Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/contrib/llvm-project/llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp
35271 views
1
//===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Common functionality for different debug information format backends.
10
// LLVM currently supports DWARF and CodeView.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "llvm/CodeGen/DebugHandlerBase.h"
15
#include "llvm/CodeGen/AsmPrinter.h"
16
#include "llvm/CodeGen/MachineFunction.h"
17
#include "llvm/CodeGen/MachineInstr.h"
18
#include "llvm/CodeGen/MachineModuleInfo.h"
19
#include "llvm/CodeGen/TargetSubtargetInfo.h"
20
#include "llvm/IR/DebugInfo.h"
21
#include "llvm/IR/Module.h"
22
#include "llvm/MC/MCStreamer.h"
23
#include "llvm/Support/CommandLine.h"
24
25
using namespace llvm;
26
27
#define DEBUG_TYPE "dwarfdebug"
28
29
/// If true, we drop variable location ranges which exist entirely outside the
30
/// variable's lexical scope instruction ranges.
31
static cl::opt<bool> TrimVarLocs("trim-var-locs", cl::Hidden, cl::init(true));
32
33
std::optional<DbgVariableLocation>
34
DbgVariableLocation::extractFromMachineInstruction(
35
const MachineInstr &Instruction) {
36
DbgVariableLocation Location;
37
// Variables calculated from multiple locations can't be represented here.
38
if (Instruction.getNumDebugOperands() != 1)
39
return std::nullopt;
40
if (!Instruction.getDebugOperand(0).isReg())
41
return std::nullopt;
42
Location.Register = Instruction.getDebugOperand(0).getReg();
43
Location.FragmentInfo.reset();
44
// We only handle expressions generated by DIExpression::appendOffset,
45
// which doesn't require a full stack machine.
46
int64_t Offset = 0;
47
const DIExpression *DIExpr = Instruction.getDebugExpression();
48
auto Op = DIExpr->expr_op_begin();
49
// We can handle a DBG_VALUE_LIST iff it has exactly one location operand that
50
// appears exactly once at the start of the expression.
51
if (Instruction.isDebugValueList()) {
52
if (Instruction.getNumDebugOperands() == 1 &&
53
Op->getOp() == dwarf::DW_OP_LLVM_arg)
54
++Op;
55
else
56
return std::nullopt;
57
}
58
while (Op != DIExpr->expr_op_end()) {
59
switch (Op->getOp()) {
60
case dwarf::DW_OP_constu: {
61
int Value = Op->getArg(0);
62
++Op;
63
if (Op != DIExpr->expr_op_end()) {
64
switch (Op->getOp()) {
65
case dwarf::DW_OP_minus:
66
Offset -= Value;
67
break;
68
case dwarf::DW_OP_plus:
69
Offset += Value;
70
break;
71
default:
72
continue;
73
}
74
}
75
} break;
76
case dwarf::DW_OP_plus_uconst:
77
Offset += Op->getArg(0);
78
break;
79
case dwarf::DW_OP_LLVM_fragment:
80
Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)};
81
break;
82
case dwarf::DW_OP_deref:
83
Location.LoadChain.push_back(Offset);
84
Offset = 0;
85
break;
86
default:
87
return std::nullopt;
88
}
89
++Op;
90
}
91
92
// Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE
93
// instruction.
94
// FIXME: Replace these with DIExpression.
95
if (Instruction.isIndirectDebugValue())
96
Location.LoadChain.push_back(Offset);
97
98
return Location;
99
}
100
101
DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {}
102
103
DebugHandlerBase::~DebugHandlerBase() = default;
104
105
void DebugHandlerBase::beginModule(Module *M) {
106
if (M->debug_compile_units().empty())
107
Asm = nullptr;
108
}
109
110
// Each LexicalScope has first instruction and last instruction to mark
111
// beginning and end of a scope respectively. Create an inverse map that list
112
// scopes starts (and ends) with an instruction. One instruction may start (or
113
// end) multiple scopes. Ignore scopes that are not reachable.
114
void DebugHandlerBase::identifyScopeMarkers() {
115
SmallVector<LexicalScope *, 4> WorkList;
116
WorkList.push_back(LScopes.getCurrentFunctionScope());
117
while (!WorkList.empty()) {
118
LexicalScope *S = WorkList.pop_back_val();
119
120
const SmallVectorImpl<LexicalScope *> &Children = S->getChildren();
121
if (!Children.empty())
122
WorkList.append(Children.begin(), Children.end());
123
124
if (S->isAbstractScope())
125
continue;
126
127
for (const InsnRange &R : S->getRanges()) {
128
assert(R.first && "InsnRange does not have first instruction!");
129
assert(R.second && "InsnRange does not have second instruction!");
130
requestLabelBeforeInsn(R.first);
131
requestLabelAfterInsn(R.second);
132
}
133
}
134
}
135
136
// Return Label preceding the instruction.
137
MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) {
138
MCSymbol *Label = LabelsBeforeInsn.lookup(MI);
139
assert(Label && "Didn't insert label before instruction");
140
return Label;
141
}
142
143
// Return Label immediately following the instruction.
144
MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) {
145
return LabelsAfterInsn.lookup(MI);
146
}
147
148
/// If this type is derived from a base type then return base type size.
149
uint64_t DebugHandlerBase::getBaseTypeSize(const DIType *Ty) {
150
assert(Ty);
151
const DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty);
152
if (!DDTy)
153
return Ty->getSizeInBits();
154
155
unsigned Tag = DDTy->getTag();
156
157
if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef &&
158
Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type &&
159
Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type &&
160
Tag != dwarf::DW_TAG_immutable_type &&
161
Tag != dwarf::DW_TAG_template_alias)
162
return DDTy->getSizeInBits();
163
164
DIType *BaseType = DDTy->getBaseType();
165
166
if (!BaseType)
167
return 0;
168
169
// If this is a derived type, go ahead and get the base type, unless it's a
170
// reference then it's just the size of the field. Pointer types have no need
171
// of this since they're a different type of qualification on the type.
172
if (BaseType->getTag() == dwarf::DW_TAG_reference_type ||
173
BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type)
174
return Ty->getSizeInBits();
175
176
return getBaseTypeSize(BaseType);
177
}
178
179
bool DebugHandlerBase::isUnsignedDIType(const DIType *Ty) {
180
if (isa<DIStringType>(Ty)) {
181
// Some transformations (e.g. instcombine) may decide to turn a Fortran
182
// character object into an integer, and later ones (e.g. SROA) may
183
// further inject a constant integer in a llvm.dbg.value call to track
184
// the object's value. Here we trust the transformations are doing the
185
// right thing, and treat the constant as unsigned to preserve that value
186
// (i.e. avoid sign extension).
187
return true;
188
}
189
190
if (auto *CTy = dyn_cast<DICompositeType>(Ty)) {
191
if (CTy->getTag() == dwarf::DW_TAG_enumeration_type) {
192
if (!(Ty = CTy->getBaseType()))
193
// FIXME: Enums without a fixed underlying type have unknown signedness
194
// here, leading to incorrectly emitted constants.
195
return false;
196
} else
197
// (Pieces of) aggregate types that get hacked apart by SROA may be
198
// represented by a constant. Encode them as unsigned bytes.
199
return true;
200
}
201
202
if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
203
dwarf::Tag T = (dwarf::Tag)Ty->getTag();
204
// Encode pointer constants as unsigned bytes. This is used at least for
205
// null pointer constant emission.
206
// FIXME: reference and rvalue_reference /probably/ shouldn't be allowed
207
// here, but accept them for now due to a bug in SROA producing bogus
208
// dbg.values.
209
if (T == dwarf::DW_TAG_pointer_type ||
210
T == dwarf::DW_TAG_ptr_to_member_type ||
211
T == dwarf::DW_TAG_reference_type ||
212
T == dwarf::DW_TAG_rvalue_reference_type)
213
return true;
214
assert(T == dwarf::DW_TAG_typedef || T == dwarf::DW_TAG_const_type ||
215
T == dwarf::DW_TAG_volatile_type ||
216
T == dwarf::DW_TAG_restrict_type || T == dwarf::DW_TAG_atomic_type ||
217
T == dwarf::DW_TAG_immutable_type ||
218
T == dwarf::DW_TAG_template_alias);
219
assert(DTy->getBaseType() && "Expected valid base type");
220
return isUnsignedDIType(DTy->getBaseType());
221
}
222
223
auto *BTy = cast<DIBasicType>(Ty);
224
unsigned Encoding = BTy->getEncoding();
225
assert((Encoding == dwarf::DW_ATE_unsigned ||
226
Encoding == dwarf::DW_ATE_unsigned_char ||
227
Encoding == dwarf::DW_ATE_signed ||
228
Encoding == dwarf::DW_ATE_signed_char ||
229
Encoding == dwarf::DW_ATE_float || Encoding == dwarf::DW_ATE_UTF ||
230
Encoding == dwarf::DW_ATE_boolean ||
231
Encoding == dwarf::DW_ATE_complex_float ||
232
Encoding == dwarf::DW_ATE_signed_fixed ||
233
Encoding == dwarf::DW_ATE_unsigned_fixed ||
234
(Ty->getTag() == dwarf::DW_TAG_unspecified_type &&
235
Ty->getName() == "decltype(nullptr)")) &&
236
"Unsupported encoding");
237
return Encoding == dwarf::DW_ATE_unsigned ||
238
Encoding == dwarf::DW_ATE_unsigned_char ||
239
Encoding == dwarf::DW_ATE_UTF || Encoding == dwarf::DW_ATE_boolean ||
240
Encoding == llvm::dwarf::DW_ATE_unsigned_fixed ||
241
Ty->getTag() == dwarf::DW_TAG_unspecified_type;
242
}
243
244
static bool hasDebugInfo(const MachineModuleInfo *MMI,
245
const MachineFunction *MF) {
246
if (!MMI->hasDebugInfo())
247
return false;
248
auto *SP = MF->getFunction().getSubprogram();
249
if (!SP)
250
return false;
251
assert(SP->getUnit());
252
auto EK = SP->getUnit()->getEmissionKind();
253
if (EK == DICompileUnit::NoDebug)
254
return false;
255
return true;
256
}
257
258
void DebugHandlerBase::beginFunction(const MachineFunction *MF) {
259
PrevInstBB = nullptr;
260
261
if (!Asm || !hasDebugInfo(MMI, MF)) {
262
skippedNonDebugFunction();
263
return;
264
}
265
266
// Grab the lexical scopes for the function, if we don't have any of those
267
// then we're not going to be able to do anything.
268
LScopes.initialize(*MF);
269
if (LScopes.empty()) {
270
beginFunctionImpl(MF);
271
return;
272
}
273
274
// Make sure that each lexical scope will have a begin/end label.
275
identifyScopeMarkers();
276
277
// Calculate history for local variables.
278
assert(DbgValues.empty() && "DbgValues map wasn't cleaned!");
279
assert(DbgLabels.empty() && "DbgLabels map wasn't cleaned!");
280
calculateDbgEntityHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(),
281
DbgValues, DbgLabels);
282
InstOrdering.initialize(*MF);
283
if (TrimVarLocs)
284
DbgValues.trimLocationRanges(*MF, LScopes, InstOrdering);
285
LLVM_DEBUG(DbgValues.dump(MF->getName()));
286
287
// Request labels for the full history.
288
for (const auto &I : DbgValues) {
289
const auto &Entries = I.second;
290
if (Entries.empty())
291
continue;
292
293
auto IsDescribedByReg = [](const MachineInstr *MI) {
294
return any_of(MI->debug_operands(),
295
[](auto &MO) { return MO.isReg() && MO.getReg(); });
296
};
297
298
// The first mention of a function argument gets the CurrentFnBegin label,
299
// so arguments are visible when breaking at function entry.
300
//
301
// We do not change the label for values that are described by registers,
302
// as that could place them above their defining instructions. We should
303
// ideally not change the labels for constant debug values either, since
304
// doing that violates the ranges that are calculated in the history map.
305
// However, we currently do not emit debug values for constant arguments
306
// directly at the start of the function, so this code is still useful.
307
const DILocalVariable *DIVar =
308
Entries.front().getInstr()->getDebugVariable();
309
if (DIVar->isParameter() &&
310
getDISubprogram(DIVar->getScope())->describes(&MF->getFunction())) {
311
if (!IsDescribedByReg(Entries.front().getInstr()))
312
LabelsBeforeInsn[Entries.front().getInstr()] = Asm->getFunctionBegin();
313
if (Entries.front().getInstr()->getDebugExpression()->isFragment()) {
314
// Mark all non-overlapping initial fragments.
315
for (const auto *I = Entries.begin(); I != Entries.end(); ++I) {
316
if (!I->isDbgValue())
317
continue;
318
const DIExpression *Fragment = I->getInstr()->getDebugExpression();
319
if (std::any_of(Entries.begin(), I,
320
[&](DbgValueHistoryMap::Entry Pred) {
321
return Pred.isDbgValue() &&
322
Fragment->fragmentsOverlap(
323
Pred.getInstr()->getDebugExpression());
324
}))
325
break;
326
// The code that generates location lists for DWARF assumes that the
327
// entries' start labels are monotonically increasing, and since we
328
// don't change the label for fragments that are described by
329
// registers, we must bail out when encountering such a fragment.
330
if (IsDescribedByReg(I->getInstr()))
331
break;
332
LabelsBeforeInsn[I->getInstr()] = Asm->getFunctionBegin();
333
}
334
}
335
}
336
337
for (const auto &Entry : Entries) {
338
if (Entry.isDbgValue())
339
requestLabelBeforeInsn(Entry.getInstr());
340
else
341
requestLabelAfterInsn(Entry.getInstr());
342
}
343
}
344
345
// Ensure there is a symbol before DBG_LABEL.
346
for (const auto &I : DbgLabels) {
347
const MachineInstr *MI = I.second;
348
requestLabelBeforeInsn(MI);
349
}
350
351
PrevInstLoc = DebugLoc();
352
PrevLabel = Asm->getFunctionBegin();
353
beginFunctionImpl(MF);
354
}
355
356
void DebugHandlerBase::beginInstruction(const MachineInstr *MI) {
357
if (!Asm || !MMI->hasDebugInfo())
358
return;
359
360
assert(CurMI == nullptr);
361
CurMI = MI;
362
363
// Insert labels where requested.
364
DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
365
LabelsBeforeInsn.find(MI);
366
367
// No label needed.
368
if (I == LabelsBeforeInsn.end())
369
return;
370
371
// Label already assigned.
372
if (I->second)
373
return;
374
375
if (!PrevLabel) {
376
PrevLabel = MMI->getContext().createTempSymbol();
377
Asm->OutStreamer->emitLabel(PrevLabel);
378
}
379
I->second = PrevLabel;
380
}
381
382
void DebugHandlerBase::endInstruction() {
383
if (!Asm || !MMI->hasDebugInfo())
384
return;
385
386
assert(CurMI != nullptr);
387
// Don't create a new label after DBG_VALUE and other instructions that don't
388
// generate code.
389
if (!CurMI->isMetaInstruction()) {
390
PrevLabel = nullptr;
391
PrevInstBB = CurMI->getParent();
392
}
393
394
DenseMap<const MachineInstr *, MCSymbol *>::iterator I =
395
LabelsAfterInsn.find(CurMI);
396
397
// No label needed or label already assigned.
398
if (I == LabelsAfterInsn.end() || I->second) {
399
CurMI = nullptr;
400
return;
401
}
402
403
// We need a label after this instruction. With basic block sections, just
404
// use the end symbol of the section if this is the last instruction of the
405
// section. This reduces the need for an additional label and also helps
406
// merging ranges.
407
if (CurMI->getParent()->isEndSection() && CurMI->getNextNode() == nullptr) {
408
PrevLabel = CurMI->getParent()->getEndSymbol();
409
} else if (!PrevLabel) {
410
PrevLabel = MMI->getContext().createTempSymbol();
411
Asm->OutStreamer->emitLabel(PrevLabel);
412
}
413
I->second = PrevLabel;
414
CurMI = nullptr;
415
}
416
417
void DebugHandlerBase::endFunction(const MachineFunction *MF) {
418
if (Asm && hasDebugInfo(MMI, MF))
419
endFunctionImpl(MF);
420
DbgValues.clear();
421
DbgLabels.clear();
422
LabelsBeforeInsn.clear();
423
LabelsAfterInsn.clear();
424
InstOrdering.clear();
425
}
426
427
void DebugHandlerBase::beginBasicBlockSection(const MachineBasicBlock &MBB) {
428
EpilogBeginBlock = nullptr;
429
if (!MBB.isEntryBlock())
430
PrevLabel = MBB.getSymbol();
431
}
432
433
void DebugHandlerBase::endBasicBlockSection(const MachineBasicBlock &MBB) {
434
PrevLabel = nullptr;
435
}
436
437