling());
1991
Record.push_back((unsigned)N->getNameTableKind());
1992
Record.push_back(N->getRangesBaseAddress());
1993
Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
1994
Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));
1995
1996
Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1997
Record.clear();
1998
}
1999
2000
void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
2001
SmallVectorImpl<uint64_t> &Record,
2002
unsigned Abbrev) {
2003
const uint64_t HasUnitFlag = 1 << 1;
2004
const uint64_t HasSPFlagsFlag = 1 << 2;
2005
Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
2006
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2007
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2008
Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
2009
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2010
Record.push_back(N->getLine());
2011
Record.push_back(VE.getMetadataOrNullID(N->getType()));
2012
Record.push_back(N->getScopeLine());
2013
Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
2014
Record.push_back(N->getSPFlags());
2015
Record.push_back(N->getVirtualIndex());
2016
Record.push_back(N->getFlags());
2017
Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
2018
Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
2019
Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
2020
Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
2021
Record.push_back(N->getThisAdjustment());
2022
Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
2023
Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2024
Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName()));
2025
2026
Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
2027
Record.clear();
2028
}
2029
2030
void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
2031
SmallVectorImpl<uint64_t> &Record,
2032
unsigned Abbrev) {
2033
Record.push_back(N->isDistinct());
2034
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2035
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2036
Record.push_back(N->getLine());
2037
Record.push_back(N->getColumn());
2038
2039
Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
2040
Record.clear();
2041
}
2042
2043
void ModuleBitcodeWriter::writeDILexicalBlockFile(
2044
const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
2045
unsigned Abbrev) {
2046
Record.push_back(N->isDistinct());
2047
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2048
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2049
Record.push_back(N->getDiscriminator());
2050
2051
Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
2052
Record.clear();
2053
}
2054
2055
void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
2056
SmallVectorImpl<uint64_t> &Record,
2057
unsigned Abbrev) {
2058
Record.push_back(N->isDistinct());
2059
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2060
Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
2061
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2062
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2063
Record.push_back(N->getLineNo());
2064
2065
Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
2066
Record.clear();
2067
}
2068
2069
void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
2070
SmallVectorImpl<uint64_t> &Record,
2071
unsigned Abbrev) {
2072
Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
2073
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2074
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2075
2076
Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
2077
Record.clear();
2078
}
2079
2080
void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
2081
SmallVectorImpl<uint64_t> &Record,
2082
unsigned Abbrev) {
2083
Record.push_back(N->isDistinct());
2084
Record.push_back(N->getMacinfoType());
2085
Record.push_back(N->getLine());
2086
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2087
Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
2088
2089
Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
2090
Record.clear();
2091
}
2092
2093
void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
2094
SmallVectorImpl<uint64_t> &Record,
2095
unsigned Abbrev) {
2096
Record.push_back(N->isDistinct());
2097
Record.push_back(N->getMacinfoType());
2098
Record.push_back(N->getLine());
2099
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2100
Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2101
2102
Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
2103
Record.clear();
2104
}
2105
2106
void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N,
2107
SmallVectorImpl<uint64_t> &Record) {
2108
Record.reserve(N->getArgs().size());
2109
for (ValueAsMetadata *MD : N->getArgs())
2110
Record.push_back(VE.getMetadataID(MD));
2111
2112
Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record);
2113
Record.clear();
2114
}
2115
2116
void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
2117
SmallVectorImpl<uint64_t> &Record,
2118
unsigned Abbrev) {
2119
Record.push_back(N->isDistinct());
2120
for (auto &I : N->operands())
2121
Record.push_back(VE.getMetadataOrNullID(I));
2122
Record.push_back(N->getLineNo());
2123
Record.push_back(N->getIsDecl());
2124
2125
Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
2126
Record.clear();
2127
}
2128
2129
void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N,
2130
SmallVectorImpl<uint64_t> &Record,
2131
unsigned Abbrev) {
2132
// There are no arguments for this metadata type.
2133
Record.push_back(N->isDistinct());
2134
Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev);
2135
Record.clear();
2136
}
2137
2138
void ModuleBitcodeWriter::writeDITemplateTypeParameter(
2139
const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
2140
unsigned Abbrev) {
2141
Record.push_back(N->isDistinct());
2142
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2143
Record.push_back(VE.getMetadataOrNullID(N->getType()));
2144
Record.push_back(N->isDefault());
2145
2146
Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
2147
Record.clear();
2148
}
2149
2150
void ModuleBitcodeWriter::writeDITemplateValueParameter(
2151
const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
2152
unsigned Abbrev) {
2153
Record.push_back(N->isDistinct());
2154
Record.push_back(N->getTag());
2155
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2156
Record.push_back(VE.getMetadataOrNullID(N->getType()));
2157
Record.push_back(N->isDefault());
2158
Record.push_back(VE.getMetadataOrNullID(N->getValue()));
2159
2160
Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
2161
Record.clear();
2162
}
2163
2164
void ModuleBitcodeWriter::writeDIGlobalVariable(
2165
const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
2166
unsigned Abbrev) {
2167
const uint64_t Version = 2 << 1;
2168
Record.push_back((uint64_t)N->isDistinct() | Version);
2169
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2170
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2171
Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
2172
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2173
Record.push_back(N->getLine());
2174
Record.push_back(VE.getMetadataOrNullID(N->getType()));
2175
Record.push_back(N->isLocalToUnit());
2176
Record.push_back(N->isDefinition());
2177
Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
2178
Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
2179
Record.push_back(N->getAlignInBits());
2180
Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2181
2182
Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
2183
Record.clear();
2184
}
2185
2186
void ModuleBitcodeWriter::writeDILocalVariable(
2187
const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
2188
unsigned Abbrev) {
2189
// In order to support all possible bitcode formats in BitcodeReader we need
2190
// to distinguish the following cases:
2191
// 1) Record has no artificial tag (Record[1]),
2192
// has no obsolete inlinedAt field (Record[9]).
2193
// In this case Record size will be 8, HasAlignment flag is false.
2194
// 2) Record has artificial tag (Record[1]),
2195
// has no obsolete inlignedAt field (Record[9]).
2196
// In this case Record size will be 9, HasAlignment flag is false.
2197
// 3) Record has both artificial tag (Record[1]) and
2198
// obsolete inlignedAt field (Record[9]).
2199
// In this case Record size will be 10, HasAlignment flag is false.
2200
// 4) Record has neither artificial tag, nor inlignedAt field, but
2201
// HasAlignment flag is true and Record[8] contains alignment value.
2202
const uint64_t HasAlignmentFlag = 1 << 1;
2203
Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
2204
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2205
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2206
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2207
Record.push_back(N->getLine());
2208
Record.push_back(VE.getMetadataOrNullID(N->getType()));
2209
Record.push_back(N->getArg());
2210
Record.push_back(N->getFlags());
2211
Record.push_back(N->getAlignInBits());
2212
Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
2213
2214
Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
2215
Record.clear();
2216
}
2217
2218
void ModuleBitcodeWriter::writeDILabel(
2219
const DILabel *N, SmallVectorImpl<uint64_t> &Record,
2220
unsigned Abbrev) {
2221
Record.push_back((uint64_t)N->isDistinct());
2222
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2223
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2224
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2225
Record.push_back(N->getLine());
2226
2227
Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
2228
Record.clear();
2229
}
2230
2231
void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
2232
SmallVectorImpl<uint64_t> &Record,
2233
unsigned Abbrev) {
2234
Record.reserve(N->getElements().size() + 1);
2235
const uint64_t Version = 3 << 1;
2236
Record.push_back((uint64_t)N->isDistinct() | Version);
2237
Record.append(N->elements_begin(), N->elements_end());
2238
2239
Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
2240
Record.clear();
2241
}
2242
2243
void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
2244
const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
2245
unsigned Abbrev) {
2246
Record.push_back(N->isDistinct());
2247
Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
2248
Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
2249
2250
Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
2251
Record.clear();
2252
}
2253
2254
void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
2255
SmallVectorImpl<uint64_t> &Record,
2256
unsigned Abbrev) {
2257
Record.push_back(N->isDistinct());
2258
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2259
Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2260
Record.push_back(N->getLine());
2261
Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
2262
Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
2263
Record.push_back(N->getAttributes());
2264
Record.push_back(VE.getMetadataOrNullID(N->getType()));
2265
2266
Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
2267
Record.clear();
2268
}
2269
2270
void ModuleBitcodeWriter::writeDIImportedEntity(
2271
const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
2272
unsigned Abbrev) {
2273
Record.push_back(N->isDistinct());
2274
Record.push_back(N->getTag());
2275
Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2276
Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
2277
Record.push_back(N->getLine());
2278
Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2279
Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
2280
Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
2281
2282
Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
2283
Record.clear();
2284
}
2285
2286
unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2287
auto Abbv = std::make_shared<BitCodeAbbrev>();
2288
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
2289
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2290
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2291
return Stream.EmitAbbrev(std::move(Abbv));
2292
}
2293
2294
void ModuleBitcodeWriter::writeNamedMetadata(
2295
SmallVectorImpl<uint64_t> &Record) {
2296
if (M.named_metadata_empty())
2297
return;
2298
2299
unsigned Abbrev = createNamedMetadataAbbrev();
2300
for (const NamedMDNode &NMD : M.named_metadata()) {
2301
// Write name.
2302
StringRef Str = NMD.getName();
2303
Record.append(Str.bytes_begin(), Str.bytes_end());
2304
Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
2305
Record.clear();
2306
2307
// Write named metadata operands.
2308
for (const MDNode *N : NMD.operands())
2309
Record.push_back(VE.getMetadataID(N));
2310
Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
2311
Record.clear();
2312
}
2313
}
2314
2315
unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2316
auto Abbv = std::make_shared<BitCodeAbbrev>();
2317
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
2318
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
2319
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
2320
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2321
return Stream.EmitAbbrev(std::move(Abbv));
2322
}
2323
2324
/// Write out a record for MDString.
2325
///
2326
/// All the metadata strings in a metadata block are emitted in a single
2327
/// record. The sizes and strings themselves are shoved into a blob.
2328
void ModuleBitcodeWriter::writeMetadataStrings(
2329
ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
2330
if (Strings.empty())
2331
return;
2332
2333
// Start the record with the number of strings.
2334
Record.push_back(bitc::METADATA_STRINGS);
2335
Record.push_back(Strings.size());
2336
2337
// Emit the sizes of the strings in the blob.
2338
SmallString<256> Blob;
2339
{
2340
BitstreamWriter W(Blob);
2341
for (const Metadata *MD : Strings)
2342
W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
2343
W.FlushToWord();
2344
}
2345
2346
// Add the offset to the strings to the record.
2347
Record.push_back(Blob.size());
2348
2349
// Add the strings to the blob.
2350
for (const Metadata *MD : Strings)
2351
Blob.append(cast<MDString>(MD)->getString());
2352
2353
// Emit the final record.
2354
Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
2355
Record.clear();
2356
}
2357
2358
// Generates an enum to use as an index in the Abbrev array of Metadata record.
2359
enum MetadataAbbrev : unsigned {
2360
#define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2361
#include "llvm/IR/Metadata.def"
2362
LastPlusOne
2363
};
2364
2365
void ModuleBitcodeWriter::writeMetadataRecords(
2366
ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2367
std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2368
if (MDs.empty())
2369
return;
2370
2371
// Initialize MDNode abbreviations.
2372
#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2373
#include "llvm/IR/Metadata.def"
2374
2375
for (const Metadata *MD : MDs) {
2376
if (IndexPos)
2377
IndexPos->push_back(Stream.GetCurrentBitNo());
2378
if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2379
assert(N->isResolved() && "Expected forward references to be resolved");
2380
2381
switch (N->getMetadataID()) {
2382
default:
2383
llvm_unreachable("Invalid MDNode subclass");
2384
#define HANDLE_MDNODE_LEAF(CLASS) \
2385
case Metadata::CLASS##Kind: \
2386
if (MDAbbrevs) \
2387
write##CLASS(cast<CLASS>(N), Record, \
2388
(*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
2389
else \
2390
write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
2391
continue;
2392
#include "llvm/IR/Metadata.def"
2393
}
2394
}
2395
if (auto *AL = dyn_cast<DIArgList>(MD)) {
2396
writeDIArgList(AL, Record);
2397
continue;
2398
}
2399
writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2400
}
2401
}
2402
2403
void ModuleBitcodeWriter::writeModuleMetadata() {
2404
if (!VE.hasMDs() && M.named_metadata_empty())
2405
return;
2406
2407
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2408
SmallVector<uint64_t, 64> Record;
2409
2410
// Emit all abbrevs upfront, so that the reader can jump in the middle of the
2411
// block and load any metadata.
2412
std::vector<unsigned> MDAbbrevs;
2413
2414
MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2415
MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2416
MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2417
createGenericDINodeAbbrev();
2418
2419
auto Abbv = std::make_shared<BitCodeAbbrev>();
2420
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2421
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2422
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2423
unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2424
2425
Abbv = std::make_shared<BitCodeAbbrev>();
2426
Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2427
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2428
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2429
unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2430
2431
// Emit MDStrings together upfront.
2432
writeMetadataStrings(VE.getMDStrings(), Record);
2433
2434
// We only emit an index for the metadata record if we have more than a given
2435
// (naive) threshold of metadatas, otherwise it is not worth it.
2436
if (VE.getNonMDStrings().size() > IndexThreshold) {
2437
// Write a placeholder value in for the offset of the metadata index,
2438
// which is written after the records, so that it can include
2439
// the offset of each entry. The placeholder offset will be
2440
// updated after all records are emitted.
2441
uint64_t Vals[] = {0, 0};
2442
Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2443
}
2444
2445
// Compute and save the bit offset to the current position, which will be
2446
// patched when we emit the index later. We can simply subtract the 64-bit
2447
// fixed size from the current bit number to get the location to backpatch.
2448
uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2449
2450
// This index will contain the bitpos for each individual record.
2451
std::vector<uint64_t> IndexPos;
2452
IndexPos.reserve(VE.getNonMDStrings().size());
2453
2454
// Write all the records
2455
writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2456
2457
if (VE.getNonMDStrings().size() > IndexThreshold) {
2458
// Now that we have emitted all the records we will emit the index. But
2459
// first
2460
// backpatch the forward reference so that the reader can skip the records
2461
// efficiently.
2462
Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2463
Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2464
2465
// Delta encode the index.
2466
uint64_t PreviousValue = IndexOffsetRecordBitPos;
2467
for (auto &Elt : IndexPos) {
2468
auto EltDelta = Elt - PreviousValue;
2469
PreviousValue = Elt;
2470
Elt = EltDelta;
2471
}
2472
// Emit the index record.
2473
Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2474
IndexPos.clear();
2475
}
2476
2477
// Write the named metadata now.
2478
writeNamedMetadata(Record);
2479
2480
auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2481
SmallVector<uint64_t, 4> Record;
2482
Record.push_back(VE.getValueID(&GO));
2483
pushGlobalMetadataAttachment(Record, GO);
2484
Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2485
};
2486
for (const Function &F : M)
2487
if (F.isDeclaration() && F.hasMetadata())
2488
AddDeclAttachedMetadata(F);
2489
// FIXME: Only store metadata for declarations here, and move data for global
2490
// variable definitions to a separate block (PR28134).
2491
for (const GlobalVariable &GV : M.globals())
2492
if (GV.hasMetadata())
2493
AddDeclAttachedMetadata(GV);
2494
2495
Stream.ExitBlock();
2496
}
2497
2498
void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2499
if (!VE.hasMDs())
2500
return;
2501
2502
Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2503
SmallVector<uint64_t, 64> Record;
2504
writeMetadataStrings(VE.getMDStrings(), Record);
2505
writeMetadataRecords(VE.getNonMDStrings(), Record);
2506
Stream.ExitBlock();
2507
}
2508
2509
void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2510
SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2511
// [n x [id, mdnode]]
2512
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2513
GO.getAllMetadata(MDs);
2514
for (const auto &I : MDs) {
2515
Record.push_back(I.first);
2516
Record.push_back(VE.getMetadataID(I.second));
2517
}
2518
}
2519
2520
void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2521
Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2522
2523
SmallVector<uint64_t, 64> Record;
2524
2525
if (F.hasMetadata()) {
2526
pushGlobalMetadataAttachment(Record, F);
2527
Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2528
Record.clear();
2529
}
2530
2531
// Write metadata attachments
2532
// METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2533
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2534
for (const BasicBlock &BB : F)
2535
for (const Instruction &I : BB) {
2536
MDs.clear();
2537
I.getAllMetadataOtherThanDebugLoc(MDs);
2538
2539
// If no metadata, ignore instruction.
2540
if (MDs.empty()) continue;
2541
2542
Record.push_back(VE.getInstructionID(&I));
2543
2544
for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2545
Record.push_back(MDs[i].first);
2546
Record.push_back(VE.getMetadataID(MDs[i].second));
2547
}
2548
Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2549
Record.clear();
2550
}
2551
2552
Stream.ExitBlock();
2553
}
2554
2555
void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2556
SmallVector<uint64_t, 64> Record;
2557
2558
// Write metadata kinds
2559
// METADATA_KIND - [n x [id, name]]
2560
SmallVector<StringRef, 8> Names;
2561
M.getMDKindNames(Names);
2562
2563
if (Names.empty()) return;
2564
2565
Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2566
2567
for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2568
Record.push_back(MDKindID);
2569
StringRef KName = Names[MDKindID];
2570
Record.append(KName.begin(), KName.end());
2571
2572
Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2573
Record.clear();
2574
}
2575
2576
Stream.ExitBlock();
2577
}
2578
2579
void ModuleBitcodeWriter::writeOperandBundleTags() {
2580
// Write metadata kinds
2581
//
2582
// OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2583
//
2584
// OPERAND_BUNDLE_TAG - [strchr x N]
2585
2586
SmallVector<StringRef, 8> Tags;
2587
M.getOperandBundleTags(Tags);
2588
2589
if (Tags.empty())
2590
return;
2591
2592
Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2593
2594
SmallVector<uint64_t, 64> Record;
2595
2596
for (auto Tag : Tags) {
2597
Record.append(Tag.begin(), Tag.end());
2598
2599
Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2600
Record.clear();
2601
}
2602
2603
Stream.ExitBlock();
2604
}
2605
2606
void ModuleBitcodeWriter::writeSyncScopeNames() {
2607
SmallVector<StringRef, 8> SSNs;
2608
M.getContext().getSyncScopeNames(SSNs);
2609
if (SSNs.empty())
2610
return;
2611
2612
Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2613
2614
SmallVector<uint64_t, 64> Record;
2615
for (auto SSN : SSNs) {
2616
Record.append(SSN.begin(), SSN.end());
2617
Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2618
Record.clear();
2619
}
2620
2621
Stream.ExitBlock();
2622
}
2623
2624
void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2625
bool isGlobal) {
2626
if (FirstVal == LastVal) return;
2627
2628
Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2629
2630
unsigned AggregateAbbrev = 0;
2631
unsigned String8Abbrev = 0;
2632
unsigned CString7Abbrev = 0;
2633
unsigned CString6Abbrev = 0;
2634
// If this is a constant pool for the module, emit module-specific abbrevs.
2635
if (isGlobal) {
2636
// Abbrev for CST_CODE_AGGREGATE.
2637
auto Abbv = std::make_shared<BitCodeAbbrev>();
2638
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2639
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2640
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2641
AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2642
2643
// Abbrev for CST_CODE_STRING.
2644
Abbv = std::make_shared<BitCodeAbbrev>();
2645
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2646
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2647
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2648
String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2649
// Abbrev for CST_CODE_CSTRING.
2650
Abbv = std::make_shared<BitCodeAbbrev>();
2651
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2652
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2653
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2654
CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2655
// Abbrev for CST_CODE_CSTRING.
2656
Abbv = std::make_shared<BitCodeAbbrev>();
2657
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2658
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2659
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2660
CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2661
}
2662
2663
SmallVector<uint64_t, 64> Record;
2664
2665
const ValueEnumerator::ValueList &Vals = VE.getValues();
2666
Type *LastTy = nullptr;
2667
for (unsigned i = FirstVal; i != LastVal; ++i) {
2668
const Value *V = Vals[i].first;
2669
// If we need to switch types, do so now.
2670
if (V->getType() != LastTy) {
2671
LastTy = V->getType();
2672
Record.push_back(VE.getTypeID(LastTy));
2673
Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2674
CONSTANTS_SETTYPE_ABBREV);
2675
Record.clear();
2676
}
2677
2678
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2679
Record.push_back(VE.getTypeID(IA->getFunctionType()));
2680
Record.push_back(
2681
unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 |
2682
unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3);
2683
2684
// Add the asm string.
2685
const std::string &AsmStr = IA->getAsmString();
2686
Record.push_back(AsmStr.size());
2687
Record.append(AsmStr.begin(), AsmStr.end());
2688
2689
// Add the constraint string.
2690
const std::string &ConstraintStr = IA->getConstraintString();
2691
Record.push_back(ConstraintStr.size());
2692
Record.append(ConstraintStr.begin(), ConstraintStr.end());
2693
Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2694
Record.clear();
2695
continue;
2696
}
2697
const Constant *C = cast<Constant>(V);
2698
unsigned Code = -1U;
2699
unsigned AbbrevToUse = 0;
2700
if (C->isNullValue()) {
2701
Code = bitc::CST_CODE_NULL;
2702
} else if (isa<PoisonValue>(C)) {
2703
Code = bitc::CST_CODE_POISON;
2704
} else if (isa<UndefValue>(C)) {
2705
Code = bitc::CST_CODE_UNDEF;
2706
} else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2707
if (IV->getBitWidth() <= 64) {
2708
uint64_t V = IV->getSExtValue();
2709
emitSignedInt64(Record, V);
2710
Code = bitc::CST_CODE_INTEGER;
2711
AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2712
} else { // Wide integers, > 64 bits in size.
2713
emitWideAPInt(Record, IV->getValue());
2714
Code = bitc::CST_CODE_WIDE_INTEGER;
2715
}
2716
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2717
Code = bitc::CST_CODE_FLOAT;
2718
Type *Ty = CFP->getType()->getScalarType();
2719
if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
2720
Ty->isDoubleTy()) {
2721
Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2722
} else if (Ty->isX86_FP80Ty()) {
2723
// api needed to prevent premature destruction
2724
// bits are not in the same order as a normal i80 APInt, compensate.
2725
APInt api = CFP->getValueAPF().bitcastToAPInt();
2726
const uint64_t *p = api.getRawData();
2727
Record.push_back((p[1] << 48) | (p[0] >> 16));
2728
Record.push_back(p[0] & 0xffffLL);
2729
} else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2730
APInt api = CFP->getValueAPF().bitcastToAPInt();
2731
const uint64_t *p = api.getRawData();
2732
Record.push_back(p[0]);
2733
Record.push_back(p[1]);
2734
} else {
2735
assert(0 && "Unknown FP type!");
2736
}
2737
} else if (isa<ConstantDataSequential>(C) &&
2738
cast<ConstantDataSequential>(C)->isString()) {
2739
const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2740
// Emit constant strings specially.
2741
unsigned NumElts = Str->getNumElements();
2742
// If this is a null-terminated string, use the denser CSTRING encoding.
2743
if (Str->isCString()) {
2744
Code = bitc::CST_CODE_CSTRING;
2745
--NumElts; // Don't encode the null, which isn't allowed by char6.
2746
} else {
2747
Code = bitc::CST_CODE_STRING;
2748
AbbrevToUse = String8Abbrev;
2749
}
2750
bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2751
bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2752
for (unsigned i = 0; i != NumElts; ++i) {
2753
unsigned char V = Str->getElementAsInteger(i);
2754
Record.push_back(V);
2755
isCStr7 &= (V & 128) == 0;
2756
if (isCStrChar6)
2757
isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2758
}
2759
2760
if (isCStrChar6)
2761
AbbrevToUse = CString6Abbrev;
2762
else if (isCStr7)
2763
AbbrevToUse = CString7Abbrev;
2764
} else if (const ConstantDataSequential *CDS =
2765
dyn_cast<ConstantDataSequential>(C)) {
2766
Code = bitc::CST_CODE_DATA;
2767
Type *EltTy = CDS->getElementType();
2768
if (isa<IntegerType>(EltTy)) {
2769
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2770
Record.push_back(CDS->getElementAsInteger(i));
2771
} else {
2772
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2773
Record.push_back(
2774
CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2775
}
2776
} else if (isa<ConstantAggregate>(C)) {
2777
Code = bitc::CST_CODE_AGGREGATE;
2778
for (const Value *Op : C->operands())
2779
Record.push_back(VE.getValueID(Op));
2780
AbbrevToUse = AggregateAbbrev;
2781
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2782
switch (CE->getOpcode()) {
2783
default:
2784
if (Instruction::isCast(CE->getOpcode())) {
2785
Code = bitc::CST_CODE_CE_CAST;
2786
Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2787
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2788
Record.push_back(VE.getValueID(C->getOperand(0)));
2789
AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2790
} else {
2791
assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2792
Code = bitc::CST_CODE_CE_BINOP;
2793
Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2794
Record.push_back(VE.getValueID(C->getOperand(0)));
2795
Record.push_back(VE.getValueID(C->getOperand(1)));
2796
uint64_t Flags = getOptimizationFlags(CE);
2797
if (Flags != 0)
2798
Record.push_back(Flags);
2799
}
2800
break;
2801
case Instruction::FNeg: {
2802
assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2803
Code = bitc::CST_CODE_CE_UNOP;
2804
Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2805
Record.push_back(VE.getValueID(C->getOperand(0)));
2806
uint64_t Flags = getOptimizationFlags(CE);
2807
if (Flags != 0)
2808
Record.push_back(Flags);
2809
break;
2810
}
2811
case Instruction::GetElementPtr: {
2812
Code = bitc::CST_CODE_CE_GEP;
2813
const auto *GO = cast<GEPOperator>(C);
2814
Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2815
Record.push_back(getOptimizationFlags(GO));
2816
if (std::optional<ConstantRange> Range = GO->getInRange()) {
2817
Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE;
2818
emitConstantRange(Record, *Range, /*EmitBitWidth=*/true);
2819
}
2820
for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2821
Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2822
Record.push_back(VE.getValueID(C->getOperand(i)));
2823
}
2824
break;
2825
}
2826
case Instruction::ExtractElement:
2827
Code = bitc::CST_CODE_CE_EXTRACTELT;
2828
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2829
Record.push_back(VE.getValueID(C->getOperand(0)));
2830
Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2831
Record.push_back(VE.getValueID(C->getOperand(1)));
2832
break;
2833
case Instruction::InsertElement:
2834
Code = bitc::CST_CODE_CE_INSERTELT;
2835
Record.push_back(VE.getValueID(C->getOperand(0)));
2836
Record.push_back(VE.getValueID(C->getOperand(1)));
2837
Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2838
Record.push_back(VE.getValueID(C->getOperand(2)));
2839
break;
2840
case Instruction::ShuffleVector:
2841
// If the return type and argument types are the same, this is a
2842
// standard shufflevector instruction. If the types are different,
2843
// then the shuffle is widening or truncating the input vectors, and
2844
// the argument type must also be encoded.
2845
if (C->getType() == C->getOperand(0)->getType()) {
2846
Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2847
} else {
2848
Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2849
Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2850
}
2851
Record.push_back(VE.getValueID(C->getOperand(0)));
2852
Record.push_back(VE.getValueID(C->getOperand(1)));
2853
Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
2854
break;
2855
}
2856
} else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2857
Code = bitc::CST_CODE_BLOCKADDRESS;
2858
Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2859
Record.push_back(VE.getValueID(BA->getFunction()));
2860
Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2861
} else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) {
2862
Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT;
2863
Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType()));
2864
Record.push_back(VE.getValueID(Equiv->getGlobalValue()));
2865
} else if (const auto *NC = dyn_cast<NoCFIValue>(C)) {
2866
Code = bitc::CST_CODE_NO_CFI_VALUE;
2867
Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType()));
2868
Record.push_back(VE.getValueID(NC->getGlobalValue()));
2869
} else if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C)) {
2870
Code = bitc::CST_CODE_PTRAUTH;
2871
Record.push_back(VE.getValueID(CPA->getPointer()));
2872
Record.push_back(VE.getValueID(CPA->getKey()));
2873
Record.push_back(VE.getValueID(CPA->getDiscriminator()));
2874
Record.push_back(VE.getValueID(CPA->getAddrDiscriminator()));
2875
} else {
2876
#ifndef NDEBUG
2877
C->dump();
2878
#endif
2879
llvm_unreachable("Unknown constant!");
2880
}
2881
Stream.EmitRecord(Code, Record, AbbrevToUse);
2882
Record.clear();
2883
}
2884
2885
Stream.ExitBlock();
2886
}
2887
2888
void ModuleBitcodeWriter::writeModuleConstants() {
2889
const ValueEnumerator::ValueList &Vals = VE.getValues();
2890
2891
// Find the first constant to emit, which is the first non-globalvalue value.
2892
// We know globalvalues have been emitted by WriteModuleInfo.
2893
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2894
if (!isa<GlobalValue>(Vals[i].first)) {
2895
writeConstants(i, Vals.size(), true);
2896
return;
2897
}
2898
}
2899
}
2900
2901
/// pushValueAndType - The file has to encode both the value and type id for
2902
/// many values, because we need to know what type to create for forward
2903
/// references. However, most operands are not forward references, so this type
2904
/// field is not needed.
2905
///
2906
/// This function adds V's value ID to Vals. If the value ID is higher than the
2907
/// instruction ID, then it is a forward reference, and it also includes the
2908
/// type ID. The value ID that is written is encoded relative to the InstID.
2909
bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2910
SmallVectorImpl<unsigned> &Vals) {
2911
unsigned ValID = VE.getValueID(V);
2912
// Make encoding relative to the InstID.
2913
Vals.push_back(InstID - ValID);
2914
if (ValID >= InstID) {
2915
Vals.push_back(VE.getTypeID(V->getType()));
2916
return true;
2917
}
2918
return false;
2919
}
2920
2921
void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
2922
unsigned InstID) {
2923
SmallVector<unsigned, 64> Record;
2924
LLVMContext &C = CS.getContext();
2925
2926
for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2927
const auto &Bundle = CS.getOperandBundleAt(i);
2928
Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2929
2930
for (auto &Input : Bundle.Inputs)
2931
pushValueAndType(Input, InstID, Record);
2932
2933
Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2934
Record.clear();
2935
}
2936
}
2937
2938
/// pushValue - Like pushValueAndType, but where the type of the value is
2939
/// omitted (perhaps it was already encoded in an earlier operand).
2940
void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2941
SmallVectorImpl<unsigned> &Vals) {
2942
unsigned ValID = VE.getValueID(V);
2943
Vals.push_back(InstID - ValID);
2944
}
2945
2946
void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2947
SmallVectorImpl<uint64_t> &Vals) {
2948
unsigned ValID = VE.getValueID(V);
2949
int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2950
emitSignedInt64(Vals, diff);
2951
}
2952
2953
/// WriteInstruction - Emit an instruction to the specified stream.
2954
void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2955
unsigned InstID,
2956
SmallVectorImpl<unsigned> &Vals) {
2957
unsigned Code = 0;
2958
unsigned AbbrevToUse = 0;
2959
VE.setInstructionID(&I);
2960
switch (I.getOpcode()) {
2961
default:
2962
if (Instruction::isCast(I.getOpcode())) {
2963
Code = bitc::FUNC_CODE_INST_CAST;
2964
if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2965
AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2966
Vals.push_back(VE.getTypeID(I.getType()));
2967
Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2968
uint64_t Flags = getOptimizationFlags(&I);
2969
if (Flags != 0) {
2970
if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV)
2971
AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV;
2972
Vals.push_back(Flags);
2973
}
2974
} else {
2975
assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2976
Code = bitc::FUNC_CODE_INST_BINOP;
2977
if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2978
AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2979
pushValue(I.getOperand(1), InstID, Vals);
2980
Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2981
uint64_t Flags = getOptimizationFlags(&I);
2982
if (Flags != 0) {
2983
if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2984
AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2985
Vals.push_back(Flags);
2986
}
2987
}
2988
break;
2989
case Instruction::FNeg: {
2990
Code = bitc::FUNC_CODE_INST_UNOP;
2991
if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2992
AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2993
Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2994
uint64_t Flags = getOptimizationFlags(&I);
2995
if (Flags != 0) {
2996
if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2997
AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2998
Vals.push_back(Flags);
2999
}
3000
break;
3001
}
3002
case Instruction::GetElementPtr: {
3003
Code = bitc::FUNC_CODE_INST_GEP;
3004
AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
3005
auto &GEPInst = cast<GetElementPtrInst>(I);
3006
Vals.push_back(getOptimizationFlags(&I));
3007
Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
3008
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
3009
pushValueAndType(I.getOperand(i), InstID, Vals);
3010
break;
3011
}
3012
case Instruction::ExtractValue: {
3013
Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
3014
pushValueAndType(I.getOperand(0), InstID, Vals);
3015
const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
3016
Vals.append(EVI->idx_begin(), EVI->idx_end());
3017
break;
3018
}
3019
case Instruction::InsertValue: {
3020
Code = bitc::FUNC_CODE_INST_INSERTVAL;
3021
pushValueAndType(I.getOperand(0), InstID, Vals);
3022
pushValueAndType(I.getOperand(1), InstID, Vals);
3023
const InsertValueInst *IVI = cast<InsertValueInst>(&I);
3024
Vals.append(IVI->idx_begin(), IVI->idx_end());
3025
break;
3026
}
3027
case Instruction::Select: {
3028
Code = bitc::FUNC_CODE_INST_VSELECT;
3029
pushValueAndType(I.getOperand(1), InstID, Vals);
3030
pushValue(I.getOperand(2), InstID, Vals);
3031
pushValueAndType(I.getOperand(0), InstID, Vals);
3032
uint64_t Flags = getOptimizationFlags(&I);
3033
if (Flags != 0)
3034
Vals.push_back(Flags);
3035
break;
3036
}
3037
case Instruction::ExtractElement:
3038
Code = bitc::FUNC_CODE_INST_EXTRACTELT;
3039
pushValueAndType(I.getOperand(0), InstID, Vals);
3040
pushValueAndType(I.getOperand(1), InstID, Vals);
3041
break;
3042
case Instruction::InsertElement:
3043
Code = bitc::FUNC_CODE_INST_INSERTELT;
3044
pushValueAndType(I.getOperand(0), InstID, Vals);
3045
pushValue(I.getOperand(1), InstID, Vals);
3046
pushValueAndType(I.getOperand(2), InstID, Vals);
3047
break;
3048
case Instruction::ShuffleVector:
3049
Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
3050
pushValueAndType(I.getOperand(0), InstID, Vals);
3051
pushValue(I.getOperand(1), InstID, Vals);
3052
pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
3053
Vals);
3054
break;
3055
case Instruction::ICmp:
3056
case Instruction::FCmp: {
3057
// compare returning Int1Ty or vector of Int1Ty
3058
Code = bitc::FUNC_CODE_INST_CMP2;
3059
pushValueAndType(I.getOperand(0), InstID, Vals);
3060
pushValue(I.getOperand(1), InstID, Vals);
3061
Vals.push_back(cast<CmpInst>(I).getPredicate());
3062
uint64_t Flags = getOptimizationFlags(&I);
3063
if (Flags != 0)
3064
Vals.push_back(Flags);
3065
break;
3066
}
3067
3068
case Instruction::Ret:
3069
{
3070
Code = bitc::FUNC_CODE_INST_RET;
3071
unsigned NumOperands = I.getNumOperands();
3072
if (NumOperands == 0)
3073
AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
3074
else if (NumOperands == 1) {
3075
if (!pushValueAndType(I.getOperand(0), InstID, Vals))
3076
AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
3077
} else {
3078
for (unsigned i = 0, e = NumOperands; i != e; ++i)
3079
pushValueAndType(I.getOperand(i), InstID, Vals);
3080
}
3081
}
3082
break;
3083
case Instruction::Br:
3084
{
3085
Code = bitc::FUNC_CODE_INST_BR;
3086
const BranchInst &II = cast<BranchInst>(I);
3087
Vals.push_back(VE.getValueID(II.getSuccessor(0)));
3088
if (II.isConditional()) {
3089
Vals.push_back(VE.getValueID(II.getSuccessor(1)));
3090
pushValue(II.getCondition(), InstID, Vals);
3091
}
3092
}
3093
break;
3094
case Instruction::Switch:
3095
{
3096
Code = bitc::FUNC_CODE_INST_SWITCH;
3097
const SwitchInst &SI = cast<SwitchInst>(I);
3098
Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
3099
pushValue(SI.getCondition(), InstID, Vals);
3100
Vals.push_back(VE.getValueID(SI.getDefaultDest()));
3101
for (auto Case : SI.cases()) {
3102
Vals.push_back(VE.getValueID(Case.getCaseValue()));
3103
Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
3104
}
3105
}
3106
break;
3107
case Instruction::IndirectBr:
3108
Code = bitc::FUNC_CODE_INST_INDIRECTBR;
3109
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3110
// Encode the address operand as relative, but not the basic blocks.
3111
pushValue(I.getOperand(0), InstID, Vals);
3112
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
3113
Vals.push_back(VE.getValueID(I.getOperand(i)));
3114
break;
3115
3116
case Instruction::Invoke: {
3117
const InvokeInst *II = cast<InvokeInst>(&I);
3118
const Value *Callee = II->getCalledOperand();
3119
FunctionType *FTy = II->getFunctionType();
3120
3121
if (II->hasOperandBundles())
3122
writeOperandBundles(*II, InstID);
3123
3124
Code = bitc::FUNC_CODE_INST_INVOKE;
3125
3126
Vals.push_back(VE.getAttributeListID(II->getAttributes()));
3127
Vals.push_back(II->getCallingConv() | 1 << 13);
3128
Vals.push_back(VE.getValueID(II->getNormalDest()));
3129
Vals.push_back(VE.getValueID(II->getUnwindDest()));
3130
Vals.push_back(VE.getTypeID(FTy));
3131
pushValueAndType(Callee, InstID, Vals);
3132
3133
// Emit value #'s for the fixed parameters.
3134
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3135
pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3136
3137
// Emit type/value pairs for varargs params.
3138
if (FTy->isVarArg()) {
3139
for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i)
3140
pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3141
}
3142
break;
3143
}
3144
case Instruction::Resume:
3145
Code = bitc::FUNC_CODE_INST_RESUME;
3146
pushValueAndType(I.getOperand(0), InstID, Vals);
3147
break;
3148
case Instruction::CleanupRet: {
3149
Code = bitc::FUNC_CODE_INST_CLEANUPRET;
3150
const auto &CRI = cast<CleanupReturnInst>(I);
3151
pushValue(CRI.getCleanupPad(), InstID, Vals);
3152
if (CRI.hasUnwindDest())
3153
Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
3154
break;
3155
}
3156
case Instruction::CatchRet: {
3157
Code = bitc::FUNC_CODE_INST_CATCHRET;
3158
const auto &CRI = cast<CatchReturnInst>(I);
3159
pushValue(CRI.getCatchPad(), InstID, Vals);
3160
Vals.push_back(VE.getValueID(CRI.getSuccessor()));
3161
break;
3162
}
3163
case Instruction::CleanupPad:
3164
case Instruction::CatchPad: {
3165
const auto &FuncletPad = cast<FuncletPadInst>(I);
3166
Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
3167
: bitc::FUNC_CODE_INST_CLEANUPPAD;
3168
pushValue(FuncletPad.getParentPad(), InstID, Vals);
3169
3170
unsigned NumArgOperands = FuncletPad.arg_size();
3171
Vals.push_back(NumArgOperands);
3172
for (unsigned Op = 0; Op != NumArgOperands; ++Op)
3173
pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
3174
break;
3175
}
3176
case Instruction::CatchSwitch: {
3177
Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
3178
const auto &CatchSwitch = cast<CatchSwitchInst>(I);
3179
3180
pushValue(CatchSwitch.getParentPad(), InstID, Vals);
3181
3182
unsigned NumHandlers = CatchSwitch.getNumHandlers();
3183
Vals.push_back(NumHandlers);
3184
for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
3185
Vals.push_back(VE.getValueID(CatchPadBB));
3186
3187
if (CatchSwitch.hasUnwindDest())
3188
Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
3189
break;
3190
}
3191
case Instruction::CallBr: {
3192
const CallBrInst *CBI = cast<CallBrInst>(&I);
3193
const Value *Callee = CBI->getCalledOperand();
3194
FunctionType *FTy = CBI->getFunctionType();
3195
3196
if (CBI->hasOperandBundles())
3197
writeOperandBundles(*CBI, InstID);
3198
3199
Code = bitc::FUNC_CODE_INST_CALLBR;
3200
3201
Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
3202
3203
Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
3204
1 << bitc::CALL_EXPLICIT_TYPE);
3205
3206
Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
3207
Vals.push_back(CBI->getNumIndirectDests());
3208
for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
3209
Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
3210
3211
Vals.push_back(VE.getTypeID(FTy));
3212
pushValueAndType(Callee, InstID, Vals);
3213
3214
// Emit value #'s for the fixed parameters.
3215
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3216
pushValue(I.getOperand(i), InstID, Vals); // fixed param.
3217
3218
// Emit type/value pairs for varargs params.
3219
if (FTy->isVarArg()) {
3220
for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i)
3221
pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
3222
}
3223
break;
3224
}
3225
case Instruction::Unreachable:
3226
Code = bitc::FUNC_CODE_INST_UNREACHABLE;
3227
AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
3228
break;
3229
3230
case Instruction::PHI: {
3231
const PHINode &PN = cast<PHINode>(I);
3232
Code = bitc::FUNC_CODE_INST_PHI;
3233
// With the newer instruction encoding, forward references could give
3234
// negative valued IDs. This is most common for PHIs, so we use
3235
// signed VBRs.
3236
SmallVector<uint64_t, 128> Vals64;
3237
Vals64.push_back(VE.getTypeID(PN.getType()));
3238
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
3239
pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
3240
Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
3241
}
3242
3243
uint64_t Flags = getOptimizationFlags(&I);
3244
if (Flags != 0)
3245
Vals64.push_back(Flags);
3246
3247
// Emit a Vals64 vector and exit.
3248
Stream.EmitRecord(Code, Vals64, AbbrevToUse);
3249
Vals64.clear();
3250
return;
3251
}
3252
3253
case Instruction::LandingPad: {
3254
const LandingPadInst &LP = cast<LandingPadInst>(I);
3255
Code = bitc::FUNC_CODE_INST_LANDINGPAD;
3256
Vals.push_back(VE.getTypeID(LP.getType()));
3257
Vals.push_back(LP.isCleanup());
3258
Vals.push_back(LP.getNumClauses());
3259
for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
3260
if (LP.isCatch(I))
3261
Vals.push_back(LandingPadInst::Catch);
3262
else
3263
Vals.push_back(LandingPadInst::Filter);
3264
pushValueAndType(LP.getClause(I), InstID, Vals);
3265
}
3266
break;
3267
}
3268
3269
case Instruction::Alloca: {
3270
Code = bitc::FUNC_CODE_INST_ALLOCA;
3271
const AllocaInst &AI = cast<AllocaInst>(I);
3272
Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
3273
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3274
Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
3275
using APV = AllocaPackedValues;
3276
unsigned Record = 0;
3277
unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
3278
Bitfield::set<APV::AlignLower>(
3279
Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
3280
Bitfield::set<APV::AlignUpper>(Record,
3281
EncodedAlign >> APV::AlignLower::Bits);
3282
Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
3283
Bitfield::set<APV::ExplicitType>(Record, true);
3284
Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError());
3285
Vals.push_back(Record);
3286
3287
unsigned AS = AI.getAddressSpace();
3288
if (AS != M.getDataLayout().getAllocaAddrSpace())
3289
Vals.push_back(AS);
3290
break;
3291
}
3292
3293
case Instruction::Load:
3294
if (cast<LoadInst>(I).isAtomic()) {
3295
Code = bitc::FUNC_CODE_INST_LOADATOMIC;
3296
pushValueAndType(I.getOperand(0), InstID, Vals);
3297
} else {
3298
Code = bitc::FUNC_CODE_INST_LOAD;
3299
if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
3300
AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
3301
}
3302
Vals.push_back(VE.getTypeID(I.getType()));
3303
Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign()));
3304
Vals.push_back(cast<LoadInst>(I).isVolatile());
3305
if (cast<LoadInst>(I).isAtomic()) {
3306
Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
3307
Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
3308
}
3309
break;
3310
case Instruction::Store:
3311
if (cast<StoreInst>(I).isAtomic())
3312
Code = bitc::FUNC_CODE_INST_STOREATOMIC;
3313
else
3314
Code = bitc::FUNC_CODE_INST_STORE;
3315
pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
3316
pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
3317
Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign()));
3318
Vals.push_back(cast<StoreInst>(I).isVolatile());
3319
if (cast<StoreInst>(I).isAtomic()) {
3320
Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
3321
Vals.push_back(
3322
getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
3323
}
3324
break;
3325
case Instruction::AtomicCmpXchg:
3326
Code = bitc::FUNC_CODE_INST_CMPXCHG;
3327
pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3328
pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
3329
pushValue(I.getOperand(2), InstID, Vals); // newval.
3330
Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
3331
Vals.push_back(
3332
getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
3333
Vals.push_back(
3334
getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
3335
Vals.push_back(
3336
getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
3337
Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
3338
Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign()));
3339
break;
3340
case Instruction::AtomicRMW:
3341
Code = bitc::FUNC_CODE_INST_ATOMICRMW;
3342
pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3343
pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val
3344
Vals.push_back(
3345
getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
3346
Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
3347
Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
3348
Vals.push_back(
3349
getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
3350
Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign()));
3351
break;
3352
case Instruction::Fence:
3353
Code = bitc::FUNC_CODE_INST_FENCE;
3354
Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
3355
Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
3356
break;
3357
case Instruction::Call: {
3358
const CallInst &CI = cast<CallInst>(I);
3359
FunctionType *FTy = CI.getFunctionType();
3360
3361
if (CI.hasOperandBundles())
3362
writeOperandBundles(CI, InstID);
3363
3364
Code = bitc::FUNC_CODE_INST_CALL;
3365
3366
Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3367
3368
unsigned Flags = getOptimizationFlags(&I);
3369
Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3370
unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3371
unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3372
1 << bitc::CALL_EXPLICIT_TYPE |
3373
unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3374
unsigned(Flags != 0) << bitc::CALL_FMF);
3375
if (Flags != 0)
3376
Vals.push_back(Flags);
3377
3378
Vals.push_back(VE.getTypeID(FTy));
3379
pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
3380
3381
// Emit value #'s for the fixed parameters.
3382
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3383
// Check for labels (can happen with asm labels).
3384
if (FTy->getParamType(i)->isLabelTy())
3385
Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3386
else
3387
pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3388
}
3389
3390
// Emit type/value pairs for varargs params.
3391
if (FTy->isVarArg()) {
3392
for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
3393
pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3394
}
3395
break;
3396
}
3397
case Instruction::VAArg:
3398
Code = bitc::FUNC_CODE_INST_VAARG;
3399
Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
3400
pushValue(I.getOperand(0), InstID, Vals); // valist.
3401
Vals.push_back(VE.getTypeID(I.getType())); // restype.
3402
break;
3403
case Instruction::Freeze:
3404
Code = bitc::FUNC_CODE_INST_FREEZE;
3405
pushValueAndType(I.getOperand(0), InstID, Vals);
3406
break;
3407
}
3408
3409
Stream.EmitRecord(Code, Vals, AbbrevToUse);
3410
Vals.clear();
3411
}
3412
3413
/// Write a GlobalValue VST to the module. The purpose of this data structure is
3414
/// to allow clients to efficiently find the function body.
3415
void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3416
DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3417
// Get the offset of the VST we are writing, and backpatch it into
3418
// the VST forward declaration record.
3419
uint64_t VSTOffset = Stream.GetCurrentBitNo();
3420
// The BitcodeStartBit was the stream offset of the identification block.
3421
VSTOffset -= bitcodeStartBit();
3422
assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3423
// Note that we add 1 here because the offset is relative to one word
3424
// before the start of the identification block, which was historically
3425
// always the start of the regular bitcode header.
3426
Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3427
3428
Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3429
3430
auto Abbv = std::make_shared<BitCodeAbbrev>();
3431
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3432
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3433
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3434
unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3435
3436
for (const Function &F : M) {
3437
uint64_t Record[2];
3438
3439
if (F.isDeclaration())
3440
continue;
3441
3442
Record[0] = VE.getValueID(&F);
3443
3444
// Save the word offset of the function (from the start of the
3445
// actual bitcode written to the stream).
3446
uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3447
assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3448
// Note that we add 1 here because the offset is relative to one word
3449
// before the start of the identification block, which was historically
3450
// always the start of the regular bitcode header.
3451
Record[1] = BitcodeIndex / 32 + 1;
3452
3453
Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3454
}
3455
3456
Stream.ExitBlock();
3457
}
3458
3459
/// Emit names for arguments, instructions and basic blocks in a function.
3460
void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3461
const ValueSymbolTable &VST) {
3462
if (VST.empty())
3463
return;
3464
3465
Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3466
3467
// FIXME: Set up the abbrev, we know how many values there are!
3468
// FIXME: We know if the type names can use 7-bit ascii.
3469
SmallVector<uint64_t, 64> NameVals;
3470
3471
for (const ValueName &Name : VST) {
3472
// Figure out the encoding to use for the name.
3473
StringEncoding Bits = getStringEncoding(Name.getKey());
3474
3475
unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3476
NameVals.push_back(VE.getValueID(Name.getValue()));
3477
3478
// VST_CODE_ENTRY: [valueid, namechar x N]
3479
// VST_CODE_BBENTRY: [bbid, namechar x N]
3480
unsigned Code;
3481
if (isa<BasicBlock>(Name.getValue())) {
3482
Code = bitc::VST_CODE_BBENTRY;
3483
if (Bits == SE_Char6)
3484
AbbrevToUse = VST_BBENTRY_6_ABBREV;
3485
} else {
3486
Code = bitc::VST_CODE_ENTRY;
3487
if (Bits == SE_Char6)
3488
AbbrevToUse = VST_ENTRY_6_ABBREV;
3489
else if (Bits == SE_Fixed7)
3490
AbbrevToUse = VST_ENTRY_7_ABBREV;
3491
}
3492
3493
for (const auto P : Name.getKey())
3494
NameVals.push_back((unsigned char)P);
3495
3496
// Emit the finished record.
3497
Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3498
NameVals.clear();
3499
}
3500
3501
Stream.ExitBlock();
3502
}
3503
3504
void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3505
assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3506
unsigned Code;
3507
if (isa<BasicBlock>(Order.V))
3508
Code = bitc::USELIST_CODE_BB;
3509
else
3510
Code = bitc::USELIST_CODE_DEFAULT;
3511
3512
SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3513
Record.push_back(VE.getValueID(Order.V));
3514
Stream.EmitRecord(Code, Record);
3515
}
3516
3517
void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3518
assert(VE.shouldPreserveUseListOrder() &&
3519
"Expected to be preserving use-list order");
3520
3521
auto hasMore = [&]() {
3522
return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3523
};
3524
if (!hasMore())
3525
// Nothing to do.
3526
return;
3527
3528
Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3529
while (hasMore()) {
3530
writeUseList(std::move(VE.UseListOrders.back()));
3531
VE.UseListOrders.pop_back();
3532
}
3533
Stream.ExitBlock();
3534
}
3535
3536
/// Emit a function body to the module stream.
3537
void ModuleBitcodeWriter::writeFunction(
3538
const Function &F,
3539
DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3540
// Save the bitcode index of the start of this function block for recording
3541
// in the VST.
3542
FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3543
3544
Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3545
VE.incorporateFunction(F);
3546
3547
SmallVector<unsigned, 64> Vals;
3548
3549
// Emit the number of basic blocks, so the reader can create them ahead of
3550
// time.
3551
Vals.push_back(VE.getBasicBlocks().size());
3552
Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3553
Vals.clear();
3554
3555
// If there are function-local constants, emit them now.
3556
unsigned CstStart, CstEnd;
3557
VE.getFunctionConstantRange(CstStart, CstEnd);
3558
writeConstants(CstStart, CstEnd, false);
3559
3560
// If there is function-local metadata, emit it now.
3561
writeFunctionMetadata(F);
3562
3563
// Keep a running idea of what the instruction ID is.
3564
unsigned InstID = CstEnd;
3565
3566
bool NeedsMetadataAttachment = F.hasMetadata();
3567
3568
DILocation *LastDL = nullptr;
3569
SmallSetVector<Function *, 4> BlockAddressUsers;
3570
3571
// Finally, emit all the instructions, in order.
3572
for (const BasicBlock &BB : F) {
3573
for (const Instruction &I : BB) {
3574
writeInstruction(I, InstID, Vals);
3575
3576
if (!I.getType()->isVoidTy())
3577
++InstID;
3578
3579
// If the instruction has metadata, write a metadata attachment later.
3580
NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc();
3581
3582
// If the instruction has a debug location, emit it.
3583
if (DILocation *DL = I.getDebugLoc()) {
3584
if (DL == LastDL) {
3585
// Just repeat the same debug loc as last time.
3586
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3587
} else {
3588
Vals.push_back(DL->getLine());
3589
Vals.push_back(DL->getColumn());
3590
Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3591
Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3592
Vals.push_back(DL->isImplicitCode());
3593
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3594
Vals.clear();
3595
LastDL = DL;
3596
}
3597
}
3598
3599
// If the instruction has DbgRecords attached to it, emit them. Note that
3600
// they come after the instruction so that it's easy to attach them again
3601
// when reading the bitcode, even though conceptually the debug locations
3602
// start "before" the instruction.
3603
if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) {
3604
/// Try to push the value only (unwrapped), otherwise push the
3605
/// metadata wrapped value. Returns true if the value was pushed
3606
/// without the ValueAsMetadata wrapper.
3607
auto PushValueOrMetadata = [&Vals, InstID,
3608
this](Metadata *RawLocation) {
3609
assert(RawLocation &&
3610
"RawLocation unexpectedly null in DbgVariableRecord");
3611
if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) {
3612
SmallVector<unsigned, 2> ValAndType;
3613
// If the value is a fwd-ref the type is also pushed. We don't
3614
// want the type, so fwd-refs are kept wrapped (pushValueAndType
3615
// returns false if the value is pushed without type).
3616
if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) {
3617
Vals.push_back(ValAndType[0]);
3618
return true;
3619
}
3620
}
3621
// The metadata is a DIArgList, or ValueAsMetadata wrapping a
3622
// fwd-ref. Push the metadata ID.
3623
Vals.push_back(VE.getMetadataID(RawLocation));
3624
return false;
3625
};
3626
3627
// Write out non-instruction debug information attached to this
3628
// instruction. Write it after the instruction so that it's easy to
3629
// re-attach to the instruction reading the records in.
3630
for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) {
3631
if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
3632
Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc()));
3633
Vals.push_back(VE.getMetadataID(DLR->getLabel()));
3634
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals);
3635
Vals.clear();
3636
continue;
3637
}
3638
3639
// First 3 fields are common to all kinds:
3640
// DILocation, DILocalVariable, DIExpression
3641
// dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
3642
// ..., LocationMetadata
3643
// dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
3644
// ..., Value
3645
// dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
3646
// ..., LocationMetadata
3647
// dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
3648
// ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
3649
DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
3650
Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc()));
3651
Vals.push_back(VE.getMetadataID(DVR.getVariable()));
3652
Vals.push_back(VE.getMetadataID(DVR.getExpression()));
3653
if (DVR.isDbgValue()) {
3654
if (PushValueOrMetadata(DVR.getRawLocation()))
3655
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals,
3656
FUNCTION_DEBUG_RECORD_VALUE_ABBREV);
3657
else
3658
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals);
3659
} else if (DVR.isDbgDeclare()) {
3660
Vals.push_back(VE.getMetadataID(DVR.getRawLocation()));
3661
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals);
3662
} else {
3663
assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind");
3664
Vals.push_back(VE.getMetadataID(DVR.getRawLocation()));
3665
Vals.push_back(VE.getMetadataID(DVR.getAssignID()));
3666
Vals.push_back(VE.getMetadataID(DVR.getAddressExpression()));
3667
Vals.push_back(VE.getMetadataID(DVR.getRawAddress()));
3668
Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals);
3669
}
3670
Vals.clear();
3671
}
3672
}
3673
}
3674
3675
if (BlockAddress *BA = BlockAddress::lookup(&BB)) {
3676
SmallVector<Value *> Worklist{BA};
3677
SmallPtrSet<Value *, 8> Visited{BA};
3678
while (!Worklist.empty()) {
3679
Value *V = Worklist.pop_back_val();
3680
for (User *U : V->users()) {
3681
if (auto *I = dyn_cast<Instruction>(U)) {
3682
Function *P = I->getFunction();
3683
if (P != &F)
3684
BlockAddressUsers.insert(P);
3685
} else if (isa<Constant>(U) && !isa<GlobalValue>(U) &&
3686
Visited.insert(U).second)
3687
Worklist.push_back(U);
3688
}
3689
}
3690
}
3691
}
3692
3693
if (!BlockAddressUsers.empty()) {
3694
Vals.resize(BlockAddressUsers.size());
3695
for (auto I : llvm::enumerate(BlockAddressUsers))
3696
Vals[I.index()] = VE.getValueID(I.value());
3697
Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals);
3698
Vals.clear();
3699
}
3700
3701
// Emit names for all the instructions etc.
3702
if (auto *Symtab = F.getValueSymbolTable())
3703
writeFunctionLevelValueSymbolTable(*Symtab);
3704
3705
if (NeedsMetadataAttachment)
3706
writeFunctionMetadataAttachment(F);
3707
if (VE.shouldPreserveUseListOrder())
3708
writeUseListBlock(&F);
3709
VE.purgeFunction();
3710
Stream.ExitBlock();
3711
}
3712
3713
// Emit blockinfo, which defines the standard abbreviations etc.
3714
void ModuleBitcodeWriter::writeBlockInfo() {
3715
// We only want to emit block info records for blocks that have multiple
3716
// instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3717
// Other blocks can define their abbrevs inline.
3718
Stream.EnterBlockInfoBlock();
3719
3720
{ // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3721
auto Abbv = std::make_shared<BitCodeAbbrev>();
3722
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3723
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3724
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3725
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3726
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3727
VST_ENTRY_8_ABBREV)
3728
llvm_unreachable("Unexpected abbrev ordering!");
3729
}
3730
3731
{ // 7-bit fixed width VST_CODE_ENTRY strings.
3732
auto Abbv = std::make_shared<BitCodeAbbrev>();
3733
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3734
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3735
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3736
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3737
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3738
VST_ENTRY_7_ABBREV)
3739
llvm_unreachable("Unexpected abbrev ordering!");
3740
}
3741
{ // 6-bit char6 VST_CODE_ENTRY strings.
3742
auto Abbv = std::make_shared<BitCodeAbbrev>();
3743
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3744
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3745
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3746
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3747
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3748
VST_ENTRY_6_ABBREV)
3749
llvm_unreachable("Unexpected abbrev ordering!");
3750
}
3751
{ // 6-bit char6 VST_CODE_BBENTRY strings.
3752
auto Abbv = std::make_shared<BitCodeAbbrev>();
3753
Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3754
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3755
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3756
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3757
if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3758
VST_BBENTRY_6_ABBREV)
3759
llvm_unreachable("Unexpected abbrev ordering!");
3760
}
3761
3762
{ // SETTYPE abbrev for CONSTANTS_BLOCK.
3763
auto Abbv = std::make_shared<BitCodeAbbrev>();
3764
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3765
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3766
VE.computeBitsRequiredForTypeIndices()));
3767
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3768
CONSTANTS_SETTYPE_ABBREV)
3769
llvm_unreachable("Unexpected abbrev ordering!");
3770
}
3771
3772
{ // INTEGER abbrev for CONSTANTS_BLOCK.
3773
auto Abbv = std::make_shared<BitCodeAbbrev>();
3774
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3775
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3776
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3777
CONSTANTS_INTEGER_ABBREV)
3778
llvm_unreachable("Unexpected abbrev ordering!");
3779
}
3780
3781
{ // CE_CAST abbrev for CONSTANTS_BLOCK.
3782
auto Abbv = std::make_shared<BitCodeAbbrev>();
3783
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3784
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
3785
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
3786
VE.computeBitsRequiredForTypeIndices()));
3787
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3788
3789
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3790
CONSTANTS_CE_CAST_Abbrev)
3791
llvm_unreachable("Unexpected abbrev ordering!");
3792
}
3793
{ // NULL abbrev for CONSTANTS_BLOCK.
3794
auto Abbv = std::make_shared<BitCodeAbbrev>();
3795
Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3796
if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3797
CONSTANTS_NULL_Abbrev)
3798
llvm_unreachable("Unexpected abbrev ordering!");
3799
}
3800
3801
// FIXME: This should only use space for first class types!
3802
3803
{ // INST_LOAD abbrev for FUNCTION_BLOCK.
3804
auto Abbv = std::make_shared<BitCodeAbbrev>();
3805
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3806
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3807
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3808
VE.computeBitsRequiredForTypeIndices()));
3809
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3810
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3811
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3812
FUNCTION_INST_LOAD_ABBREV)
3813
llvm_unreachable("Unexpected abbrev ordering!");
3814
}
3815
{ // INST_UNOP abbrev for FUNCTION_BLOCK.
3816
auto Abbv = std::make_shared<BitCodeAbbrev>();
3817
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3818
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3819
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3820
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3821
FUNCTION_INST_UNOP_ABBREV)
3822
llvm_unreachable("Unexpected abbrev ordering!");
3823
}
3824
{ // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3825
auto Abbv = std::make_shared<BitCodeAbbrev>();
3826
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3827
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3828
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3829
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3830
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3831
FUNCTION_INST_UNOP_FLAGS_ABBREV)
3832
llvm_unreachable("Unexpected abbrev ordering!");
3833
}
3834
{ // INST_BINOP abbrev for FUNCTION_BLOCK.
3835
auto Abbv = std::make_shared<BitCodeAbbrev>();
3836
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3837
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3838
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3839
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3840
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3841
FUNCTION_INST_BINOP_ABBREV)
3842
llvm_unreachable("Unexpected abbrev ordering!");
3843
}
3844
{ // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3845
auto Abbv = std::make_shared<BitCodeAbbrev>();
3846
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3847
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3848
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3849
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3850
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3851
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3852
FUNCTION_INST_BINOP_FLAGS_ABBREV)
3853
llvm_unreachable("Unexpected abbrev ordering!");
3854
}
3855
{ // INST_CAST abbrev for FUNCTION_BLOCK.
3856
auto Abbv = std::make_shared<BitCodeAbbrev>();
3857
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3858
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3859
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3860
VE.computeBitsRequiredForTypeIndices()));
3861
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3862
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3863
FUNCTION_INST_CAST_ABBREV)
3864
llvm_unreachable("Unexpected abbrev ordering!");
3865
}
3866
{ // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK.
3867
auto Abbv = std::make_shared<BitCodeAbbrev>();
3868
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3869
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
3870
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3871
VE.computeBitsRequiredForTypeIndices()));
3872
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3873
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3874
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3875
FUNCTION_INST_CAST_FLAGS_ABBREV)
3876
llvm_unreachable("Unexpected abbrev ordering!");
3877
}
3878
3879
{ // INST_RET abbrev for FUNCTION_BLOCK.
3880
auto Abbv = std::make_shared<BitCodeAbbrev>();
3881
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3882
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3883
FUNCTION_INST_RET_VOID_ABBREV)
3884
llvm_unreachable("Unexpected abbrev ordering!");
3885
}
3886
{ // INST_RET abbrev for FUNCTION_BLOCK.
3887
auto Abbv = std::make_shared<BitCodeAbbrev>();
3888
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3889
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3890
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3891
FUNCTION_INST_RET_VAL_ABBREV)
3892
llvm_unreachable("Unexpected abbrev ordering!");
3893
}
3894
{ // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3895
auto Abbv = std::make_shared<BitCodeAbbrev>();
3896
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3897
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3898
FUNCTION_INST_UNREACHABLE_ABBREV)
3899
llvm_unreachable("Unexpected abbrev ordering!");
3900
}
3901
{
3902
auto Abbv = std::make_shared<BitCodeAbbrev>();
3903
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3904
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3905
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3906
Log2_32_Ceil(VE.getTypes().size() + 1)));
3907
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3908
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3909
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3910
FUNCTION_INST_GEP_ABBREV)
3911
llvm_unreachable("Unexpected abbrev ordering!");
3912
}
3913
{
3914
auto Abbv = std::make_shared<BitCodeAbbrev>();
3915
Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE));
3916
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc
3917
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var
3918
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr
3919
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val
3920
if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3921
FUNCTION_DEBUG_RECORD_VALUE_ABBREV)
3922
llvm_unreachable("Unexpected abbrev ordering! 1");
3923
}
3924
Stream.ExitBlock();
3925
}
3926
3927
/// Write the module path strings, currently only used when generating
3928
/// a combined index file.
3929
void IndexBitcodeWriter::writeModStrings() {
3930
Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3931
3932
// TODO: See which abbrev sizes we actually need to emit
3933
3934
// 8-bit fixed-width MST_ENTRY strings.
3935
auto Abbv = std::make_shared<BitCodeAbbrev>();
3936
Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3937
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3938
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3939
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3940
unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3941
3942
// 7-bit fixed width MST_ENTRY strings.
3943
Abbv = std::make_shared<BitCodeAbbrev>();
3944
Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3945
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3946
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3947
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3948
unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3949
3950
// 6-bit char6 MST_ENTRY strings.
3951
Abbv = std::make_shared<BitCodeAbbrev>();
3952
Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3953
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3954
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3955
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3956
unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3957
3958
// Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3959
Abbv = std::make_shared<BitCodeAbbrev>();
3960
Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3961
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3962
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3963
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3964
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3965
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3966
unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3967
3968
SmallVector<unsigned, 64> Vals;
3969
forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) {
3970
StringRef Key = MPSE.getKey();
3971
const auto &Hash = MPSE.getValue();
3972
StringEncoding Bits = getStringEncoding(Key);
3973
unsigned AbbrevToUse = Abbrev8Bit;
3974
if (Bits == SE_Char6)
3975
AbbrevToUse = Abbrev6Bit;
3976
else if (Bits == SE_Fixed7)
3977
AbbrevToUse = Abbrev7Bit;
3978
3979
auto ModuleId = ModuleIdMap.size();
3980
ModuleIdMap[Key] = ModuleId;
3981
Vals.push_back(ModuleId);
3982
Vals.append(Key.begin(), Key.end());
3983
3984
// Emit the finished record.
3985
Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3986
3987
// Emit an optional hash for the module now
3988
if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3989
Vals.assign(Hash.begin(), Hash.end());
3990
// Emit the hash record.
3991
Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3992
}
3993
3994
Vals.clear();
3995
});
3996
Stream.ExitBlock();
3997
}
3998
3999
/// Write the function type metadata related records that need to appear before
4000
/// a function summary entry (whether per-module or combined).
4001
template <typename Fn>
4002
static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
4003
FunctionSummary *FS,
4004
Fn GetValueID) {
4005
if (!FS->type_tests().empty())
4006
Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
4007
4008
SmallVector<uint64_t, 64> Record;
4009
4010
auto WriteVFuncIdVec = [&](uint64_t Ty,
4011
ArrayRef<FunctionSummary::VFuncId> VFs) {
4012
if (VFs.empty())
4013
return;
4014
Record.clear();
4015
for (auto &VF : VFs) {
4016
Record.push_back(VF.GUID);
4017
Record.push_back(VF.Offset);
4018
}
4019
Stream.EmitRecord(Ty, Record);
4020
};
4021
4022
WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
4023
FS->type_test_assume_vcalls());
4024
WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
4025
FS->type_checked_load_vcalls());
4026
4027
auto WriteConstVCallVec = [&](uint64_t Ty,
4028
ArrayRef<FunctionSummary::ConstVCall> VCs) {
4029
for (auto &VC : VCs) {
4030
Record.clear();
4031
Record.push_back(VC.VFunc.GUID);
4032
Record.push_back(VC.VFunc.Offset);
4033
llvm::append_range(Record, VC.Args);
4034
Stream.EmitRecord(Ty, Record);
4035
}
4036
};
4037
4038
WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
4039
FS->type_test_assume_const_vcalls());
4040
WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
4041
FS->type_checked_load_const_vcalls());
4042
4043
auto WriteRange = [&](ConstantRange Range) {
4044
Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
4045
assert(Range.getLower().getNumWords() == 1);
4046
assert(Range.getUpper().getNumWords() == 1);
4047
emitSignedInt64(Record, *Range.getLower().getRawData());
4048
emitSignedInt64(Record, *Range.getUpper().getRawData());
4049
};
4050
4051
if (!FS->paramAccesses().empty()) {
4052
Record.clear();
4053
for (auto &Arg : FS->paramAccesses()) {
4054
size_t UndoSize = Record.size();
4055
Record.push_back(Arg.ParamNo);
4056
WriteRange(Arg.Use);
4057
Record.push_back(Arg.Calls.size());
4058
for (auto &Call : Arg.Calls) {
4059
Record.push_back(Call.ParamNo);
4060
std::optional<unsigned> ValueID = GetValueID(Call.Callee);
4061
if (!ValueID) {
4062
// If ValueID is unknown we can't drop just this call, we must drop
4063
// entire parameter.
4064
Record.resize(UndoSize);
4065
break;
4066
}
4067
Record.push_back(*ValueID);
4068
WriteRange(Call.Offsets);
4069
}
4070
}
4071
if (!Record.empty())
4072
Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record);
4073
}
4074
}
4075
4076
/// Collect type IDs from type tests used by function.
4077
static void
4078
getReferencedTypeIds(FunctionSummary *FS,
4079
std::set<GlobalValue::GUID> &ReferencedTypeIds) {
4080
if (!FS->type_tests().empty())
4081
for (auto &TT : FS->type_tests())
4082
ReferencedTypeIds.insert(TT);
4083
4084
auto GetReferencedTypesFromVFuncIdVec =
4085
[&](ArrayRef<FunctionSummary::VFuncId> VFs) {
4086
for (auto &VF : VFs)
4087
ReferencedTypeIds.insert(VF.GUID);
4088
};
4089
4090
GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
4091
GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
4092
4093
auto GetReferencedTypesFromConstVCallVec =
4094
[&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
4095
for (auto &VC : VCs)
4096
ReferencedTypeIds.insert(VC.VFunc.GUID);
4097
};
4098
4099
GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
4100
GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
4101
}
4102
4103
static void writeWholeProgramDevirtResolutionByArg(
4104
SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
4105
const WholeProgramDevirtResolution::ByArg &ByArg) {
4106
NameVals.push_back(args.size());
4107
llvm::append_range(NameVals, args);
4108
4109
NameVals.push_back(ByArg.TheKind);
4110
NameVals.push_back(ByArg.Info);
4111
NameVals.push_back(ByArg.Byte);
4112
NameVals.push_back(ByArg.Bit);
4113
}
4114
4115
static void writeWholeProgramDevirtResolution(
4116
SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
4117
uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
4118
NameVals.push_back(Id);
4119
4120
NameVals.push_back(Wpd.TheKind);
4121
NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
4122
NameVals.push_back(Wpd.SingleImplName.size());
4123
4124
NameVals.push_back(Wpd.ResByArg.size());
4125
for (auto &A : Wpd.ResByArg)
4126
writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
4127
}
4128
4129
static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
4130
StringTableBuilder &StrtabBuilder,
4131
const std::string &Id,
4132
const TypeIdSummary &Summary) {
4133
NameVals.push_back(StrtabBuilder.add(Id));
4134
NameVals.push_back(Id.size());
4135
4136
NameVals.push_back(Summary.TTRes.TheKind);
4137
NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
4138
NameVals.push_back(Summary.TTRes.AlignLog2);
4139
NameVals.push_back(Summary.TTRes.SizeM1);
4140
NameVals.push_back(Summary.TTRes.BitMask);
4141
NameVals.push_back(Summary.TTRes.InlineBits);
4142
4143
for (auto &W : Summary.WPDRes)
4144
writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
4145
W.second);
4146
}
4147
4148
static void writeTypeIdCompatibleVtableSummaryRecord(
4149
SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
4150
const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
4151
ValueEnumerator &VE) {
4152
NameVals.push_back(StrtabBuilder.add(Id));
4153
NameVals.push_back(Id.size());
4154
4155
for (auto &P : Summary) {
4156
NameVals.push_back(P.AddressPointOffset);
4157
NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
4158
}
4159
}
4160
4161
static void writeFunctionHeapProfileRecords(
4162
BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev,
4163
unsigned AllocAbbrev, bool PerModule,
4164
std::function<unsigned(const ValueInfo &VI)> GetValueID,
4165
std::function<unsigned(unsigned)> GetStackIndex) {
4166
SmallVector<uint64_t> Record;
4167
4168
for (auto &CI : FS->callsites()) {
4169
Record.clear();
4170
// Per module callsite clones should always have a single entry of
4171
// value 0.
4172
assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0));
4173
Record.push_back(GetValueID(CI.Callee));
4174
if (!PerModule) {
4175
Record.push_back(CI.StackIdIndices.size());
4176
Record.push_back(CI.Clones.size());
4177
}
4178
for (auto Id : CI.StackIdIndices)
4179
Record.push_back(GetStackIndex(Id));
4180
if (!PerModule) {
4181
for (auto V : CI.Clones)
4182
Record.push_back(V);
4183
}
4184
Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO
4185
: bitc::FS_COMBINED_CALLSITE_INFO,
4186
Record, CallsiteAbbrev);
4187
}
4188
4189
for (auto &AI : FS->allocs()) {
4190
Record.clear();
4191
// Per module alloc versions should always have a single entry of
4192
// value 0.
4193
assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0));
4194
Record.push_back(AI.MIBs.size());
4195
if (!PerModule)
4196
Record.push_back(AI.Versions.size());
4197
for (auto &MIB : AI.MIBs) {
4198
Record.push_back((uint8_t)MIB.AllocType);
4199
Record.push_back(MIB.StackIdIndices.size());
4200
for (auto Id : MIB.StackIdIndices)
4201
Record.push_back(GetStackIndex(Id));
4202
}
4203
if (!PerModule) {
4204
for (auto V : AI.Versions)
4205
Record.push_back(V);
4206
}
4207
assert(AI.TotalSizes.empty() || AI.TotalSizes.size() == AI.MIBs.size());
4208
if (!AI.TotalSizes.empty()) {
4209
for (auto Size : AI.TotalSizes)
4210
Record.push_back(Size);
4211
}
4212
Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO
4213
: bitc::FS_COMBINED_ALLOC_INFO,
4214
Record, AllocAbbrev);
4215
}
4216
}
4217
4218
// Helper to emit a single function summary record.
4219
void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
4220
SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
4221
unsigned ValueID, unsigned FSCallsRelBFAbbrev,
4222
unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev,
4223
unsigned AllocAbbrev, const Function &F) {
4224
NameVals.push_back(ValueID);
4225
4226
FunctionSummary *FS = cast<FunctionSummary>(Summary);
4227
4228
writeFunctionTypeMetadataRecords(
4229
Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> {
4230
return {VE.getValueID(VI.getValue())};
4231
});
4232
4233
writeFunctionHeapProfileRecords(
4234
Stream, FS, CallsiteAbbrev, AllocAbbrev,
4235
/*PerModule*/ true,
4236
/*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); },
4237
/*GetStackIndex*/ [&](unsigned I) { return I; });
4238
4239
auto SpecialRefCnts = FS->specialRefCounts();
4240
NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4241
NameVals.push_back(FS->instCount());
4242
NameVals.push_back(getEncodedFFlags(FS->fflags()));
4243
NameVals.push_back(FS->refs().size());
4244
NameVals.push_back(SpecialRefCnts.first); // rorefcnt
4245
NameVals.push_back(SpecialRefCnts.second); // worefcnt
4246
4247
for (auto &RI : FS->refs())
4248
NameVals.push_back(getValueId(RI));
4249
4250
const bool UseRelBFRecord =
4251
WriteRelBFToSummary && !F.hasProfileData() &&
4252
ForceSummaryEdgesCold == FunctionSummary::FSHT_None;
4253
for (auto &ECI : FS->calls()) {
4254
NameVals.push_back(getValueId(ECI.first));
4255
if (UseRelBFRecord)
4256
NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second));
4257
else
4258
NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second));
4259
}
4260
4261
unsigned FSAbbrev =
4262
(UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev);
4263
unsigned Code =
4264
(UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE);
4265
4266
// Emit the finished record.
4267
Stream.EmitRecord(Code, NameVals, FSAbbrev);
4268
NameVals.clear();
4269
}
4270
4271
// Collect the global value references in the given variable's initializer,
4272
// and emit them in a summary record.
4273
void ModuleBitcodeWriterBase::writeModuleLevelReferences(
4274
const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
4275
unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
4276
auto VI = Index->getValueInfo(V.getGUID());
4277
if (!VI || VI.getSummaryList().empty()) {
4278
// Only declarations should not have a summary (a declaration might however
4279
// have a summary if the def was in module level asm).
4280
assert(V.isDeclaration());
4281
return;
4282
}
4283
auto *Summary = VI.getSummaryList()[0].get();
4284
NameVals.push_back(VE.getValueID(&V));
4285
GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
4286
NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4287
NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4288
4289
auto VTableFuncs = VS->vTableFuncs();
4290
if (!VTableFuncs.empty())
4291
NameVals.push_back(VS->refs().size());
4292
4293
unsigned SizeBeforeRefs = NameVals.size();
4294
for (auto &RI : VS->refs())
4295
NameVals.push_back(VE.getValueID(RI.getValue()));
4296
// Sort the refs for determinism output, the vector returned by FS->refs() has
4297
// been initialized from a DenseSet.
4298
llvm::sort(drop_begin(NameVals, SizeBeforeRefs));
4299
4300
if (VTableFuncs.empty())
4301
Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
4302
FSModRefsAbbrev);
4303
else {
4304
// VTableFuncs pairs should already be sorted by offset.
4305
for (auto &P : VTableFuncs) {
4306
NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
4307
NameVals.push_back(P.VTableOffset);
4308
}
4309
4310
Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
4311
FSModVTableRefsAbbrev);
4312
}
4313
NameVals.clear();
4314
}
4315
4316
/// Emit the per-module summary section alongside the rest of
4317
/// the module's bitcode.
4318
void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
4319
// By default we compile with ThinLTO if the module has a summary, but the
4320
// client can request full LTO with a module flag.
4321
bool IsThinLTO = true;
4322
if (auto *MD =
4323
mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
4324
IsThinLTO = MD->getZExtValue();
4325
Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
4326
: bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
4327
4);
4328
4329
Stream.EmitRecord(
4330
bitc::FS_VERSION,
4331
ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4332
4333
// Write the index flags.
4334
uint64_t Flags = 0;
4335
// Bits 1-3 are set only in the combined index, skip them.
4336
if (Index->enableSplitLTOUnit())
4337
Flags |= 0x8;
4338
if (Index->hasUnifiedLTO())
4339
Flags |= 0x200;
4340
4341
Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
4342
4343
if (Index->begin() == Index->end()) {
4344
Stream.ExitBlock();
4345
return;
4346
}
4347
4348
for (const auto &GVI : valueIds()) {
4349
Stream.EmitRecord(bitc::FS_VALUE_GUID,
4350
ArrayRef<uint64_t>{GVI.second, GVI.first});
4351
}
4352
4353
if (!Index->stackIds().empty()) {
4354
auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4355
StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4356
// numids x stackid
4357
StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4358
StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4359
unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4360
Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId);
4361
}
4362
4363
// Abbrev for FS_PERMODULE_PROFILE.
4364
auto Abbv = std::make_shared<BitCodeAbbrev>();
4365
Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
4366
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4367
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags
4368
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4369
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4370
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4371
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4372
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4373
// numrefs x valueid, n x (valueid, hotness+tailcall flags)
4374
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4375
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4376
unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4377
4378
// Abbrev for FS_PERMODULE_RELBF.
4379
Abbv = std::make_shared<BitCodeAbbrev>();
4380
Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
4381
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4382
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4383
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4384
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4385
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4386
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4387
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4388
// numrefs x valueid, n x (valueid, rel_block_freq+tailcall])
4389
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4390
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4391
unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4392
4393
// Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
4394
Abbv = std::make_shared<BitCodeAbbrev>();
4395
Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
4396
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4397
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4398
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
4399
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4400
unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4401
4402
// Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
4403
Abbv = std::make_shared<BitCodeAbbrev>();
4404
Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
4405
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4406
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4407
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4408
// numrefs x valueid, n x (valueid , offset)
4409
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4410
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4411
unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4412
4413
// Abbrev for FS_ALIAS.
4414
Abbv = std::make_shared<BitCodeAbbrev>();
4415
Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
4416
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4417
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4418
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4419
unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4420
4421
// Abbrev for FS_TYPE_ID_METADATA
4422
Abbv = std::make_shared<BitCodeAbbrev>();
4423
Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
4424
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
4425
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
4426
// n x (valueid , offset)
4427
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4428
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4429
unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4430
4431
Abbv = std::make_shared<BitCodeAbbrev>();
4432
Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO));
4433
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4434
// n x stackidindex
4435
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4436
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4437
unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4438
4439
Abbv = std::make_shared<BitCodeAbbrev>();
4440
Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO));
4441
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib
4442
// n x (alloc type, numstackids, numstackids x stackidindex)
4443
// optional: nummib x total size
4444
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4445
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4446
unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4447
4448
SmallVector<uint64_t, 64> NameVals;
4449
// Iterate over the list of functions instead of the Index to
4450
// ensure the ordering is stable.
4451
for (const Function &F : M) {
4452
// Summary emission does not support anonymous functions, they have to
4453
// renamed using the anonymous function renaming pass.
4454
if (!F.hasName())
4455
report_fatal_error("Unexpected anonymous function when writing summary");
4456
4457
ValueInfo VI = Index->getValueInfo(F.getGUID());
4458
if (!VI || VI.getSummaryList().empty()) {
4459
// Only declarations should not have a summary (a declaration might
4460
// however have a summary if the def was in module level asm).
4461
assert(F.isDeclaration());
4462
continue;
4463
}
4464
auto *Summary = VI.getSummaryList()[0].get();
4465
writePerModuleFunctionSummaryRecord(
4466
NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev,
4467
FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F);
4468
}
4469
4470
// Capture references from GlobalVariable initializers, which are outside
4471
// of a function scope.
4472
for (const GlobalVariable &G : M.globals())
4473
writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
4474
FSModVTableRefsAbbrev);
4475
4476
for (const GlobalAlias &A : M.aliases()) {
4477
auto *Aliasee = A.getAliaseeObject();
4478
// Skip ifunc and nameless functions which don't have an entry in the
4479
// summary.
4480
if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee))
4481
continue;
4482
auto AliasId = VE.getValueID(&A);
4483
auto AliaseeId = VE.getValueID(Aliasee);
4484
NameVals.push_back(AliasId);
4485
auto *Summary = Index->getGlobalValueSummary(A);
4486
AliasSummary *AS = cast<AliasSummary>(Summary);
4487
NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4488
NameVals.push_back(AliaseeId);
4489
Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
4490
NameVals.clear();
4491
}
4492
4493
for (auto &S : Index->typeIdCompatibleVtableMap()) {
4494
writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
4495
S.second, VE);
4496
Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
4497
TypeIdCompatibleVtableAbbrev);
4498
NameVals.clear();
4499
}
4500
4501
if (Index->getBlockCount())
4502
Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4503
ArrayRef<uint64_t>{Index->getBlockCount()});
4504
4505
Stream.ExitBlock();
4506
}
4507
4508
/// Emit the combined summary section into the combined index file.
4509
void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4510
Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
4511
Stream.EmitRecord(
4512
bitc::FS_VERSION,
4513
ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4514
4515
// Write the index flags.
4516
Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});
4517
4518
for (const auto &GVI : valueIds()) {
4519
Stream.EmitRecord(bitc::FS_VALUE_GUID,
4520
ArrayRef<uint64_t>{GVI.second, GVI.first});
4521
}
4522
4523
// Write the stack ids used by this index, which will be a subset of those in
4524
// the full index in the case of distributed indexes.
4525
if (!StackIds.empty()) {
4526
auto StackIdAbbv = std::make_shared<BitCodeAbbrev>();
4527
StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS));
4528
// numids x stackid
4529
StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4530
StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4531
unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv));
4532
Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId);
4533
}
4534
4535
// Abbrev for FS_COMBINED_PROFILE.
4536
auto Abbv = std::make_shared<BitCodeAbbrev>();
4537
Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
4538
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4539
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4540
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4541
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
4542
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags
4543
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount
4544
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
4545
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt
4546
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt
4547
// numrefs x valueid, n x (valueid, hotness+tailcall flags)
4548
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4549
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4550
unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4551
4552
// Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4553
Abbv = std::make_shared<BitCodeAbbrev>();
4554
Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
4555
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4556
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4557
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4558
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
4559
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4560
unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4561
4562
// Abbrev for FS_COMBINED_ALIAS.
4563
Abbv = std::make_shared<BitCodeAbbrev>();
4564
Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
4565
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4566
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
4567
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
4568
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4569
unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4570
4571
Abbv = std::make_shared<BitCodeAbbrev>();
4572
Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO));
4573
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
4574
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices
4575
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4576
// numstackindices x stackidindex, numver x version
4577
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4578
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4579
unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4580
4581
Abbv = std::make_shared<BitCodeAbbrev>();
4582
Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO));
4583
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib
4584
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver
4585
// nummib x (alloc type, numstackids, numstackids x stackidindex),
4586
// numver x version
4587
// optional: nummib x total size
4588
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4589
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4590
unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4591
4592
auto shouldImportValueAsDecl = [&](GlobalValueSummary *GVS) -> bool {
4593
if (DecSummaries == nullptr)
4594
return false;
4595
return DecSummaries->count(GVS);
4596
};
4597
4598
// The aliases are emitted as a post-pass, and will point to the value
4599
// id of the aliasee. Save them in a vector for post-processing.
4600
SmallVector<AliasSummary *, 64> Aliases;
4601
4602
// Save the value id for each summary for alias emission.
4603
DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
4604
4605
SmallVector<uint64_t, 64> NameVals;
4606
4607
// Set that will be populated during call to writeFunctionTypeMetadataRecords
4608
// with the type ids referenced by this index file.
4609
std::set<GlobalValue::GUID> ReferencedTypeIds;
4610
4611
// For local linkage, we also emit the original name separately
4612
// immediately after the record.
4613
auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
4614
// We don't need to emit the original name if we are writing the index for
4615
// distributed backends (in which case ModuleToSummariesForIndex is
4616
// non-null). The original name is only needed during the thin link, since
4617
// for SamplePGO the indirect call targets for local functions have
4618
// have the original name annotated in profile.
4619
// Continue to emit it when writing out the entire combined index, which is
4620
// used in testing the thin link via llvm-lto.
4621
if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage()))
4622
return;
4623
NameVals.push_back(S.getOriginalName());
4624
Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
4625
NameVals.clear();
4626
};
4627
4628
std::set<GlobalValue::GUID> DefOrUseGUIDs;
4629
forEachSummary([&](GVInfo I, bool IsAliasee) {
4630
GlobalValueSummary *S = I.second;
4631
assert(S);
4632
DefOrUseGUIDs.insert(I.first);
4633
for (const ValueInfo &VI : S->refs())
4634
DefOrUseGUIDs.insert(VI.getGUID());
4635
4636
auto ValueId = getValueId(I.first);
4637
assert(ValueId);
4638
SummaryToValueIdMap[S] = *ValueId;
4639
4640
// If this is invoked for an aliasee, we want to record the above
4641
// mapping, but then not emit a summary entry (if the aliasee is
4642
// to be imported, we will invoke this separately with IsAliasee=false).
4643
if (IsAliasee)
4644
return;
4645
4646
if (auto *AS = dyn_cast<AliasSummary>(S)) {
4647
// Will process aliases as a post-pass because the reader wants all
4648
// global to be loaded first.
4649
Aliases.push_back(AS);
4650
return;
4651
}
4652
4653
if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4654
NameVals.push_back(*ValueId);
4655
assert(ModuleIdMap.count(VS->modulePath()));
4656
NameVals.push_back(ModuleIdMap[VS->modulePath()]);
4657
NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4658
NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4659
for (auto &RI : VS->refs()) {
4660
auto RefValueId = getValueId(RI.getGUID());
4661
if (!RefValueId)
4662
continue;
4663
NameVals.push_back(*RefValueId);
4664
}
4665
4666
// Emit the finished record.
4667
Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4668
FSModRefsAbbrev);
4669
NameVals.clear();
4670
MaybeEmitOriginalName(*S);
4671
return;
4672
}
4673
4674
auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> {
4675
if (!VI)
4676
return std::nullopt;
4677
return getValueId(VI.getGUID());
4678
};
4679
4680
auto *FS = cast<FunctionSummary>(S);
4681
writeFunctionTypeMetadataRecords(Stream, FS, GetValueId);
4682
getReferencedTypeIds(FS, ReferencedTypeIds);
4683
4684
writeFunctionHeapProfileRecords(
4685
Stream, FS, CallsiteAbbrev, AllocAbbrev,
4686
/*PerModule*/ false,
4687
/*GetValueId*/
4688
[&](const ValueInfo &VI) -> unsigned {
4689
std::optional<unsigned> ValueID = GetValueId(VI);
4690
// This can happen in shared index files for distributed ThinLTO if
4691
// the callee function summary is not included. Record 0 which we
4692
// will have to deal with conservatively when doing any kind of
4693
// validation in the ThinLTO backends.
4694
if (!ValueID)
4695
return 0;
4696
return *ValueID;
4697
},
4698
/*GetStackIndex*/
4699
[&](unsigned I) {
4700
// Get the corresponding index into the list of StackIds actually
4701
// being written for this combined index (which may be a subset in
4702
// the case of distributed indexes).
4703
assert(StackIdIndicesToIndex.contains(I));
4704
return StackIdIndicesToIndex[I];
4705
});
4706
4707
NameVals.push_back(*ValueId);
4708
assert(ModuleIdMap.count(FS->modulePath()));
4709
NameVals.push_back(ModuleIdMap[FS->modulePath()]);
4710
NameVals.push_back(
4711
getEncodedGVSummaryFlags(FS->flags(), shouldImportValueAsDecl(FS)));
4712
NameVals.push_back(FS->instCount());
4713
NameVals.push_back(getEncodedFFlags(FS->fflags()));
4714
NameVals.push_back(FS->entryCount());
4715
4716
// Fill in below
4717
NameVals.push_back(0); // numrefs
4718
NameVals.push_back(0); // rorefcnt
4719
NameVals.push_back(0); // worefcnt
4720
4721
unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4722
for (auto &RI : FS->refs()) {
4723
auto RefValueId = getValueId(RI.getGUID());
4724
if (!RefValueId)
4725
continue;
4726
NameVals.push_back(*RefValueId);
4727
if (RI.isReadOnly())
4728
RORefCnt++;
4729
else if (RI.isWriteOnly())
4730
WORefCnt++;
4731
Count++;
4732
}
4733
NameVals[6] = Count;
4734
NameVals[7] = RORefCnt;
4735
NameVals[8] = WORefCnt;
4736
4737
for (auto &EI : FS->calls()) {
4738
// If this GUID doesn't have a value id, it doesn't have a function
4739
// summary and we don't need to record any calls to it.
4740
std::optional<unsigned> CallValueId = GetValueId(EI.first);
4741
if (!CallValueId)
4742
continue;
4743
NameVals.push_back(*CallValueId);
4744
NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second));
4745
}
4746
4747
// Emit the finished record.
4748
Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals,
4749
FSCallsProfileAbbrev);
4750
NameVals.clear();
4751
MaybeEmitOriginalName(*S);
4752
});
4753
4754
for (auto *AS : Aliases) {
4755
auto AliasValueId = SummaryToValueIdMap[AS];
4756
assert(AliasValueId);
4757
NameVals.push_back(AliasValueId);
4758
assert(ModuleIdMap.count(AS->modulePath()));
4759
NameVals.push_back(ModuleIdMap[AS->modulePath()]);
4760
NameVals.push_back(
4761
getEncodedGVSummaryFlags(AS->flags(), shouldImportValueAsDecl(AS)));
4762
auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4763
assert(AliaseeValueId);
4764
NameVals.push_back(AliaseeValueId);
4765
4766
// Emit the finished record.
4767
Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4768
NameVals.clear();
4769
MaybeEmitOriginalName(*AS);
4770
4771
if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4772
getReferencedTypeIds(FS, ReferencedTypeIds);
4773
}
4774
4775
if (!Index.cfiFunctionDefs().empty()) {
4776
for (auto &S : Index.cfiFunctionDefs()) {
4777
if (DefOrUseGUIDs.count(
4778
GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4779
NameVals.push_back(StrtabBuilder.add(S));
4780
NameVals.push_back(S.size());
4781
}
4782
}
4783
if (!NameVals.empty()) {
4784
Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4785
NameVals.clear();
4786
}
4787
}
4788
4789
if (!Index.cfiFunctionDecls().empty()) {
4790
for (auto &S : Index.cfiFunctionDecls()) {
4791
if (DefOrUseGUIDs.count(
4792
GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4793
NameVals.push_back(StrtabBuilder.add(S));
4794
NameVals.push_back(S.size());
4795
}
4796
}
4797
if (!NameVals.empty()) {
4798
Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4799
NameVals.clear();
4800
}
4801
}
4802
4803
// Walk the GUIDs that were referenced, and write the
4804
// corresponding type id records.
4805
for (auto &T : ReferencedTypeIds) {
4806
auto TidIter = Index.typeIds().equal_range(T);
4807
for (auto It = TidIter.first; It != TidIter.second; ++It) {
4808
writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4809
It->second.second);
4810
Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4811
NameVals.clear();
4812
}
4813
}
4814
4815
if (Index.getBlockCount())
4816
Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4817
ArrayRef<uint64_t>{Index.getBlockCount()});
4818
4819
Stream.ExitBlock();
4820
}
4821
4822
/// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4823
/// current llvm version, and a record for the epoch number.
4824
static void writeIdentificationBlock(BitstreamWriter &Stream) {
4825
Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4826
4827
// Write the "user readable" string identifying the bitcode producer
4828
auto Abbv = std::make_shared<BitCodeAbbrev>();
4829
Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4830
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4831
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4832
auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4833
writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4834
"LLVM" LLVM_VERSION_STRING, StringAbbrev);
4835
4836
// Write the epoch version
4837
Abbv = std::make_shared<BitCodeAbbrev>();
4838
Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4839
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4840
auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4841
constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
4842
Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4843
Stream.ExitBlock();
4844
}
4845
4846
void ModuleBitcodeWriter::writeModuleHash(StringRef View) {
4847
// Emit the module's hash.
4848
// MODULE_CODE_HASH: [5*i32]
4849
if (GenerateHash) {
4850
uint32_t Vals[5];
4851
Hasher.update(ArrayRef<uint8_t>(
4852
reinterpret_cast<const uint8_t *>(View.data()), View.size()));
4853
std::array<uint8_t, 20> Hash = Hasher.result();
4854
for (int Pos = 0; Pos < 20; Pos += 4) {
4855
Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4856
}
4857
4858
// Emit the finished record.
4859
Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4860
4861
if (ModHash)
4862
// Save the written hash value.
4863
llvm::copy(Vals, std::begin(*ModHash));
4864
}
4865
}
4866
4867
void ModuleBitcodeWriter::write() {
4868
writeIdentificationBlock(Stream);
4869
4870
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4871
// We will want to write the module hash at this point. Block any flushing so
4872
// we can have access to the whole underlying data later.
4873
Stream.markAndBlockFlushing();
4874
4875
writeModuleVersion();
4876
4877
// Emit blockinfo, which defines the standard abbreviations etc.
4878
writeBlockInfo();
4879
4880
// Emit information describing all of the types in the module.
4881
writeTypeTable();
4882
4883
// Emit information about attribute groups.
4884
writeAttributeGroupTable();
4885
4886
// Emit information about parameter attributes.
4887
writeAttributeTable();
4888
4889
writeComdats();
4890
4891
// Emit top-level description of module, including target triple, inline asm,
4892
// descriptors for global variables, and function prototype info.
4893
writeModuleInfo();
4894
4895
// Emit constants.
4896
writeModuleConstants();
4897
4898
// Emit metadata kind names.
4899
writeModuleMetadataKinds();
4900
4901
// Emit metadata.
4902
writeModuleMetadata();
4903
4904
// Emit module-level use-lists.
4905
if (VE.shouldPreserveUseListOrder())
4906
writeUseListBlock(nullptr);
4907
4908
writeOperandBundleTags();
4909
writeSyncScopeNames();
4910
4911
// Emit function bodies.
4912
DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4913
for (const Function &F : M)
4914
if (!F.isDeclaration())
4915
writeFunction(F, FunctionToBitcodeIndex);
4916
4917
// Need to write after the above call to WriteFunction which populates
4918
// the summary information in the index.
4919
if (Index)
4920
writePerModuleGlobalValueSummary();
4921
4922
writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4923
4924
writeModuleHash(Stream.getMarkedBufferAndResumeFlushing());
4925
4926
Stream.ExitBlock();
4927
}
4928
4929
static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4930
uint32_t &Position) {
4931
support::endian::write32le(&Buffer[Position], Value);
4932
Position += 4;
4933
}
4934
4935
/// If generating a bc file on darwin, we have to emit a
4936
/// header and trailer to make it compatible with the system archiver. To do
4937
/// this we emit the following header, and then emit a trailer that pads the
4938
/// file out to be a multiple of 16 bytes.
4939
///
4940
/// struct bc_header {
4941
/// uint32_t Magic; // 0x0B17C0DE
4942
/// uint32_t Version; // Version, currently always 0.
4943
/// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4944
/// uint32_t BitcodeSize; // Size of traditional bitcode file.
4945
/// uint32_t CPUType; // CPU specifier.
4946
/// ... potentially more later ...
4947
/// };
4948
static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4949
const Triple &TT) {
4950
unsigned CPUType = ~0U;
4951
4952
// Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4953
// armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4954
// number from /usr/include/mach/machine.h. It is ok to reproduce the
4955
// specific constants here because they are implicitly part of the Darwin ABI.
4956
enum {
4957
DARWIN_CPU_ARCH_ABI64 = 0x01000000,
4958
DARWIN_CPU_TYPE_X86 = 7,
4959
DARWIN_CPU_TYPE_ARM = 12,
4960
DARWIN_CPU_TYPE_POWERPC = 18
4961
};
4962
4963
Triple::ArchType Arch = TT.getArch();
4964
if (Arch == Triple::x86_64)
4965
CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4966
else if (Arch == Triple::x86)
4967
CPUType = DARWIN_CPU_TYPE_X86;
4968
else if (Arch == Triple::ppc)
4969
CPUType = DARWIN_CPU_TYPE_POWERPC;
4970
else if (Arch == Triple::ppc64)
4971
CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4972
else if (Arch == Triple::arm || Arch == Triple::thumb)
4973
CPUType = DARWIN_CPU_TYPE_ARM;
4974
4975
// Traditional Bitcode starts after header.
4976
assert(Buffer.size() >= BWH_HeaderSize &&
4977
"Expected header size to be reserved");
4978
unsigned BCOffset = BWH_HeaderSize;
4979
unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4980
4981
// Write the magic and version.
4982
unsigned Position = 0;
4983
writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4984
writeInt32ToBuffer(0, Buffer, Position); // Version.
4985
writeInt32ToBuffer(BCOffset, Buffer, Position);
4986
writeInt32ToBuffer(BCSize, Buffer, Position);
4987
writeInt32ToBuffer(CPUType, Buffer, Position);
4988
4989
// If the file is not a multiple of 16 bytes, insert dummy padding.
4990
while (Buffer.size() & 15)
4991
Buffer.push_back(0);
4992
}
4993
4994
/// Helper to write the header common to all bitcode files.
4995
static void writeBitcodeHeader(BitstreamWriter &Stream) {
4996
// Emit the file header.
4997
Stream.Emit((unsigned)'B', 8);
4998
Stream.Emit((unsigned)'C', 8);
4999
Stream.Emit(0x0, 4);
5000
Stream.Emit(0xC, 4);
5001
Stream.Emit(0xE, 4);
5002
Stream.Emit(0xD, 4);
5003
}
5004
5005
BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
5006
: Stream(new BitstreamWriter(Buffer)) {
5007
writeBitcodeHeader(*Stream);
5008
}
5009
5010
BitcodeWriter::BitcodeWriter(raw_ostream &FS)
5011
: Stream(new BitstreamWriter(FS, FlushThreshold)) {
5012
writeBitcodeHeader(*Stream);
5013
}
5014
5015
BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
5016
5017
void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
5018
Stream->EnterSubblock(Block, 3);
5019
5020
auto Abbv = std::make_shared<BitCodeAbbrev>();
5021
Abbv->Add(BitCodeAbbrevOp(Record));
5022
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
5023
auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
5024
5025
Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
5026
5027
Stream->ExitBlock();
5028
}
5029
5030
void BitcodeWriter::writeSymtab() {
5031
assert(!WroteStrtab && !WroteSymtab);
5032
5033
// If any module has module-level inline asm, we will require a registered asm
5034
// parser for the target so that we can create an accurate symbol table for
5035
// the module.
5036
for (Module *M : Mods) {
5037
if (M->getModuleInlineAsm().empty())
5038
continue;
5039
5040
std::string Err;
5041
const Triple TT(M->getTargetTriple());
5042
const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
5043
if (!T || !T->hasMCAsmParser())
5044
return;
5045
}
5046
5047
WroteSymtab = true;
5048
SmallVector<char, 0> Symtab;
5049
// The irsymtab::build function may be unable to create a symbol table if the
5050
// module is malformed (e.g. it contains an invalid alias). Writing a symbol
5051
// table is not required for correctness, but we still want to be able to
5052
// write malformed modules to bitcode files, so swallow the error.
5053
if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
5054
consumeError(std::move(E));
5055
return;
5056
}
5057
5058
writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
5059
{Symtab.data(), Symtab.size()});
5060
}
5061
5062
void BitcodeWriter::writeStrtab() {
5063
assert(!WroteStrtab);
5064
5065
std::vector<char> Strtab;
5066
StrtabBuilder.finalizeInOrder();
5067
Strtab.resize(StrtabBuilder.getSize());
5068
StrtabBuilder.write((uint8_t *)Strtab.data());
5069
5070
writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
5071
{Strtab.data(), Strtab.size()});
5072
5073
WroteStrtab = true;
5074
}
5075
5076
void BitcodeWriter::copyStrtab(StringRef Strtab) {
5077
writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
5078
WroteStrtab = true;
5079
}
5080
5081
void BitcodeWriter::writeModule(const Module &M,
5082
bool ShouldPreserveUseListOrder,
5083
const ModuleSummaryIndex *Index,
5084
bool GenerateHash, ModuleHash *ModHash) {
5085
assert(!WroteStrtab);
5086
5087
// The Mods vector is used by irsymtab::build, which requires non-const
5088
// Modules in case it needs to materialize metadata. But the bitcode writer
5089
// requires that the module is materialized, so we can cast to non-const here,
5090
// after checking that it is in fact materialized.
5091
assert(M.isMaterialized());
5092
Mods.push_back(const_cast<Module *>(&M));
5093
5094
ModuleBitcodeWriter ModuleWriter(M, StrtabBuilder, *Stream,
5095
ShouldPreserveUseListOrder, Index,
5096
GenerateHash, ModHash);
5097
ModuleWriter.write();
5098
}
5099
5100
void BitcodeWriter::writeIndex(
5101
const ModuleSummaryIndex *Index,
5102
const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex,
5103
const GVSummaryPtrSet *DecSummaries) {
5104
IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, DecSummaries,
5105
ModuleToSummariesForIndex);
5106
IndexWriter.write();
5107
}
5108
5109
/// Write the specified module to the specified output stream.
5110
void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
5111
bool ShouldPreserveUseListOrder,
5112
const ModuleSummaryIndex *Index,
5113
bool GenerateHash, ModuleHash *ModHash) {
5114
auto Write = [&](BitcodeWriter &Writer) {
5115
Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
5116
ModHash);
5117
Writer.writeSymtab();
5118
Writer.writeStrtab();
5119
};
5120
Triple TT(M.getTargetTriple());
5121
if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) {
5122
// If this is darwin or another generic macho target, reserve space for the
5123
// header. Note that the header is computed *after* the output is known, so
5124
// we currently explicitly use a buffer, write to it, and then subsequently
5125
// flush to Out.
5126
SmallVector<char, 0> Buffer;
5127
Buffer.reserve(256 * 1024);
5128
Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
5129
BitcodeWriter Writer(Buffer);
5130
Write(Writer);
5131
emitDarwinBCHeaderAndTrailer(Buffer, TT);
5132
Out.write(Buffer.data(), Buffer.size());
5133
} else {
5134
BitcodeWriter Writer(Out);
5135
Write(Writer);
5136
}
5137
}
5138
5139
void IndexBitcodeWriter::write() {
5140
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
5141
5142
writeModuleVersion();
5143
5144
// Write the module paths in the combined index.
5145
writeModStrings();
5146
5147
// Write the summary combined index records.
5148
writeCombinedGlobalValueSummary();
5149
5150
Stream.ExitBlock();
5151
}
5152
5153
// Write the specified module summary index to the given raw output stream,
5154
// where it will be written in a new bitcode block. This is used when
5155
// writing the combined index file for ThinLTO. When writing a subset of the
5156
// index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
5157
void llvm::writeIndexToFile(
5158
const ModuleSummaryIndex &Index, raw_ostream &Out,
5159
const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex,
5160
const GVSummaryPtrSet *DecSummaries) {
5161
SmallVector<char, 0> Buffer;
5162
Buffer.reserve(256 * 1024);
5163
5164
BitcodeWriter Writer(Buffer);
5165
Writer.writeIndex(&Index, ModuleToSummariesForIndex, DecSummaries);
5166
Writer.writeStrtab();
5167
5168
Out.write((char *)&Buffer.front(), Buffer.size());
5169
}
5170
5171
namespace {
5172
5173
/// Class to manage the bitcode writing for a thin link bitcode file.
5174
class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
5175
/// ModHash is for use in ThinLTO incremental build, generated while writing
5176
/// the module bitcode file.
5177
const ModuleHash *ModHash;
5178
5179
public:
5180
ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
5181
BitstreamWriter &Stream,
5182
const ModuleSummaryIndex &Index,
5183
const ModuleHash &ModHash)
5184
: ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
5185
/*ShouldPreserveUseListOrder=*/false, &Index),
5186
ModHash(&ModHash) {}
5187
5188
void write();
5189
5190
private:
5191
void writeSimplifiedModuleInfo();
5192
};
5193
5194
} // end anonymous namespace
5195
5196
// This function writes a simpilified module info for thin link bitcode file.
5197
// It only contains the source file name along with the name(the offset and
5198
// size in strtab) and linkage for global values. For the global value info
5199
// entry, in order to keep linkage at offset 5, there are three zeros used
5200
// as padding.
5201
void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
5202
SmallVector<unsigned, 64> Vals;
5203
// Emit the module's source file name.
5204
{
5205
StringEncoding Bits = getStringEncoding(M.getSourceFileName());
5206
BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
5207
if (Bits == SE_Char6)
5208
AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
5209
else if (Bits == SE_Fixed7)
5210
AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
5211
5212
// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5213
auto Abbv = std::make_shared<BitCodeAbbrev>();
5214
Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
5215
Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
5216
Abbv->Add(AbbrevOpToUse);
5217
unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
5218
5219
for (const auto P : M.getSourceFileName())
5220
Vals.push_back((unsigned char)P);
5221
5222
Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
5223
Vals.clear();
5224
}
5225
5226
// Emit the global variable information.
5227
for (const GlobalVariable &GV : M.globals()) {
5228
// GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
5229
Vals.push_back(StrtabBuilder.add(GV.getName()));
5230
Vals.push_back(GV.getName().size());
5231
Vals.push_back(0);
5232
Vals.push_back(0);
5233
Vals.push_back(0);
5234
Vals.push_back(getEncodedLinkage(GV));
5235
5236
Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
5237
Vals.clear();
5238
}
5239
5240
// Emit the function proto information.
5241
for (const Function &F : M) {
5242
// FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage]
5243
Vals.push_back(StrtabBuilder.add(F.getName()));
5244
Vals.push_back(F.getName().size());
5245
Vals.push_back(0);
5246
Vals.push_back(0);
5247
Vals.push_back(0);
5248
Vals.push_back(getEncodedLinkage(F));
5249
5250
Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
5251
Vals.clear();
5252
}
5253
5254
// Emit the alias information.
5255
for (const GlobalAlias &A : M.aliases()) {
5256
// ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
5257
Vals.push_back(StrtabBuilder.add(A.getName()));
5258
Vals.push_back(A.getName().size());
5259
Vals.push_back(0);
5260
Vals.push_back(0);
5261
Vals.push_back(0);
5262
Vals.push_back(getEncodedLinkage(A));
5263
5264
Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
5265
Vals.clear();
5266
}
5267
5268
// Emit the ifunc information.
5269
for (const GlobalIFunc &I : M.ifuncs()) {
5270
// IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
5271
Vals.push_back(StrtabBuilder.add(I.getName()));
5272
Vals.push_back(I.getName().size());
5273
Vals.push_back(0);
5274
Vals.push_back(0);
5275
Vals.push_back(0);
5276
Vals.push_back(getEncodedLinkage(I));
5277
5278
Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
5279
Vals.clear();
5280
}
5281
}
5282
5283
void ThinLinkBitcodeWriter::write() {
5284
Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
5285
5286
writeModuleVersion();
5287
5288
writeSimplifiedModuleInfo();
5289
5290
writePerModuleGlobalValueSummary();
5291
5292
// Write module hash.
5293
Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
5294
5295
Stream.ExitBlock();
5296
}
5297
5298
void BitcodeWriter::writeThinLinkBitcode(const Module &M,
5299
const ModuleSummaryIndex &Index,
5300
const ModuleHash &ModHash) {
5301
assert(!WroteStrtab);
5302
5303
// The Mods vector is used by irsymtab::build, which requires non-const
5304
// Modules in case it needs to materialize metadata. But the bitcode writer
5305
// requires that the module is materialized, so we can cast to non-const here,
5306
// after checking that it is in fact materialized.
5307
assert(M.isMaterialized());
5308
Mods.push_back(const_cast<Module *>(&M));
5309
5310
ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
5311
ModHash);
5312
ThinLinkWriter.write();
5313
}
5314
5315
// Write the specified thin link bitcode file to the given raw output stream,
5316
// where it will be written in a new bitcode block. This is used when
5317
// writing the per-module index file for ThinLTO.
5318
void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
5319
const ModuleSummaryIndex &Index,
5320
const ModuleHash &ModHash) {
5321
SmallVector<char, 0> Buffer;
5322
Buffer.reserve(256 * 1024);
5323
5324
BitcodeWriter Writer(Buffer);
5325
Writer.writeThinLinkBitcode(M, Index, ModHash);
5326
Writer.writeSymtab();
5327
Writer.writeStrtab();
5328
5329
Out.write((char *)&Buffer.front(), Buffer.size());
5330
}
5331
5332
static const char *getSectionNameForBitcode(const Triple &T) {
5333
switch (T.getObjectFormat()) {
5334
case Triple::MachO:
5335
return "__LLVM,__bitcode";
5336
case Triple::COFF:
5337
case Triple::ELF:
5338
case Triple::Wasm:
5339
case Triple::UnknownObjectFormat:
5340
return ".llvmbc";
5341
case Triple::GOFF:
5342
llvm_unreachable("GOFF is not yet implemented");
5343
break;
5344
case Triple::SPIRV:
5345
if (T.getVendor() == Triple::AMD)
5346
return ".llvmbc";
5347
llvm_unreachable("SPIRV is not yet implemented");
5348
break;
5349
case Triple::XCOFF:
5350
llvm_unreachable("XCOFF is not yet implemented");
5351
break;
5352
case Triple::DXContainer:
5353
llvm_unreachable("DXContainer is not yet implemented");
5354
break;
5355
}
5356
llvm_unreachable("Unimplemented ObjectFormatType");
5357
}
5358
5359
static const char *getSectionNameForCommandline(const Triple &T) {
5360
switch (T.getObjectFormat()) {
5361
case Triple::MachO:
5362
return "__LLVM,__cmdline";
5363
case Triple::COFF:
5364
case Triple::ELF:
5365
case Triple::Wasm:
5366
case Triple::UnknownObjectFormat:
5367
return ".llvmcmd";
5368
case Triple::GOFF:
5369
llvm_unreachable("GOFF is not yet implemented");
5370
break;
5371
case Triple::SPIRV:
5372
if (T.getVendor() == Triple::AMD)
5373
return ".llvmcmd";
5374
llvm_unreachable("SPIRV is not yet implemented");
5375
break;
5376
case Triple::XCOFF:
5377
llvm_unreachable("XCOFF is not yet implemented");
5378
break;
5379
case Triple::DXContainer:
5380
llvm_unreachable("DXC is not yet implemented");
5381
break;
5382
}
5383
llvm_unreachable("Unimplemented ObjectFormatType");
5384
}
5385
5386
void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
5387
bool EmbedBitcode, bool EmbedCmdline,
5388
const std::vector<uint8_t> &CmdArgs) {
5389
// Save llvm.compiler.used and remove it.
5390
SmallVector<Constant *, 2> UsedArray;
5391
SmallVector<GlobalValue *, 4> UsedGlobals;
5392
Type *UsedElementType = PointerType::getUnqual(M.getContext());
5393
GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
5394
for (auto *GV : UsedGlobals) {
5395
if (GV->getName() != "llvm.embedded.module" &&
5396
GV->getName() != "llvm.cmdline")
5397
UsedArray.push_back(
5398
ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5399
}
5400
if (Used)
5401
Used->eraseFromParent();
5402
5403
// Embed the bitcode for the llvm module.
5404
std::string Data;
5405
ArrayRef<uint8_t> ModuleData;
5406
Triple T(M.getTargetTriple());
5407
5408
if (EmbedBitcode) {
5409
if (Buf.getBufferSize() == 0 ||
5410
!isBitcode((const unsigned char *)Buf.getBufferStart(),
5411
(const unsigned char *)Buf.getBufferEnd())) {
5412
// If the input is LLVM Assembly, bitcode is produced by serializing
5413
// the module. Use-lists order need to be preserved in this case.
5414
llvm::raw_string_ostream OS(Data);
5415
llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
5416
ModuleData =
5417
ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
5418
} else
5419
// If the input is LLVM bitcode, write the input byte stream directly.
5420
ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
5421
Buf.getBufferSize());
5422
}
5423
llvm::Constant *ModuleConstant =
5424
llvm::ConstantDataArray::get(M.getContext(), ModuleData);
5425
llvm::GlobalVariable *GV = new llvm::GlobalVariable(
5426
M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
5427
ModuleConstant);
5428
GV->setSection(getSectionNameForBitcode(T));
5429
// Set alignment to 1 to prevent padding between two contributions from input
5430
// sections after linking.
5431
GV->setAlignment(Align(1));
5432
UsedArray.push_back(
5433
ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5434
if (llvm::GlobalVariable *Old =
5435
M.getGlobalVariable("llvm.embedded.module", true)) {
5436
assert(Old->hasZeroLiveUses() &&
5437
"llvm.embedded.module can only be used once in llvm.compiler.used");
5438
GV->takeName(Old);
5439
Old->eraseFromParent();
5440
} else {
5441
GV->setName("llvm.embedded.module");
5442
}
5443
5444
// Skip if only bitcode needs to be embedded.
5445
if (EmbedCmdline) {
5446
// Embed command-line options.
5447
ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()),
5448
CmdArgs.size());
5449
llvm::Constant *CmdConstant =
5450
llvm::ConstantDataArray::get(M.getContext(), CmdData);
5451
GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
5452
llvm::GlobalValue::PrivateLinkage,
5453
CmdConstant);
5454
GV->setSection(getSectionNameForCommandline(T));
5455
GV->setAlignment(Align(1));
5456
UsedArray.push_back(
5457
ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
5458
if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
5459
assert(Old->hasZeroLiveUses() &&
5460
"llvm.cmdline can only be used once in llvm.compiler.used");
5461
GV->takeName(Old);
5462
Old->eraseFromParent();
5463
} else {
5464
GV->setName("llvm.cmdline");
5465
}
5466
}
5467
5468
if (UsedArray.empty())
5469
return;
5470
5471
// Recreate llvm.compiler.used.
5472
ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
5473
auto *NewUsed = new GlobalVariable(
5474
M, ATy, false, llvm::GlobalValue::AppendingLinkage,
5475
llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
5476
NewUsed->setSection("llvm.metadata");
5477
}
5478
5479