Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp
35291 views
1
//===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the ValueEnumerator class.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "ValueEnumerator.h"
14
#include "llvm/ADT/SmallVector.h"
15
#include "llvm/Config/llvm-config.h"
16
#include "llvm/IR/Argument.h"
17
#include "llvm/IR/BasicBlock.h"
18
#include "llvm/IR/Constant.h"
19
#include "llvm/IR/DebugInfoMetadata.h"
20
#include "llvm/IR/DerivedTypes.h"
21
#include "llvm/IR/Function.h"
22
#include "llvm/IR/GlobalAlias.h"
23
#include "llvm/IR/GlobalIFunc.h"
24
#include "llvm/IR/GlobalObject.h"
25
#include "llvm/IR/GlobalValue.h"
26
#include "llvm/IR/GlobalVariable.h"
27
#include "llvm/IR/Instruction.h"
28
#include "llvm/IR/Instructions.h"
29
#include "llvm/IR/Metadata.h"
30
#include "llvm/IR/Module.h"
31
#include "llvm/IR/Operator.h"
32
#include "llvm/IR/Type.h"
33
#include "llvm/IR/Use.h"
34
#include "llvm/IR/User.h"
35
#include "llvm/IR/Value.h"
36
#include "llvm/IR/ValueSymbolTable.h"
37
#include "llvm/Support/Casting.h"
38
#include "llvm/Support/Compiler.h"
39
#include "llvm/Support/Debug.h"
40
#include "llvm/Support/MathExtras.h"
41
#include "llvm/Support/raw_ostream.h"
42
#include <algorithm>
43
#include <cstddef>
44
#include <iterator>
45
#include <tuple>
46
47
using namespace llvm;
48
49
namespace {
50
51
struct OrderMap {
52
DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
53
unsigned LastGlobalValueID = 0;
54
55
OrderMap() = default;
56
57
bool isGlobalValue(unsigned ID) const {
58
return ID <= LastGlobalValueID;
59
}
60
61
unsigned size() const { return IDs.size(); }
62
std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
63
64
std::pair<unsigned, bool> lookup(const Value *V) const {
65
return IDs.lookup(V);
66
}
67
68
void index(const Value *V) {
69
// Explicitly sequence get-size and insert-value operations to avoid UB.
70
unsigned ID = IDs.size() + 1;
71
IDs[V].first = ID;
72
}
73
};
74
75
} // end anonymous namespace
76
77
static void orderValue(const Value *V, OrderMap &OM) {
78
if (OM.lookup(V).first)
79
return;
80
81
if (const Constant *C = dyn_cast<Constant>(V)) {
82
if (C->getNumOperands()) {
83
for (const Value *Op : C->operands())
84
if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
85
orderValue(Op, OM);
86
if (auto *CE = dyn_cast<ConstantExpr>(C))
87
if (CE->getOpcode() == Instruction::ShuffleVector)
88
orderValue(CE->getShuffleMaskForBitcode(), OM);
89
}
90
}
91
92
// Note: we cannot cache this lookup above, since inserting into the map
93
// changes the map's size, and thus affects the other IDs.
94
OM.index(V);
95
}
96
97
static OrderMap orderModule(const Module &M) {
98
// This needs to match the order used by ValueEnumerator::ValueEnumerator()
99
// and ValueEnumerator::incorporateFunction().
100
OrderMap OM;
101
102
// Initializers of GlobalValues are processed in
103
// BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather
104
// than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
105
// by giving IDs in reverse order.
106
//
107
// Since GlobalValues never reference each other directly (just through
108
// initializers), their relative IDs only matter for determining order of
109
// uses in their initializers.
110
for (const GlobalVariable &G : reverse(M.globals()))
111
orderValue(&G, OM);
112
for (const GlobalAlias &A : reverse(M.aliases()))
113
orderValue(&A, OM);
114
for (const GlobalIFunc &I : reverse(M.ifuncs()))
115
orderValue(&I, OM);
116
for (const Function &F : reverse(M))
117
orderValue(&F, OM);
118
OM.LastGlobalValueID = OM.size();
119
120
auto orderConstantValue = [&OM](const Value *V) {
121
if (isa<Constant>(V) || isa<InlineAsm>(V))
122
orderValue(V, OM);
123
};
124
125
for (const Function &F : M) {
126
if (F.isDeclaration())
127
continue;
128
// Here we need to match the union of ValueEnumerator::incorporateFunction()
129
// and WriteFunction(). Basic blocks are implicitly declared before
130
// anything else (by declaring their size).
131
for (const BasicBlock &BB : F)
132
orderValue(&BB, OM);
133
134
// Metadata used by instructions is decoded before the actual instructions,
135
// so visit any constants used by it beforehand.
136
for (const BasicBlock &BB : F)
137
for (const Instruction &I : BB) {
138
auto OrderConstantFromMetadata = [&](Metadata *MD) {
139
if (const auto *VAM = dyn_cast<ValueAsMetadata>(MD)) {
140
orderConstantValue(VAM->getValue());
141
} else if (const auto *AL = dyn_cast<DIArgList>(MD)) {
142
for (const auto *VAM : AL->getArgs())
143
orderConstantValue(VAM->getValue());
144
}
145
};
146
147
for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
148
OrderConstantFromMetadata(DVR.getRawLocation());
149
if (DVR.isDbgAssign())
150
OrderConstantFromMetadata(DVR.getRawAddress());
151
}
152
153
for (const Value *V : I.operands()) {
154
if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
155
OrderConstantFromMetadata(MAV->getMetadata());
156
}
157
}
158
159
for (const Argument &A : F.args())
160
orderValue(&A, OM);
161
for (const BasicBlock &BB : F)
162
for (const Instruction &I : BB) {
163
for (const Value *Op : I.operands())
164
orderConstantValue(Op);
165
if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
166
orderValue(SVI->getShuffleMaskForBitcode(), OM);
167
orderValue(&I, OM);
168
}
169
}
170
return OM;
171
}
172
173
static void predictValueUseListOrderImpl(const Value *V, const Function *F,
174
unsigned ID, const OrderMap &OM,
175
UseListOrderStack &Stack) {
176
// Predict use-list order for this one.
177
using Entry = std::pair<const Use *, unsigned>;
178
SmallVector<Entry, 64> List;
179
for (const Use &U : V->uses())
180
// Check if this user will be serialized.
181
if (OM.lookup(U.getUser()).first)
182
List.push_back(std::make_pair(&U, List.size()));
183
184
if (List.size() < 2)
185
// We may have lost some users.
186
return;
187
188
bool IsGlobalValue = OM.isGlobalValue(ID);
189
llvm::sort(List, [&](const Entry &L, const Entry &R) {
190
const Use *LU = L.first;
191
const Use *RU = R.first;
192
if (LU == RU)
193
return false;
194
195
auto LID = OM.lookup(LU->getUser()).first;
196
auto RID = OM.lookup(RU->getUser()).first;
197
198
// If ID is 4, then expect: 7 6 5 1 2 3.
199
if (LID < RID) {
200
if (RID <= ID)
201
if (!IsGlobalValue) // GlobalValue uses don't get reversed.
202
return true;
203
return false;
204
}
205
if (RID < LID) {
206
if (LID <= ID)
207
if (!IsGlobalValue) // GlobalValue uses don't get reversed.
208
return false;
209
return true;
210
}
211
212
// LID and RID are equal, so we have different operands of the same user.
213
// Assume operands are added in order for all instructions.
214
if (LID <= ID)
215
if (!IsGlobalValue) // GlobalValue uses don't get reversed.
216
return LU->getOperandNo() < RU->getOperandNo();
217
return LU->getOperandNo() > RU->getOperandNo();
218
});
219
220
if (llvm::is_sorted(List, llvm::less_second()))
221
// Order is already correct.
222
return;
223
224
// Store the shuffle.
225
Stack.emplace_back(V, F, List.size());
226
assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
227
for (size_t I = 0, E = List.size(); I != E; ++I)
228
Stack.back().Shuffle[I] = List[I].second;
229
}
230
231
static void predictValueUseListOrder(const Value *V, const Function *F,
232
OrderMap &OM, UseListOrderStack &Stack) {
233
auto &IDPair = OM[V];
234
assert(IDPair.first && "Unmapped value");
235
if (IDPair.second)
236
// Already predicted.
237
return;
238
239
// Do the actual prediction.
240
IDPair.second = true;
241
if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
242
predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
243
244
// Recursive descent into constants.
245
if (const Constant *C = dyn_cast<Constant>(V)) {
246
if (C->getNumOperands()) { // Visit GlobalValues.
247
for (const Value *Op : C->operands())
248
if (isa<Constant>(Op)) // Visit GlobalValues.
249
predictValueUseListOrder(Op, F, OM, Stack);
250
if (auto *CE = dyn_cast<ConstantExpr>(C))
251
if (CE->getOpcode() == Instruction::ShuffleVector)
252
predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM,
253
Stack);
254
}
255
}
256
}
257
258
static UseListOrderStack predictUseListOrder(const Module &M) {
259
OrderMap OM = orderModule(M);
260
261
// Use-list orders need to be serialized after all the users have been added
262
// to a value, or else the shuffles will be incomplete. Store them per
263
// function in a stack.
264
//
265
// Aside from function order, the order of values doesn't matter much here.
266
UseListOrderStack Stack;
267
268
// We want to visit the functions backward now so we can list function-local
269
// constants in the last Function they're used in. Module-level constants
270
// have already been visited above.
271
for (const Function &F : llvm::reverse(M)) {
272
auto PredictValueOrderFromMetadata = [&](Metadata *MD) {
273
if (const auto *VAM = dyn_cast<ValueAsMetadata>(MD)) {
274
predictValueUseListOrder(VAM->getValue(), &F, OM, Stack);
275
} else if (const auto *AL = dyn_cast<DIArgList>(MD)) {
276
for (const auto *VAM : AL->getArgs())
277
predictValueUseListOrder(VAM->getValue(), &F, OM, Stack);
278
}
279
};
280
if (F.isDeclaration())
281
continue;
282
for (const BasicBlock &BB : F)
283
predictValueUseListOrder(&BB, &F, OM, Stack);
284
for (const Argument &A : F.args())
285
predictValueUseListOrder(&A, &F, OM, Stack);
286
for (const BasicBlock &BB : F) {
287
for (const Instruction &I : BB) {
288
for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
289
PredictValueOrderFromMetadata(DVR.getRawLocation());
290
if (DVR.isDbgAssign())
291
PredictValueOrderFromMetadata(DVR.getRawAddress());
292
}
293
for (const Value *Op : I.operands()) {
294
if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
295
predictValueUseListOrder(Op, &F, OM, Stack);
296
if (const auto *MAV = dyn_cast<MetadataAsValue>(Op))
297
PredictValueOrderFromMetadata(MAV->getMetadata());
298
}
299
if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
300
predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM,
301
Stack);
302
predictValueUseListOrder(&I, &F, OM, Stack);
303
}
304
}
305
}
306
307
// Visit globals last, since the module-level use-list block will be seen
308
// before the function bodies are processed.
309
for (const GlobalVariable &G : M.globals())
310
predictValueUseListOrder(&G, nullptr, OM, Stack);
311
for (const Function &F : M)
312
predictValueUseListOrder(&F, nullptr, OM, Stack);
313
for (const GlobalAlias &A : M.aliases())
314
predictValueUseListOrder(&A, nullptr, OM, Stack);
315
for (const GlobalIFunc &I : M.ifuncs())
316
predictValueUseListOrder(&I, nullptr, OM, Stack);
317
for (const GlobalVariable &G : M.globals())
318
if (G.hasInitializer())
319
predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
320
for (const GlobalAlias &A : M.aliases())
321
predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
322
for (const GlobalIFunc &I : M.ifuncs())
323
predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
324
for (const Function &F : M) {
325
for (const Use &U : F.operands())
326
predictValueUseListOrder(U.get(), nullptr, OM, Stack);
327
}
328
329
return Stack;
330
}
331
332
static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
333
return V.first->getType()->isIntOrIntVectorTy();
334
}
335
336
ValueEnumerator::ValueEnumerator(const Module &M,
337
bool ShouldPreserveUseListOrder)
338
: ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
339
if (ShouldPreserveUseListOrder)
340
UseListOrders = predictUseListOrder(M);
341
342
// Enumerate the global variables.
343
for (const GlobalVariable &GV : M.globals()) {
344
EnumerateValue(&GV);
345
EnumerateType(GV.getValueType());
346
}
347
348
// Enumerate the functions.
349
for (const Function & F : M) {
350
EnumerateValue(&F);
351
EnumerateType(F.getValueType());
352
EnumerateAttributes(F.getAttributes());
353
}
354
355
// Enumerate the aliases.
356
for (const GlobalAlias &GA : M.aliases()) {
357
EnumerateValue(&GA);
358
EnumerateType(GA.getValueType());
359
}
360
361
// Enumerate the ifuncs.
362
for (const GlobalIFunc &GIF : M.ifuncs()) {
363
EnumerateValue(&GIF);
364
EnumerateType(GIF.getValueType());
365
}
366
367
// Remember what is the cutoff between globalvalue's and other constants.
368
unsigned FirstConstant = Values.size();
369
370
// Enumerate the global variable initializers and attributes.
371
for (const GlobalVariable &GV : M.globals()) {
372
if (GV.hasInitializer())
373
EnumerateValue(GV.getInitializer());
374
if (GV.hasAttributes())
375
EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
376
}
377
378
// Enumerate the aliasees.
379
for (const GlobalAlias &GA : M.aliases())
380
EnumerateValue(GA.getAliasee());
381
382
// Enumerate the ifunc resolvers.
383
for (const GlobalIFunc &GIF : M.ifuncs())
384
EnumerateValue(GIF.getResolver());
385
386
// Enumerate any optional Function data.
387
for (const Function &F : M)
388
for (const Use &U : F.operands())
389
EnumerateValue(U.get());
390
391
// Enumerate the metadata type.
392
//
393
// TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
394
// only encodes the metadata type when it's used as a value.
395
EnumerateType(Type::getMetadataTy(M.getContext()));
396
397
// Insert constants and metadata that are named at module level into the slot
398
// pool so that the module symbol table can refer to them...
399
EnumerateValueSymbolTable(M.getValueSymbolTable());
400
EnumerateNamedMetadata(M);
401
402
SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
403
for (const GlobalVariable &GV : M.globals()) {
404
MDs.clear();
405
GV.getAllMetadata(MDs);
406
for (const auto &I : MDs)
407
// FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
408
// to write metadata to the global variable's own metadata block
409
// (PR28134).
410
EnumerateMetadata(nullptr, I.second);
411
}
412
413
// Enumerate types used by function bodies and argument lists.
414
for (const Function &F : M) {
415
for (const Argument &A : F.args())
416
EnumerateType(A.getType());
417
418
// Enumerate metadata attached to this function.
419
MDs.clear();
420
F.getAllMetadata(MDs);
421
for (const auto &I : MDs)
422
EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
423
424
for (const BasicBlock &BB : F)
425
for (const Instruction &I : BB) {
426
// Local metadata is enumerated during function-incorporation, but
427
// any ConstantAsMetadata arguments in a DIArgList should be examined
428
// now.
429
auto EnumerateNonLocalValuesFromMetadata = [&](Metadata *MD) {
430
assert(MD && "Metadata unexpectedly null");
431
if (const auto *AL = dyn_cast<DIArgList>(MD)) {
432
for (const auto *VAM : AL->getArgs()) {
433
if (isa<ConstantAsMetadata>(VAM))
434
EnumerateMetadata(&F, VAM);
435
}
436
return;
437
}
438
439
if (!isa<LocalAsMetadata>(MD))
440
EnumerateMetadata(&F, MD);
441
};
442
443
for (DbgRecord &DR : I.getDbgRecordRange()) {
444
if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
445
EnumerateMetadata(&F, DLR->getLabel());
446
EnumerateMetadata(&F, &*DLR->getDebugLoc());
447
continue;
448
}
449
// Enumerate non-local location metadata.
450
DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
451
EnumerateNonLocalValuesFromMetadata(DVR.getRawLocation());
452
EnumerateMetadata(&F, DVR.getExpression());
453
EnumerateMetadata(&F, DVR.getVariable());
454
EnumerateMetadata(&F, &*DVR.getDebugLoc());
455
if (DVR.isDbgAssign()) {
456
EnumerateNonLocalValuesFromMetadata(DVR.getRawAddress());
457
EnumerateMetadata(&F, DVR.getAssignID());
458
EnumerateMetadata(&F, DVR.getAddressExpression());
459
}
460
}
461
for (const Use &Op : I.operands()) {
462
auto *MD = dyn_cast<MetadataAsValue>(&Op);
463
if (!MD) {
464
EnumerateOperandType(Op);
465
continue;
466
}
467
468
EnumerateNonLocalValuesFromMetadata(MD->getMetadata());
469
}
470
if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
471
EnumerateType(SVI->getShuffleMaskForBitcode()->getType());
472
if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
473
EnumerateType(GEP->getSourceElementType());
474
if (auto *AI = dyn_cast<AllocaInst>(&I))
475
EnumerateType(AI->getAllocatedType());
476
EnumerateType(I.getType());
477
if (const auto *Call = dyn_cast<CallBase>(&I)) {
478
EnumerateAttributes(Call->getAttributes());
479
EnumerateType(Call->getFunctionType());
480
}
481
482
// Enumerate metadata attached with this instruction.
483
MDs.clear();
484
I.getAllMetadataOtherThanDebugLoc(MDs);
485
for (unsigned i = 0, e = MDs.size(); i != e; ++i)
486
EnumerateMetadata(&F, MDs[i].second);
487
488
// Don't enumerate the location directly -- it has a special record
489
// type -- but enumerate its operands.
490
if (DILocation *L = I.getDebugLoc())
491
for (const Metadata *Op : L->operands())
492
EnumerateMetadata(&F, Op);
493
}
494
}
495
496
// Optimize constant ordering.
497
OptimizeConstants(FirstConstant, Values.size());
498
499
// Organize metadata ordering.
500
organizeMetadata();
501
}
502
503
unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
504
InstructionMapType::const_iterator I = InstructionMap.find(Inst);
505
assert(I != InstructionMap.end() && "Instruction is not mapped!");
506
return I->second;
507
}
508
509
unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
510
unsigned ComdatID = Comdats.idFor(C);
511
assert(ComdatID && "Comdat not found!");
512
return ComdatID;
513
}
514
515
void ValueEnumerator::setInstructionID(const Instruction *I) {
516
InstructionMap[I] = InstructionCount++;
517
}
518
519
unsigned ValueEnumerator::getValueID(const Value *V) const {
520
if (auto *MD = dyn_cast<MetadataAsValue>(V))
521
return getMetadataID(MD->getMetadata());
522
523
ValueMapType::const_iterator I = ValueMap.find(V);
524
assert(I != ValueMap.end() && "Value not in slotcalculator!");
525
return I->second-1;
526
}
527
528
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
529
LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
530
print(dbgs(), ValueMap, "Default");
531
dbgs() << '\n';
532
print(dbgs(), MetadataMap, "MetaData");
533
dbgs() << '\n';
534
}
535
#endif
536
537
void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
538
const char *Name) const {
539
OS << "Map Name: " << Name << "\n";
540
OS << "Size: " << Map.size() << "\n";
541
for (const auto &I : Map) {
542
const Value *V = I.first;
543
if (V->hasName())
544
OS << "Value: " << V->getName();
545
else
546
OS << "Value: [null]\n";
547
V->print(errs());
548
errs() << '\n';
549
550
OS << " Uses(" << V->getNumUses() << "):";
551
for (const Use &U : V->uses()) {
552
if (&U != &*V->use_begin())
553
OS << ",";
554
if(U->hasName())
555
OS << " " << U->getName();
556
else
557
OS << " [null]";
558
559
}
560
OS << "\n\n";
561
}
562
}
563
564
void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
565
const char *Name) const {
566
OS << "Map Name: " << Name << "\n";
567
OS << "Size: " << Map.size() << "\n";
568
for (const auto &I : Map) {
569
const Metadata *MD = I.first;
570
OS << "Metadata: slot = " << I.second.ID << "\n";
571
OS << "Metadata: function = " << I.second.F << "\n";
572
MD->print(OS);
573
OS << "\n";
574
}
575
}
576
577
/// OptimizeConstants - Reorder constant pool for denser encoding.
578
void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
579
if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
580
581
if (ShouldPreserveUseListOrder)
582
// Optimizing constants makes the use-list order difficult to predict.
583
// Disable it for now when trying to preserve the order.
584
return;
585
586
std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
587
[this](const std::pair<const Value *, unsigned> &LHS,
588
const std::pair<const Value *, unsigned> &RHS) {
589
// Sort by plane.
590
if (LHS.first->getType() != RHS.first->getType())
591
return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
592
// Then by frequency.
593
return LHS.second > RHS.second;
594
});
595
596
// Ensure that integer and vector of integer constants are at the start of the
597
// constant pool. This is important so that GEP structure indices come before
598
// gep constant exprs.
599
std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
600
isIntOrIntVectorValue);
601
602
// Rebuild the modified portion of ValueMap.
603
for (; CstStart != CstEnd; ++CstStart)
604
ValueMap[Values[CstStart].first] = CstStart+1;
605
}
606
607
/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
608
/// table into the values table.
609
void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
610
for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
611
VI != VE; ++VI)
612
EnumerateValue(VI->getValue());
613
}
614
615
/// Insert all of the values referenced by named metadata in the specified
616
/// module.
617
void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
618
for (const auto &I : M.named_metadata())
619
EnumerateNamedMDNode(&I);
620
}
621
622
void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
623
for (const MDNode *N : MD->operands())
624
EnumerateMetadata(nullptr, N);
625
}
626
627
unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
628
return F ? getValueID(F) + 1 : 0;
629
}
630
631
void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
632
EnumerateMetadata(getMetadataFunctionID(F), MD);
633
}
634
635
void ValueEnumerator::EnumerateFunctionLocalMetadata(
636
const Function &F, const LocalAsMetadata *Local) {
637
EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
638
}
639
640
void ValueEnumerator::EnumerateFunctionLocalListMetadata(
641
const Function &F, const DIArgList *ArgList) {
642
EnumerateFunctionLocalListMetadata(getMetadataFunctionID(&F), ArgList);
643
}
644
645
void ValueEnumerator::dropFunctionFromMetadata(
646
MetadataMapType::value_type &FirstMD) {
647
SmallVector<const MDNode *, 64> Worklist;
648
auto push = [&Worklist](MetadataMapType::value_type &MD) {
649
auto &Entry = MD.second;
650
651
// Nothing to do if this metadata isn't tagged.
652
if (!Entry.F)
653
return;
654
655
// Drop the function tag.
656
Entry.F = 0;
657
658
// If this is has an ID and is an MDNode, then its operands have entries as
659
// well. We need to drop the function from them too.
660
if (Entry.ID)
661
if (auto *N = dyn_cast<MDNode>(MD.first))
662
Worklist.push_back(N);
663
};
664
push(FirstMD);
665
while (!Worklist.empty())
666
for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
667
if (!Op)
668
continue;
669
auto MD = MetadataMap.find(Op);
670
if (MD != MetadataMap.end())
671
push(*MD);
672
}
673
}
674
675
void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
676
// It's vital for reader efficiency that uniqued subgraphs are done in
677
// post-order; it's expensive when their operands have forward references.
678
// If a distinct node is referenced from a uniqued node, it'll be delayed
679
// until the uniqued subgraph has been completely traversed.
680
SmallVector<const MDNode *, 32> DelayedDistinctNodes;
681
682
// Start by enumerating MD, and then work through its transitive operands in
683
// post-order. This requires a depth-first search.
684
SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
685
if (const MDNode *N = enumerateMetadataImpl(F, MD))
686
Worklist.push_back(std::make_pair(N, N->op_begin()));
687
688
while (!Worklist.empty()) {
689
const MDNode *N = Worklist.back().first;
690
691
// Enumerate operands until we hit a new node. We need to traverse these
692
// nodes' operands before visiting the rest of N's operands.
693
MDNode::op_iterator I = std::find_if(
694
Worklist.back().second, N->op_end(),
695
[&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
696
if (I != N->op_end()) {
697
auto *Op = cast<MDNode>(*I);
698
Worklist.back().second = ++I;
699
700
// Delay traversing Op if it's a distinct node and N is uniqued.
701
if (Op->isDistinct() && !N->isDistinct())
702
DelayedDistinctNodes.push_back(Op);
703
else
704
Worklist.push_back(std::make_pair(Op, Op->op_begin()));
705
continue;
706
}
707
708
// All the operands have been visited. Now assign an ID.
709
Worklist.pop_back();
710
MDs.push_back(N);
711
MetadataMap[N].ID = MDs.size();
712
713
// Flush out any delayed distinct nodes; these are all the distinct nodes
714
// that are leaves in last uniqued subgraph.
715
if (Worklist.empty() || Worklist.back().first->isDistinct()) {
716
for (const MDNode *N : DelayedDistinctNodes)
717
Worklist.push_back(std::make_pair(N, N->op_begin()));
718
DelayedDistinctNodes.clear();
719
}
720
}
721
}
722
723
const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
724
if (!MD)
725
return nullptr;
726
727
assert(
728
(isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
729
"Invalid metadata kind");
730
731
auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
732
MDIndex &Entry = Insertion.first->second;
733
if (!Insertion.second) {
734
// Already mapped. If F doesn't match the function tag, drop it.
735
if (Entry.hasDifferentFunction(F))
736
dropFunctionFromMetadata(*Insertion.first);
737
return nullptr;
738
}
739
740
// Don't assign IDs to metadata nodes.
741
if (auto *N = dyn_cast<MDNode>(MD))
742
return N;
743
744
// Save the metadata.
745
MDs.push_back(MD);
746
Entry.ID = MDs.size();
747
748
// Enumerate the constant, if any.
749
if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
750
EnumerateValue(C->getValue());
751
752
return nullptr;
753
}
754
755
/// EnumerateFunctionLocalMetadata - Incorporate function-local metadata
756
/// information reachable from the metadata.
757
void ValueEnumerator::EnumerateFunctionLocalMetadata(
758
unsigned F, const LocalAsMetadata *Local) {
759
assert(F && "Expected a function");
760
761
// Check to see if it's already in!
762
MDIndex &Index = MetadataMap[Local];
763
if (Index.ID) {
764
assert(Index.F == F && "Expected the same function");
765
return;
766
}
767
768
MDs.push_back(Local);
769
Index.F = F;
770
Index.ID = MDs.size();
771
772
EnumerateValue(Local->getValue());
773
}
774
775
/// EnumerateFunctionLocalListMetadata - Incorporate function-local metadata
776
/// information reachable from the metadata.
777
void ValueEnumerator::EnumerateFunctionLocalListMetadata(
778
unsigned F, const DIArgList *ArgList) {
779
assert(F && "Expected a function");
780
781
// Check to see if it's already in!
782
MDIndex &Index = MetadataMap[ArgList];
783
if (Index.ID) {
784
assert(Index.F == F && "Expected the same function");
785
return;
786
}
787
788
for (ValueAsMetadata *VAM : ArgList->getArgs()) {
789
if (isa<LocalAsMetadata>(VAM)) {
790
assert(MetadataMap.count(VAM) &&
791
"LocalAsMetadata should be enumerated before DIArgList");
792
assert(MetadataMap[VAM].F == F &&
793
"Expected LocalAsMetadata in the same function");
794
} else {
795
assert(isa<ConstantAsMetadata>(VAM) &&
796
"Expected LocalAsMetadata or ConstantAsMetadata");
797
assert(ValueMap.count(VAM->getValue()) &&
798
"Constant should be enumerated beforeDIArgList");
799
EnumerateMetadata(F, VAM);
800
}
801
}
802
803
MDs.push_back(ArgList);
804
Index.F = F;
805
Index.ID = MDs.size();
806
}
807
808
static unsigned getMetadataTypeOrder(const Metadata *MD) {
809
// Strings are emitted in bulk and must come first.
810
if (isa<MDString>(MD))
811
return 0;
812
813
// ConstantAsMetadata doesn't reference anything. We may as well shuffle it
814
// to the front since we can detect it.
815
auto *N = dyn_cast<MDNode>(MD);
816
if (!N)
817
return 1;
818
819
// The reader is fast forward references for distinct node operands, but slow
820
// when uniqued operands are unresolved.
821
return N->isDistinct() ? 2 : 3;
822
}
823
824
void ValueEnumerator::organizeMetadata() {
825
assert(MetadataMap.size() == MDs.size() &&
826
"Metadata map and vector out of sync");
827
828
if (MDs.empty())
829
return;
830
831
// Copy out the index information from MetadataMap in order to choose a new
832
// order.
833
SmallVector<MDIndex, 64> Order;
834
Order.reserve(MetadataMap.size());
835
for (const Metadata *MD : MDs)
836
Order.push_back(MetadataMap.lookup(MD));
837
838
// Partition:
839
// - by function, then
840
// - by isa<MDString>
841
// and then sort by the original/current ID. Since the IDs are guaranteed to
842
// be unique, the result of llvm::sort will be deterministic. There's no need
843
// for std::stable_sort.
844
llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) {
845
return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
846
std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
847
});
848
849
// Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
850
// and fix up MetadataMap.
851
std::vector<const Metadata *> OldMDs;
852
MDs.swap(OldMDs);
853
MDs.reserve(OldMDs.size());
854
for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
855
auto *MD = Order[I].get(OldMDs);
856
MDs.push_back(MD);
857
MetadataMap[MD].ID = I + 1;
858
if (isa<MDString>(MD))
859
++NumMDStrings;
860
}
861
862
// Return early if there's nothing for the functions.
863
if (MDs.size() == Order.size())
864
return;
865
866
// Build the function metadata ranges.
867
MDRange R;
868
FunctionMDs.reserve(OldMDs.size());
869
unsigned PrevF = 0;
870
for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
871
++I) {
872
unsigned F = Order[I].F;
873
if (!PrevF) {
874
PrevF = F;
875
} else if (PrevF != F) {
876
R.Last = FunctionMDs.size();
877
std::swap(R, FunctionMDInfo[PrevF]);
878
R.First = FunctionMDs.size();
879
880
ID = MDs.size();
881
PrevF = F;
882
}
883
884
auto *MD = Order[I].get(OldMDs);
885
FunctionMDs.push_back(MD);
886
MetadataMap[MD].ID = ++ID;
887
if (isa<MDString>(MD))
888
++R.NumStrings;
889
}
890
R.Last = FunctionMDs.size();
891
FunctionMDInfo[PrevF] = R;
892
}
893
894
void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
895
NumModuleMDs = MDs.size();
896
897
auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
898
NumMDStrings = R.NumStrings;
899
MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
900
FunctionMDs.begin() + R.Last);
901
}
902
903
void ValueEnumerator::EnumerateValue(const Value *V) {
904
assert(!V->getType()->isVoidTy() && "Can't insert void values!");
905
assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
906
907
// Check to see if it's already in!
908
unsigned &ValueID = ValueMap[V];
909
if (ValueID) {
910
// Increment use count.
911
Values[ValueID-1].second++;
912
return;
913
}
914
915
if (auto *GO = dyn_cast<GlobalObject>(V))
916
if (const Comdat *C = GO->getComdat())
917
Comdats.insert(C);
918
919
// Enumerate the type of this value.
920
EnumerateType(V->getType());
921
922
if (const Constant *C = dyn_cast<Constant>(V)) {
923
if (isa<GlobalValue>(C)) {
924
// Initializers for globals are handled explicitly elsewhere.
925
} else if (C->getNumOperands()) {
926
// If a constant has operands, enumerate them. This makes sure that if a
927
// constant has uses (for example an array of const ints), that they are
928
// inserted also.
929
930
// We prefer to enumerate them with values before we enumerate the user
931
// itself. This makes it more likely that we can avoid forward references
932
// in the reader. We know that there can be no cycles in the constants
933
// graph that don't go through a global variable.
934
for (const Use &U : C->operands())
935
if (!isa<BasicBlock>(U)) // Don't enumerate BB operand to BlockAddress.
936
EnumerateValue(U);
937
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
938
if (CE->getOpcode() == Instruction::ShuffleVector)
939
EnumerateValue(CE->getShuffleMaskForBitcode());
940
if (auto *GEP = dyn_cast<GEPOperator>(CE))
941
EnumerateType(GEP->getSourceElementType());
942
}
943
944
// Finally, add the value. Doing this could make the ValueID reference be
945
// dangling, don't reuse it.
946
Values.push_back(std::make_pair(V, 1U));
947
ValueMap[V] = Values.size();
948
return;
949
}
950
}
951
952
// Add the value.
953
Values.push_back(std::make_pair(V, 1U));
954
ValueID = Values.size();
955
}
956
957
958
void ValueEnumerator::EnumerateType(Type *Ty) {
959
unsigned *TypeID = &TypeMap[Ty];
960
961
// We've already seen this type.
962
if (*TypeID)
963
return;
964
965
// If it is a non-anonymous struct, mark the type as being visited so that we
966
// don't recursively visit it. This is safe because we allow forward
967
// references of these in the bitcode reader.
968
if (StructType *STy = dyn_cast<StructType>(Ty))
969
if (!STy->isLiteral())
970
*TypeID = ~0U;
971
972
// Enumerate all of the subtypes before we enumerate this type. This ensures
973
// that the type will be enumerated in an order that can be directly built.
974
for (Type *SubTy : Ty->subtypes())
975
EnumerateType(SubTy);
976
977
// Refresh the TypeID pointer in case the table rehashed.
978
TypeID = &TypeMap[Ty];
979
980
// Check to see if we got the pointer another way. This can happen when
981
// enumerating recursive types that hit the base case deeper than they start.
982
//
983
// If this is actually a struct that we are treating as forward ref'able,
984
// then emit the definition now that all of its contents are available.
985
if (*TypeID && *TypeID != ~0U)
986
return;
987
988
// Add this type now that its contents are all happily enumerated.
989
Types.push_back(Ty);
990
991
*TypeID = Types.size();
992
}
993
994
// Enumerate the types for the specified value. If the value is a constant,
995
// walk through it, enumerating the types of the constant.
996
void ValueEnumerator::EnumerateOperandType(const Value *V) {
997
EnumerateType(V->getType());
998
999
assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
1000
1001
const Constant *C = dyn_cast<Constant>(V);
1002
if (!C)
1003
return;
1004
1005
// If this constant is already enumerated, ignore it, we know its type must
1006
// be enumerated.
1007
if (ValueMap.count(C))
1008
return;
1009
1010
// This constant may have operands, make sure to enumerate the types in
1011
// them.
1012
for (const Value *Op : C->operands()) {
1013
// Don't enumerate basic blocks here, this happens as operands to
1014
// blockaddress.
1015
if (isa<BasicBlock>(Op))
1016
continue;
1017
1018
EnumerateOperandType(Op);
1019
}
1020
if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1021
if (CE->getOpcode() == Instruction::ShuffleVector)
1022
EnumerateOperandType(CE->getShuffleMaskForBitcode());
1023
if (CE->getOpcode() == Instruction::GetElementPtr)
1024
EnumerateType(cast<GEPOperator>(CE)->getSourceElementType());
1025
}
1026
}
1027
1028
void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
1029
if (PAL.isEmpty()) return; // null is always 0.
1030
1031
// Do a lookup.
1032
unsigned &Entry = AttributeListMap[PAL];
1033
if (Entry == 0) {
1034
// Never saw this before, add it.
1035
AttributeLists.push_back(PAL);
1036
Entry = AttributeLists.size();
1037
}
1038
1039
// Do lookups for all attribute groups.
1040
for (unsigned i : PAL.indexes()) {
1041
AttributeSet AS = PAL.getAttributes(i);
1042
if (!AS.hasAttributes())
1043
continue;
1044
IndexAndAttrSet Pair = {i, AS};
1045
unsigned &Entry = AttributeGroupMap[Pair];
1046
if (Entry == 0) {
1047
AttributeGroups.push_back(Pair);
1048
Entry = AttributeGroups.size();
1049
1050
for (Attribute Attr : AS) {
1051
if (Attr.isTypeAttribute())
1052
EnumerateType(Attr.getValueAsType());
1053
}
1054
}
1055
}
1056
}
1057
1058
void ValueEnumerator::incorporateFunction(const Function &F) {
1059
InstructionCount = 0;
1060
NumModuleValues = Values.size();
1061
1062
// Add global metadata to the function block. This doesn't include
1063
// LocalAsMetadata.
1064
incorporateFunctionMetadata(F);
1065
1066
// Adding function arguments to the value table.
1067
for (const auto &I : F.args()) {
1068
EnumerateValue(&I);
1069
if (I.hasAttribute(Attribute::ByVal))
1070
EnumerateType(I.getParamByValType());
1071
else if (I.hasAttribute(Attribute::StructRet))
1072
EnumerateType(I.getParamStructRetType());
1073
else if (I.hasAttribute(Attribute::ByRef))
1074
EnumerateType(I.getParamByRefType());
1075
}
1076
FirstFuncConstantID = Values.size();
1077
1078
// Add all function-level constants to the value table.
1079
for (const BasicBlock &BB : F) {
1080
for (const Instruction &I : BB) {
1081
for (const Use &OI : I.operands()) {
1082
if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
1083
EnumerateValue(OI);
1084
}
1085
if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
1086
EnumerateValue(SVI->getShuffleMaskForBitcode());
1087
}
1088
BasicBlocks.push_back(&BB);
1089
ValueMap[&BB] = BasicBlocks.size();
1090
}
1091
1092
// Optimize the constant layout.
1093
OptimizeConstants(FirstFuncConstantID, Values.size());
1094
1095
// Add the function's parameter attributes so they are available for use in
1096
// the function's instruction.
1097
EnumerateAttributes(F.getAttributes());
1098
1099
FirstInstID = Values.size();
1100
1101
SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
1102
SmallVector<DIArgList *, 8> ArgListMDVector;
1103
1104
auto AddFnLocalMetadata = [&](Metadata *MD) {
1105
if (!MD)
1106
return;
1107
if (auto *Local = dyn_cast<LocalAsMetadata>(MD)) {
1108
// Enumerate metadata after the instructions they might refer to.
1109
FnLocalMDVector.push_back(Local);
1110
} else if (auto *ArgList = dyn_cast<DIArgList>(MD)) {
1111
ArgListMDVector.push_back(ArgList);
1112
for (ValueAsMetadata *VMD : ArgList->getArgs()) {
1113
if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) {
1114
// Enumerate metadata after the instructions they might refer
1115
// to.
1116
FnLocalMDVector.push_back(Local);
1117
}
1118
}
1119
}
1120
};
1121
1122
// Add all of the instructions.
1123
for (const BasicBlock &BB : F) {
1124
for (const Instruction &I : BB) {
1125
for (const Use &OI : I.operands()) {
1126
if (auto *MD = dyn_cast<MetadataAsValue>(&OI))
1127
AddFnLocalMetadata(MD->getMetadata());
1128
}
1129
/// RemoveDIs: Add non-instruction function-local metadata uses.
1130
for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
1131
assert(DVR.getRawLocation() &&
1132
"DbgVariableRecord location unexpectedly null");
1133
AddFnLocalMetadata(DVR.getRawLocation());
1134
if (DVR.isDbgAssign()) {
1135
assert(DVR.getRawAddress() &&
1136
"DbgVariableRecord location unexpectedly null");
1137
AddFnLocalMetadata(DVR.getRawAddress());
1138
}
1139
}
1140
if (!I.getType()->isVoidTy())
1141
EnumerateValue(&I);
1142
}
1143
}
1144
1145
// Add all of the function-local metadata.
1146
for (const LocalAsMetadata *Local : FnLocalMDVector) {
1147
// At this point, every local values have been incorporated, we shouldn't
1148
// have a metadata operand that references a value that hasn't been seen.
1149
assert(ValueMap.count(Local->getValue()) &&
1150
"Missing value for metadata operand");
1151
EnumerateFunctionLocalMetadata(F, Local);
1152
}
1153
// DIArgList entries must come after function-local metadata, as it is not
1154
// possible to forward-reference them.
1155
for (const DIArgList *ArgList : ArgListMDVector)
1156
EnumerateFunctionLocalListMetadata(F, ArgList);
1157
}
1158
1159
void ValueEnumerator::purgeFunction() {
1160
/// Remove purged values from the ValueMap.
1161
for (const auto &V : llvm::drop_begin(Values, NumModuleValues))
1162
ValueMap.erase(V.first);
1163
for (const Metadata *MD : llvm::drop_begin(MDs, NumModuleMDs))
1164
MetadataMap.erase(MD);
1165
for (const BasicBlock *BB : BasicBlocks)
1166
ValueMap.erase(BB);
1167
1168
Values.resize(NumModuleValues);
1169
MDs.resize(NumModuleMDs);
1170
BasicBlocks.clear();
1171
NumMDStrings = 0;
1172
}
1173
1174
static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
1175
DenseMap<const BasicBlock*, unsigned> &IDMap) {
1176
unsigned Counter = 0;
1177
for (const BasicBlock &BB : *F)
1178
IDMap[&BB] = ++Counter;
1179
}
1180
1181
/// getGlobalBasicBlockID - This returns the function-specific ID for the
1182
/// specified basic block. This is relatively expensive information, so it
1183
/// should only be used by rare constructs such as address-of-label.
1184
unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
1185
unsigned &Idx = GlobalBasicBlockIDs[BB];
1186
if (Idx != 0)
1187
return Idx-1;
1188
1189
IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
1190
return getGlobalBasicBlockID(BB);
1191
}
1192
1193
uint64_t ValueEnumerator::computeBitsRequiredForTypeIndices() const {
1194
return Log2_32_Ceil(getTypes().size() + 1);
1195
}
1196
1197