Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/CodeGen/Analysis.cpp
35232 views
1
//===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines several CodeGen-specific LLVM IR analysis utilities.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "llvm/CodeGen/Analysis.h"
14
#include "llvm/Analysis/ValueTracking.h"
15
#include "llvm/CodeGen/MachineFunction.h"
16
#include "llvm/CodeGen/TargetInstrInfo.h"
17
#include "llvm/CodeGen/TargetLowering.h"
18
#include "llvm/CodeGen/TargetSubtargetInfo.h"
19
#include "llvm/IR/DataLayout.h"
20
#include "llvm/IR/DerivedTypes.h"
21
#include "llvm/IR/Function.h"
22
#include "llvm/IR/Instructions.h"
23
#include "llvm/IR/IntrinsicInst.h"
24
#include "llvm/IR/Module.h"
25
#include "llvm/Support/ErrorHandling.h"
26
#include "llvm/Target/TargetMachine.h"
27
28
using namespace llvm;
29
30
/// Compute the linearized index of a member in a nested aggregate/struct/array
31
/// by recursing and accumulating CurIndex as long as there are indices in the
32
/// index list.
33
unsigned llvm::ComputeLinearIndex(Type *Ty,
34
const unsigned *Indices,
35
const unsigned *IndicesEnd,
36
unsigned CurIndex) {
37
// Base case: We're done.
38
if (Indices && Indices == IndicesEnd)
39
return CurIndex;
40
41
// Given a struct type, recursively traverse the elements.
42
if (StructType *STy = dyn_cast<StructType>(Ty)) {
43
for (auto I : llvm::enumerate(STy->elements())) {
44
Type *ET = I.value();
45
if (Indices && *Indices == I.index())
46
return ComputeLinearIndex(ET, Indices + 1, IndicesEnd, CurIndex);
47
CurIndex = ComputeLinearIndex(ET, nullptr, nullptr, CurIndex);
48
}
49
assert(!Indices && "Unexpected out of bound");
50
return CurIndex;
51
}
52
// Given an array type, recursively traverse the elements.
53
else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
54
Type *EltTy = ATy->getElementType();
55
unsigned NumElts = ATy->getNumElements();
56
// Compute the Linear offset when jumping one element of the array
57
unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
58
if (Indices) {
59
assert(*Indices < NumElts && "Unexpected out of bound");
60
// If the indice is inside the array, compute the index to the requested
61
// elt and recurse inside the element with the end of the indices list
62
CurIndex += EltLinearOffset* *Indices;
63
return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
64
}
65
CurIndex += EltLinearOffset*NumElts;
66
return CurIndex;
67
}
68
// We haven't found the type we're looking for, so keep searching.
69
return CurIndex + 1;
70
}
71
72
/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
73
/// EVTs that represent all the individual underlying
74
/// non-aggregate types that comprise it.
75
///
76
/// If Offsets is non-null, it points to a vector to be filled in
77
/// with the in-memory offsets of each of the individual values.
78
///
79
void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
80
Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
81
SmallVectorImpl<EVT> *MemVTs,
82
SmallVectorImpl<TypeSize> *Offsets,
83
TypeSize StartingOffset) {
84
assert((Ty->isScalableTy() == StartingOffset.isScalable() ||
85
StartingOffset.isZero()) &&
86
"Offset/TypeSize mismatch!");
87
// Given a struct type, recursively traverse the elements.
88
if (StructType *STy = dyn_cast<StructType>(Ty)) {
89
// If the Offsets aren't needed, don't query the struct layout. This allows
90
// us to support structs with scalable vectors for operations that don't
91
// need offsets.
92
const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr;
93
for (StructType::element_iterator EB = STy->element_begin(),
94
EI = EB,
95
EE = STy->element_end();
96
EI != EE; ++EI) {
97
// Don't compute the element offset if we didn't get a StructLayout above.
98
TypeSize EltOffset =
99
SL ? SL->getElementOffset(EI - EB) : TypeSize::getZero();
100
ComputeValueVTs(TLI, DL, *EI, ValueVTs, MemVTs, Offsets,
101
StartingOffset + EltOffset);
102
}
103
return;
104
}
105
// Given an array type, recursively traverse the elements.
106
if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
107
Type *EltTy = ATy->getElementType();
108
TypeSize EltSize = DL.getTypeAllocSize(EltTy);
109
for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
110
ComputeValueVTs(TLI, DL, EltTy, ValueVTs, MemVTs, Offsets,
111
StartingOffset + i * EltSize);
112
return;
113
}
114
// Interpret void as zero return values.
115
if (Ty->isVoidTy())
116
return;
117
// Base case: we can get an EVT for this LLVM IR type.
118
ValueVTs.push_back(TLI.getValueType(DL, Ty));
119
if (MemVTs)
120
MemVTs->push_back(TLI.getMemValueType(DL, Ty));
121
if (Offsets)
122
Offsets->push_back(StartingOffset);
123
}
124
125
void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
126
Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
127
SmallVectorImpl<EVT> *MemVTs,
128
SmallVectorImpl<uint64_t> *FixedOffsets,
129
uint64_t StartingOffset) {
130
TypeSize Offset = TypeSize::getFixed(StartingOffset);
131
if (FixedOffsets) {
132
SmallVector<TypeSize, 4> Offsets;
133
ComputeValueVTs(TLI, DL, Ty, ValueVTs, MemVTs, &Offsets, Offset);
134
for (TypeSize Offset : Offsets)
135
FixedOffsets->push_back(Offset.getFixedValue());
136
} else {
137
ComputeValueVTs(TLI, DL, Ty, ValueVTs, MemVTs, nullptr, Offset);
138
}
139
}
140
141
void llvm::computeValueLLTs(const DataLayout &DL, Type &Ty,
142
SmallVectorImpl<LLT> &ValueTys,
143
SmallVectorImpl<uint64_t> *Offsets,
144
uint64_t StartingOffset) {
145
// Given a struct type, recursively traverse the elements.
146
if (StructType *STy = dyn_cast<StructType>(&Ty)) {
147
// If the Offsets aren't needed, don't query the struct layout. This allows
148
// us to support structs with scalable vectors for operations that don't
149
// need offsets.
150
const StructLayout *SL = Offsets ? DL.getStructLayout(STy) : nullptr;
151
for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
152
uint64_t EltOffset = SL ? SL->getElementOffset(I) : 0;
153
computeValueLLTs(DL, *STy->getElementType(I), ValueTys, Offsets,
154
StartingOffset + EltOffset);
155
}
156
return;
157
}
158
// Given an array type, recursively traverse the elements.
159
if (ArrayType *ATy = dyn_cast<ArrayType>(&Ty)) {
160
Type *EltTy = ATy->getElementType();
161
uint64_t EltSize = DL.getTypeAllocSize(EltTy).getFixedValue();
162
for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
163
computeValueLLTs(DL, *EltTy, ValueTys, Offsets,
164
StartingOffset + i * EltSize);
165
return;
166
}
167
// Interpret void as zero return values.
168
if (Ty.isVoidTy())
169
return;
170
// Base case: we can get an LLT for this LLVM IR type.
171
ValueTys.push_back(getLLTForType(Ty, DL));
172
if (Offsets != nullptr)
173
Offsets->push_back(StartingOffset * 8);
174
}
175
176
/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
177
GlobalValue *llvm::ExtractTypeInfo(Value *V) {
178
V = V->stripPointerCasts();
179
GlobalValue *GV = dyn_cast<GlobalValue>(V);
180
GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
181
182
if (Var && Var->getName() == "llvm.eh.catch.all.value") {
183
assert(Var->hasInitializer() &&
184
"The EH catch-all value must have an initializer");
185
Value *Init = Var->getInitializer();
186
GV = dyn_cast<GlobalValue>(Init);
187
if (!GV) V = cast<ConstantPointerNull>(Init);
188
}
189
190
assert((GV || isa<ConstantPointerNull>(V)) &&
191
"TypeInfo must be a global variable or NULL");
192
return GV;
193
}
194
195
/// getFCmpCondCode - Return the ISD condition code corresponding to
196
/// the given LLVM IR floating-point condition code. This includes
197
/// consideration of global floating-point math flags.
198
///
199
ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
200
switch (Pred) {
201
case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
202
case FCmpInst::FCMP_OEQ: return ISD::SETOEQ;
203
case FCmpInst::FCMP_OGT: return ISD::SETOGT;
204
case FCmpInst::FCMP_OGE: return ISD::SETOGE;
205
case FCmpInst::FCMP_OLT: return ISD::SETOLT;
206
case FCmpInst::FCMP_OLE: return ISD::SETOLE;
207
case FCmpInst::FCMP_ONE: return ISD::SETONE;
208
case FCmpInst::FCMP_ORD: return ISD::SETO;
209
case FCmpInst::FCMP_UNO: return ISD::SETUO;
210
case FCmpInst::FCMP_UEQ: return ISD::SETUEQ;
211
case FCmpInst::FCMP_UGT: return ISD::SETUGT;
212
case FCmpInst::FCMP_UGE: return ISD::SETUGE;
213
case FCmpInst::FCMP_ULT: return ISD::SETULT;
214
case FCmpInst::FCMP_ULE: return ISD::SETULE;
215
case FCmpInst::FCMP_UNE: return ISD::SETUNE;
216
case FCmpInst::FCMP_TRUE: return ISD::SETTRUE;
217
default: llvm_unreachable("Invalid FCmp predicate opcode!");
218
}
219
}
220
221
ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
222
switch (CC) {
223
case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
224
case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
225
case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
226
case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
227
case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
228
case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
229
default: return CC;
230
}
231
}
232
233
ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
234
switch (Pred) {
235
case ICmpInst::ICMP_EQ: return ISD::SETEQ;
236
case ICmpInst::ICMP_NE: return ISD::SETNE;
237
case ICmpInst::ICMP_SLE: return ISD::SETLE;
238
case ICmpInst::ICMP_ULE: return ISD::SETULE;
239
case ICmpInst::ICMP_SGE: return ISD::SETGE;
240
case ICmpInst::ICMP_UGE: return ISD::SETUGE;
241
case ICmpInst::ICMP_SLT: return ISD::SETLT;
242
case ICmpInst::ICMP_ULT: return ISD::SETULT;
243
case ICmpInst::ICMP_SGT: return ISD::SETGT;
244
case ICmpInst::ICMP_UGT: return ISD::SETUGT;
245
default:
246
llvm_unreachable("Invalid ICmp predicate opcode!");
247
}
248
}
249
250
ICmpInst::Predicate llvm::getICmpCondCode(ISD::CondCode Pred) {
251
switch (Pred) {
252
case ISD::SETEQ:
253
return ICmpInst::ICMP_EQ;
254
case ISD::SETNE:
255
return ICmpInst::ICMP_NE;
256
case ISD::SETLE:
257
return ICmpInst::ICMP_SLE;
258
case ISD::SETULE:
259
return ICmpInst::ICMP_ULE;
260
case ISD::SETGE:
261
return ICmpInst::ICMP_SGE;
262
case ISD::SETUGE:
263
return ICmpInst::ICMP_UGE;
264
case ISD::SETLT:
265
return ICmpInst::ICMP_SLT;
266
case ISD::SETULT:
267
return ICmpInst::ICMP_ULT;
268
case ISD::SETGT:
269
return ICmpInst::ICMP_SGT;
270
case ISD::SETUGT:
271
return ICmpInst::ICMP_UGT;
272
default:
273
llvm_unreachable("Invalid ISD integer condition code!");
274
}
275
}
276
277
static bool isNoopBitcast(Type *T1, Type *T2,
278
const TargetLoweringBase& TLI) {
279
return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
280
(isa<VectorType>(T1) && isa<VectorType>(T2) &&
281
TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
282
}
283
284
/// Look through operations that will be free to find the earliest source of
285
/// this value.
286
///
287
/// @param ValLoc If V has aggregate type, we will be interested in a particular
288
/// scalar component. This records its address; the reverse of this list gives a
289
/// sequence of indices appropriate for an extractvalue to locate the important
290
/// value. This value is updated during the function and on exit will indicate
291
/// similar information for the Value returned.
292
///
293
/// @param DataBits If this function looks through truncate instructions, this
294
/// will record the smallest size attained.
295
static const Value *getNoopInput(const Value *V,
296
SmallVectorImpl<unsigned> &ValLoc,
297
unsigned &DataBits,
298
const TargetLoweringBase &TLI,
299
const DataLayout &DL) {
300
while (true) {
301
// Try to look through V1; if V1 is not an instruction, it can't be looked
302
// through.
303
const Instruction *I = dyn_cast<Instruction>(V);
304
if (!I || I->getNumOperands() == 0) return V;
305
const Value *NoopInput = nullptr;
306
307
Value *Op = I->getOperand(0);
308
if (isa<BitCastInst>(I)) {
309
// Look through truly no-op bitcasts.
310
if (isNoopBitcast(Op->getType(), I->getType(), TLI))
311
NoopInput = Op;
312
} else if (isa<GetElementPtrInst>(I)) {
313
// Look through getelementptr
314
if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
315
NoopInput = Op;
316
} else if (isa<IntToPtrInst>(I)) {
317
// Look through inttoptr.
318
// Make sure this isn't a truncating or extending cast. We could
319
// support this eventually, but don't bother for now.
320
if (!isa<VectorType>(I->getType()) &&
321
DL.getPointerSizeInBits() ==
322
cast<IntegerType>(Op->getType())->getBitWidth())
323
NoopInput = Op;
324
} else if (isa<PtrToIntInst>(I)) {
325
// Look through ptrtoint.
326
// Make sure this isn't a truncating or extending cast. We could
327
// support this eventually, but don't bother for now.
328
if (!isa<VectorType>(I->getType()) &&
329
DL.getPointerSizeInBits() ==
330
cast<IntegerType>(I->getType())->getBitWidth())
331
NoopInput = Op;
332
} else if (isa<TruncInst>(I) &&
333
TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
334
DataBits =
335
std::min((uint64_t)DataBits,
336
I->getType()->getPrimitiveSizeInBits().getFixedValue());
337
NoopInput = Op;
338
} else if (auto *CB = dyn_cast<CallBase>(I)) {
339
const Value *ReturnedOp = CB->getReturnedArgOperand();
340
if (ReturnedOp && isNoopBitcast(ReturnedOp->getType(), I->getType(), TLI))
341
NoopInput = ReturnedOp;
342
} else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
343
// Value may come from either the aggregate or the scalar
344
ArrayRef<unsigned> InsertLoc = IVI->getIndices();
345
if (ValLoc.size() >= InsertLoc.size() &&
346
std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
347
// The type being inserted is a nested sub-type of the aggregate; we
348
// have to remove those initial indices to get the location we're
349
// interested in for the operand.
350
ValLoc.resize(ValLoc.size() - InsertLoc.size());
351
NoopInput = IVI->getInsertedValueOperand();
352
} else {
353
// The struct we're inserting into has the value we're interested in, no
354
// change of address.
355
NoopInput = Op;
356
}
357
} else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
358
// The part we're interested in will inevitably be some sub-section of the
359
// previous aggregate. Combine the two paths to obtain the true address of
360
// our element.
361
ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
362
ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
363
NoopInput = Op;
364
}
365
// Terminate if we couldn't find anything to look through.
366
if (!NoopInput)
367
return V;
368
369
V = NoopInput;
370
}
371
}
372
373
/// Return true if this scalar return value only has bits discarded on its path
374
/// from the "tail call" to the "ret". This includes the obvious noop
375
/// instructions handled by getNoopInput above as well as free truncations (or
376
/// extensions prior to the call).
377
static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
378
SmallVectorImpl<unsigned> &RetIndices,
379
SmallVectorImpl<unsigned> &CallIndices,
380
bool AllowDifferingSizes,
381
const TargetLoweringBase &TLI,
382
const DataLayout &DL) {
383
384
// Trace the sub-value needed by the return value as far back up the graph as
385
// possible, in the hope that it will intersect with the value produced by the
386
// call. In the simple case with no "returned" attribute, the hope is actually
387
// that we end up back at the tail call instruction itself.
388
unsigned BitsRequired = UINT_MAX;
389
RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
390
391
// If this slot in the value returned is undef, it doesn't matter what the
392
// call puts there, it'll be fine.
393
if (isa<UndefValue>(RetVal))
394
return true;
395
396
// Now do a similar search up through the graph to find where the value
397
// actually returned by the "tail call" comes from. In the simple case without
398
// a "returned" attribute, the search will be blocked immediately and the loop
399
// a Noop.
400
unsigned BitsProvided = UINT_MAX;
401
CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
402
403
// There's no hope if we can't actually trace them to (the same part of!) the
404
// same value.
405
if (CallVal != RetVal || CallIndices != RetIndices)
406
return false;
407
408
// However, intervening truncates may have made the call non-tail. Make sure
409
// all the bits that are needed by the "ret" have been provided by the "tail
410
// call". FIXME: with sufficiently cunning bit-tracking, we could look through
411
// extensions too.
412
if (BitsProvided < BitsRequired ||
413
(!AllowDifferingSizes && BitsProvided != BitsRequired))
414
return false;
415
416
return true;
417
}
418
419
/// For an aggregate type, determine whether a given index is within bounds or
420
/// not.
421
static bool indexReallyValid(Type *T, unsigned Idx) {
422
if (ArrayType *AT = dyn_cast<ArrayType>(T))
423
return Idx < AT->getNumElements();
424
425
return Idx < cast<StructType>(T)->getNumElements();
426
}
427
428
/// Move the given iterators to the next leaf type in depth first traversal.
429
///
430
/// Performs a depth-first traversal of the type as specified by its arguments,
431
/// stopping at the next leaf node (which may be a legitimate scalar type or an
432
/// empty struct or array).
433
///
434
/// @param SubTypes List of the partial components making up the type from
435
/// outermost to innermost non-empty aggregate. The element currently
436
/// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
437
///
438
/// @param Path Set of extractvalue indices leading from the outermost type
439
/// (SubTypes[0]) to the leaf node currently represented.
440
///
441
/// @returns true if a new type was found, false otherwise. Calling this
442
/// function again on a finished iterator will repeatedly return
443
/// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
444
/// aggregate or a non-aggregate
445
static bool advanceToNextLeafType(SmallVectorImpl<Type *> &SubTypes,
446
SmallVectorImpl<unsigned> &Path) {
447
// First march back up the tree until we can successfully increment one of the
448
// coordinates in Path.
449
while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
450
Path.pop_back();
451
SubTypes.pop_back();
452
}
453
454
// If we reached the top, then the iterator is done.
455
if (Path.empty())
456
return false;
457
458
// We know there's *some* valid leaf now, so march back down the tree picking
459
// out the left-most element at each node.
460
++Path.back();
461
Type *DeeperType =
462
ExtractValueInst::getIndexedType(SubTypes.back(), Path.back());
463
while (DeeperType->isAggregateType()) {
464
if (!indexReallyValid(DeeperType, 0))
465
return true;
466
467
SubTypes.push_back(DeeperType);
468
Path.push_back(0);
469
470
DeeperType = ExtractValueInst::getIndexedType(DeeperType, 0);
471
}
472
473
return true;
474
}
475
476
/// Find the first non-empty, scalar-like type in Next and setup the iterator
477
/// components.
478
///
479
/// Assuming Next is an aggregate of some kind, this function will traverse the
480
/// tree from left to right (i.e. depth-first) looking for the first
481
/// non-aggregate type which will play a role in function return.
482
///
483
/// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
484
/// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
485
/// i32 in that type.
486
static bool firstRealType(Type *Next, SmallVectorImpl<Type *> &SubTypes,
487
SmallVectorImpl<unsigned> &Path) {
488
// First initialise the iterator components to the first "leaf" node
489
// (i.e. node with no valid sub-type at any index, so {} does count as a leaf
490
// despite nominally being an aggregate).
491
while (Type *FirstInner = ExtractValueInst::getIndexedType(Next, 0)) {
492
SubTypes.push_back(Next);
493
Path.push_back(0);
494
Next = FirstInner;
495
}
496
497
// If there's no Path now, Next was originally scalar already (or empty
498
// leaf). We're done.
499
if (Path.empty())
500
return true;
501
502
// Otherwise, use normal iteration to keep looking through the tree until we
503
// find a non-aggregate type.
504
while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back())
505
->isAggregateType()) {
506
if (!advanceToNextLeafType(SubTypes, Path))
507
return false;
508
}
509
510
return true;
511
}
512
513
/// Set the iterator data-structures to the next non-empty, non-aggregate
514
/// subtype.
515
static bool nextRealType(SmallVectorImpl<Type *> &SubTypes,
516
SmallVectorImpl<unsigned> &Path) {
517
do {
518
if (!advanceToNextLeafType(SubTypes, Path))
519
return false;
520
521
assert(!Path.empty() && "found a leaf but didn't set the path?");
522
} while (ExtractValueInst::getIndexedType(SubTypes.back(), Path.back())
523
->isAggregateType());
524
525
return true;
526
}
527
528
529
/// Test if the given instruction is in a position to be optimized
530
/// with a tail-call. This roughly means that it's in a block with
531
/// a return and there's nothing that needs to be scheduled
532
/// between it and the return.
533
///
534
/// This function only tests target-independent requirements.
535
bool llvm::isInTailCallPosition(const CallBase &Call, const TargetMachine &TM,
536
bool ReturnsFirstArg) {
537
const BasicBlock *ExitBB = Call.getParent();
538
const Instruction *Term = ExitBB->getTerminator();
539
const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
540
541
// The block must end in a return statement or unreachable.
542
//
543
// FIXME: Decline tailcall if it's not guaranteed and if the block ends in
544
// an unreachable, for now. The way tailcall optimization is currently
545
// implemented means it will add an epilogue followed by a jump. That is
546
// not profitable. Also, if the callee is a special function (e.g.
547
// longjmp on x86), it can end up causing miscompilation that has not
548
// been fully understood.
549
if (!Ret && ((!TM.Options.GuaranteedTailCallOpt &&
550
Call.getCallingConv() != CallingConv::Tail &&
551
Call.getCallingConv() != CallingConv::SwiftTail) ||
552
!isa<UnreachableInst>(Term)))
553
return false;
554
555
// If I will have a chain, make sure no other instruction that will have a
556
// chain interposes between I and the return.
557
// Check for all calls including speculatable functions.
558
for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
559
if (&*BBI == &Call)
560
break;
561
// Debug info intrinsics do not get in the way of tail call optimization.
562
// Pseudo probe intrinsics do not block tail call optimization either.
563
if (BBI->isDebugOrPseudoInst())
564
continue;
565
// A lifetime end, assume or noalias.decl intrinsic should not stop tail
566
// call optimization.
567
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(BBI))
568
if (II->getIntrinsicID() == Intrinsic::lifetime_end ||
569
II->getIntrinsicID() == Intrinsic::assume ||
570
II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl)
571
continue;
572
if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
573
!isSafeToSpeculativelyExecute(&*BBI))
574
return false;
575
}
576
577
const Function *F = ExitBB->getParent();
578
return returnTypeIsEligibleForTailCall(
579
F, &Call, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering(),
580
ReturnsFirstArg);
581
}
582
583
bool llvm::attributesPermitTailCall(const Function *F, const Instruction *I,
584
const ReturnInst *Ret,
585
const TargetLoweringBase &TLI,
586
bool *AllowDifferingSizes) {
587
// ADS may be null, so don't write to it directly.
588
bool DummyADS;
589
bool &ADS = AllowDifferingSizes ? *AllowDifferingSizes : DummyADS;
590
ADS = true;
591
592
AttrBuilder CallerAttrs(F->getContext(), F->getAttributes().getRetAttrs());
593
AttrBuilder CalleeAttrs(F->getContext(),
594
cast<CallInst>(I)->getAttributes().getRetAttrs());
595
596
// Following attributes are completely benign as far as calling convention
597
// goes, they shouldn't affect whether the call is a tail call.
598
for (const auto &Attr :
599
{Attribute::Alignment, Attribute::Dereferenceable,
600
Attribute::DereferenceableOrNull, Attribute::NoAlias,
601
Attribute::NonNull, Attribute::NoUndef, Attribute::Range}) {
602
CallerAttrs.removeAttribute(Attr);
603
CalleeAttrs.removeAttribute(Attr);
604
}
605
606
if (CallerAttrs.contains(Attribute::ZExt)) {
607
if (!CalleeAttrs.contains(Attribute::ZExt))
608
return false;
609
610
ADS = false;
611
CallerAttrs.removeAttribute(Attribute::ZExt);
612
CalleeAttrs.removeAttribute(Attribute::ZExt);
613
} else if (CallerAttrs.contains(Attribute::SExt)) {
614
if (!CalleeAttrs.contains(Attribute::SExt))
615
return false;
616
617
ADS = false;
618
CallerAttrs.removeAttribute(Attribute::SExt);
619
CalleeAttrs.removeAttribute(Attribute::SExt);
620
}
621
622
// Drop sext and zext return attributes if the result is not used.
623
// This enables tail calls for code like:
624
//
625
// define void @caller() {
626
// entry:
627
// %unused_result = tail call zeroext i1 @callee()
628
// br label %retlabel
629
// retlabel:
630
// ret void
631
// }
632
if (I->use_empty()) {
633
CalleeAttrs.removeAttribute(Attribute::SExt);
634
CalleeAttrs.removeAttribute(Attribute::ZExt);
635
}
636
637
// If they're still different, there's some facet we don't understand
638
// (currently only "inreg", but in future who knows). It may be OK but the
639
// only safe option is to reject the tail call.
640
return CallerAttrs == CalleeAttrs;
641
}
642
643
bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
644
const Instruction *I,
645
const ReturnInst *Ret,
646
const TargetLoweringBase &TLI,
647
bool ReturnsFirstArg) {
648
// If the block ends with a void return or unreachable, it doesn't matter
649
// what the call's return type is.
650
if (!Ret || Ret->getNumOperands() == 0) return true;
651
652
// If the return value is undef, it doesn't matter what the call's
653
// return type is.
654
if (isa<UndefValue>(Ret->getOperand(0))) return true;
655
656
// Make sure the attributes attached to each return are compatible.
657
bool AllowDifferingSizes;
658
if (!attributesPermitTailCall(F, I, Ret, TLI, &AllowDifferingSizes))
659
return false;
660
661
// If the return value is the first argument of the call.
662
if (ReturnsFirstArg)
663
return true;
664
665
const Value *RetVal = Ret->getOperand(0), *CallVal = I;
666
SmallVector<unsigned, 4> RetPath, CallPath;
667
SmallVector<Type *, 4> RetSubTypes, CallSubTypes;
668
669
bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
670
bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
671
672
// Nothing's actually returned, it doesn't matter what the callee put there
673
// it's a valid tail call.
674
if (RetEmpty)
675
return true;
676
677
// Iterate pairwise through each of the value types making up the tail call
678
// and the corresponding return. For each one we want to know whether it's
679
// essentially going directly from the tail call to the ret, via operations
680
// that end up not generating any code.
681
//
682
// We allow a certain amount of covariance here. For example it's permitted
683
// for the tail call to define more bits than the ret actually cares about
684
// (e.g. via a truncate).
685
do {
686
if (CallEmpty) {
687
// We've exhausted the values produced by the tail call instruction, the
688
// rest are essentially undef. The type doesn't really matter, but we need
689
// *something*.
690
Type *SlotType =
691
ExtractValueInst::getIndexedType(RetSubTypes.back(), RetPath.back());
692
CallVal = UndefValue::get(SlotType);
693
}
694
695
// The manipulations performed when we're looking through an insertvalue or
696
// an extractvalue would happen at the front of the RetPath list, so since
697
// we have to copy it anyway it's more efficient to create a reversed copy.
698
SmallVector<unsigned, 4> TmpRetPath(llvm::reverse(RetPath));
699
SmallVector<unsigned, 4> TmpCallPath(llvm::reverse(CallPath));
700
701
// Finally, we can check whether the value produced by the tail call at this
702
// index is compatible with the value we return.
703
if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
704
AllowDifferingSizes, TLI,
705
F->getDataLayout()))
706
return false;
707
708
CallEmpty = !nextRealType(CallSubTypes, CallPath);
709
} while(nextRealType(RetSubTypes, RetPath));
710
711
return true;
712
}
713
714
bool llvm::funcReturnsFirstArgOfCall(const CallInst &CI) {
715
const ReturnInst *Ret = dyn_cast<ReturnInst>(CI.getParent()->getTerminator());
716
Value *RetVal = Ret ? Ret->getReturnValue() : nullptr;
717
bool ReturnsFirstArg = false;
718
if (RetVal && ((RetVal == CI.getArgOperand(0))))
719
ReturnsFirstArg = true;
720
return ReturnsFirstArg;
721
}
722
723
static void collectEHScopeMembers(
724
DenseMap<const MachineBasicBlock *, int> &EHScopeMembership, int EHScope,
725
const MachineBasicBlock *MBB) {
726
SmallVector<const MachineBasicBlock *, 16> Worklist = {MBB};
727
while (!Worklist.empty()) {
728
const MachineBasicBlock *Visiting = Worklist.pop_back_val();
729
// Don't follow blocks which start new scopes.
730
if (Visiting->isEHPad() && Visiting != MBB)
731
continue;
732
733
// Add this MBB to our scope.
734
auto P = EHScopeMembership.insert(std::make_pair(Visiting, EHScope));
735
736
// Don't revisit blocks.
737
if (!P.second) {
738
assert(P.first->second == EHScope && "MBB is part of two scopes!");
739
continue;
740
}
741
742
// Returns are boundaries where scope transfer can occur, don't follow
743
// successors.
744
if (Visiting->isEHScopeReturnBlock())
745
continue;
746
747
append_range(Worklist, Visiting->successors());
748
}
749
}
750
751
DenseMap<const MachineBasicBlock *, int>
752
llvm::getEHScopeMembership(const MachineFunction &MF) {
753
DenseMap<const MachineBasicBlock *, int> EHScopeMembership;
754
755
// We don't have anything to do if there aren't any EH pads.
756
if (!MF.hasEHScopes())
757
return EHScopeMembership;
758
759
int EntryBBNumber = MF.front().getNumber();
760
bool IsSEH = isAsynchronousEHPersonality(
761
classifyEHPersonality(MF.getFunction().getPersonalityFn()));
762
763
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
764
SmallVector<const MachineBasicBlock *, 16> EHScopeBlocks;
765
SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
766
SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
767
SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
768
for (const MachineBasicBlock &MBB : MF) {
769
if (MBB.isEHScopeEntry()) {
770
EHScopeBlocks.push_back(&MBB);
771
} else if (IsSEH && MBB.isEHPad()) {
772
SEHCatchPads.push_back(&MBB);
773
} else if (MBB.pred_empty()) {
774
UnreachableBlocks.push_back(&MBB);
775
}
776
777
MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
778
779
// CatchPads are not scopes for SEH so do not consider CatchRet to
780
// transfer control to another scope.
781
if (MBBI == MBB.end() || MBBI->getOpcode() != TII->getCatchReturnOpcode())
782
continue;
783
784
// FIXME: SEH CatchPads are not necessarily in the parent function:
785
// they could be inside a finally block.
786
const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
787
const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
788
CatchRetSuccessors.push_back(
789
{Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
790
}
791
792
// We don't have anything to do if there aren't any EH pads.
793
if (EHScopeBlocks.empty())
794
return EHScopeMembership;
795
796
// Identify all the basic blocks reachable from the function entry.
797
collectEHScopeMembers(EHScopeMembership, EntryBBNumber, &MF.front());
798
// All blocks not part of a scope are in the parent function.
799
for (const MachineBasicBlock *MBB : UnreachableBlocks)
800
collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
801
// Next, identify all the blocks inside the scopes.
802
for (const MachineBasicBlock *MBB : EHScopeBlocks)
803
collectEHScopeMembers(EHScopeMembership, MBB->getNumber(), MBB);
804
// SEH CatchPads aren't really scopes, handle them separately.
805
for (const MachineBasicBlock *MBB : SEHCatchPads)
806
collectEHScopeMembers(EHScopeMembership, EntryBBNumber, MBB);
807
// Finally, identify all the targets of a catchret.
808
for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
809
CatchRetSuccessors)
810
collectEHScopeMembers(EHScopeMembership, CatchRetPair.second,
811
CatchRetPair.first);
812
return EHScopeMembership;
813
}
814
815